CN111811268A - A layered combined electrode submerged melting furnace and its control method - Google Patents
A layered combined electrode submerged melting furnace and its control method Download PDFInfo
- Publication number
- CN111811268A CN111811268A CN202010550247.6A CN202010550247A CN111811268A CN 111811268 A CN111811268 A CN 111811268A CN 202010550247 A CN202010550247 A CN 202010550247A CN 111811268 A CN111811268 A CN 111811268A
- Authority
- CN
- China
- Prior art keywords
- furnace
- electrode
- cathode electrode
- ore
- central axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000002844 melting Methods 0.000 title abstract description 31
- 230000008018 melting Effects 0.000 title abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 39
- 230000002093 peripheral effect Effects 0.000 claims abstract description 38
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 239000010949 copper Substances 0.000 claims abstract description 5
- 238000003723 Smelting Methods 0.000 claims description 49
- 239000000498 cooling water Substances 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 229910000519 Ferrosilicon Inorganic materials 0.000 claims description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 3
- 239000000292 calcium oxide Substances 0.000 claims description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 3
- 239000003638 chemical reducing agent Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 239000011572 manganese Substances 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000002893 slag Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 12
- 239000000126 substance Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/06—Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B4/00—Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
- C22B4/08—Apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/08—Details specially adapted for crucible or pot furnaces
- F27B14/14—Arrangements of heating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/08—Details specially adapted for crucible or pot furnaces
- F27B14/20—Arrangement of controlling, monitoring, alarm or like devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D11/00—Arrangement of elements for electric heating in or on furnaces
- F27D11/08—Heating by electric discharge, e.g. arc discharge
- F27D11/10—Disposition of electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
Abstract
Description
技术领域technical field
本发明属于冶金化工生产领域,特别涉及一种分层组合电极矿热熔炼炉及其控制方法。The invention belongs to the field of metallurgical chemical production, and particularly relates to a layered combined electrode submerged thermal smelting furnace and a control method thereof.
背景技术Background technique
矿热熔炼炉作为工业生产的重要部件,被广泛的应用于钢铁和有色金属冶炼工艺当中。近年来,随着社会的发展、科技的进步,对矿热熔炼炉的能耗、产能以及排放要求越来越高,不断有新型强化换热技术和矿热熔炼炉优化设计方法在矿热熔炼炉上得以应用。现有的技术中,矿热熔炼炉的电极多为圆柱形电极,当电极插入炉料进行埋弧操作时,利用电极端部电弧的能量及电流流过炉料所产生的电阻热来熔炼金属。然而如此设置,炉内热量集中分布于电极端部,炉内热量分布的不均匀性十分明显,在炉体中心区域大量电能产生的热量被用于已经熔化过的炉料上,而在炉壁等边缘位置的炉料只能通过导热和自然对流两种热输运方式接收热量,严重削弱了矿热熔炼炉的冶炼性能。综上所述,如何有效地改善矿热熔炼炉炉内热量分布不均的问题,是目前本领域技术人员急需解决的问题。As an important part of industrial production, submerged melting furnace is widely used in steel and non-ferrous metal smelting process. In recent years, with the development of society and the advancement of science and technology, the energy consumption, production capacity and emission requirements of submerged arc melting furnaces have become higher and higher. applied on the furnace. In the prior art, the electrodes of submerged arc melting furnaces are mostly cylindrical electrodes. When the electrodes are inserted into the charge for submerged arc operation, the metal is smelted by the energy of the arc at the end of the electrode and the resistance heat generated by the current flowing through the charge. However, in this way, the heat in the furnace is concentrated at the ends of the electrodes, and the heat distribution in the furnace is not uniform. The charge at the edge can only receive heat through two heat transport modes, thermal conduction and natural convection, which seriously weakens the smelting performance of the submerged thermal smelting furnace. To sum up, how to effectively improve the problem of uneven heat distribution in the submerged arc smelting furnace is an urgent problem to be solved by those skilled in the art at present.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种不仅能够降低炉内焦耳热极值,而且炉内焦耳热分布范围得到了扩大,有效地改善了炉内炉料热量分布不均的问题,同时也提升炉内能量的利用效率和炉料熔化速率的分层组合电极矿热熔炼炉及其控制方法。The purpose of the present invention is to provide a method that can not only reduce the extreme value of Joule heat in the furnace, but also expand the distribution range of Joule heat in the furnace, effectively improve the problem of uneven heat distribution of the furnace charge, and also improve the energy consumption in the furnace. A layered combined electrode submerged smelting furnace utilizing efficiency and charge melting rate and its control method.
