JP2005321121A - Electric melting furnace - Google Patents

Electric melting furnace Download PDF

Info

Publication number
JP2005321121A
JP2005321121A JP2004137434A JP2004137434A JP2005321121A JP 2005321121 A JP2005321121 A JP 2005321121A JP 2004137434 A JP2004137434 A JP 2004137434A JP 2004137434 A JP2004137434 A JP 2004137434A JP 2005321121 A JP2005321121 A JP 2005321121A
Authority
JP
Japan
Prior art keywords
furnace
molten slag
electrode
conductive powder
bottom electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004137434A
Other languages
Japanese (ja)
Inventor
Tsutomu Kubota
勉 久保田
Akemasa Yoshimoto
明正 吉本
Tatsuo Take
達男 武
Yoshisada Soga
義貞 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Taiheiyo Kinzoku KK
Pacific Metals Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Taiheiyo Kinzoku KK
Pacific Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd, Taiheiyo Kinzoku KK, Pacific Metals Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004137434A priority Critical patent/JP2005321121A/en
Publication of JP2005321121A publication Critical patent/JP2005321121A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve melting efficiency by uniforming current distribution in molten slag. <P>SOLUTION: In an incinerated ash melting furnace, a direct current is carried between a rod furnace top electrode 4 arranged at the center of the upper part in the furnace and a disc furnace bottom electrode 5 arranged on the furnace bottom and incinerated ashes charged into the furnace are melted to produce the molten slag 7. A conductive powder charging mechanism 16 is provided for charging a conductive powder and grain material 15 into the furnace. The conductive powder and grain material 15 is added to a forming slag layer 13 on the surface of the molten slag 7. The conductive powder and grain material 15 is forcibly added to the surface of the molten slag 7 contacting the incinerated ashes 3 to form a current passage 19, whereby the direct current is carried from the surface of the molten slag almost perpendicularly to a molten metal layer 8 to improve the melting efficiency and promote the reducing reaction of metal oxide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、都市ごみや産業廃棄物、下水汚泥あるいは汚染土壌等の焼却処分から生じる焼却灰や焼却飛灰を溶融する直流電気抵抗式の焼却灰溶融炉に関し、詳しくは溶融効率を向上させるための手段に関する。     The present invention relates to a direct current electric resistance type incineration ash melting furnace that melts incineration ash and incineration fly ash generated from incineration disposal of municipal waste, industrial waste, sewage sludge or contaminated soil, and more specifically to improve melting efficiency Relating to the means.

上記した焼却灰などを埋め立て処分に代えて電気溶融炉で還元溶融し、溶融スラグを結晶化して建築資材などに再利用するとともに、メタルを有価物として分離する技術が開発されており、この技術については例えば特許文献1に記載されている。上記溶融炉としては熱効率の高い電気抵抗式が適しており、特に直流抵抗式溶融炉は安定した静かな溶解が得られ、溶融スラグとメタルとの比重分離が進みやすい。   A technology has been developed in which the above incineration ash is reduced and melted in an electric melting furnace instead of landfill disposal, and the molten slag is crystallized and reused for building materials, etc., and the metal is separated as valuable resources. Is described in Patent Document 1, for example. As the melting furnace, an electric resistance type having high thermal efficiency is suitable. In particular, a direct current resistance type melting furnace provides a stable and quiet melting, and the specific gravity separation between the molten slag and the metal easily proceeds.

図5は直流抵抗式溶融炉の従来構成を示す縦断面図である。図5において、直立した炉体1に原料装入装置2から装入された焼却灰3は、炉内の上部中心に配置された棒状の炉上電極4と炉底に配置された円板状の炉底電極5との間に直流電源6から通電される直流電流のジュール熱で溶融され、溶融スラグ7を生成する。焼却灰3には還元剤(炭素粉等)が配合されており、還元された焼却灰中の金属酸化物は溶融メタル8となって溶融スラグ7から分離し、溶融炉の下層に沈降する。   FIG. 5 is a longitudinal sectional view showing a conventional configuration of a DC resistance melting furnace. In FIG. 5, the incinerated ash 3 charged from the raw material charging device 2 into the upright furnace body 1 is a rod-shaped top electrode 4 disposed at the upper center of the furnace and a disk-like shape disposed at the bottom of the furnace. The melted slag 7 is generated by being melted by the Joule heat of the direct current supplied from the direct current power source 6. The incineration ash 3 is mixed with a reducing agent (carbon powder or the like), and the metal oxide in the reduced incineration ash is separated from the molten slag 7 as the molten metal 8 and settles in the lower layer of the melting furnace.

