JP2005321093A - Manufacturing method of liner for pressure container - Google Patents

Manufacturing method of liner for pressure container Download PDF

Info

Publication number
JP2005321093A
JP2005321093A JP2005109370A JP2005109370A JP2005321093A JP 2005321093 A JP2005321093 A JP 2005321093A JP 2005109370 A JP2005109370 A JP 2005109370A JP 2005109370 A JP2005109370 A JP 2005109370A JP 2005321093 A JP2005321093 A JP 2005321093A
Authority
JP
Japan
Prior art keywords
liner
pressure vessel
probe
natural gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005109370A
Other languages
Japanese (ja)
Inventor
Yoshiharu Sugano
快治 菅野
Yasuhiro Osame
康弘 納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005109370A priority Critical patent/JP2005321093A/en
Publication of JP2005321093A publication Critical patent/JP2005321093A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02T10/32

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a liner for a pressure container capable of preventing joint strength of like-minded joint parts of liner component members and productivity from declining. <P>SOLUTION: The liner for the pressure container 1 composed of a tubular shell 2 and an end plate 3 to close both end openings of the shell comprises a first liner component member 4 having a tubular circumferential wall part 6 constituting the shell 2, while both ends are open and the two second liner component members 5 having a dome-like circumferential wall member 7 constituting the end plate 3. Like-minded circumferential wall parts 6, 7 of both liner component members 4, 5 are abutted, and on the abutted portion, a probe 22 of a tool for friction agitating junction 20 is buried as if straddling the two parts. Then, both liner members 4, 5 and the probe 22 are relatively moved while rotating the probe 22. When number of revolutions of the probe is Rrpm, and junction rate of both liner component members 4, 5 is Vmm/min, R/V fulfills the conditions of the following formula: 2≤R/V≤12. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、たとえば自動車産業、住宅産業、軍事産業、航空宇宙産業、医療産業等において、発電のための燃料となる水素ガスや天然ガスを貯蔵する圧力容器、または酸素ガスを貯蔵する圧力容器に用いられる圧力容器用ライナおよびその製造方法に関する。   For example, in the automobile industry, the housing industry, the military industry, the aerospace industry, the medical industry, etc., the present invention is applied to a pressure vessel that stores hydrogen gas or natural gas that is a fuel for power generation, or a pressure vessel that stores oxygen gas. The present invention relates to a pressure vessel liner used and a manufacturing method thereof.

この明細書において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In this specification, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

近年、大気汚染対策として、排気ガスのクリーンな天然ガス自動車や、燃料電池自動車の開発が進められている。これらの自動車は、燃料となる天然ガスや水素ガスを高圧で充填した圧力容器を搭載しているが、航続距離を延ばすために、充填されるガスのさらなる高圧化が求められている。
従来、このような高圧圧力容器用ライナとして、筒状の胴と胴の両端開口を閉鎖する鏡板とよりなり、両端が開口しかつ胴を構成する円筒状周壁部を有するアルミニウム押出形材製第1ライナ構成部材と、鏡板を構成するドーム状周壁部を有しかつ第1ライナ構成部材の両端部に溶融溶接された2つのアルミニウムダイキャスト製第2ライナ構成部材とにより形成されたものが知られている(たとえば、特許文献1参照)。
In recent years, natural gas vehicles with clean exhaust gas and fuel cell vehicles have been developed as measures against air pollution. These automobiles are equipped with a pressure vessel filled with natural gas or hydrogen gas as a fuel at a high pressure. However, in order to extend the cruising range, further increase in the pressure of the gas to be filled is required.
Conventionally, as such a liner for a high-pressure vessel, a cylindrical body and an end plate that closes both ends of the body are formed, and both ends are open and made of an aluminum extruded shape member having a cylindrical peripheral wall portion that constitutes the body. What is formed by one liner constituting member and two aluminum die cast second liner constituting members having a dome-shaped peripheral wall portion constituting the end plate and melt welded to both ends of the first liner constituting member is known. (For example, see Patent Document 1).

この圧力容器用ライナは、補強繊維を両鏡板にかかるようにして胴の長さ方向に巻き付けてなるヘリカル巻繊維層にエポキシ樹脂を含浸硬化させてなるヘリカル巻補強層と、補強繊維を胴の周りに周方向に巻き付けてなるフープ巻繊維層にエポキシ樹脂を含浸硬化させてなるフープ巻補強層とが設けられて、高圧圧力容器として用いられるようになっている。   This liner for a pressure vessel includes a helical wound reinforcing layer formed by impregnating and curing an epoxy resin on a helical wound fiber layer formed by winding reinforcing fibers on both end plates in the longitudinal direction of the barrel, and reinforcing fibers on the barrel. A hoop wound fiber layer formed by impregnating and curing an epoxy resin on a hoop wound fiber layer wound around in the circumferential direction is provided and used as a high pressure container.

特許文献1記載の圧力容器用ライナによれば、第1ライナ構成部材と第2ライナ構成部材とが溶融溶接されているので、溶接部の強度が不足し、長さ方向に大きな力が作用した場合、両ライナ構成部材の溶接部に応力が集中してこの部分で破損するおそれがある。このような破損を防止するためには、高圧圧力容器における上記ヘリカル巻補強層の厚みを大きくする必要があり、その結果高圧圧力容器の重量が大きくなるという問題がある。また、上記ヘリカル巻繊維層層を形成する際に、滑りや引っかかりや繊維の破断などが発生することがあり、必要な耐圧性が得られないおそれがある。   According to the liner for a pressure vessel described in Patent Document 1, since the first liner constituent member and the second liner constituent member are melt welded, the strength of the welded portion is insufficient, and a large force acts in the length direction. In this case, there is a possibility that stress concentrates on the welded portion of both liner constituent members and breaks at this portion. In order to prevent such breakage, it is necessary to increase the thickness of the helical winding reinforcing layer in the high pressure vessel, and as a result, there is a problem that the weight of the high pressure vessel increases. Further, when forming the helically wound fiber layer, slipping, catching, fiber breakage, etc. may occur, and the required pressure resistance may not be obtained.

両ライナ構成部材の接合部の強度を増大させた高圧圧力容器用ライナとして、筒状の胴と胴の両端開口を閉鎖する鏡板とよりなり、両端が開口しかつ胴を構成する円筒状周壁部を有するアルミニウム製第1ライナ構成部材と、鏡板を構成するドーム状周壁部を有しかつ第1ライナ構成部材の両端部に接合された2つのアルミニウム製第2ライナ構成部材と、第1ライナ構成部材の周壁部と第2ライナ構成部材の周壁部との当接部分の内側に両者に跨るように配置されたワゴン車輪状の支持構造部材とを備えており、第1ライナ構成部材、第2ライナ構成部材および支持構造部材が摩擦攪拌接合されたものが知られている(特許文献2参照)。   As a liner for a high-pressure pressure vessel in which the strength of the joint portion between both liner components is increased, the cylindrical peripheral wall portion is formed of a cylindrical body and an end plate closing both ends of the body, and both ends are open and constitute the body. First aluminum liner constituting member, two aluminum second liner constituting members having a dome-shaped peripheral wall portion constituting the end plate and joined to both ends of the first liner constituting member, and a first liner constitution A wagon wheel-like support structure member disposed so as to straddle the inner wall of the contact portion between the peripheral wall portion of the member and the peripheral wall portion of the second liner component member, the first liner component member, the second liner component member, and the second liner component member; One in which a liner constituent member and a support structure member are friction stir welded is known (see Patent Document 2).

特許文献2記載の圧力容器用ライナによれば、第1ライナ構成部材と第2ライナ構成部材とが摩擦攪拌接合されているので、特許文献1記載の圧力容器用ライナに比べてライナ構成部材どうしの接合部の強度が増大している。   According to the pressure vessel liner described in Patent Document 2, since the first liner component member and the second liner component member are friction stir welded, the liner component members are compared to the pressure vessel liner described in Patent Document 1. The strength of the joint is increased.