为达到上述目的,本发明的分层组合电极矿热熔炼炉包括电极系统和炉体系统,所述电极系统包括与总控制电脑相连接的第一、二电机履带装置,在第一、第二电机履带装置上分别固定有上电极把持器和下电极把持器,上、下电极把持器分别通过电极铜瓦夹持有中轴阴电极和外围空心阴电极,中轴阴电极穿过外围空心阴电极,在中轴阴电极和外围空心阴电极下端设置有炉体,中轴阴电极和外围空心阴电极插入炉体中,所述的炉体系统包括中空结构的带有冷却水进、出口的炉壳,在炉壳顶部装配炉盖、底部设置有中空结构的带有冷却水进、出口的炉体支撑,炉壳内侧布置炉衬,炉体支撑上部的炉体内装配有与电源相连的炉底阳电极,上电极把持器与变压器的一侧电极相接,变压器另一侧电极与电源相接;下电极把持器与电源相接;在上电极把持器与变压器之间,下电极把持器与电源之间分别安装有监测电压的第一、第二电压表,在炉壳和炉体支撑的冷却水进口安装有水泵和进水口热电偶,其出口,安装有监测水温度的出水口热电偶。In order to achieve the above purpose, the layered combined electrode submerged thermal smelting furnace of the present invention includes an electrode system and a furnace body system, and the electrode system includes first and second motor crawler devices connected to the general control computer. The upper electrode holder and the lower electrode holder are respectively fixed on the motor crawler device. The upper and lower electrode holders are respectively clamped by the electrode copper tile with the central axis cathode electrode and the peripheral hollow cathode electrode, and the central axis cathode electrode passes through the peripheral hollow cathode. Electrodes, a furnace body is arranged at the lower end of the central axis cathode electrode and the peripheral hollow cathode electrode, the central axis cathode electrode and the peripheral hollow cathode electrode are inserted into the furnace body, and the furnace body system includes a hollow structure with cooling water inlet and outlet. The furnace shell is equipped with a furnace cover on the top of the furnace shell, a furnace body support with a hollow structure with cooling water inlet and outlet at the bottom, a furnace lining is arranged inside the furnace shell, and the furnace body on the upper part of the furnace body support is equipped with a furnace bottom connected to the power supply Anode electrode, the upper electrode holder is connected to one side electrode of the transformer, the other side electrode of the transformer is connected to the power supply; the lower electrode holder is connected to the power supply; between the upper electrode holder and the transformer, the lower electrode holder is connected to the power supply. The first and second voltmeters for monitoring voltage are respectively installed between the power supplies. The cooling water inlet supported by the furnace shell and the furnace body is installed with a water pump and a water inlet thermocouple, and its outlet is installed with a water outlet thermocouple for monitoring water temperature. .
所述中轴阴电极、外围空心阴电极、炉壳、炉衬与炉底阳电极同轴安装。The central axis cathode electrode, the peripheral hollow cathode electrode, the furnace shell, the furnace lining and the furnace bottom anode electrode are coaxially installed.
所述外围空心阴电极端部到炉底阳电极上部距离为中轴阴电极端部到炉底阳电极上部距离的1.0~2.0倍。The distance from the end of the peripheral hollow cathode electrode to the upper part of the anode electrode at the furnace bottom is 1.0 to 2.0 times the distance from the end of the central axis cathode electrode to the upper part of the anode electrode at the furnace bottom.
所述外围空心阴电极的横截面积为中轴阴电极横截面积的1.0~1.5倍。The cross-sectional area of the peripheral hollow cathode electrode is 1.0-1.5 times the cross-sectional area of the central axis cathode electrode.