溶融スラグ7は上部の取出口9から取り出され、図示しない鋳型に鋳込まれる。溶融メタル8は、炉底部の取出口10から取り出される。炉体1の上面は炉蓋11により閉じられ、炉蓋11の排気口12から炉内ガスが図示しない排ガス処理装置に排出される。ここで、溶融スラグ7はガス成分の蒸発に伴い泡が立ち、表層部に泡立ち層(フォーミングスラグ層)13を生じる。溶融スラグ7は焼却灰3により炉内雰囲気から遮断され、金属酸化物は添加された還元剤によりフォーミングスラグ層13で還元溶融される。
特開平9−196573号公報
The molten slag 7 is taken out from the upper outlet 9 and cast into a mold (not shown). The molten metal 8 is taken out from the outlet 10 at the bottom of the furnace. The upper surface of the furnace body 1 is closed by a furnace lid 11, and the gas in the furnace is discharged from an exhaust port 12 of the furnace lid 11 to an exhaust gas treatment device (not shown). Here, bubbles are generated in the molten slag 7 as the gas components are evaporated, and a foamed layer (forming slag layer) 13 is generated in the surface layer portion. The molten slag 7 is blocked from the furnace atmosphere by the incinerated ash 3, and the metal oxide is reduced and melted in the forming slag layer 13 by the added reducing agent.
JP-A-9-196573

図5において、炉体1の炉壁耐火物1a(なお、1bは鉄皮)及び炉上電極4は炭素材からなり、鉄材からなる炉底電極5は炉底の導電性不定形耐火物14内に埋設されている。図6は、炉上電極4、炉底電極5、溶融スラグ7、溶融メタル8及び導電性不定形耐火物14の抵抗率(Ωcm)及び導電性不定形耐火物14の抵抗率を1としたときの各抵抗率の倍率を示したものである。図6の関係から、炉内を流れる電流の分布は図6に矢印で示したようになるが、溶融スラグ中の電流は電気抵抗が小さい炉上電極4と炉底電極5との間の距離が最短となる炉中心部に集中し、図示の通り炉上電極4の先端から溶融メタル層に向かう傘型に流れる。そのため、溶融スラグ中の電流は部分的に偏在し、その結果として焼却灰3の溶融効率が悪かった。   In FIG. 5, the furnace wall refractory 1a of the furnace body 1 (where 1b is an iron skin) and the furnace electrode 4 are made of a carbon material, and the furnace bottom electrode 5 made of iron is a conductive amorphous refractory 14 on the furnace bottom. It is buried inside. In FIG. 6, the resistivity (Ωcm) of the furnace electrode 4, the furnace bottom electrode 5, the molten slag 7, the molten metal 8 and the conductive amorphous refractory 14 and the resistivity of the conductive amorphous refractory 14 are set to 1. The magnification of each resistivity is shown. From the relationship of FIG. 6, the distribution of the current flowing in the furnace is as shown by the arrow in FIG. 6, but the current in the molten slag is the distance between the furnace electrode 4 and the furnace bottom electrode 5 having a small electrical resistance. Are concentrated at the shortest furnace center and flow in an umbrella shape from the tip of the furnace electrode 4 toward the molten metal layer as shown in the figure. Therefore, the current in the molten slag is partially uneven, and as a result, the melting efficiency of the incinerated ash 3 is poor.