しかしながら、特許文献2には、圧力容器用ライナを製造するにあたり、ライナ構成部材どうしを摩擦攪拌接合する際の最適の条件は記載されておらず、接合部において内部欠陥が発生して接合強度が低下したり、プローブの破損が発生して生産性が低下したりする場合がある。
特開平9−42595号公報 特開平10−160097号公報
However, Patent Document 2 does not describe the optimum conditions for friction stir welding of liner constituent members when manufacturing a liner for a pressure vessel. In some cases, the productivity may decrease or the probe may be damaged.
Japanese Patent Laid-Open No. 9-42595 Japanese Patent Laid-Open No. 10-160097

この発明の目的は、上記問題を解決し、ライナ構成部材どうしの接合部の接合強度の低下および生産性の低下を防止することができる圧力容器用ライナの製造方法を提供することにある。   An object of the present invention is to provide a pressure vessel liner manufacturing method capable of solving the above-described problems and preventing a decrease in bonding strength and productivity in a bonding portion between liner constituent members.

本発明は、発明者等が種々検討を重ねた結果、摩擦攪拌接合の際のプローブの回転数と接合速度との関係が、製造された圧力容器用ライナにおける両ライナ構成部材どうしの接合部の品質の向上に大きく影響することを見出して完成されたものであり、以下の態様からなる。   In the present invention, as a result of various investigations by the inventors, the relationship between the rotational speed of the probe and the joining speed during friction stir welding is the relationship between the joint parts of both liner components in the manufactured pressure vessel liner. The present invention has been completed by finding out that it greatly affects the improvement of quality, and comprises the following aspects.

1)筒状の胴と胴の両端開口を閉鎖する鏡板とよりなる圧力容器用ライナを、胴の長さ方向に分断したような形状となされた少なくとも2つのライナ構成部材を接合することにより製造する方法であって、隣り合う2つのライナ構成部材どうしを当接させ、この当接部分に、両者に跨るように摩擦攪拌接合用工具のプローブを埋入した後、プローブを回転させつつ両ライナ部材とプローブとを相対的に移動させることによってプローブを上記当接部分の全周にわたって移動させ、両ライナ構成部材どうしを摩擦攪拌接合することを含む方法において、プローブの回転数をRrpm、両ライナ構成部材の接合速度をVmm/minとした場合、R/Vが、2≦R/V≦12の条件を満たすことを特徴とする圧力容器用ライナの製造方法。   1) Manufactured by joining at least two liner components that are shaped like a cylinder that is divided into the length of the cylinder. The two liner constituent members adjacent to each other are brought into contact with each other, and the probe of the friction stir welding tool is embedded in this contact portion so as to straddle both, and then both liners are rotated while the probes are rotated. In a method including moving the probe and the probe relative to each other over the entire circumference of the abutting portion and friction stir welding the two liner constituent members, the rotational speed of the probe is Rrpm, both liners A method for manufacturing a liner for a pressure vessel, wherein R / V satisfies a condition of 2 ≦ R / V ≦ 12 when the joining speed of the constituent members is Vmm / min.

上記1)の方法において、R/Vが2未満であると、入熱量の不足により接合部の内部に欠陥が生じて製造される圧力容器用ライナの接合部の強度が不足するとともに、プローブの破損や、プローブの短寿命化が生じ、12より大きいと、入熱量が過多になり、製造される圧力容器用ライナの表面が荒れたり、表面欠陥が現れたりする。したがって、上記R/Vは2〜12の範囲内で選択すべきである。   In the above method 1), if R / V is less than 2, the strength of the joint of the pressure vessel liner produced due to defects in the joint due to insufficient heat input becomes insufficient, and the probe If it is damaged or the life of the probe is shortened and the value is larger than 12, the amount of heat input becomes excessive, and the surface of the pressure vessel liner to be manufactured becomes rough or surface defects appear. Therefore, the R / V should be selected within the range of 2-12.

2)上記R/Vが、2≦R/V≦8の条件を満たす上記1)記載の圧力容器用ライナの製造方法。   2) The method for producing a pressure vessel liner as described in 1) above, wherein the R / V satisfies a condition of 2 ≦ R / V ≦ 8.

3)両ライナ構成部材の当接部分の肉厚が0.5〜20mmである上記1)または2)記載の圧力容器用ライナの製造方法。   3) The method for producing a liner for a pressure vessel according to the above 1) or 2), wherein the thickness of the contact portion of both liner constituting members is 0.5 to 20 mm.

上記3)の方法において、上記肉厚が0.5mm未満であるとプローブ埋入時にライナ構成部材の変形して接合中に材料のめくれが生じるおそれがあるため、これを防止するためにライナ構成部材を固定する治具や、装置全体の構成が複雑になる。一方、20mmを越えるとプローブ長およびプローブ径を大きくする必要があり、接合時のプローブによる負荷に耐えうるように装置を大型化しなければならない。したがって、いずれの場合も装置コストが高くなる。   In the above method 3), if the thickness is less than 0.5 mm, the liner constituting member may be deformed when the probe is embedded and the material may be turned up during joining. The configuration of the jig for fixing the member and the entire apparatus becomes complicated. On the other hand, if it exceeds 20 mm, it is necessary to increase the probe length and the probe diameter, and it is necessary to increase the size of the apparatus so that it can withstand the load caused by the probe during joining. Therefore, in any case, the apparatus cost becomes high.

4)両ライナ構成部材の当接部分を、周方向に360度以上摩擦攪拌接合する上記1)〜3)のうちのいずれかに記載の圧力容器用ライナの製造方法。   4) The method for producing a liner for a pressure vessel according to any one of 1) to 3) above, wherein the contact portions of both liner constituent members are friction stir welded 360 degrees or more in the circumferential direction.

5)すべてのライナ構成部材がアルミニウムからなる上記1)〜4)のうちのいずれかに記載の圧力容器用ライナの製造方法。   5) The method for producing a liner for a pressure vessel according to any one of 1) to 4) above, wherein all liner constituting members are made of aluminum.

6)両端が開口しかつ胴を構成する筒状の周壁部を有する第1ライナ構成部材と、鏡板を構成するドーム状の周壁部を有する2つの第2ライナ構成部材とを用意し、第1ライナ構成部材の周壁部と第2ライナ構成部材の周壁部とを摩擦攪拌接合する上記1)〜5)のうちのいずれかに記載の圧力容器用ライナの製造方法。   6) A first liner constituent member having a cylindrical peripheral wall portion that is open at both ends and constituting the body, and two second liner constituent members having a dome-shaped peripheral wall portion constituting the end plate are prepared. 6. The method for producing a pressure vessel liner according to any one of the above 1) to 5), wherein the peripheral wall portion of the liner constituting member and the peripheral wall portion of the second liner constituting member are friction stir welded.

7)第1ライナ構成部材をアルミニウムを用いて押出成形するとともに、第2ライナ構成部材をアルミニウムを用いて鍛造により成形する上記6)記載の圧力容器用ライナの製造方法。   7) The method for producing a pressure vessel liner according to 6) above, wherein the first liner constituting member is extruded using aluminum, and the second liner constituting member is formed by forging using aluminum.

8)上記1)〜7)のうちのいずれかに記載の方法により製造された圧力容器用ライナ。   8) A pressure vessel liner produced by the method according to any one of 1) to 7) above.

9)上記8)に記載された圧力容器用ライナの外周面が繊維強化樹脂層で覆われている圧力容器。   9) A pressure vessel in which the outer peripheral surface of the pressure vessel liner described in 8) is covered with a fiber reinforced resin layer.