所述加载至中轴阴电极的电压绝对值为加载至外围空心阴电极的电压绝对值的0.8~0.9倍。The absolute value of the voltage loaded to the central axis cathode electrode is 0.8-0.9 times the absolute value of the voltage loaded to the peripheral hollow cathode electrode.
所述的变压器、电压表还分别与总控制电脑相连。Said transformer and voltmeter are also respectively connected with the master control computer.
所述的水泵、进水口热电偶及出水口热电偶分别与总控制电脑相连。The water pump, the water inlet thermocouple and the water outlet thermocouple are respectively connected with the general control computer.
所述电源为直流电源或交流电源。The power source is a DC power source or an AC power source.
本发明分层组合电极矿热熔炼炉的控制方法如下:The control method of the layered combined electrode submerged thermal smelting furnace of the present invention is as follows:
1)首先通过总控制电脑控制电机履带装置,带动外围空心阴电极和中轴阴电极插入炉衬内;1) First, the motor crawler device is controlled by the general control computer to drive the peripheral hollow cathode electrode and the central axis cathode electrode to be inserted into the furnace lining;
2)加入原料矿石,直至炉料完全没过外围空心阴电极端部;2) Add raw ore until the charge completely covers the end of the peripheral hollow cathode electrode;
3)将冷却水通过水泵打入炉壳和炉体支撑内,并观察进水口热电偶,出水口热电偶上的数值,若超过设定温度,通过总控制电脑调节水泵加大冷却水流量;3) Drive the cooling water into the furnace shell and furnace body support through the water pump, and observe the value of the thermocouple at the water inlet and the thermocouple at the water outlet. If the temperature exceeds the set temperature, adjust the water pump through the total control computer to increase the cooling water flow;
3)开启电源并调节变压器,使得第一电压表的电压值U1为第二电压表(16)的电压值U2的0.8~0.9倍;3) Turn on the power supply and adjust the transformer so that the voltage value U1 of the first voltmeter is 0.8-0.9 times the voltage value U2 of the second voltmeter (16);
4)在熔炼的过程中,U1与U2均会出现波动,此时通过总控制电脑调节变压器,保持U1=(0.8~0.9)U2的关系;4) During the smelting process, both U 1 and U 2 will fluctuate. At this time, the transformer is adjusted by the total control computer to maintain the relationship of U 1 =(0.8~0.9)U 2 ;
5)当熔炼完成后,首先关闭电源,随后通过总控制电脑控制电机履带装置,带动外围空心阴电极和中轴阴电极离开炉衬,之后打开炉壳上的出料口排出液态矿石和炉渣。5) When the smelting is completed, first turn off the power supply, then control the motor crawler device through the general control computer, drive the peripheral hollow cathode electrode and the central axis cathode electrode to leave the furnace lining, and then open the discharge port on the furnace shell to discharge the liquid ore and slag.
所述原料矿石为铁矿石、铬矿石、锰矿石、硅石、硅铁、废铁、氧化钙或碳质还原剂。The raw material ore is iron ore, chromium ore, manganese ore, silica, ferrosilicon, scrap iron, calcium oxide or carbonaceous reducing agent.
本发明提供的矿热熔炼炉结构设计合理,通过在炉料中布置不同的浸入深度电极,其可以对炉内各个位置的炉料进行有效的加热,可以有效地改善矿热熔炼炉炉内热量分布不均的问题,不仅显著缩短了炉内炉料的熔化还原时间,而且明显提高了炉内电能的利用效率,可广泛地应用于冶金化工行业。The submerged arc smelting furnace provided by the invention has a reasonable structure design, and by arranging electrodes with different immersion depths in the charge, it can effectively heat the charge at various positions in the furnace, and can effectively improve the heat distribution in the submerged arc smelting furnace. It not only significantly shortens the melting and reduction time of the charge in the furnace, but also significantly improves the utilization efficiency of the electric energy in the furnace, which can be widely used in the metallurgical and chemical industry.