一方、図5において、炉底電極5は溶融スラグ7や溶融メタル8と直接接触することはなく、導電性不定形耐火物14で機械的に遮断されている。その場合、炉底電極5と導電性不定形耐火物14との間の導電性を高めるためには、それらをできるだけ電気的に緊密に接触させ、また接触面積を増やすことが肝要である。また、炉上電極4の直径は一般に炉内径の1/10程度と小径であり、電流はその先端から溶融メタル8に向かって直線的ないしは放物線状に流れるため溶融スラグ内に拡がり難い。   On the other hand, in FIG. 5, the furnace bottom electrode 5 is not in direct contact with the molten slag 7 or the molten metal 8, and is mechanically cut off by the conductive amorphous refractory 14. In that case, in order to increase the electrical conductivity between the furnace bottom electrode 5 and the conductive amorphous refractory 14, it is important to bring them into close electrical contact as much as possible and to increase the contact area. Further, the diameter of the furnace electrode 4 is generally as small as about 1/10 of the furnace inner diameter, and the current flows linearly or parabolically from the tip toward the molten metal 8 and thus hardly spreads in the molten slag.

そこで、この発明の課題は、溶融スラグ中の電流分布を均一化するとともに炉底電極の導電性を高め、溶融効率を向上させることにある。   Accordingly, an object of the present invention is to make the current distribution in the molten slag uniform and improve the conductivity of the furnace bottom electrode, thereby improving the melting efficiency.

この発明は、炉内の上部中心に配置された棒状の炉上電極と炉底に配置された円板状の炉底電極とを備え、前記炉上電極と炉底電極との間に直流電流が通電されることにより、炉内に装入された焼却灰を溶融して溶融スラグを生成する焼却灰溶融炉において、導電性の粉粒体を炉内に装入する導電粉装入機構を設け、この導電粉装入機構により前記導電性の粉粒体を前記溶融スラグの表面に装入するようにするものである(請求項1)。   The present invention comprises a rod-shaped furnace top electrode disposed at the center of the upper part of the furnace and a disk-shaped furnace bottom electrode disposed at the furnace bottom, and a direct current is provided between the furnace electrode and the furnace bottom electrode. In an incineration ash melting furnace that melts the incinerated ash charged into the furnace to produce molten slag, the conductive powder charging mechanism for charging the conductive particles into the furnace The conductive powder material is charged into the surface of the molten slag by the conductive powder charging mechanism (claim 1).

請求項1の発明は、焼却灰と接触する溶融スラグの表面に導電性の粉粒体を強制的に添加して電流通路をつくるもので、これにより溶融スラグ表面から溶融メタル層にほぼ垂直に直流電流が流れるようになり、溶融効率が高まるとともに金属酸化物の還元反応も促進される。   According to the first aspect of the present invention, a conductive powder is forcibly added to the surface of the molten slag in contact with the incinerated ash to create a current path, whereby the molten slag surface is substantially perpendicular to the molten metal layer. A direct current flows, melting efficiency is increased, and reduction reaction of the metal oxide is promoted.

請求項1の発明において、前記導電性の粉粒体は前記溶融スラグのフォーミングスラグ層上に装入するようにするのがよい(請求項2)。フォーミングスラグ層は泡立っているため、フォーミングスラグ層上の導電性の粉粒体は横方向に広がりやすく、広範な電流通路が得られやすい。ただし、導電性粉粒体の広がりは、炉上電極と炉壁との間の絶縁性が保てる範囲に制限する。前記導電粉にはコークス粉(請求項3)あるいは無機質還元剤(請求項4)を用いるのがよい。   In the first aspect of the present invention, it is preferable that the conductive granular material is charged on the forming slag layer of the molten slag (second aspect). Since the forming slag layer is foamed, the conductive powder particles on the forming slag layer tend to spread in the lateral direction, and a wide current path is easily obtained. However, the spread of the conductive particles is limited to a range in which the insulation between the furnace electrode and the furnace wall can be maintained. Coke powder (Claim 3) or an inorganic reducing agent (Claim 4) is preferably used for the conductive powder.