10)繊維強化樹脂層が、補強繊維を両鏡板にかかるようにして胴の長さ方向に巻き付けてなるヘリカル巻繊維層および補強繊維を胴の周囲に巻き付けてなるフープ巻繊維層と、これらの繊維層に含浸させて硬化させた樹脂とよりなる上記9)記載の圧力容器。   10) A fiber-reinforced resin layer is formed of a helically wound fiber layer formed by winding reinforcing fibers on both end plates in the lengthwise direction of the cylinder, a hoop-wrapped fiber layer formed by winding reinforcing fibers around the cylinder, and these 9. The pressure vessel according to 9) above, comprising a resin impregnated in a fiber layer and cured.

11)燃料水素用圧力容器、燃料電池、および燃料水素用圧力容器から燃料電池に燃料水素ガスを送る圧力配管を備えており、燃料水素用圧力容器が上記9)または10)記載の圧力容器からなる燃料電池システム。   11) A fuel hydrogen pressure vessel, a fuel cell, and a pressure pipe for sending fuel hydrogen gas from the fuel hydrogen pressure vessel to the fuel cell. The fuel hydrogen pressure vessel is from the pressure vessel described in 9) or 10) above. A fuel cell system.

12)上記11)記載の燃料電池システムを搭載した燃料電池自動車。   12) A fuel cell vehicle equipped with the fuel cell system according to 11) above.

13)上記11)記載の燃料電池システムを備えたコージェネレーションシステム。   13) A cogeneration system comprising the fuel cell system according to 11) above.

14)天然ガス用圧力容器および天然ガス用圧力容器から天然ガスを送り出す圧力配管を備えており、天然ガス用圧力容器が上記9)または10)記載の圧力容器からなる天然ガス供給システム。   14) A natural gas supply system comprising a natural gas pressure vessel and a pressure pipe for sending natural gas from the natural gas pressure vessel, wherein the natural gas pressure vessel comprises the pressure vessel described in 9) or 10) above.

15)上記14)記載の天然ガス供給システムと、発電機と、発電機駆動装置を備えているコージェネレーションシステム。   15) A cogeneration system comprising the natural gas supply system described in 14) above, a generator, and a generator drive device.

16)上記14)記載の天然ガス供給システムと、天然ガスを燃料とするエンジンとを備えている天然ガス自動車。   16) A natural gas vehicle comprising the natural gas supply system described in 14) above and an engine using natural gas as fuel.

17)酸素用圧力容器および酸素用圧力容器から酸素ガスを送り出す圧力配管を備えており、酸素用圧力容器が上記9)または10)記載の圧力容器からなる酸素ガス供給システム。   17) An oxygen gas supply system comprising an oxygen pressure vessel and a pressure pipe for sending oxygen gas from the oxygen pressure vessel, wherein the oxygen pressure vessel comprises the pressure vessel described in 9) or 10) above.

上記1)の圧力容器用ライナの製造方法によれば、プローブの回転数をRrpm、両ライナ構成部材の接合速度をVmm/minとした場合、R/Vが、2≦R/V≦12の条件を満たしているので、入熱量に過不足が生じることはなく、ライナ構成部材どうしの接合部の内部欠陥の発生が防止されて接合部の強度低下が防止される。したがって、製造される圧力容器用ライナの接合部における胴の長さ方向の耐圧性が十分なものになる。また、プローブの破損や、プローブの短寿命化を防止することが可能になって生産性が向上する。しかも、製造される圧力容器用ライナの表面が荒れたり、表面欠陥が現れたりすることが防止される。   According to the pressure vessel liner manufacturing method of 1) above, when the rotational speed of the probe is R rpm and the joining speed of both liner constituent members is V mm / min, R / V is 2 ≦ R / V ≦ 12. Since the conditions are satisfied, there is no excess or deficiency in the amount of heat input, the occurrence of internal defects in the joints between the liner constituent members is prevented, and the strength reduction of the joints is prevented. Therefore, the pressure resistance in the longitudinal direction of the barrel at the joint portion of the pressure vessel liner to be manufactured is sufficient. Further, it becomes possible to prevent damage to the probe and shorten the life of the probe, thereby improving productivity. In addition, it is possible to prevent the surface of the pressure vessel liner to be produced from being rough and from causing surface defects.

上記2)の圧力容器用ライナの製造方法によれば、上記1)の方法による効果が一層顕著になる。   According to the method for producing a pressure vessel liner of 2), the effect of the method of 1) becomes more remarkable.

上記3)の圧力容器用ライナの製造方法によれば、プローブ埋入時のライナ構成部材の変形を防止することができ、ライナ構成部材を固定する治具や、装置全体の構成を複雑にする必要がなくなるとともに、接合時のプローブによる負荷が比較的小さくなり、装置を大型化する必要がなくなる。したがって、装置コストが安くなる。   According to the pressure vessel liner manufacturing method of 3) above, it is possible to prevent the liner constituent member from being deformed when the probe is embedded, and to complicate the jig for fixing the liner constituent member and the overall configuration of the apparatus. This eliminates the need for the probe and the load on the probe during bonding becomes relatively small, eliminating the need to increase the size of the apparatus. Therefore, the device cost is reduced.

上記4)の圧力容器用ライナの製造方法によれば、接合部の耐圧性および耐気密性が一層向上する。   According to the pressure vessel liner manufacturing method of 4) above, the pressure resistance and airtightness of the joint are further improved.

上記5)の圧力容器用ライナの製造方法によれば、製造される圧力容器用ライナの軽量化を図ることができる。   According to the method for manufacturing a pressure vessel liner of the above 5), the pressure vessel liner to be manufactured can be reduced in weight.

上記6)の圧力容器用ライナの製造方法によれば、第1ライナ構成部材の長さを任意に決めることができるので、製造される圧力容器用ライナの長さを、要求される内容積に合わせて適宜変更することが可能になる。ライナ構成部材が、筒状部とドーム状部とが一体化された周壁部を有する場合、すなわちライナ構成部材が、胴の少なくとも一部と胴の一端開口を閉鎖する鏡板とを有する場合、鍛造により製造しなければならないが、胴の長さを長くするには製造作業が極めて困難になる。   According to the pressure vessel liner manufacturing method of 6) above, the length of the first liner component can be arbitrarily determined, so that the length of the pressure vessel liner to be manufactured is set to the required internal volume. It can be changed as appropriate. When the liner constituent member has a peripheral wall portion in which the cylindrical portion and the dome-like portion are integrated, that is, when the liner constituent member has at least a part of the trunk and a end plate that closes one end opening of the trunk, forging However, the manufacturing operation becomes extremely difficult to increase the length of the cylinder.

上記7)の圧力容器用ライナの製造方法によれば、第1ライナ構成部材および第2ライナ構成部材を比較的簡単に製造することができる。   According to the pressure vessel liner manufacturing method of the above 7), the first liner constituent member and the second liner constituent member can be manufactured relatively easily.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1はこの発明の製造方法により製造された圧力容器用ライナの全体構成を示し、図2は図1の圧力容器用ライナを利用した高圧水素ガス容器を示す。図3および図4は圧力容器用ライナの製造方法を示す。   FIG. 1 shows the overall structure of a pressure vessel liner produced by the production method of the present invention, and FIG. 2 shows a high-pressure hydrogen gas vessel using the pressure vessel liner of FIG. 3 and 4 show a method for manufacturing a pressure vessel liner.

図1において、圧力容器用ライナ(1)は、円筒状胴(2)と胴(2)の両端開口を閉鎖する鏡板(3)とよりなり、両端が開口したアルミニウム押出管からなりかつ胴(2)を構成する第1ライナ構成部材(4)と、第1ライナ構成部材(4)の両端部に接合されて鏡板(3)を構成する2つのアルミニウム製第2ライナ構成部材(5)とにより形成されている。各第2ライナ構成部材(5)は、鍛造または切削により形成されたものである。   In FIG. 1, a pressure vessel liner (1) is composed of a cylindrical body (2) and an end plate (3) that closes both ends of the body (2). A first liner constituting member (4) constituting 2), and two aluminum second liner constituting members (5) which are joined to both end portions of the first liner constituting member (4) to constitute an end plate (3); It is formed by. Each second liner constituent member (5) is formed by forging or cutting.