附图说明Description of drawings
图1为本发明的矿热熔炼炉结构的示意图;Fig. 1 is the schematic diagram of the submerged thermal smelting furnace structure of the present invention;
图2为本发明的矿热熔炼炉的电极系统示意图;Fig. 2 is the electrode system schematic diagram of the submerged thermal smelting furnace of the present invention;
图3为传统矿热熔炼炉与分层组合电极矿热熔炼炉在熔炼h13模具钢时炉内焦耳热热量分布对比云图;Fig. 3 is a contrast cloud diagram of Joule heat heat distribution in the furnace when smelting h13 die steel in a traditional submerged arc melting furnace and a layered combined electrode submerged arc melting furnace;
图4为传统矿热熔炼炉与分层组合电极矿热熔炼炉炉料熔化速率随时间的变化曲线图;Figure 4 is a graph showing the change of the melting rate of the charge of the traditional submerged smelting furnace and the layered combined electrode smelting furnace with time;
图5为外围空心阴电极电压对能量利用效率的影响规律曲线图(熔化率=90%)。FIG. 5 is a graph showing the influence of the voltage of the peripheral hollow cathode electrode on the energy utilization efficiency (melting rate=90%).
图中标号名称:1.上电极把持器,2.下电极把持器,3.电极铜瓦,4.中轴阴电极,5.外围空心阴电极,6.炉盖,7.炉壳,8.炉衬,9.炉体支撑,10.炉底阳电极,11.电源,12.变压器,13.第一电机履带装置,13-1.第二电机履带装置,14.总控制电脑,15.第一电压表,16.第二电压表,17.水泵,18.进水口热电偶,18-1.出水口热电偶。Label name in the figure: 1. Upper electrode holder, 2. Lower electrode holder, 3. Electrode copper tile, 4. Central axis cathode electrode, 5. Peripheral hollow cathode electrode, 6. Furnace cover, 7. Furnace shell, 8 . Furnace lining, 9. Furnace body support, 10. Furnace bottom anode, 11. Power supply, 12. Transformer, 13. First motor crawler device, 13-1. Second motor crawler device, 14. Total control computer, 15. First voltmeter, 16. Second voltmeter, 17. Water pump, 18. Water inlet thermocouple, 18-1. Water outlet thermocouple.
具体实施方式Detailed ways
下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述。The technical solutions in the present invention will be clearly and completely described below with reference to the accompanying drawings in the present invention.
参见图1,图2,本发明的分层组合电极矿热熔炼炉包括电极系统和炉体系统,所述电极系统包括与总控制电脑14相连接的第一、二电机履带装置13、13-1,在第一、第二电机履带装置13、13-1上分别固定有上电极把持器1和下电极把持器2,上、下电极把持器1、2分别通过电极铜瓦3夹持有中轴阴电极4和外围空心阴电极5,中轴阴电极4穿过外围空心阴电极5,在中轴阴电极4和外围空心阴电极5下端设置有炉体,中轴阴电极4和外围空心阴电极5插入炉体中,所述的炉体系统包括中空结构的带有冷却水进、出口的炉壳7,在炉壳7顶部装配炉盖6、底部设置有中空结构的带有冷却水进、出口的炉体支撑9,炉壳7内侧布置炉衬8,炉体支撑9上部的炉体内装配有与电源11相连的炉底阳电极10,上电极把持器1与变压器12的一侧电极相接,变压器12另一侧电极与电源11相接;下电极把持器2与电源11相接;在上电极把持器1与变压器12之间,下电极把持器2与电源11之间分别安装有监测电压的第一、第二电压表15、16,在炉壳7和炉体支撑9的冷却水进口安装有水泵17和进水口热电偶18,其出口安装有监测水温度的出水口热电偶18-1。Referring to FIG. 1 and FIG. 2 , the layered combined electrode submerged thermal smelting furnace of the present invention includes an electrode system and a furnace body system, and the electrode system includes first and second