また、この発明は、炉内の上部中心に配置された棒状の炉上電極と炉底に配置された円板状の炉底電極とを備え、前記炉上電極と炉底電極との間に直流電流が通電されることにより、炉内に装入された焼却灰を溶融して溶融スラグを生成する焼却灰溶融炉において、前記炉底電極の表面に凹凸を形成し(請求項5)、あるいは前記炉底電極に軸方向に貫通する多数の穴をあけるものとする(請求項6)。炉底電極の表面に凹凸を形成したり、炉底電極に多数の穴をあけたりすることにより、接触面積が増えるとともに炉底電極と導電性不定形耐火物との密着が緊密になり導電性が良好になる。   The present invention also includes a rod-shaped furnace top electrode disposed at the upper center of the furnace and a disk-shaped furnace bottom electrode disposed at the bottom of the furnace, between the furnace electrode and the furnace bottom electrode. In the incineration ash melting furnace that melts the incinerated ash charged into the furnace to generate molten slag by applying a direct current, irregularities are formed on the surface of the furnace bottom electrode (claim 5), Alternatively, a large number of holes penetrating in the axial direction are formed in the furnace bottom electrode. By forming irregularities on the surface of the furnace bottom electrode or making a large number of holes in the furnace bottom electrode, the contact area increases and the adhesion between the furnace bottom electrode and the conductive amorphous refractory becomes tight. Will be better.

また、この発明は、炉内の上部中心に配置された棒状の炉上電極と炉底に配置された円板状の炉底電極とを備え、前記炉上電極と炉底電極との間に直流電流が通電されることにより、炉内に装入された焼却灰を溶融して溶融スラグを生成する焼却灰溶融炉において、前記炉上電極を自焼成電極用ペーストを自焼成して形成するものとする(請求項7)。炉内には溶融スラグや炉内生成ガスの熱が存在し、また電極自体も電気抵抗熱を発生する。そこで、自焼成電極用ペーストを鋼板製の円筒体に入れ、上記した炉内の熱で自焼成して炉上電極を形成すれば、溶融スラグ表面を広範囲に覆えるような大径の電極を得ることが容易となり、それにより溶融スラグ内の電流を均一化を図ることができる。   The present invention also includes a rod-shaped furnace top electrode disposed at the upper center of the furnace and a disk-shaped furnace bottom electrode disposed at the bottom of the furnace, between the furnace electrode and the furnace bottom electrode. In the incineration ash melting furnace that melts the incinerated ash charged in the furnace to generate molten slag by applying a direct current, the on-furnace electrode is formed by self-firing the self-firing electrode paste. (Claim 7). In the furnace, there is heat of molten slag and gas generated in the furnace, and the electrode itself also generates electric resistance heat. Therefore, if the self-fired electrode paste is placed in a cylindrical body made of steel plate and self-fired with the heat in the furnace to form an on-furnace electrode, a large-diameter electrode capable of covering the surface of the molten slag over a wide area is obtained. It becomes easy to obtain, and thereby the current in the molten slag can be made uniform.

この発明によれば、溶融スラグを流れる電流の分布が改善され、また炉底電極周りの導電性が高まる結果、焼却灰の溶融効率が向上し、電力原単位が低下してランニングコストの低減が図れる。   According to the present invention, the distribution of the current flowing through the molten slag is improved, and the conductivity around the furnace bottom electrode is increased. As a result, the melting efficiency of the incineration ash is improved, the power consumption is reduced, and the running cost is reduced. I can plan.

以下、図1〜図4に基づいて、この発明の実施の形態を説明する。なお、従来例と対応する部分には同一の符号を用いるものとする。   Embodiments of the present invention will be described below with reference to FIGS. In addition, the same code | symbol shall be used for the part corresponding to a prior art example.

図1は、この発明の実施例1を示す焼却灰溶融炉の縦断面図である。図1において、図5の従来技術と相違するのは、導電性の粉粒体15を炉内に装入する導電粉装入機構16が設けられている点である。導電粉装入機構16は炉蓋11の上方に開口するホッパ17と、ホッパ17から炉蓋11を貫通してフォーミングスラグ層13の上面に達する装入筒18とからなり、この導電粉装入機構16は複数基、例えば4基が等ピッチで環状に配置されている。導電性の粉粒体15にはコークス粉あるいは無機質還元剤(例えば圧縮したアルミ缶)が用いられる。   FIG. 1 is a longitudinal sectional view of an incineration ash melting furnace showing Embodiment 1 of the present invention. 1 is different from the prior art of FIG. 5 in that a conductive powder charging mechanism 16 for charging the conductive powder 15 into the furnace is provided. The conductive powder charging mechanism 16 includes a hopper 17 that opens above the furnace lid 11, and a charging cylinder 18 that penetrates the furnace lid 11 from the hopper 17 and reaches the upper surface of the forming slag layer 13. A plurality of mechanisms 16, for example, four groups, are arranged in an annular shape at an equal pitch. Coke powder or an inorganic reducing agent (for example, a compressed aluminum can) is used for the conductive powder 15.