第1ライナ構成部材(4)は、胴(2)を構成する横断面円形の周壁部(6)を有している。各第2ライナ構成部材(5)は、鏡板(3)を構成する一端が開口したドーム状の周壁部(7)を有している。周壁部(7)の開口側端部は円形である。一方の第2ライナ構成部材(5)には口金取付部(8)が一体に形成されている。口金取付部(8)には、その外端から貫通穴(8a)が形成され、貫通穴(8a)の内周面にめねじ(9)が形成されている。   The first liner constituting member (4) has a peripheral wall portion (6) having a circular cross section constituting the body (2). Each second liner constituting member (5) has a dome-shaped peripheral wall portion (7) having an open end that constitutes the end plate (3). The opening side end of the peripheral wall (7) is circular. A base attachment portion (8) is formed integrally with the second liner constituting member (5). A through hole (8a) is formed from the outer end of the base mounting portion (8), and a female screw (9) is formed on the inner peripheral surface of the through hole (8a).

第1ライナ構成部材(4)および第2ライナ構成部材(5)は、それぞれ、たとえばJIS A2000系合金、JIS A5000系合金、JIS A6000系合金およびJIS A7000系合金のうちのいずれかにより形成されている。これらのライナ構成部材(4)(5)は同じ材料で形成されていてもよいし、あるいは3つのうち少なくとも2つが異なる材料で形成されていてもよい。   The first liner constituent member (4) and the second liner constituent member (5) are each formed of, for example, any one of JIS A2000 alloy, JIS A5000 alloy, JIS A6000 alloy, and JIS A7000 alloy. Yes. These liner constituent members (4) and (5) may be made of the same material, or at least two of the three may be made of different materials.

第1ライナ構成部材(4)の周壁部(6)の両端部と、各第2ライナ構成部材(5)の周壁部(7)の開口端部とは相互に当接させられており、これらのライナ構成部材は、両者の当接部において全周にわたって摩擦攪拌接合されている。接合部のビードを(10)で示す。   Both end portions of the peripheral wall portion (6) of the first liner constituent member (4) and the opening end portion of the peripheral wall portion (7) of each second liner constituent member (5) are in contact with each other. The liner constituting member is friction stir welded over the entire circumference at the contact portion between them. The joint bead is indicated by (10).

図2に示すように、圧力容器用ライナ(1)は、周囲の全体が、たとえばカーボン繊維強化樹脂などからなる繊維強化樹脂層(12)で覆われ、高圧圧力容器(11)として用いられる。繊維強化樹脂層(12)は、特許文献1記載の圧力容器用ライナと同様に、補強繊維を両鏡板(3)にかかるようにして胴(2)の長さ方向に巻き付けてなるヘリカル巻補強層と、補強繊維を胴(2)の周りに周方向に巻き付けてなるフープ巻補強層と、これらの補強層に含浸硬化させられた樹脂とよりなる。樹脂としては、熱硬化性樹脂や光硬化性樹脂が用いられる。   As shown in FIG. 2, the entire pressure vessel liner (1) is covered with a fiber reinforced resin layer (12) made of, for example, carbon fiber reinforced resin, and used as a high pressure vessel (11). Similar to the pressure vessel liner described in Patent Document 1, the fiber reinforced resin layer (12) is a helical winding reinforcement in which reinforcing fibers are wound around both end plates (3) and wound in the longitudinal direction of the body (2). A layer, a hoop wound reinforcing layer in which reinforcing fibers are wound around the body (2) in the circumferential direction, and a resin impregnated and cured in these reinforcing layers. As the resin, a thermosetting resin or a photocurable resin is used.

高圧圧力容器は、燃料水素用圧力容器、燃料電池、および燃料水素用圧力容器から燃料電池に燃料水素ガスを送る圧力配管を備えた燃料電池システムにおける燃料水素用圧力容器として用いられる。燃料電池システムは、燃料電池自動車に搭載される。また、燃料電池システムはコージェネレーションシステムにも用いられる。   The high-pressure pressure vessel is used as a fuel hydrogen pressure vessel in a fuel cell system including a fuel hydrogen pressure vessel, a fuel cell, and a pressure pipe for sending fuel hydrogen gas from the fuel hydrogen pressure vessel to the fuel cell. The fuel cell system is mounted on a fuel cell vehicle. The fuel cell system is also used for a cogeneration system.

また、高圧圧力容器は、天然ガス用圧力容器および天然ガス用圧力容器から天然ガスを送り出す圧力配管を備えた天然ガス供給システムにおける天然ガス用圧力容器として用いられる。天然ガス供給システムは、発電機および発電機駆動装置とともにコージェネレーションシステムに用いられる。また、天然ガス供給システムは、天然ガスを燃料とするエンジンを備えている天然ガス自動車に用いられる。   The high-pressure pressure vessel is used as a natural gas pressure vessel in a natural gas supply system including a natural gas pressure vessel and a pressure pipe for sending natural gas from the natural gas pressure vessel. A natural gas supply system is used for a cogeneration system together with a generator and a generator driving device. The natural gas supply system is used for a natural gas vehicle including an engine using natural gas as fuel.

さらに、高圧圧力容器は、酸素用圧力容器および酸素用圧力容器から酸素ガスを送り出す圧力配管を備えた酸素ガス供給システムにおける酸素用圧力容器として用いられる。   Further, the high-pressure vessel is used as an oxygen pressure vessel in an oxygen gas supply system including an oxygen pressure vessel and a pressure pipe for sending oxygen gas from the oxygen pressure vessel.

以下、図3および図4を参照して、圧力容器用ライナ(1)の製造方法について説明する。   Hereinafter, with reference to FIG. 3 and FIG. 4, the manufacturing method of the liner (1) for pressure vessels is demonstrated.

まず、第1ライナ構成部材(4)を押出成形するとともに、2つの第2ライナ構成部材(5)をそれぞれ鍛造または切削加工によって形成する。口金取付部(8)を有する第2ライナ構成部材(5)には、口金取付部(8)の外端面から貫通穴(8a)を形成するとともに、貫通穴(8a)の内周面にめねじ(9)を形成する。   First, the first liner constituent member (4) is extruded and the two second liner constituent members (5) are formed by forging or cutting, respectively. A through-hole (8a) is formed in the second liner component (5) having the base attachment portion (8) from the outer end surface of the base attachment portion (8), and is fitted to the inner peripheral surface of the through-hole (8a). A screw (9) is formed.

ついで、第1ライナ構成部材(4)の周壁部(6)の一端面と、一方の第2ライナ構成部材(5)の周壁部(7)の開口側端面とを当接させ(図4参照)、その後当接部分において両ライナ構成部材(4)(5)の周壁部(6)(7)どうしを摩擦攪拌接合用工具(20)を用いて摩擦攪拌接合する。   Next, the one end surface of the peripheral wall portion (6) of the first liner constituting member (4) and the opening side end surface of the peripheral wall portion (7) of one second liner constituting member (5) are brought into contact (see FIG. 4). Then, the peripheral wall portions (6) and (7) of the liner constituent members (4) and (5) are friction-stir welded using the friction stir welding tool (20) at the contact portion.

ここで、第1ライナ構成部材(4)の周壁部(6)における当接部分の肉厚および第2ライナ構成部材(5)の周壁部(7)における当接部分の肉厚はそれぞれ0.5〜20mmであり、かつ相互に等しくなっている。   Here, the thickness of the contact portion in the peripheral wall portion (6) of the first liner constituting member (4) and the thickness of the contact portion in the peripheral wall portion (7) of the second liner constituting member (5) are each 0. 5 to 20 mm and equal to each other.