其中中轴阴电极4、外围空心阴电极5、炉壳7、炉衬8与炉底阳电极10同轴安装;外围空心阴电极5端部到炉底阳电极10上部距离为中轴阴电极4端部到炉底阳电极10上部距离的1.0~2.0倍;外围空心阴电极5的横截面积为中轴阴电极4横截面积的1.0~1.5倍;加载至中轴阴电极4的电压绝对值为加载至外围空心阴电极5的电压绝对值的0.8~0.9倍;变压器12、电压表15、16,水泵17、进水口热电偶18及出水口热电偶18-1分别与总控制电脑相连;电源11为直流电源或交流电源。The central
应用本发明提供的矿热熔炼炉时,整个的工作流程为:When applying the submerged thermal smelting furnace provided by the present invention, the whole work flow is:
1)首先通过总控制电脑14控制电机履带装置13,带动外围空心阴电极5和中轴阴电极4插入炉衬8内;1) First, the
2)加入原料矿石,直至炉料完全没过外围空心阴电极5端部;2) Add raw ore until the charge completely covers the end of the peripheral
3)将冷却水通过水泵17打入炉壳7和炉体支撑9内,并观察进水口热电偶18,出水口热电偶18-1上的数值,若超过设定温度,通过总控制电脑14调节水泵加大冷却水流量;3) Drive the cooling water into the
3)开启电源11并调节变压器12,使得第一电压表15的电压值U1为第二电压表16的电压值U2的0.8~0.9倍;3) Turn on the
4)在熔炼的过程中,U1与U2均会出现波动,此时通过总控制电脑14调节变压器12,保持U1=(0.8~0.9)U2的关系;4) During the smelting process, both U 1 and U 2 will fluctuate. At this time, the transformer 12 is adjusted by the
5)当熔炼完成后,首先关闭电源11,随后通过总控制电脑14控制电机履带装置13,带动外围空心阴电极5和中轴阴电极4离开炉衬(8),之后打开炉壳7上的出料口排出液态矿石和炉渣。5) When the smelting is completed, first turn off the
10、根据权利要求9所述的分层组合电极矿热熔炼炉的控制方法,其特征在于,所述原料矿石为铁矿石、铬矿石、锰矿石、硅石、硅铁、废铁、氧化钙或碳质还原剂。10. The control method of the layered combined electrode submerged thermal smelting furnace according to
数值模拟实验方法是一种较为成熟的研究多物理场流动及传热的方法,许多研究机构都通过数值模拟分析矿热熔炼炉的炉内物理场分布情况及冶炼性能。为了便于模拟求解,只选取炉内炉料和电极进行模拟计算。图3为传统矿热熔炼炉与分层组合电极矿热熔炼炉在熔炼h13模具钢时炉内焦耳热热量分布对比云图,图中展现的对比图是两种矿热熔炼炉在焦耳热相差不大时的对比情况。由图中可以看出,相比于传统矿热熔炼炉,分层组合电极矿热熔炼炉炉内由于部分电流从空心电极端部流出,因此热量分布更加均匀。相比于传统矿热熔炼炉,炉内焦耳热极值下降了20%,矿热熔炼炉运行更加安全。Numerical simulation experiment method is a relatively mature method to study multi-physics flow and heat transfer. Many research institutions analyze the physical field distribution and smelting performance of submerged arc smelting furnace through numerical simulation. In order to facilitate the simulation solution, only the furnace charge and electrodes are selected for simulation calculation. Figure 3 is a comparison cloud diagram of Joule heat heat distribution in the furnace when smelting h13 die steel between the traditional submerged arc melting furnace and the layered combined electrode submerged arc melting furnace. Big time comparison. It can be seen from the figure that compared with the traditional submerged arc melting furnace, the heat distribution in the layered combined electrode submerged arc melting furnace is more uniform because part of the current flows out from the end of the hollow electrode. Compared with the traditional smelting furnace, the extreme value of Joule heat in the furnace is reduced by 20%, and the operation of the smelting furnace is safer.