導電性の粉粒体15は導電粉装入機構16により、図示溶融炉の運転立ち上げ後、焼却灰3が溶融して溶融スラグ7を生成し、フォーミングスラグ層13が生じた段階で、その上面に装入される。この粉粒体15は溶融スラグ7の表面で水平方向に拡散し、図1に示すように平板な電流通路19を形成する。この電流通路19は溶融スラグ7と比べ導電性が1桁以上高い。そのため、炉上電極4の先端から流れる電流は電流通路19に拡がり、図1に矢印で示すように溶融スラグ7内をほぼ垂直に溶融メタル層8に向かって流れる。その結果、溶融スラグ7内の電流分布は均一化され、焼却灰3の溶融効率が向上するとともに、フォーミングスラグ層13での金属酸化物の還元溶融が促進される。なお、装入された粉粒体15は強い還元作用を示し、コークス粉の場合は最終的にCOとして排ガスとともに排出され、無機質還元剤の場合はスラグ内に酸化物を生成する。   After the conductive powder charging mechanism 16 starts up the operation of the illustrated melting furnace, the conductive powder 15 is melted to produce the incinerated ash 3 to form the molten slag 7, and the forming slag layer 13 is formed. The top surface is charged. The granular material 15 diffuses in the horizontal direction on the surface of the molten slag 7 to form a flat current passage 19 as shown in FIG. The current path 19 is one digit or more higher in conductivity than the molten slag 7. Therefore, the current flowing from the tip of the furnace electrode 4 spreads in the current passage 19 and flows in the molten slag 7 almost vertically toward the molten metal layer 8 as indicated by arrows in FIG. As a result, the current distribution in the molten slag 7 is made uniform, the melting efficiency of the incinerated ash 3 is improved, and the reduction melting of the metal oxide in the forming slag layer 13 is promoted. The charged granular material 15 exhibits a strong reducing action. In the case of coke powder, it is finally discharged together with the exhaust gas as CO. In the case of an inorganic reducing agent, an oxide is generated in the slag.

図2及び図3は、この発明の実施例2を示すもので、各図の(A)は炉底電極の平面図、(B)は側面図である。まず、図2において、炉底電極5の表面はサンドブラストで荒削りされ、微小な凹凸が形成されている。このように凹凸を形成することにより、表面積が増えるとともに導電性不定形耐火物14との接触を緊密にして導電性を高めることができ、その結果として溶融スラグ7内の電流分布の均一化を図ることができる。電極表面に凹凸を形成するには、図2(C)に示す矩形断面、同(D)に示す波形断面、同(E)に示す鋸歯状断面等の歯形5aを格子状に設けてもよい。一方、図3は、炉底電極5に軸方向に貫通する多数の穴5bをあけたものである。このような多数の穴5bによっても、炉底電極5の表面積を増やし、導電性不定形耐火物14との接触を緊密にすることができる。   2 and 3 show Embodiment 2 of the present invention, in which (A) is a plan view of a furnace bottom electrode and (B) is a side view. First, in FIG. 2, the surface of the furnace bottom electrode 5 is roughened by sandblasting to form minute irregularities. By forming the irregularities in this way, the surface area can be increased and the electrical conductivity can be enhanced by close contact with the conductive amorphous refractory 14, and as a result, the current distribution in the molten slag 7 can be made uniform. Can be planned. In order to form unevenness on the electrode surface, tooth shapes 5a such as a rectangular cross section shown in FIG. 2C, a corrugated cross section shown in FIG. 2D, and a sawtooth cross section shown in FIG. . On the other hand, FIG. 3 shows a structure in which a large number of holes 5 b penetrating in the axial direction are formed in the furnace bottom electrode 5. Such a large number of holes 5b can also increase the surface area of the furnace bottom electrode 5 and make the contact with the conductive amorphous refractory 14 tight.