なお、図5(a)に示すように、いずれか一方のライナ構成部材の周壁部における当接部分の肉厚を、他方のライナ構成部材の周壁部における当接部分の肉厚よりも大きくしておき、その外周面が同一円筒面上に位置するように両ライナ構成部材の周壁部どうしを当接させてもよい。ここでは、第2ライナ構成部材(5)の周壁部(7)における当接部分の肉厚が、第1ライナ構成部材(4)の周壁部(6)における当接部分の肉厚よりも大きくなっている。また、図5(b)に示すように、肉厚の大きなライナ構成部材、ここでは第2ライナ構成部材(5)の周壁部(7)の端面における肉厚の小さなライナ構成部材、ここでは第1ライナ構成部材(4)の周壁部(6)の内周面よりも内方に突出した部分に、第1ライナ構成部材(4)の周壁部(6)を受ける受け部(5a)を一体に形成しておいてもよい。図5に示すように、2つのライナ構成部材(4)(5)の周壁部(6)(7)における当接部分の肉厚が異なっている場合であっても、各ライナ構成部材(4)(5)の上記肉厚を、それぞれ0.5〜20mmとしておくことが好ましい。   As shown in FIG. 5 (a), the thickness of the contact portion in the peripheral wall portion of one of the liner constituent members is made larger than the thickness of the contact portion in the peripheral wall portion of the other liner constituent member. In addition, the peripheral wall portions of both liner constituent members may be brought into contact with each other so that the outer peripheral surfaces thereof are located on the same cylindrical surface. Here, the thickness of the contact portion in the peripheral wall portion (7) of the second liner component (5) is larger than the thickness of the contact portion in the peripheral wall portion (6) of the first liner component (4). It has become. Also, as shown in FIG. 5 (b), a liner component having a large thickness, here a liner component having a small thickness on the end surface of the peripheral wall portion (7) of the second liner component (5), A receiving portion (5a) for receiving the peripheral wall portion (6) of the first liner constituent member (4) is integrated with a portion protruding inward from the inner peripheral surface of the peripheral wall portion (6) of the one liner constituent member (4). You may form in. As shown in FIG. 5, even when the thicknesses of the contact portions of the peripheral wall portions (6) and (7) of the two liner component members (4) and (5) are different, the liner component members (4 It is preferable that the thicknesses of (5) and (5) are 0.5 to 20 mm, respectively.

摩擦攪拌接合用工具(20)は、先端部にテーパ部を介して小径部(21a)が同軸上に一体に形成された円柱状回転子(21)と、回転子(21)の小径部(21a)の端面に小径部(21a)と同軸上に一体に形成されかつ小径部(21a)よりも小径であるピン状プローブ(22)とを備えている。回転子(21)およびプローブ(22)は、両ライナ構成部材(4)(5)よりも硬質でかつ接合時に発生する摩擦熱に耐えうる耐熱性を有する材料で形成されている。   The friction stir welding tool (20) includes a cylindrical rotor (21) in which a small diameter portion (21a) is integrally formed coaxially with a tapered portion at a tip portion, and a small diameter portion of the rotor (21) ( 21a) is provided with a pin-like probe (22) which is integrally formed coaxially with the small diameter portion (21a) and has a smaller diameter than the small diameter portion (21a). The rotor (21) and the probe (22) are made of a material that is harder than the liner constituent members (4) and (5) and has heat resistance that can withstand frictional heat generated during joining.

ついで、摩擦攪拌接合用工具(20)の回転子(21)およびプローブ(22)を回転させながら、第1ライナ構成部材(4)および第2ライナ構成部材(5)の周壁部(6)(7)どうしの当接部分における周方向の1個所に、外側からプローブ(22)を埋入するとともに、工具(20)における小径部(21a)とプローブ(22)との間の肩部を、両周壁部(6)(7)に押し付ける。このとき、上記肩部の押し付けにより、接合開始時および接合途中に生じることのある軟化部の肉の飛散を防止して良好な接合状態を得ることができるとともに、両周壁部(6)(7)と上記肩部との摺動によって摩擦熱をさらに発生させてプローブ(22)と両周壁部(6)(7)との接触部およびその近傍の軟化を促進することができ、しかも接合部の表面へのバリ等の凹凸の発生を防止することができる。   Next, while rotating the rotor (21) and the probe (22) of the friction stir welding tool (20), the peripheral wall portion (6) of the first liner component member (4) and the second liner component member (5) ( 7) The probe (22) is embedded from one side in the circumferential direction at the contact portion between the two, and the shoulder between the small diameter portion (21a) and the probe (22) in the tool (20) Press against both peripheral walls (6) and (7). At this time, by pressing the shoulder, it is possible to obtain a good joined state by preventing scattering of the meat of the softened portion that may occur at the start of joining and during joining, and both peripheral wall portions (6) (7 ) And the shoulder portion to further generate frictional heat to promote softening of the contact portion between the probe (22) and the peripheral wall portions (6) and (7) and the vicinity thereof, and the joint portion. Generation of irregularities such as burrs on the surface of the film can be prevented.

ついで、第1ライナ構成部材(4)および第2ライナ構成部材(5)と摩擦攪拌接合用工具(20)とを、回転子(21)およびプローブ(22)を回転させながら相対的に移動させることによって、プローブ(22)を上記当接部分の周方向に移動させる。すると、プローブ(22)の回転により発生する摩擦熱と、両周壁部(6)(7)と上記肩部との摺動により発生する摩擦熱とによって、上記当接部分の近傍において両周壁部(6)(7)の母材となる金属は軟化するとともに、この軟化部がプローブ(22)の回転力を受けて攪拌混合され、さらにこの軟化部がプローブ(22)通過溝を埋めるように塑性流動した後、摩擦熱を急速に失って冷却固化するという現象が、プローブ(22)の移動に伴って繰り返されることにより、両周壁部(6)(7)どうしが接合されていく。ここで、第1ライナ構成部材(4)および第2ライナ構成部材(5)と摩擦攪拌接合用工具(20)とを相対的に移動させる際のプローブの回転数をRrpm、第1ライナ構成部材(4)および第2ライナ構成部材(5)と摩擦攪拌接合用工具(20)との相対的移動速度、すなわち周壁部(6)(7)どうしの接合速度をVmm/minとした場合、2≦R/V≦12、好ましくは2≦R/V≦8となるように、プローブの回転数と接合速度とを調整する。   Next, the first liner constituent member (4) and the second liner constituent member (5) and the friction stir welding tool (20) are relatively moved while rotating the rotor (21) and the probe (22). As a result, the probe (22) is moved in the circumferential direction of the contact portion. Then, both the peripheral wall portions in the vicinity of the contact portion due to frictional heat generated by the rotation of the probe (22) and frictional heat generated by sliding between the peripheral wall portions (6) (7) and the shoulder portion. (6) The metal used as the base material of (7) is softened, and the softened part is stirred and mixed under the rotational force of the probe (22), and further, the softened part fills the probe (22) passage groove. After the plastic flow, the phenomenon of rapidly losing frictional heat and solidifying by cooling is repeated as the probe (22) moves, so that the peripheral wall portions (6) and (7) are joined together. Here, the rotational speed of the probe when the first liner constituent member (4) and the second liner constituent member (5) and the friction stir welding tool (20) are relatively moved is Rrpm, and the first liner constituent member When the relative moving speed between the (4) and the second liner component (5) and the friction stir welding tool (20), that is, the joining speed between the peripheral walls (6) and (7) is Vmm / min, 2 The number of rotations of the probe and the joining speed are adjusted so that ≦ R / V ≦ 12, preferably 2 ≦ R / V ≦ 8.