图4为传统矿热熔炼炉与分层组合电极矿热熔炼炉炉料熔化速率随时间的变化曲线图。由图中可以看出,相比于传统矿热熔炼炉,分层组合电极矿热熔炼炉由于炉内焦耳热极值下降,所以炉内炉料开始熔化的时间点推迟,且在开始阶段,炉内炉料熔化速率相较于传统矿热熔炼炉一直不高。但随着熔炼时间的推移,由于分层组合电极矿热熔炼炉炉内热量分布更加均匀,炉料熔化速率得到快速提升,并在4000s左右超过传统矿热熔炼炉炉内炉料熔化速率。在5400s时,分层组合电极矿热熔炼炉炉内炉料熔化体积达到炉料体积的90%,而传统矿热熔炼炉炉内炉料熔化体积达到炉料体积的90%的用时却为5700s。FIG. 4 is a graph showing the change of the melting rate of the charge of the traditional submerged smelting furnace and the layered combined electrode smelting furnace with time. As can be seen from the figure, compared with the traditional submerged smelting furnace, the layered combined electrode smelting furnace has a lower Joule heat extreme value, so the time point when the furnace charge begins to melt is delayed, and in the initial stage, the furnace begins to melt. Compared with the traditional submerged thermal melting furnace, the melting rate of the inner charge has not been high. However, with the passage of smelting time, due to the more uniform heat distribution in the layered combined electrode submerged arc melting furnace, the melting rate of the charge is rapidly increased, and it exceeds the melting rate of the charge in the traditional submerged arc melting furnace in about 4000s. At 5400s, the melting volume of the charge in the layered combined electrode submerged arc smelting furnace reaches 90% of the charge volume, while it takes 5700s for the melting volume of the charge in the traditional submerged arc melting furnace to reach 90% of the charge volume.
图5为炉料熔化率为90%时,外围空心阴电极电压对能量利用效率的影响规律曲线图。由图中可以看出,随着电压的升高,炉内整体能量利用效率在不断上升。在研究范围内,相比于传统矿热熔炼炉炉内能量利用效率平均提升了5.3%。由此可以看出,本专利提出的分层组合电极矿热熔炼相比于传统矿热熔炼炉不仅加快了炉料的熔化速率,而且在能量利用效率方面也得到了提升,矿热炉的综合冶炼性能得到了优化。Fig. 5 is a graph showing the influence law of the voltage of the peripheral hollow cathode electrode on the energy utilization efficiency when the melting rate of the charge is 90%. It can be seen from the figure that as the voltage increases, the overall energy utilization efficiency in the furnace is increasing. Within the research scope, the energy utilization efficiency in the furnace is increased by an average of 5.3% compared with the traditional submerged thermal smelting furnace. It can be seen from this that the layered combined electrode submerged arc smelting proposed in this patent not only speeds up the melting rate of the charge, but also improves the energy utilization efficiency compared with the traditional submerged arc smelting furnace. The comprehensive smelting of the submerged arc furnace Performance has been optimized.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010550247.6A CN111811268B (en) | 2020-06-16 | 2020-06-16 | Layered combined electrode ore-smelting furnace and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010550247.6A CN111811268B (en) | 2020-06-16 | 2020-06-16 | Layered combined electrode ore-smelting furnace and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111811268A true CN111811268A (en) | 2020-10-23 |
CN111811268B CN111811268B (en) | 2021-04-23 |
Family
ID=72845250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010550247.6A Active CN111811268B (en) | 2020-06-16 | 2020-06-16 | Layered combined electrode ore-smelting furnace and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111811268B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5046145A (en) * | 1990-04-20 | 1991-09-03 | Hydro-Quebec | Improved arc reactor with advanceable electrode |
JP2005321121A (en) * | 2004-05-06 | 2005-11-17 | Fuji Electric Systems Co Ltd | Electric melting furnace |
JP3942480B2 (en) * | 2002-05-02 | 2007-07-11 | 日立造船株式会社 | Plasma melting furnace and starting method thereof |
CN101261078A (en) * | 2008-01-03 | 2008-09-10 | 谢西平 | Large-sized DC hollow electrode hermetic submerged arc furnace |
RU2008138287A (en) * | 2008-09-25 | 2010-03-27 | Закрытое акционерное общество "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ ЭЛЕКТРОПЛАЗМЕННОГО ОБОРУДОВАНИЯ И СИСТЕМ ЭПОС" (RU) | METHOD FOR CONDUCTING Smelting And A DEVICE FOR ITS IMPLEMENTATION |