図4は、この発明の実施例3を示す溶融炉の要部縦断面図である。図4において、炉上電極4は、自焼成電極用ペーストの自焼成で形成されている。すなわち、炉上電極4は当初、図示のような鋼板製の円筒体20に自焼成電極用ペースト21が充填されて構成される。次いで、通電により溶融スラグ7が生成されると、自焼成電極用ペースト21は炉内の溶融スラグ7の熱や炉内生成ガスの熱、電極自体の電気抵抗熱で自焼成され炉上電極4が形成される。円筒体20の底部(2点鎖線部分)は焼成の初期過程で溶け落ち、電極先端が図示の通り露出する。このような電極形成によれば、円筒体20を例えば炉内径の1/3程度の大径に構成しておくことにより、スラグ表面を広範囲に覆えるような広い端面の炉上電極4が得られ、溶融メタル層との間に流れる電流の均一化が図れる。   FIG. 4 is a longitudinal sectional view of an essential part of a melting furnace showing Embodiment 3 of the present invention. In FIG. 4, the furnace electrode 4 is formed by self-baking of a paste for self-baking electrodes. That is, the furnace electrode 4 is initially configured by filling a self-baking electrode paste 21 into a cylindrical body 20 made of a steel plate as shown. Next, when the molten slag 7 is generated by energization, the self-fired electrode paste 21 is self-fired by the heat of the molten slag 7 in the furnace, the heat of the gas generated in the furnace, and the electric resistance heat of the electrode itself, and the upper electrode 4 Is formed. The bottom part (two-dot chain line part) of the cylindrical body 20 is melted away in the initial stage of firing, and the tip of the electrode is exposed as shown. According to such electrode formation, the furnace body electrode 4 having a wide end surface capable of covering the slag surface in a wide range is obtained by configuring the cylindrical body 20 to have a large diameter, for example, about 1/3 of the furnace inner diameter. The current flowing between the molten metal layer and the molten metal layer can be made uniform.

この発明の実施例1を示す焼却灰溶融炉の縦断面図である。It is a longitudinal cross-sectional view of the incineration ash melting furnace which shows Example 1 of this invention. この発明の実施例2を示し、(A)は焼却灰溶融炉の炉底電極の平面図、(B)〜(E)はその側面図である。Example 2 of this invention is shown, (A) is a top view of the furnace bottom electrode of an incineration ash melting furnace, (B)-(E) is the side view. この発明の実施例2の異なる態様を示し(A)は焼却灰溶融炉の炉底電極の平面図、(B)その縦断面図である。(A) is a plan view of a bottom electrode of an incinerated ash melting furnace, and (B) is a longitudinal sectional view thereof. この発明の実施例3を示す焼却灰溶融炉の要部縦断面図である。It is a principal part longitudinal cross-sectional view of the incineration ash melting furnace which shows Example 3 of this invention. 従来例を示す焼却灰溶融炉の縦断面図である。It is a longitudinal cross-sectional view of the incineration ash melting furnace which shows a prior art example. 溶融炉構成部材の抵抗率の比較を示す図である。It is a figure which shows the comparison of the resistivity of a melting furnace structural member.

符号の説明Explanation of symbols

3 焼却灰
4 炉上電極
5 炉底電極
7 溶融スラグ
8 溶融メタル
13 フォーミングスラグ層
15 導電性の粉粒体
16 導電粉装入機構
20 円筒体
21 自焼成電極用ペースト

DESCRIPTION OF SYMBOLS 3 Incinerated ash 4 Furnace electrode 5 Furnace bottom electrode 7 Molten slag 8 Molten metal 13 Forming slag layer 15 Conductive granular material 16 Conductive powder charging mechanism 20 Cylindrical body 21 Self-baking electrode paste

Claims (7)

炉内の上部中心に配置された棒状の炉上電極と炉底に配置された円板状の炉底電極とを備え、前記炉上電極と炉底電極との間に直流電流が通電されることにより、炉内に装入された焼却灰を溶融して溶融スラグを生成する焼却灰溶融炉において、
導電性の粉粒体を炉内に装入する導電粉装入機構を設け、この導電粉装入機構により前記導電性の粉粒体を前記溶融スラグの表面に装入するようにしたことを特徴とする焼却灰溶融炉。
A rod-shaped top electrode disposed in the center of the top of the furnace and a disk-shaped bottom electrode disposed on the bottom of the furnace, and a direct current is passed between the top electrode and the bottom electrode. In the incineration ash melting furnace that melts the incineration ash charged into the furnace to produce molten slag,
A conductive powder charging mechanism for charging the conductive powder particles into the furnace is provided, and the conductive powder particles are charged into the surface of the molten slag by the conductive powder charging mechanism. Incinerated ash melting furnace.
前記導電性の粉粒体を前記溶融スラグのフォーミングスラグ層上に装入するようにしたことを特徴とする請求項1記載の焼却灰溶融炉。   The incinerated ash melting furnace according to claim 1, wherein the conductive powder particles are charged onto a forming slag layer of the molten slag. 前記導電性の粉粒体としてコークス粉を装入することを特徴とする請求項1又は請求項2記載の焼却灰溶融炉。   The incinerated ash melting furnace according to claim 1 or 2, wherein coke powder is charged as the conductive granular material. 前記導電性の粉粒体として無機質還元剤を装入することを特徴とする請求項1又は請求項2記載の焼却灰溶融炉。   The incinerated ash melting furnace according to claim 1, wherein an inorganic reducing agent is charged as the conductive powder. 炉内の上部中心に配置された棒状の炉上電極と炉底に配置された円板状の炉底電極とを備え、前記炉上電極と炉底電極との間に直流電流が通電されることにより、炉内に装入された焼却灰を溶融して溶融スラグを生成する焼却灰溶融炉において、
前記炉底電極の表面に凹凸を形成したことを特徴とする焼却灰溶融炉。
A rod-shaped top electrode disposed in the center of the top of the furnace and a disk-shaped bottom electrode disposed on the bottom of the furnace, and a direct current is passed between the top electrode and the bottom electrode. In the incineration ash melting furnace that melts the incineration ash charged into the furnace to produce molten slag,
An incineration ash melting furnace, wherein irregularities are formed on the surface of the furnace bottom electrode.
炉内の上部中心に配置された棒状の炉上電極と炉底に配置された円板状の炉底電極とを備え、前記炉上電極と炉底電極との間に直流電流が通電されることにより、炉内に装入された焼却灰を溶融して溶融スラグを生成する焼却灰溶融炉において、
前記炉底電極に軸方向に貫通する多数の穴をあけたことを特徴とする焼却灰溶融炉。
A rod-shaped top electrode disposed in the center of the top of the furnace and a disk-shaped bottom electrode disposed on the bottom of the furnace, and a direct current is passed between the top electrode and the bottom electrode. In the incineration ash melting furnace that melts the incineration ash charged into the furnace to produce molten slag,
An incineration ash melting furnace characterized in that a large number of holes penetrating in the axial direction are formed in the furnace bottom electrode.
炉内の上部中心に配置された棒状の炉上電極と炉底に配置された円板状の炉底電極とを備え、前記炉上電極と炉底電極との間に直流電流が通電されることにより、炉内に装入された焼却灰を溶融して溶融スラグを生成する焼却灰溶融炉において、
前記炉上電極を自焼成電極用ペーストを自焼成して形成したことを特徴とする焼却灰溶融炉。

A rod-shaped top electrode disposed in the center of the top of the furnace and a disk-shaped bottom electrode disposed on the bottom of the furnace, and a direct current is passed between the top electrode and the bottom electrode. In the incineration ash melting furnace that melts the incineration ash charged into the furnace to produce molten slag,
An incinerated ash melting furnace, wherein the furnace electrode is formed by self-baking a paste for self-fired electrodes.

JP2004137434A 2004-05-06 2004-05-06 Electric melting furnace Pending JP2005321121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137434A JP2005321121A (en) 2004-05-06 2004-05-06 Electric melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137434A JP2005321121A (en) 2004-05-06 2004-05-06 Electric melting furnace

Publications (1)

Publication Number Publication Date
JP2005321121A true JP2005321121A (en) 2005-11-17

Family

ID=35468534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137434A Pending JP2005321121A (en) 2004-05-06 2004-05-06 Electric melting furnace

Country Status (1)

Country Link
JP (1) JP2005321121A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154738A (en) * 2014-08-26 2014-11-19 攀钢集团攀枝花钢铁研究院有限公司 Bottom electrode of direct current arc furnace
CN105907409A (en) * 2016-06-13 2016-08-31 北京神雾环境能源科技集团股份有限公司 High-temperature dry distillation furnace capable of achieving precise material temperature control
CN111811251A (en) * 2020-06-16 2020-10-23 西安交通大学 Fence type combined electrode ore smelting furnace and control method thereof
CN111811252A (en) * 2020-06-16 2020-10-23 西安交通大学 Three-phase layered combined electrode ore smelting furnace and control method thereof
CN111811268A (en) * 2020-06-16 2020-10-23 西安交通大学 Layered combined electrode ore-smelting furnace and control method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154738A (en) * 2014-08-26 2014-11-19 攀钢集团攀枝花钢铁研究院有限公司 Bottom electrode of direct current arc furnace
CN104154738B (en) * 2014-08-26 2015-10-28 攀钢集团攀枝花钢铁研究院有限公司 The hearth electrode of direct current electric arc furnace
CN105907409A (en) * 2016-06-13 2016-08-31 北京神雾环境能源科技集团股份有限公司 High-temperature dry distillation furnace capable of achieving precise material temperature control
CN111811251A (en) * 2020-06-16 2020-10-23 西安交通大学 Fence type combined electrode ore smelting furnace and control method thereof
CN111811252A (en) * 2020-06-16 2020-10-23 西安交通大学 Three-phase layered combined electrode ore smelting furnace and control method thereof
CN111811268A (en) * 2020-06-16 2020-10-23 西安交通大学 Layered combined electrode ore-smelting furnace and control method thereof
CN111811252B (en) * 2020-06-16 2021-04-27 西安交通大学 Three-phase layered combined electrode ore smelting furnace and control method thereof

Similar Documents

Publication Publication Date Title
JP2005321121A (en) Electric melting furnace
JP2007071509A (en) Bottom electrode structure for electric melting furnace
JP3377906B2 (en) Method for preventing decrease in fluidity of molten slag in plasma melting furnace
JP3921706B2 (en) Electrode sealing device for ash melting furnace
JPS6056963B2 (en) Melting treatment method and melting furnace for municipal waste incineration ash, sewage sludge, etc.
JP2975238B2 (en) Electric resistance type melting furnace and its operation method
JP3757409B2 (en) Ash melting furnace and method for forming bottom electrode of ash melting furnace
JPH102539A (en) Ash melting furnace
JP3505065B2 (en) Plasma melting furnace and operating method thereof
JPH0210342B2 (en)
JPH0355410A (en) Melting and disposing method for incinerated ash
JP4467769B2 (en) Electric resistance melting furnace
JPS6247356B2 (en)
JP3977164B2 (en) Plasma melting apparatus and plasma melting method
JP3714384B2 (en) Ash melting furnace
JPH11237018A (en) Plasma melting furnace, and its operation method
JP3797954B2 (en) Replacing refractories on melting furnace side walls
JPH0355792A (en) Plasma generator for fusion furnace
JP3643773B2 (en) Plasma arc melting furnace
JP3831930B2 (en) Electrode sealing device for ash melting furnace
JP4174716B2 (en) Salt discharge method in ash melting furnace
JP3921784B2 (en) Ash melting furnace
JP2000039118A (en) Side charge type dc electric melting furnace for reduction molten slag
JP2747983B2 (en) Method and apparatus for melting municipal solid waste incineration ash
JP2002162010A (en) Waste melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A711 Notification of change in applicant

Effective date: 20080317

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080317

RD04 Notification of resignation of power of attorney

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A521 Written amendment

Effective date: 20080319

Free format text: JAPANESE INTERMEDIATE CODE: A821

A711 Notification of change in applicant

Effective date: 20080606

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Effective date: 20080606

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Effective date: 20090723

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

A02 Decision of refusal

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A02