そして、プローブ(22)が上記当接部分の全周にわたって移動して埋入位置に戻ったときに両周壁部(6)(7)どうしが全周にわたって接合される。このとき、ビード(10)が形成される。ついで、プローブ(22)が埋入位置に戻った後、好ましくは埋入位置を通過した後に、両周壁部(6)(7)の当接部分に配置した当て部材(図示略)までプローブ(22)を移動させ、ここでプローブ(22)を引き抜く。両ライナ構成部材(4)(5)の周壁部(6)(7)どうしの接合は、上記当接部分を、周方向に360度以上行うことが好ましい。また、他方の第2ライナ構成部材(5)も、上記と同様にして第1ライナ構成部材(4)に摩擦攪拌接合する。こうして、圧力容器用ライナ(1)が製造される。   When the probe (22) moves over the entire circumference of the contact portion and returns to the embedding position, the peripheral wall portions (6) and (7) are joined over the entire circumference. At this time, a bead (10) is formed. Next, after the probe (22) returns to the implantation position, preferably after passing through the implantation position, the probe (not shown) is placed on the contact member (not shown) arranged at the contact portion of the peripheral wall portions (6) (7). 22) is moved and the probe (22) is pulled out here. It is preferable that the peripheral wall portions (6) and (7) of both liner constituting members (4) and (5) are joined to each other at 360 degrees or more in the circumferential direction. The other second liner constituent member (5) is also friction stir welded to the first liner constituent member (4) in the same manner as described above. In this way, the pressure vessel liner (1) is manufactured.

上記実施形態において、第1ライナ構成部材(4)の周壁部(6)に、周壁部(6)の長さ方向に伸びかつ周壁部(6)内を複数の空間に仕切る補強壁が一体に形成され、第2ライナ構成部材(5)の周壁部(7)における第1ライナ構成部材(4)の補強壁と対応する位置に補強壁が一体に形成されていてもよい。   In the above embodiment, the reinforcing wall that extends in the length direction of the peripheral wall portion (6) and partitions the inside of the peripheral wall portion (6) into a plurality of spaces is integrally formed with the peripheral wall portion (6) of the first liner component (4). The reinforcing wall may be integrally formed at a position corresponding to the reinforcing wall of the first liner constituent member (4) in the peripheral wall portion (7) of the second liner constituent member (5).

上記実施形態においては、圧力容器用ライナ(1)は、1つの第1ライナ構成部材(4)と、2つの第2ライナ構成部材(5)とにより形成されているが、これに限定されるものではなく、一方の鏡板(3)は胴(2)と一体に形成されていてもよい。すなわち、第1ライナ構成部材として、一端が開口するとともに他端が閉鎖された有底筒状体からなりかつ胴(2)と一方の鏡板(3)を構成するものを用いてもよい。この場合、第1ライナ構成部材の開口端部に他方の鏡板(3)を構成する第2ライナ構成部材を接合する。第2ライナ構成部材として口金取付部の無いものを用いる場合には、第1ライナ構成部材の鏡板(3)に口金取付部を一体に形成しておく。有底筒状の第1ライナ構成部材は、たとえば鍛造によりつくられる。さらに、第1ライナ構成部材を、その長さ方向に分断された複数のライナ構成部材により構成しておいてもよい。   In the above embodiment, the pressure vessel liner (1) is formed by one first liner constituent member (4) and two second liner constituent members (5), but is not limited thereto. Instead, the one end plate (3) may be formed integrally with the body (2). That is, the first liner constituting member may be a bottomed cylindrical body having one end opened and the other end closed, and constituting the body (2) and one end plate (3). In this case, the second liner constituting member constituting the other end plate (3) is joined to the opening end of the first liner constituting member. When using the second liner constituent member without the base attaching portion, the base attaching portion is formed integrally with the end plate (3) of the first liner constituent member. The bottomed cylindrical first liner constituent member is made by, for example, forging. Furthermore, you may comprise the 1st liner structural member by the several liner structural member divided | segmented in the length direction.

さらに、上記実施形態においては、胴(2)、すなわち第1ライナ構成部材(4)の周壁部(6)は横断面円形であるが、これに限定されるものではなく、適当な形状、たとえば横断面だ円形であってもよい。この場合、当然のことながら、鏡板(3)、すなわち第2ライナ構成部材(5)の形状も、これに合わせて変更される。   Furthermore, in the above-described embodiment, the body (2), that is, the peripheral wall portion (6) of the first liner component (4) is circular in cross section, but is not limited to this, and has an appropriate shape, for example, The cross section may have a circular shape. In this case, as a matter of course, the shape of the end plate (3), that is, the second liner constituting member (5) is also changed accordingly.

以下、この発明の具体的実施例を比較例とともに示す。   Hereinafter, specific examples of the present invention will be described together with comparative examples.

JIS A6061−T6からなる肉厚5mmの板状試片を用意した。また、回転子およびプローブ(22)がJIS SKD61から形成され、かつプローブ(22)の直径が5mmである摩擦攪拌接合用工具(20)を用意した。   A plate specimen having a thickness of 5 mm made of JIS A6061-T6 was prepared. Further, a friction stir welding tool (20) in which the rotor and the probe (22) are formed of JIS SKD61 and the diameter of the probe (22) is 5 mm was prepared.

ついで、2枚の試片の一側縁部どうしを当接させ、摩擦攪拌接合用工具(20)の回転子(21)およびプローブ(22)を回転させながら、両試片の当接部分における一端部にプローブ(22)を埋入するとともに、工具(20)における小径部とプローブ(22)との間の肩部を両試片に押し付け、両試片と摩擦攪拌接合用工具(20)とを、回転子(21)およびプローブ(22)を回転させながら相対的に移動させることによって、プローブ(22)を上記当接部分に沿って直線的に移動させて両試片どうしを接合した。このような試験を、プローブ(22)回転数Rrpmおよび接合速度Vmm/minを種々変更して行った。   Next, the side edges of the two specimens are brought into contact with each other, and the rotor (21) and the probe (22) of the friction stir welding tool (20) are rotated. The probe (22) is embedded at one end, and the shoulder between the small diameter portion of the tool (20) and the probe (22) is pressed against both specimens, and both specimens and the friction stir welding tool (20) Are moved relative to each other while rotating the rotor (21) and the probe (22), so that the probe (22) is linearly moved along the contact portion to join the two specimens. . Such a test was performed by changing the probe (22) rotation speed Rrpm and the joining speed Vmm / min.

そして、両試片の接合部の表面状態を調べた。また、接合部を切断してその内部の状態を調べるとともに、プローブ(22)の状態を調べた。その結果を図6に示す。図6において、○は接合部の内部の状態が良好であることを示し、△は接合部の内部に欠陥が発生していたことを示し、◇はプローブ(22)が破損したことを示し、□は表面荒れが発生していたことを示す。図6から、R/Vが2未満の場合に(図6の直線よりも下方の部分)、内部欠陥やプローブ(22)の破損が発生することが分かる。また、R/Vが12よりも大きい場合には、接合された両試片の接合部に、表面欠陥や表面荒れが発生していることが分かる。   And the surface state of the junction part of both test pieces was investigated. Further, the joint was cut to examine the internal state thereof, and the state of the probe (22) was examined. The result is shown in FIG. In FIG. 6, ○ indicates that the internal state of the joint is good, Δ indicates that a defect has occurred inside the joint, ◇ indicates that the probe (22) has been damaged, □ indicates that surface roughness has occurred. From FIG. 6, it can be seen that when R / V is less than 2 (portion below the straight line in FIG. 6), internal defects or damage to the probe (22) occurs. Moreover, when R / V is larger than 12, it turns out that the surface defect and surface roughness have generate | occur | produced in the junction part of both joined specimens.

この発明による方法で製造された圧力容器用ライナを示す斜視図である。It is a perspective view which shows the liner for pressure vessels manufactured by the method by this invention. 図1の圧力容器用ライナを用いた高圧圧力容器の縦断面図である。It is a longitudinal cross-sectional view of the high pressure pressure vessel using the liner for pressure vessels of FIG. 図1の圧力容器用ライナを製造する方法を示す斜視図である。It is a perspective view which shows the method of manufacturing the liner for pressure vessels of FIG. 同じく図1の圧力容器用ライナを製造する方法を示す部分拡大断面図である。It is a partial expanded sectional view which similarly shows the method of manufacturing the liner for pressure vessels of FIG. ライナ構成部材の変形例を示す部分拡大断面図である。It is a partial expanded sectional view which shows the modification of a liner structural member. 具体的実施例の結果を示すグラフである。It is a graph which shows the result of a specific Example.

符号の説明Explanation of symbols

(1):圧力容器用ライナ
(2):胴
(3):鏡板
(4):第1ライナ構成部材
(5):第2ライナ構成部材
(6):周壁部
(7):周壁部
(11):高圧圧力容器
(12):繊維強化樹脂層
(20):摩擦攪拌接合用工具
(22):プローブ
(1): Pressure vessel liner
(2): Torso
(3): End plate
(4): First liner component
(5): Second liner component
(6): Perimeter wall
(7): Perimeter wall
(11): High pressure vessel
(12): Fiber reinforced resin layer
(20): Friction stir welding tool
(22): Probe

Claims (17)

筒状の胴と胴の両端開口を閉鎖する鏡板とよりなる圧力容器用ライナを、胴の長さ方向に分断したような形状となされた少なくとも2つのライナ構成部材を接合することにより製造する方法であって、隣り合う2つのライナ構成部材どうしを当接させ、この当接部分に、両者に跨るように摩擦攪拌接合用工具のプローブを埋入した後、プローブを回転させつつ両ライナ部材とプローブとを相対的に移動させることによってプローブを上記当接部分の全周にわたって移動させ、両ライナ構成部材どうしを摩擦攪拌接合することを含む方法において、
プローブの回転数をRrpm、両ライナ構成部材の接合速度をVmm/minとした場合、R/Vが、2≦R/V≦12の条件を満たすことを特徴とする圧力容器用ライナの製造方法。
A method of manufacturing a pressure vessel liner comprising a cylindrical barrel and a panel that closes both end openings of the barrel by joining at least two liner components formed in a shape that is divided in the longitudinal direction of the barrel. Then, two adjacent liner constituent members are brought into contact with each other, and the probe of the friction stir welding tool is embedded in this contact portion so as to straddle both, and then the two liner members are rotated while rotating the probe. In the method including moving the probe over the entire circumference of the abutting portion by moving the probe relative to each other, and friction stir welding the two liner constituent members,
A pressure vessel liner manufacturing method characterized in that R / V satisfies a condition of 2 ≦ R / V ≦ 12 when the rotational speed of the probe is Rrpm and the joining speed of both liner constituent members is Vmm / min. .
上記R/Vが、2≦R/V≦8の条件を満たす請求項1記載の圧力容器用ライナの製造方法。 The method for manufacturing a liner for a pressure vessel according to claim 1, wherein the R / V satisfies a condition of 2 ≦ R / V ≦ 8. 両ライナ構成部材の当接部分の肉厚が0.5〜20mmである請求項1または2記載の圧力容器用ライナの製造方法。 The method for producing a liner for a pressure vessel according to claim 1 or 2, wherein the thickness of the contact portion of both liner constituent members is 0.5 to 20 mm. 両ライナ構成部材の当接部分を、周方向に360度以上摩擦攪拌接合する請求項1〜3のうちのいずれかに記載の圧力容器用ライナの製造方法。 The manufacturing method of the liner for pressure vessels in any one of Claims 1-3 which friction-stir-joins the contact part of both liner structural members 360 degrees or more in the circumferential direction. すべてのライナ構成部材がアルミニウムからなる請求項1〜4のうちのいずれかに記載の圧力容器用ライナの製造方法。 All the liner structural members consist of aluminum, The manufacturing method of the liner for pressure vessels in any one of Claims 1-4. 両端が開口しかつ胴を構成する筒状の周壁部を有する第1ライナ構成部材と、鏡板を構成するドーム状の周壁部を有する2つの第2ライナ構成部材とを用意し、第1ライナ構成部材の周壁部と第2ライナ構成部材の周壁部とを摩擦攪拌接合する請求項1〜5のうちのいずれかに記載の圧力容器用ライナの製造方法。 A first liner configuration having a first liner configuration member having a cylindrical peripheral wall portion that is open at both ends and forming a barrel, and two second liner configuration members having a dome-shaped peripheral wall configuration that forms a mirror plate, is prepared. The manufacturing method of the liner for pressure vessels in any one of Claims 1-5 which carries out friction stir welding of the surrounding wall part of a member, and the surrounding wall part of a 2nd liner structural member. 第1ライナ構成部材をアルミニウムを用いて押出成形するとともに、第2ライナ構成部材をアルミニウムを用いて鍛造により成形する請求項6記載の圧力容器用ライナの製造方法。 The method for producing a pressure vessel liner according to claim 6, wherein the first liner constituent member is extruded using aluminum, and the second liner constituent member is formed by forging using aluminum. 請求項1〜7のうちのいずれかに記載の方法により製造された圧力容器用ライナ。 The liner for pressure vessels manufactured by the method in any one of Claims 1-7. 請求項8に記載された圧力容器用ライナの外周面が繊維強化樹脂層で覆われている圧力容器。 The pressure vessel by which the outer peripheral surface of the liner for pressure vessels described in Claim 8 is covered with the fiber reinforced resin layer. 繊維強化樹脂層が、補強繊維を両鏡板にかかるようにして胴の長さ方向に巻き付けてなるヘリカル巻繊維層および補強繊維を胴の周囲に巻き付けてなるフープ巻繊維層と、これらの繊維層に含浸させて硬化させた樹脂とよりなる請求項9記載の圧力容器。 A helically wound fiber layer in which a fiber reinforced resin layer is wound in the longitudinal direction of the trunk so that the reinforcing fiber is placed on both end plates, a hoop wound fiber layer in which the reinforcing fiber is wound around the trunk, and these fiber layers The pressure vessel according to claim 9, comprising a resin impregnated and cured. 燃料水素用圧力容器、燃料電池、および燃料水素用圧力容器から燃料電池に燃料水素ガスを送る圧力配管を備えており、燃料水素用圧力容器が請求項9または10記載の圧力容器からなる燃料電池システム。 11. A fuel cell comprising a fuel hydrogen pressure vessel, a fuel cell, and a pressure pipe for sending fuel hydrogen gas from the fuel hydrogen pressure vessel to the fuel cell, wherein the fuel hydrogen pressure vessel is a pressure vessel according to claim 9 or 10. system. 請求項11記載の燃料電池システムを搭載した燃料電池自動車。 A fuel cell vehicle equipped with the fuel cell system according to claim 11. 請求項11記載の燃料電池システムを備えたコージェネレーションシステム。 A cogeneration system comprising the fuel cell system according to claim 11. 天然ガス用圧力容器および天然ガス用圧力容器から天然ガスを送り出す圧力配管を備えており、天然ガス用圧力容器が請求項9または10記載の圧力容器からなる天然ガス供給システム。 A natural gas supply system comprising a natural gas pressure vessel and a pressure pipe for sending out natural gas from the natural gas pressure vessel, wherein the natural gas pressure vessel is a pressure vessel according to claim 9 or 10. 請求項14記載の天然ガス供給システムと、発電機と、発電機駆動装置を備えているコージェネレーションシステム。 A cogeneration system comprising the natural gas supply system according to claim 14, a generator, and a generator drive device. 請求項14記載の天然ガス供給システムと、天然ガスを燃料とするエンジンとを備えている天然ガス自動車。 A natural gas vehicle comprising the natural gas supply system according to claim 14 and an engine using natural gas as fuel. 酸素用圧力容器および酸素用圧力容器から酸素ガスを送り出す圧力配管を備えており、酸素用圧力容器が請求項9または10記載の圧力容器からなる酸素ガス供給システム。 11. An oxygen gas supply system comprising an oxygen pressure vessel and a pressure pipe for sending oxygen gas from the oxygen pressure vessel, wherein the oxygen pressure vessel comprises the pressure vessel according to claim 9.
JP2005109370A 2004-04-08 2005-04-06 Manufacturing method of liner for pressure container Pending JP2005321093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005109370A JP2005321093A (en) 2004-04-08 2005-04-06 Manufacturing method of liner for pressure container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004114416 2004-04-08
JP2005109370A JP2005321093A (en) 2004-04-08 2005-04-06 Manufacturing method of liner for pressure container

Publications (1)

Publication Number Publication Date
JP2005321093A true JP2005321093A (en) 2005-11-17

Family

ID=35468510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005109370A Pending JP2005321093A (en) 2004-04-08 2005-04-06 Manufacturing method of liner for pressure container

Country Status (1)

Country Link
JP (1) JP2005321093A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111325A1 (en) * 2006-03-28 2007-10-04 Showa Denko K.K. Process for production of liner-constituting members
JP2010099684A (en) * 2008-10-22 2010-05-06 Origin Electric Co Ltd Manufacturing method of pressure container, manufacturing apparatus, and pressure container
JP2010121910A (en) * 2008-11-21 2010-06-03 Calsonic Kansei Corp Pressure container
US10387839B2 (en) 2006-03-31 2019-08-20 Monster Worldwide, Inc. Apparatuses, methods and systems for automated online data submission

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242629A (en) * 1985-04-19 1986-10-28 Toda Kogyo Corp High-pressure autoclave provided with double shell
JPH0942595A (en) * 1995-07-25 1997-02-14 Toyoda Gosei Co Ltd Pressure container
JPH10160097A (en) * 1996-09-27 1998-06-16 Boeing North American Inc Tank container and formation thereof
JPH10299422A (en) * 1997-04-25 1998-11-10 Tokyo Gas Co Ltd Emergency fuel gas supplying method to cogeneration generator
JPH1197045A (en) * 1997-09-17 1999-04-09 Matsushita Electric Works Ltd Fuel cell and hot water supply cogeneration system
JPH11197856A (en) * 1998-01-14 1999-07-27 Nippon Light Metal Co Ltd Annular friction-stir-welding method and hermetically sealed container to be obtained by the method
JP2000343961A (en) * 1999-06-02 2000-12-12 Suzuki Motor Corp Structure of fuel supplying pipe for gas engine
JP2001355795A (en) * 2000-06-09 2001-12-26 Honda Motor Co Ltd Hydrogen quick filling method
JP3295376B2 (en) * 1998-07-29 2002-06-24 昭和電工株式会社 Friction stir welding
JP2003236682A (en) * 2002-02-15 2003-08-26 Sumitomo Light Metal Ind Ltd Method for joining pipe-like members
JP2003269510A (en) * 2002-03-19 2003-09-25 Sumitomo Light Metal Ind Ltd Bellows-like deformable part and manufacturing method therefor
JP2004100742A (en) * 2002-09-05 2004-04-02 High Frequency Heattreat Co Ltd Portable gas charger
JP2004324781A (en) * 2003-04-25 2004-11-18 Showa Denko Kk Liner for chemical cylinder and method of manufacturing the same
JP2005061474A (en) * 2003-08-08 2005-03-10 Showa Denko Kk Liner for pressure container and its manufacturing method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242629A (en) * 1985-04-19 1986-10-28 Toda Kogyo Corp High-pressure autoclave provided with double shell
JPH0942595A (en) * 1995-07-25 1997-02-14 Toyoda Gosei Co Ltd Pressure container
JPH10160097A (en) * 1996-09-27 1998-06-16 Boeing North American Inc Tank container and formation thereof
JPH10299422A (en) * 1997-04-25 1998-11-10 Tokyo Gas Co Ltd Emergency fuel gas supplying method to cogeneration generator
JPH1197045A (en) * 1997-09-17 1999-04-09 Matsushita Electric Works Ltd Fuel cell and hot water supply cogeneration system
JPH11197856A (en) * 1998-01-14 1999-07-27 Nippon Light Metal Co Ltd Annular friction-stir-welding method and hermetically sealed container to be obtained by the method
JP3295376B2 (en) * 1998-07-29 2002-06-24 昭和電工株式会社 Friction stir welding
JP2000343961A (en) * 1999-06-02 2000-12-12 Suzuki Motor Corp Structure of fuel supplying pipe for gas engine
JP2001355795A (en) * 2000-06-09 2001-12-26 Honda Motor Co Ltd Hydrogen quick filling method
JP2003236682A (en) * 2002-02-15 2003-08-26 Sumitomo Light Metal Ind Ltd Method for joining pipe-like members
JP2003269510A (en) * 2002-03-19 2003-09-25 Sumitomo Light Metal Ind Ltd Bellows-like deformable part and manufacturing method therefor
JP2004100742A (en) * 2002-09-05 2004-04-02 High Frequency Heattreat Co Ltd Portable gas charger
JP2004324781A (en) * 2003-04-25 2004-11-18 Showa Denko Kk Liner for chemical cylinder and method of manufacturing the same
JP2005061474A (en) * 2003-08-08 2005-03-10 Showa Denko Kk Liner for pressure container and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111325A1 (en) * 2006-03-28 2007-10-04 Showa Denko K.K. Process for production of liner-constituting members
JP4940229B2 (en) * 2006-03-28 2012-05-30 昭和電工株式会社 Manufacturing method of liner component
US10387839B2 (en) 2006-03-31 2019-08-20 Monster Worldwide, Inc. Apparatuses, methods and systems for automated online data submission
JP2010099684A (en) * 2008-10-22 2010-05-06 Origin Electric Co Ltd Manufacturing method of pressure container, manufacturing apparatus, and pressure container
JP2010121910A (en) * 2008-11-21 2010-06-03 Calsonic Kansei Corp Pressure container

Similar Documents

Publication Publication Date Title
US20080274383A1 (en) Process for Fabricating Pressure Vessel Liner
US20070158343A1 (en) Liner for pressure vessel and process for fabricating same
JP4553566B2 (en) Pressure vessel liner and method of manufacturing the same
KR101067033B1 (en) Tubular metal body, method of producing same, liner for pressure vessel and method of producing same
JP4778737B2 (en) Pressure vessel
JP2005321093A (en) Manufacturing method of liner for pressure container
JP2007113590A (en) Pressure container liner and its manufacturing method
JPH0942595A (en) Pressure container
EP2778499A1 (en) Boss structure
JPWO2010119542A1 (en) Gas tank manufacturing method
JP2004324781A (en) Liner for chemical cylinder and method of manufacturing the same
EP1660805A1 (en) Liner for pressure vessels and process for producing same
JP2020045916A (en) Linear component member, high-pressure tank, and method of manufacturing the same
JP2008261352A (en) Metal part with screw hole and method of manufacturing same and liner for pressure vessel and method of manufacturing same
JP2007239966A (en) Pressure container liner and its manufacturing method
JP2004209499A (en) Liner for gas cylinder and its production method
JP4774228B2 (en) Pressure vessel and method for manufacturing the same
JP4774244B2 (en) Pressure vessel
JP2006316834A (en) Pressure vessel liner manufacturing method
JP2007016807A (en) Liner for pressure vessel
JP2004347042A (en) Metal tubular body, liner for gas cylinder using the tubular body, and method of manufacturing the liner for gas cylinder
JP2006300193A (en) Liner for pressure vessel
JP4198095B2 (en) Pressure vessel liner and method of manufacturing the same
JP2004084915A (en) Fiber reinforced pressure vessel and method of manufacture
JP4445791B2 (en) Pressure vessel liner and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412