CA2902195A1 (en) * | 2013-03-12 | 2014-10-09 | Foret Plasma Labs, Llc | Apparatus and method for sintering proppants |
CN109612280A (en) * | 2018-12-03 | 2019-04-12 | 北京奥邦新材料有限公司 | A kind of bottomless electrode DC mineral hot furnace of multiloop |
CN210464020U (en) * | 2019-08-01 | 2020-05-05 | 江苏积力环保科技有限公司 | Three-phase AC submerged arc furnace |
-
2020
- 2020-06-16 CN CN202010550247.6A patent/CN111811268B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5046145A (en) * | 1990-04-20 | 1991-09-03 | Hydro-Quebec | Improved arc reactor with advanceable electrode |
JP3942480B2 (en) * | 2002-05-02 | 2007-07-11 | 日立造船株式会社 | Plasma melting furnace and starting method thereof |
JP2005321121A (en) * | 2004-05-06 | 2005-11-17 | Fuji Electric Systems Co Ltd | Electric melting furnace |
CN101261078A (en) * | 2008-01-03 | 2008-09-10 | 谢西平 | Large-sized DC hollow electrode hermetic submerged arc furnace |
RU2008138287A (en) * | 2008-09-25 | 2010-03-27 | Закрытое акционерное общество "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ ЭЛЕКТРОПЛАЗМЕННОГО ОБОРУДОВАНИЯ И СИСТЕМ ЭПОС" (RU) | METHOD FOR CONDUCTING Smelting And A DEVICE FOR ITS IMPLEMENTATION |
CA2902195A1 (en) * | 2013-03-12 | 2014-10-09 | Foret Plasma Labs, Llc | Apparatus and method for sintering proppants |
CN109612280A (en) * | 2018-12-03 | 2019-04-12 | 北京奥邦新材料有限公司 | A kind of bottomless electrode DC mineral hot furnace of multiloop |
CN210464020U (en) * | 2019-08-01 | 2020-05-05 | 江苏积力环保科技有限公司 | Three-phase AC submerged arc furnace |
Also Published As
Publication number | Publication date |
---|---|
CN111811268B (en) | 2021-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4058613A1 (en) | Direct current electric arc furnace | |
CN202770174U (en) | Submerged arc furnace | |
CN111811268A (en) | A layered combined electrode submerged melting furnace and its control method | |
CN105274360A (en) | Novel technique for melting titanium or titanium alloy by reducing oxide through plasma carbon | |
CN103060850A (en) | Method for preparing metallic titanium through continuous fused-salt electrolysis | |
CN102313447A (en) | Medium-frequency induction heating furnace for smelting nonmetallic high-melting-point oxide | |
CN111811251A (en) | A fence type combined electrode submerged thermal smelting furnace and its control method | |
CN206192114U (en) | Electromagnetic suspension melts aluminium stove | |
CN111811252A (en) | A three-phase layered combined electrode submerged melting furnace and its control method | |
CN102925921B (en) | A kind of method strengthening Top-blown Lead Smelting | |
CN202915711U (en) | Novel efficient energy saving submerged arc furnace | |
CN101782323A (en) | Induction furnace of zinc and alloy wire draw unit | |
CN215638749U (en) | Electrode tilting type electromagnetic plasma melting reactor | |
CN201296773Y (en) | Conduct electricity, continuous casting type electroslag refining furnace of new type crystallizer | |
CN206143301U (en) | High -efficient belted steel continuous hot -dip galvanization machine | |
CN101323892B (en) | A Bottom Anode Side Conductive DC Ladle Furnace | |
CN208059590U (en) | It is a kind of can continuous operations induction furnace apparatus | |
CN203432278U (en) | Bellows | |
CN201265025Y (en) | Bottom anode side conductive direct current ladle furnace | |
CN204848928U (en) | Electric arc furnace | |
CN207365685U (en) | A kind of automatic feed electricity zinc stove for zinc powder production | |
CN104611732B (en) | Air cooling cathode, molten salt electrolyzer and electrolysis method | |
CN222925940U (en) | A water cooling device for discharge port of DC electric arc furnace | |
CN202786374U (en) | Top-blown lead-smelting strengthening furnace device | |
CN215373478U (en) | Polygonal electromagnetic plasma melting reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |