JP2005320819A - Existing column reinforcing structure - Google Patents
Existing column reinforcing structure Download PDFInfo
- Publication number
- JP2005320819A JP2005320819A JP2004141387A JP2004141387A JP2005320819A JP 2005320819 A JP2005320819 A JP 2005320819A JP 2004141387 A JP2004141387 A JP 2004141387A JP 2004141387 A JP2004141387 A JP 2004141387A JP 2005320819 A JP2005320819 A JP 2005320819A
- Authority
- JP
- Japan
- Prior art keywords
- reinforcing
- existing
- reinforcing member
- mainly composed
- concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Working Measures On Existing Buildindgs (AREA)
Abstract
Description
本発明は、既設柱の補強構造に関するものである。 The present invention relates to a reinforcing structure for existing pillars.
従来、柱状構造物の補強方法として、例えば地震などにも充分耐えられるようにする場合は、既設柱を囲むように鉄筋を配して型枠を組み、コンクリートを打設して鉄筋コンクリートによる増厚を図るRC巻立て工法、あるいは、既設柱の外周に鋼板を配設し、この鋼板と柱との間にモルタルなどの充填材を充填して既設柱と鋼板とを一体化する鋼板巻立て工法などが知られている。 Conventionally, as a method of reinforcing a columnar structure, for example, in order to withstand earthquakes, etc., reinforcing bars are placed around the existing pillars, a formwork is assembled, concrete is placed, and thickening by reinforced concrete is performed. RC hoisting method or a steel plate hoisting method in which a steel plate is arranged on the outer periphery of an existing column, and a filler such as mortar is filled between the steel plate and the column so that the existing column and the steel plate are integrated. Etc. are known.
そこで、耐震性の中でも特に変形性能をより向上させるために既設柱の外周面に間隔をあけて配設したスペーサを介して引っ張り抵抗材(鋼板やガラス繊維シートなど)を巻立て、この引っ張り抵抗材と既設柱との間に膨張性恒久材(例えば膨張性コンクリートや膨張性モルタルなど)を注入し、これにより既設柱に横方向拘束圧を与える耐震補強構造が開示されている(例えば特許文献1を参照。)。 Therefore, in order to further improve the deformation performance especially in the earthquake resistance, a tensile resistance material (steel plate, glass fiber sheet, etc.) is wound up through a spacer arranged at an interval on the outer peripheral surface of the existing column. A seismic reinforcement structure is disclosed in which an inflatable permanent material (for example, expansive concrete or expansive mortar) is injected between a material and an existing column, thereby applying lateral restraint pressure to the existing column (for example, Patent Documents) 1).
しかし、上記従来の巻立て工法で用いられる引っ張り抵抗材と既設柱との間に注入する膨張性恒久材(膨張性コンクリートや膨張性モルタルなど)は、硬度は高いものの、接着力に劣り、ひび割れなどを生起するおそれがあった。 However, expansive permanent materials (expandable concrete, expansive mortar, etc.) injected between the pulling resistance material and the existing pillar used in the conventional winding method have high hardness but are poor in adhesion and cracking. There was a risk of this.
また、上記従来の巻立て工法において、鋼板巻立ての場合は袖壁付きの柱に適用することができず、また、RC巻立て工法の場合は、柱に近接した袖壁部分に補強筋を通すための貫通孔を設ける必要があるが、この貫通孔を既設柱に近接した位置に穿孔することは極めて難しく、しかも穿孔作業時に騒音を発生するので、作業時間に大きな制約があった。また、貫通孔に補強筋を通した後、端部同士をジョイントする必要があるので施工に手間がかかり、補強工事全体のコストが嵩んでいた。 Moreover, in the conventional winding method, in the case of steel plate winding, it cannot be applied to a column with a sleeve wall, and in the case of RC winding method, a reinforcing bar is provided on the sleeve wall portion adjacent to the column. Although it is necessary to provide a through hole for passing through, it is extremely difficult to drill this through hole at a position close to the existing pillar, and noise is generated during the drilling work, which greatly limits the work time. Moreover, since it is necessary to joint end parts after letting a reinforcing bar pass through a through-hole, construction took time and the cost of the whole reinforcement construction was increased.
そこで、本出願人は、既設柱の側半部を囲繞可能にそれぞれ形成した第1、第2の補強部材を、前記既設柱から延設した袖壁を挟んで対向状態に取付け、次いで、両補強部材を補強用コンクリートで埋設し、しかも、同補強用コンクリートを、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材、又はセメント、砂、砂利を主成分としたコンクリートとを、1:3〜10の割合で混合したポリマーセメントとした袖壁付柱の補強方法を提案した(例えば、特許文献2を参照。)。
ところが、既設柱の側半部を囲繞可能にそれぞれ形成した略コ字状とした前記第1、第2の補強部材を、そのまま袖壁無しの柱に適用すると、例えば地震などで横揺れが生じた場合、図7に示すように、第1、第2の補強部材の自由端部分が外方へ開いてしまうおそれがある。 However, if the first and second reinforcing members, which are substantially U-shaped so as to be able to surround the side halves of the existing pillars, are applied to the pillars without sleeve walls as they are, rolls occur due to, for example, an earthquake. In such a case, as shown in FIG. 7, the free end portions of the first and second reinforcing members may open outward.
だからといって、従来の巻立て工法では、既設柱を増厚するためのモルタルやコンクリートなどは接着力や靭性と柔軟性に劣るのでひび割れを生じるおそれがある。 However, in the conventional winding method, mortar and concrete for increasing the thickness of existing columns are inferior in adhesive strength, toughness, and flexibility, and may crack.
本発明は、上記課題を解決することのできる既設柱の補強構造を提供することを目的としている。 An object of the present invention is to provide a reinforcing structure of an existing pillar that can solve the above-described problems.
上記課題を解決するために、請求項1記載の本発明では、既設柱の側半部を囲繞可能にそれぞれ略コ字状に形成した第1の補強部材及び第2の補強部材を、これら補強部材の自由端同士が対向するように前記既設柱に取付けるとともに、両補強部材を補強用増厚材で埋設した既設柱の補強構造とした。
In order to solve the above-described problem, in the present invention according to
請求項2記載の本発明では、請求項1記載の既設柱の補強構造において、前記補強用増厚材は、ポリマーセメントモルタル等の樹脂モルタル又はこの樹脂モルタルに骨材を混入した樹脂コンクリートとしたことを特徴とする。
In this invention of Claim 2, in the reinforcement structure of the existing pillar of
請求項3記載の本発明では、請求項1記載の既設柱の補強構造において、前記補強用増厚材は、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材、又はセメント、砂、砂利を主成分としたコンクリートとを、1:3〜8の割合で混合して生成したことを特徴とする。 According to a third aspect of the present invention, in the reinforcing structure for an existing column according to the first aspect, the thickening material for reinforcement includes a composite polymer emulsion mainly composed of an acrylate ester copolymer, silicon oxide, and calcium oxide. It is characterized by being produced by mixing a main material mainly composed of iron oxide or a concrete mainly composed of cement, sand and gravel at a ratio of 1: 3 to 8.
請求項4記載の本発明では、請求項1〜3のいずれか1項に記載の既設柱の補強構造において、前記第1の補強部材及び第2の補強部材の対向する自由端同士を、少なくとも一箇所で連結したことを特徴とする。
In this invention of
請求項5記載の本発明では、請求項1〜4のうちいずれか1項に記載の既設柱の補強構造において、前記第1の補強部材及び第2の補強部材を、それぞれ複数の縦筋と複数の横筋とから構成し、前記複数の横筋のうち、すくなくとも一つを第1の補強部材と第2の補強部材とで共用したことを特徴とする。 In this invention of Claim 5, in the reinforcement structure of the existing pillar of any one of Claims 1-4, the said 1st reinforcement member and the 2nd reinforcement member are each a some vertical reinforcement, The first reinforcing member and the second reinforcing member are shared by a plurality of horizontal bars, and at least one of the plurality of horizontal bars is shared.
請求項6記載の本発明では、既設柱の側半部を囲繞可能にそれぞれ断面視略コ字状に形成した第1の補強鋼板及び第2の補強鋼板を、前記既設柱に接着剤を介して対向状態に取付け、しかも、前記接着剤を、ポリマーセメントモルタル等の樹脂モルタル又はこの樹脂モルタルに骨材を混入した樹脂コンクリートとしたことを特徴とする。 In this invention of Claim 6, the 1st reinforcement steel plate and the 2nd reinforcement steel plate which were formed in the cross-sectional view substantially U-shape respectively so that the side half part of the existing column can be enclosed are made to the said existing column via an adhesive agent. The adhesive is made of resin mortar such as polymer cement mortar or resin concrete mixed with aggregate in this resin mortar.
請求項7記載の本願発明では、既設柱の側半部を囲繞可能にそれぞれ断面視略コ字状に形成した第1の補強鋼板及び第2の補強鋼板を、前記既設柱に接着剤を介して対向状態に取付け、しかも、前記接着剤を、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材、又はセメント、砂、砂利を主成分としたコンクリートとを、1:3〜8の割合で混合して生成した。
In this invention of
請求項8記載の本願発明では、請求項6又は7に記載の既設柱の補強構造において、前記第1の補強鋼板及び第2の補強鋼板の対向する自由端同士を、前記既設柱の縦方向において少なくとも一箇所で連結したことを特徴とする。
In the present invention according to
請求項9記載の本願発明では、既設柱を補強部材により囲繞し、この補強部材を、ポリマーセメントモルタル等の樹脂モルタル又はこの樹脂モルタルに骨材を混入した樹脂コンクリートからなる補強用増厚材で埋設した。 In the present invention of claim 9, the existing pillar is surrounded by a reinforcing member, and the reinforcing member is a reinforcing mortar made of resin mortar such as polymer cement mortar or resin concrete in which aggregate is mixed in this resin mortar. Buried.
請求項10記載の本願発明では、既設柱を補強部材により囲繞し、この補強部材を補強用増厚材で埋設し、しかも、この補強用増厚材を、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材、又はセメント、砂、砂利を主成分としたコンクリートとを、1:3〜8の割合で混合して生成した。 In the present invention according to claim 10, the existing pillar is surrounded by a reinforcing member, the reinforcing member is embedded with a reinforcing thickening material, and the reinforcing thickening material is mainly composed of an acrylate copolymer. The composite polymer emulsion and the main material mainly composed of silicon oxide, calcium oxide and iron oxide, or the concrete mainly composed of cement, sand and gravel are mixed at a ratio of 1: 3 to 8 to form. did.
(1)請求項1記載の本発明では、既設柱の側半部を囲繞可能にそれぞれ略コ字状に形成した第1の補強部材及び第2の補強部材を、これら補強部材の自由端同士が対向するように前記既設柱に取付けるとともに、両補強部材を補強用増厚材で埋設した既設柱の補強構造としたために、既設柱間にアルミサッシなどが取付けられている場合であっても簡単な工事で既設柱の補強が可能となる。また、既設柱に対して型枠を設置する必要がないので補強工事のコストを大幅に低減することができる。しかも、補強用コンクリートによる補強厚みも従来に比べて比較的に薄くなり、柱設置空間を狭めるおそれがない。 (1) In the first aspect of the present invention, the first reinforcing member and the second reinforcing member, which are formed in a substantially U-shape so as to be able to surround the side half of the existing column, are connected to the free ends of these reinforcing members. Even when an aluminum sash or the like is attached between the existing pillars because the reinforcing members are attached to the existing pillars so as to face each other and the reinforcing members are reinforced with the reinforcing pillars embedded in the reinforcing thickening material. Existing work can be reinforced with simple construction. Moreover, since it is not necessary to install a formwork with respect to the existing pillar, the cost of reinforcement work can be significantly reduced. Moreover, the reinforcing thickness of the reinforcing concrete is also relatively thin compared to the conventional case, and there is no possibility of narrowing the column installation space.
(2)請求項2記載の本発明では、前記補強用増厚材は、ポリマーセメントモルタル等の樹脂モルタル又はこの樹脂モルタルに骨材を混入した樹脂コンクリートとしたために、付着力、引張強度、曲げ強度が高く、かつ十分な靭性と柔軟性を有していることから、補強部材との接着力も強力であり、十分な耐震構造を得ることができる。 (2) In the present invention according to claim 2, since the reinforcing thickener is resin mortar such as polymer cement mortar or resin concrete mixed with aggregate in this resin mortar, adhesion strength, tensile strength, bending Since the strength is high and it has sufficient toughness and flexibility, the adhesive force with the reinforcing member is also strong, and a sufficient seismic structure can be obtained.
(3)請求項3記載の本発明では、前記補強用増厚材は、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材、又はセメント、砂、砂利を主成分としたコンクリートとを、1:3〜8の割合で混合して生成したポリマーセメントモルタルとしたために、極めて高い付着力、十分な引張強度及び曲げ強度を有し、さらに十分な靭性と柔軟性を有していることから、補強部材との接着力も極めて強力であり、より確実な耐震構造を得ることができる。 (3) In the present invention according to claim 3, the reinforcing thickener is a composite polymer emulsion mainly composed of an acrylate copolymer, and mainly composed mainly of silicon oxide, calcium oxide and iron oxide. Because it is a polymer cement mortar produced by mixing materials, or concrete mainly composed of cement, sand, and gravel, in a ratio of 1: 3-8, it has extremely high adhesive strength, sufficient tensile strength and bending strength. Furthermore, since it has sufficient toughness and flexibility, the adhesive force with the reinforcing member is extremely strong, and a more reliable seismic structure can be obtained.
(4)請求項4記載の本発明では、前記第1の補強部材及び第2の補強部材の対向する自由端同士を、少なくとも一箇所で連結した構成としたために、補強部材の自由端部分が外方へ開いてしまうようなことを確実に防止して、より補強強度を増すことができる。
(4) In this invention of
(5)請求項5記載の本発明では、前記第1の補強部材及び第2の補強部材を、それぞれ複数の縦筋と複数の横筋とから構成し、前記複数の横筋のうち、すくなくとも一つを第1の補強部材と第2の補強部材とで共用したために、配筋数などの設定によって、所望する補強強度が得やすくなるとともに、第1の補強部材及び第2の補強部材同士の連結が極めて簡単でコスト的に有利となる。 (5) In the present invention described in claim 5, the first reinforcing member and the second reinforcing member are each composed of a plurality of vertical bars and a plurality of horizontal bars, and at least one of the plurality of horizontal bars. Since the first reinforcing member and the second reinforcing member are shared, the desired reinforcing strength can be easily obtained by setting the number of reinforcing bars, and the first reinforcing member and the second reinforcing member are connected to each other. Is very simple and advantageous in terms of cost.
(6)請求項6記載の本発明では、既設柱の側半部を囲繞可能にそれぞれ断面視略コ字状に形成した第1の補強鋼板及び第2の補強鋼板を、前記既設柱に接着剤を介して対向状態に取付け、しかも、前記接着剤を、ポリマーセメントモルタル等の樹脂モルタル又はこの樹脂モルタルに骨材を混入した樹脂コンクリートとしたために、接着剤の付着力、引張強度、曲げ強度が高く、かつ十分な靭性と柔軟性を有していることから、補強鋼板との接着力も強力であり、十分な耐震構造を得ることができる。接着剤の極めて高い付着力、引張強度、曲げ強度と、十分な靭性と柔軟性とから、補強鋼板との接着力も十分となり、肉厚の薄い補強で十分な補強効果、耐震効果を得ることができる。 (6) In the present invention described in claim 6, the first reinforcing steel plate and the second reinforcing steel plate, which are formed in a substantially U shape in cross section so as to be able to surround the side half of the existing column, are bonded to the existing column. Since the adhesive is resin mortar such as polymer cement mortar or resin concrete mixed with aggregate in this resin mortar, the adhesive strength, tensile strength, bending strength of the adhesive is used. Since it is high and has sufficient toughness and flexibility, the adhesive strength with the reinforcing steel plate is also strong, and a sufficient earthquake resistant structure can be obtained. Due to the extremely high adhesive strength, tensile strength, bending strength, and sufficient toughness and flexibility of the adhesive, the adhesive strength to the reinforced steel sheet is also sufficient, and sufficient reinforcement and earthquake resistance effects can be obtained with thin reinforcement. it can.
(7)請求項7記載の本発明では、既設柱の側半部を囲繞可能にそれぞれ断面視略コ字状に形成した第1の補強鋼板及び第2の補強鋼板を、前記既設柱に接着剤を介して対向状態に取付け、しかも、前記接着剤を、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材、又はセメント、砂、砂利を主成分としたコンクリートとを、1:3〜8の割合で混合して生成したポリマーセメントモルタルとしたために、接着剤の極めて高い付着力、十分な引張強度及び曲げ強度、さらには十分な靭性と柔軟性とを有することから、補強鋼板との接着力も十分となり、肉厚の薄い補強でより確実な補強効果、耐震効果を得ることができる。
(7) In the present invention according to
(8)請求項8記載の本発明では、前記第1の補強鋼板及び第2の補強鋼板の対向する自由端同士を、前記既設柱の縦方向において少なくとも一箇所で連結したために、補強鋼板の自由端部分があたかも観音開きのように外方へ開いてしまうことを確実に防止して、より補強強度を増すことができる。
(8) In this invention of
(9)請求項9記載の本願発明では、既設柱を補強部材により囲繞し、この補強部材を、ポリマーセメントモルタル等の樹脂モルタル又はこの樹脂モルタルに骨材を混入した樹脂コンクリートからなる補強用増厚材で埋設したために、この補強用増厚材の付着力、引張強度、曲げ強度が高くなり、かつ十分な靭性と柔軟性を有していることから、補強部材との接着力も強力であり、従来からの巻立て工法を採用しながらも十分な耐震構造を得ることができる。 (9) In the present invention of claim 9, the existing pillar is surrounded by a reinforcing member, and the reinforcing member is made of resin mortar such as polymer cement mortar or resin concrete in which aggregate is mixed in this resin mortar. Because it is embedded with a thick material, the reinforcing material has increased adhesion, tensile strength and bending strength, and has sufficient toughness and flexibility, so it has strong adhesion to the reinforcing member. A sufficient seismic structure can be obtained while adopting a conventional winding method.
(10)請求項10記載の本願発明では、既設柱を補強部材により囲繞し、この補強部材を補強用増厚材で埋設し、しかも、この補強用増厚材を、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材、又はセメント、砂、砂利を主成分としたコンクリートとを、1:3〜8の割合で混合して生成したために、補強用増厚材の極めて高い付着力、十分な引張強度及び曲げ強度、さらには十分な靭性と柔軟性とによって補強部材との接着力も十分となり、従来の巻立て工法を採用しながらも、肉厚の薄い補強としつつ、かつより確実な補強効果、耐震効果を得ることができる。 (10) In the present invention of claim 10, the existing pillar is surrounded by the reinforcing member, the reinforcing member is embedded with the reinforcing thickener, and the reinforcing thickener is made of the acrylate copolymer. A composite polymer emulsion mainly containing silicon and a main material mainly containing silicon oxide, calcium oxide and iron oxide, or concrete mainly containing cement, sand and gravel at a ratio of 1: 3 to 8. As a result, the adhesive strength to the reinforcing member is sufficient due to the extremely high adhesive strength, sufficient tensile strength and bending strength of the reinforcing thickener, and sufficient toughness and flexibility. While adopting, it is possible to obtain a more reliable reinforcement effect and earthquake resistance effect while reducing the thickness.
本発明は、既設柱の側半部を囲繞可能にそれぞれ略コ字状に形成した第1の補強部材及び第2の補強部材を、これら補強部材の自由端同士が対向するように前記既設柱に取付けるとともに、両補強部材を補強用増厚材で埋設した既設柱の補強構造としたものである。 The present invention provides a first reinforcing member and a second reinforcing member, each of which is formed in a substantially U shape so as to be able to surround the side half of the existing column, and the existing columns so that the free ends of these reinforcing members face each other. And a reinforcing structure of an existing pillar in which both reinforcing members are embedded with a reinforcing thickening material.
かかる補強構造とするためには、既設柱の表面のケレン工程と、下塗材による下塗り工程と、補強部材取付工程と、前記補強用増厚材による増厚工程とからなる補強方法を採用すればよい。 In order to obtain such a reinforcing structure, if a reinforcing method comprising a kelen process on the surface of an existing column, an undercoating process with an undercoat material, a reinforcing member attaching process, and a thickening process with the reinforcing thickener is employed. Good.
前記補強用増厚材は、ポリマーセメントモルタル等の樹脂モルタル又はこの樹脂モルタルに骨材を混入した樹脂コンクリートとすることができる。樹脂モルタルや樹脂コンクリートは、通常のモルタルやコンクリートに比べ、付着力、引張強度、曲げ強度が高く、かつ十分な靭性と柔軟性を有していることから、補強部材との接着力も強力であり、十分な耐震構造を得ることができる。 The reinforcing thickening material may be a resin mortar such as a polymer cement mortar or a resin concrete in which an aggregate is mixed in the resin mortar. Resin mortar and resin concrete have higher adhesive strength, tensile strength, and bending strength than ordinary mortar and concrete, and have sufficient toughness and flexibility. , You can get enough seismic structure.
さらに、これら樹脂モルタルや樹脂コンクリートとしては、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材、又はセメント、砂、砂利を主成分としたコンクリートとを、1:3〜8の割合で混合して生成することが好ましい。 Furthermore, these resin mortars and resin concretes include composite polymer emulsions mainly composed of acrylate copolymers and main materials mainly composed of silicon oxide, calcium oxide and iron oxide, or cement, sand and gravel. It is preferable to produce the main component concrete by mixing it at a ratio of 1: 3 to 8.
そして、前記増厚工程は、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材とを、1:3.5の割合で混合して生成したポリマーセメントモルタルからなる第1のタイプの増厚材を吹き付け又はハケ塗りをした後、前記複合ポリマーエマルジョンと主材とを1:7の割合で混合したポリマーセメントモルタルからなる第2のタイプの増厚材をその表面上に連続してコテ塗りする作業を1セットとして、これを所定の厚みとなるまで複数回繰り返せばよい。 In the thickening step, a composite polymer emulsion mainly composed of an acrylate copolymer and a main material mainly composed of silicon oxide, calcium oxide, and iron oxide are mixed at a ratio of 1: 3.5. After spraying or brushing the first type thickening material comprising the polymer cement mortar produced in this manner, the second type comprising the polymer cement mortar in which the composite polymer emulsion and the main material are mixed at a ratio of 1: 7. What is necessary is just to repeat this several times until it becomes the predetermined | prescribed thickness for the operation | work which coats the iron of a type thickening material continuously on the surface as 1 set.
かかる工法による補強構造は、特に、既設の柱と柱との間にアルミサッシなどが設けられている場合に好適である。 Such a reinforcing structure by the construction method is particularly suitable when an aluminum sash or the like is provided between the existing pillars.
すなわち、既設柱の内側面に近接して設けられたサッシ枠などを傷つけることなく、またかかるサッシ枠が邪魔になることなく、そして型枠などを組む必要もない簡単な工事で既設柱の補強が可能となるのである。補強用増厚材による補強厚みも従来に比べて比較的に薄くなり、空間を狭めるおそれがない。 In other words, the existing pillars can be reinforced by simple construction without damaging the sash frame provided close to the inner surface of the existing pillar, without interfering with the sash frame, and without having to form a formwork. Is possible. The reinforcing thickness of the reinforcing thickening material is also relatively thin compared to the conventional case, and there is no risk of narrowing the space.
また、前記構成の補強用増厚材は、極めて高い付着力、引張強度、曲げ強度を有し、かつ十分な靭性と柔軟性を有していることから、補強部材との接着力も強力であり、十分な耐震構造を得ることができる。 In addition, the thickening material for reinforcement having the above structure has extremely high adhesive strength, tensile strength, bending strength, and has sufficient toughness and flexibility, so that the adhesive strength to the reinforcing member is also strong. , You can get enough seismic structure.
なお、前記下塗材としても、上述した構成からなる第1の増厚材と同質のものを用いることができ、やはり吹き付け又はハケ塗りすればよい。 In addition, as the undercoat material, the same material as the first thickening material having the above-described configuration can be used, and it may be sprayed or brushed.
なお、ポリマーセメントモルタルからなる増厚材としてのより望ましい実施形態としては、架橋材としてZnOを使用し、また助材としてアミノ酸の一つで動物性蛋白質に多く含まれているグリシンを使用するものである。かかる構成によれば、ポリマーセメントモルタルの上記物性をより高めることができ、さらに、既設柱が地震などで変位したりしてもその動きに追従するので、後に補強部分がひび割れしたり崩壊することを確実に防止することができる。また、防錆機能を果たすことが確認されているので、補強部材が補強筋などのように鋼製であっても錆びて劣化することを防止して補強効果を長期にわたって持続させることができ、十分な耐震効果を得ることができる。 In addition, as a more desirable embodiment as a thickening material made of polymer cement mortar, ZnO is used as a cross-linking material, and glycine which is one of amino acids and is contained in a large amount of animal protein as an auxiliary material. It is. According to such a configuration, the physical properties of the polymer cement mortar can be further improved, and further, even if the existing column is displaced due to an earthquake or the like, the movement follows the movement, so that the reinforcing portion cracks or collapses later. Can be reliably prevented. In addition, since it has been confirmed that the rust prevention function is fulfilled, even if the reinforcing member is made of steel such as a reinforcing bar, it can be prevented from rusting and deteriorating, and the reinforcing effect can be sustained over a long period of time. A sufficient seismic effect can be obtained.
ところで、前記第1の補強部材及び第2の補強部材の対向する自由端同士を、少なくとも一箇所で連結した構成とすることが望ましい。 By the way, it is desirable that the opposing free ends of the first reinforcing member and the second reinforcing member are connected in at least one place.
このように、第1の補強部材及び第2の補強部材との自由端同士を、少なくとも一箇所で連結することにより、地震などで柱が横揺れしても補強部材の自由端部分が外方へ開いてしまうようなことがなくなり、補強強度をより向上させることができる。 In this way, by connecting the free ends of the first reinforcing member and the second reinforcing member at least at one place, the free end portion of the reinforcing member is outward even if the column rolls due to an earthquake or the like. It is possible to improve the reinforcing strength.
また、前記第1の補強部材及び第2の補強部材を、それぞれ複数の主筋(縦筋)と複数の帯筋(横筋)とから構成するとよく、そして、前記複数の帯筋のうち、すくなくとも対向する一対の帯筋同士を連結すればよい。 The first reinforcing member and the second reinforcing member may each be composed of a plurality of main bars (vertical bars) and a plurality of band bars (horizontal bars), and at least of the plurality of band bars facing each other. What is necessary is just to connect a pair of straps to do.
あるいは、前記複数の帯筋のうち、すくなくとも一つを第1の補強部材と第2の補強部材とで共用すれば、結果的には、第1の補強部材及び第2の補強部材の対向する自由端同士を連結した構成とすることがより簡単となり、材料も既存のものでよいためにコスト的に有利となる。さらに、かかる構成とすれば、共用する横筋の配筋数などの設定によって、所望する補強強度を得やすくなる。 Alternatively, if at least one of the plurality of strips is shared by the first reinforcing member and the second reinforcing member, as a result, the first reinforcing member and the second reinforcing member face each other. It becomes simpler to have a configuration in which the free ends are connected to each other, and an existing material may be used, which is advantageous in terms of cost. Further, with such a configuration, a desired reinforcing strength can be easily obtained by setting the number of horizontal bars to be shared.
また、他の実施の形態として、設柱の側半部を囲繞可能にそれぞれ断面視略コ字状に形成した第1の補強鋼板及び第2の補強鋼板を、前記既設柱に接着剤を介して対向状態に取付け、しかも、前記接着剤を、ポリマーセメントモルタル等の樹脂モルタル又はこの樹脂モルタルに骨材を混入した樹脂コンクリートとすることができる。 Further, as another embodiment, a first reinforcing steel plate and a second reinforcing steel plate, each of which is formed in a substantially U shape in cross section so as to be able to surround the side half of the installation column, are bonded to the existing column via an adhesive. The adhesive may be resin mortar such as polymer cement mortar or resin concrete in which aggregate is mixed in the resin mortar.
また、前記接着剤として、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材、又はセメント、砂、砂利を主成分としたコンクリートとを、1:3〜8の割合で混合して生成したポリマーセメントモルタルとすることができる。 In addition, as the adhesive, a composite polymer emulsion mainly composed of an acrylate copolymer and a main material mainly composed of silicon oxide, calcium oxide and iron oxide, or mainly composed of cement, sand and gravel. Polymer cement mortar produced by mixing concrete with a ratio of 1: 3 to 8 can be obtained.
この場合、前記構成の接着剤は極めて高い付着力、引張強度、曲げ強度と、十分な靭性と柔軟性とを有することから、補強鋼板との接着力も十分となり、肉厚の薄い補強で十分な補強効果、耐震効果を得ることができる。 In this case, the adhesive having the above structure has extremely high adhesive strength, tensile strength, bending strength, and sufficient toughness and flexibility. Therefore, the adhesive strength with the reinforcing steel plate is also sufficient, and thin-walled reinforcement is sufficient. Reinforcement effect and seismic effect can be obtained.
そして、さらに前記第1の補強鋼板及び第2の補強鋼板の対向する自由端同士を、前記既設柱の縦方向において少なくとも一箇所で連結すれば、補強鋼板の自由端部分があたかも観音開きのように外方へ開いてしまうことを確実に防止して、より補強強度を増すことができる。なお、連結する材料としては、補強鋼板の一部同士を同質の連結用鋼板で溶接などにより連結してもよいし、第1の補強鋼板及び第2の補強鋼板の外周を補強筋で巻くようにしてもよい。 And if the free ends which the said 1st reinforcement steel plate and the 2nd reinforcement steel plate oppose are further connected in at least one place in the vertical direction of the said existing pillar, the free end part of a reinforcement steel plate will be as if it is a double-spreading. Opening outwards can be reliably prevented, and the reinforcing strength can be further increased. In addition, as a material to be connected, a part of the reinforcing steel plates may be connected to each other by welding with the same quality connecting steel plates, or the outer circumferences of the first reinforcing steel plate and the second reinforcing steel plate are wound with reinforcing bars. It may be.
ところで、上述してきた実施の形態では、特に既設の柱と柱との間にアルミサッシなどが設けられている場合に好適なものとして説明したが、通常の柱単体の補強をする場合は、下記の構成として耐震効果を得ることができる。 By the way, in embodiment mentioned above, although demonstrated as what is suitable especially when the aluminum sash etc. were provided between the existing pillars and pillars, when reinforcing the usual pillar single-piece | unit, As a configuration, an earthquake resistance effect can be obtained.
すなわち、既設柱を補強部材により囲繞し、この補強部材を、ポリマーセメントモルタル等の樹脂モルタル又はこの樹脂モルタルに骨材を混入した樹脂コンクリートからなる補強用増厚材で埋設するものである。 That is, an existing pillar is surrounded by a reinforcing member, and this reinforcing member is embedded with a reinforcing thickening material made of resin mortar such as polymer cement mortar or resin concrete in which aggregate is mixed in this resin mortar.
つまり、前記補強用増厚材の付着力、引張強度、曲げ強度が高くなり、かつ十分な靭性と柔軟性を有していることから、補強部材との接着力も強力であり、従来から知られている巻立て工法を採用しながらも十分な耐震構造を得ることができる。 In other words, the adhesive strength, tensile strength and bending strength of the thickening material for reinforcement are increased, and since it has sufficient toughness and flexibility, the adhesive force with the reinforcing member is also strong, and has been conventionally known. A sufficient seismic structure can be obtained while adopting the winding method.
また、既設柱を補強部材により囲繞し、この補強部材を補強用増厚材で埋設し、しかも、この補強用増厚材を、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材、又はセメント、砂、砂利を主成分としたコンクリートとを、1:3〜8の割合で混合して生成したものであってもよい。 Further, the existing pillar is surrounded by a reinforcing member, the reinforcing member is embedded with a reinforcing thickening material, and the reinforcing thickening material is combined with a composite polymer emulsion mainly composed of an acrylate copolymer, It may be produced by mixing a main material mainly composed of silicon oxide, calcium oxide and iron oxide, or a concrete mainly composed of cement, sand and gravel at a ratio of 1: 3 to 8. .
この場合、補強用増厚材は前述した樹脂モルタルや樹脂コンクリートよりもさらに高い付着力、十分な引張強度及び曲げ強度、そして十分な靭性と柔軟性とが期待できることから補強部材との接着力も極めて高くなり、やはり従来の巻立て工法を採用しながら、肉厚の薄い補強としつつ、かつより確実な補強効果、耐震効果を得ることができる。 In this case, the thickening material for reinforcement can be expected to have higher adhesion, sufficient tensile strength and bending strength, and sufficient toughness and flexibility than the resin mortar and resin concrete described above. It becomes high, and it is possible to obtain a more reliable reinforcement effect and earthquake resistance effect while adopting a conventional winding method, making the reinforcement thin.
以下、添付図に基づいて、本発明の実施例を具体的に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
(第1実施例)
図1は、第1実施例に係る既設柱の補強構造を示す説明図、図2は同横断面図である。なお、本実施例においては、既設柱1は所定間隔をあけて複数立設されており、既設柱1同士間には間口が形成され、この間口内には図示しないアルミサッシが取付けられているものとする。
(First embodiment)
FIG. 1 is an explanatory view showing a reinforcing structure of an existing pillar according to the first embodiment, and FIG. 2 is a transverse sectional view thereof. In the present embodiment, a plurality of existing
かかる既設柱1の耐震性を高めるために、本実施例に係る補強構造は、図1及び図2に示すように、既設柱1の側半部11,12それぞれを囲繞できるように略コ字状に形成した第1の補強部材3a及び第2の補強部材3bを、これら補強部材3a,3bの自由端同士が対向状態となるように前記既設柱1を抱くように取付けている。
In order to improve the seismic resistance of the existing
前記第1の補強部材3a及び第2の補強部材3bは、それぞれ縦筋となる主筋31を既設柱1の半側周面(図面上、前後の半側周面)ごとに、外周面に沿って適宜間隔で蜜状態に配設するとともに、平面視略コ字状とした横筋となる帯筋32を、これも既設柱1の半側周面ごとに、それぞれ上下方向に密に配設するとともに、各主筋31とそれぞれ溶接して構成している。なお、前記主筋31は、既設柱1に直接打ち込むアンカーなどを具備する取付金具(図示せず)を介して既設柱1に連結固定している。
The first reinforcing
そして、前記第1の補強部材3a及び第2の補強部材3bを補強用増厚材4により埋設している。
The first reinforcing
前記補強用増厚材4は、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材とを、1:3〜8の割合で混合して生成したポリマーセメントモルタルを材料としている。さらに、架橋材としてZnOを使用するとともに、助剤としてグリシンを使用して金属架橋を促すようにすることもできる。なお、前記主材に代えてセメント、砂、砂利を主成分としたコンクリートとしてもよい。
The reinforcing
上記ポリマーセメントモルタルは、極めて高い付着力、引張強度、曲げ強度を有し、かつ十分な靭性と柔軟性を有するので、コンクリート躯体である既設柱1が変位したりしてもその動きに追従し、後に補強部分がひび割れしたり崩壊することを確実に防止することができ、さらに、第1、第2の補強部材3a,3bをしっかりとグリップすることができる。したがって、補強厚みを比較的薄くしながらも耐震構造として十分な強度を有し、また、補強後については既設柱1の配設空間を狭めることがない。
The polymer cement mortar has extremely high adhesive strength, tensile strength and bending strength, and has sufficient toughness and flexibility. Therefore, even if the existing
上記ポリマーセメントモルタルの強力な付着力は、下記のメカニズムから生じると考えられる。 The strong adhesion of the polymer cement mortar is thought to result from the following mechanism.
すなわち、無機物質は、一般に構成元素が規則的に配列した結晶構造をもっており、大きな機械的強度や高い融点を有する優れた性質を備える一方、表面の構造欠陥も大きく、脆性体としての特徴もある。そして、このような表面は水を吸着して安定化しようとし、表面で解離した水のH+は表面の酸素と結合して水酸基OHを形成する。この水酸基は有機物との化学反応性があり、また、主材中の酸化珪素の表面は極性が大きく反応性に富んでいるので種々な有機反応が可能である。またセメント成分であるCaOは塩基性の強い酸化物で、Ca+2の成分を溶出し、水和を内部まで進行させる。 That is, an inorganic substance generally has a crystal structure in which constituent elements are regularly arranged and has excellent properties such as a large mechanical strength and a high melting point, but also has a large surface structural defect and is also characterized as a brittle body. . Such a surface tends to adsorb and stabilize water, and water H + dissociated on the surface combines with surface oxygen to form a hydroxyl group OH. This hydroxyl group is chemically reactive with organic substances, and the surface of silicon oxide in the main material is highly polar and rich in reactivity so that various organic reactions are possible. Also, CaO, which is a cement component, is a strong basic oxide that elutes the Ca +2 component and promotes hydration to the inside.
無機素材を水などの溶液に接触させると、表面水酸基の解離、イオンの吸着、分子の双極子配向などにより界面に電位差を生じ、電気二重層を形成させる。無機素材表面の電化の性質は分散、吸着、電着による表面改質や素材間の吸着に大きな影響力をもつ。また、この電荷はアルカリ性環境下で負電荷を帯びる。さらに、アルカリ性で電解質が存在する条件下では吸着量が増大する。 When an inorganic material is brought into contact with a solution such as water, a potential difference is generated at the interface due to dissociation of surface hydroxyl groups, adsorption of ions, dipole orientation of molecules, and the like, and an electric double layer is formed. The property of electrification on the surface of inorganic materials has a great influence on surface modification by dispersion, adsorption, electrodeposition and adsorption between materials. This charge is negatively charged in an alkaline environment. In addition, the amount of adsorption increases under alkaline and electrolyte conditions.
上記したポリマーセメントモルタルからなる補強用増厚材4は、無機質主剤が有するこのような性質を、多数の親水基をもち屈曲性を有する水溶性のアクリル酸エステルを主成分とする複合ポリマーエマルジョンと混和し、その相互作用により固体表面への吸着性能の大きい、耐水性、耐環境性に優れた接着層を形成することから、強力な付着力が生じるものと考えられている。
The reinforcing
しかも、上記したように、セメント成分が強アルカリ環境にあるので、第1、第2の補強部材3a,3bや取付金具などで発生しやすい錆を、不動酸化物の一種でその主成分が水化酸化鉄(II)である酸化皮膜(黒錆)に変性させて腐食を防止することができる。したがって、補強効果をきわめて長期間維持することができる。
Moreover, as described above, since the cement component is in a strong alkaline environment, rust that tends to occur in the first and second reinforcing
また、上記したポリマーセメントモルタルは無害であり、施工中及び施工後についても有害ガスを発生したり、引火・爆発のおそれもない。 Further, the above-mentioned polymer cement mortar is harmless, and there is no risk of generating harmful gases or igniting / exploding during and after construction.
このように、本実施例では、既設柱1に連結固定した主筋31に、略コ字状とした帯筋32を取付け、既設柱1の半側部を抱くように上下に密に配設しているので、既設柱1同士の間にアルミサッシなどが配設されていても簡単に施工することができ、しかも十分な強度を有することが実験的に確かめられた。
As described above, in this embodiment, the main reinforcing
また、上述の補強用増厚材4を用いることによって、第1、第2の補強部材3a,3bを塗り込めるだけの薄い厚みの補強だけで十分な耐震効果を奏する。
In addition, by using the reinforcing thickening
上述してきた補強構造は、下記の手順で施工される。 The reinforcing structure described above is constructed according to the following procedure.
(1)ケレン工程
先ず、既設柱1の表面をディスクサンダーなどで削り、旧い塗膜等を剥離させる。
(1) Keren process First, the surface of the existing
(2)下塗り工程
次いで、前述の増厚材と同成分からなる下塗り材を、既設柱1の表面に吹き付けあるいはハケ塗りする。このときの下塗り材は、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材とを、1:3.5の割合で混合して生成している。
(2) Undercoating step Next, an undercoating material composed of the same component as the above thickening material is sprayed or brushed on the surface of the existing
(3)補強部材取付工程
既設柱1の側半部11,12を囲繞可能にそれぞれ形成した第1、第2の補強部材3a,3bを対向状態に取付ける。すなわち、各補強部材3a,3bを構成する主筋31を、既設柱1の側半部11,12の外周面に沿って、図示しない取付金具を用いて密状態に配置していく。次いで、既設柱1の側半部11,12に対応するように、予め略コ字状に折曲形成した帯筋32を、前記主筋31に溶接しながら上下方向に密に配置していく。かかる主筋31、帯筋32の配設により、既設柱1の側半部11,12に第1及び第2の補強部材3a,3bが対向状態に構築される。
(3) Reinforcing member attaching step The first and second reinforcing
このとき、図3に示すように、前記複数の帯筋32のうち、適宜の帯筋32を第1の補強部材3aと第2の補強部材3bとで共用する共用帯筋32’とし、第1及び第2の補強部材3a,3bが構築されたときに、両者が共用した前記共用帯筋32’によって連結された状態とする。
At this time, as shown in FIG. 3, among the plurality of
(4)増厚工程
そして、前述した成分構成からなる補強用増厚材4を積層して第1の補強部材3aと第2の補強部材3bとを埋設するのであるが、このとき、先ず第1増厚工程として、前記下塗り材と同質成分からなる増厚材を吹き付け又はハケ塗りして所定厚み分増厚する。すなわち、ここでの補強用増厚材4は、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材とを、1:3.5の割合で混合して生成したものである。
(4) Thickening step Then, the reinforcing thickening
次いで、この第1増厚工程に連続して、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材とを、1:7の割合で混合して生成した補強用増厚材4をコテ塗りする第2増厚工程を実行してさらに所定の増厚量を得る。
Subsequently, in succession to the first thickening step, a composite polymer emulsion mainly composed of an acrylate copolymer and a main material mainly composed of silicon oxide, calcium oxide and iron oxide are 1: 7. A second thickening step of applying the reinforcing
そして、増厚量が補強に必要な所定厚みとなるように、前記第1増厚工程と第2増厚工程とを必要回数繰り返すのである。 Then, the first thickening step and the second thickening step are repeated as many times as necessary so that the thickening amount becomes a predetermined thickness necessary for reinforcement.
(5)養生工程
その後、適宜時間おいて補強用増厚材4を固化させるとともに養生して既設柱1の補強が完了する。
(5) Curing process Thereafter, the reinforcing
このように、きわめて簡単な施工で十分な補強が行え、作業コストを従来よりも大幅に低減することができる。また、前記複数の帯筋32のうち、すくなくとも一つを第1の補強部材3aと第2の補強部材3bとで共用したために、第1の補強部材3aと第2の補強部材3bとが連結されることになり、第1、第2の補強部材3a,3bの各自由端部分があたかも観音開きのように外方へ開いてしまうこと(図6参照)を確実に防止することができ、より補強強度を増すことができる。
In this way, sufficient reinforcement can be performed by an extremely simple construction, and the operation cost can be greatly reduced as compared with the conventional case. In addition, since at least one of the plurality of
しかも、第1の補強部材3aと第2の補強部材3b同士の連結が極めて簡単となり、低コスト化が図れ、また、帯筋32の配筋数などの設定によって、所望する補強強度を得やすくなる。
In addition, the connection between the first reinforcing
なお、前記(3)の補強部材取付工程において、複数の帯筋32のうち、すくなくとも一つを第1の補強部材3aと第2の補強部材3bとで共用したものとして説明したが、前記第1の補強部材3aと第2の補強部材3bが備える複数の帯筋32のうち、すくなくとも対向する一対の帯筋32同士を、他の連結部材で連結してもよい。連結部材としては帯筋32などと同質の金属材料を用い、これを溶接により連結することが可能である。
In the reinforcing member attaching step (3), at least one of the plurality of
ところで、前記補強部材3a,3bは、主筋31と帯筋32とからそれぞれ構成したものとしたが、変形例として、それに代えて、図4に示すように、予め網状とした第1のメッシュ体5aと第2のメッシュ体5bとを第1の補強部材3aと第2の補強部材3bとして用いることもできる。この場合の補強効果も前述同様である。なお、この場合、第1、第2のメッシュ体5a,5bを既設柱1に沿って配設する際には、図示しない取付金具を用いて直接取付ければよい。さらに、第1、第2のメッシュ体5a,5b同士は、同構成のメッシュ体を連結材として用い、この連結材の両端を前記第1、第2のメッシュ体5a,5bにそれぞれ溶接するなどすればよい。
By the way, the reinforcing
(第2実施例)
図5は第2実施例を示しており、ここでは、前記第1、第2の補強部材3a,3bに代えて、第1、第2の補強鋼板6a,6bを用いている。なお、図5において使用した符号は、第1実施例と同一構成要素については同一符号とした。
(Second embodiment)
FIG. 5 shows a second embodiment, in which first and second reinforcing
すなわち、既設柱1の両側半部11,12を囲繞可能にそれぞれ断面視略コ字状に形成した第1、第2の補強鋼板6a,6bを、対向状態となるように接着剤7を介して取付けている。
That is, the first and second reinforcing
しかも、前記接着剤7を、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材、又はセメント、砂、砂利を主成分としたコンクリートとを、1:3〜8の割合で混合して生成したポリマーセメントモルタルとしている。 Moreover, the adhesive 7 is composed of a composite polymer emulsion mainly composed of an acrylate copolymer and a main material mainly composed of silicon oxide, calcium oxide and iron oxide, or mainly composed of cement, sand and gravel. It is made the polymer cement mortar produced | generated by mixing the made concrete with the ratio of 1: 3-8.
すなわち、この場合は、ケレン工程の後、既設柱1の両側半部11,12全体に上記接着剤7を塗布し、次いで既設柱1の両側半部11,12に対応するように略コ字状に成形した第1、第2の補強鋼板6a,6bを配設し、アンカーボルト8で既設柱1に連結固定している。
That is, in this case, after the keren process, the adhesive 7 is applied to the entire side halves 11 and 12 of the existing
既設柱1の外周面には第1、第2の補強鋼板6a,6bが露出した状態での補強構造となるが、上記接着剤7による強力な接着力によって、既設柱1と補強鋼板6a,6bとが略一体化され、耐震効果の高い十分な補強が行える。
Although the first and second reinforcing
そして、この場合も補強に要する厚みが薄く済むので、柱配設空間を狭めることがない。しかも、補強工事がきわめて簡単であり、コスト的にも有利となる。 In this case as well, the thickness required for reinforcement is thin, so that the column arrangement space is not narrowed. In addition, the reinforcement work is very simple and advantageous in terms of cost.
また、この場合においても、第1の補強鋼板6a及び第2の補強鋼板6bの対向する自由端同士を、前記既設柱1の縦方向において少なくとも一箇所で連結するとよい。
Also in this case, the opposing free ends of the first reinforcing
かかる構成により、第1、第2の補強鋼板6a,6bの自由端部分があたかも観音開きのように外方へ開いてしまうこと(図6参照)を確実に防止して、より補強強度を増すことができる。なお、連結する材料としては、第1、第2の補強鋼板6a,6bの一部同士を同質の連結用鋼板で溶接などにより連結してもよいし、第1の補強鋼板6a及び第2の補強鋼板6bの外周を実施例1で示した帯筋32同様の補強筋で巻くこともできる。このとき、補強筋と第1の補強鋼板6a及び第2の補強鋼板6bとを適宜溶接するとよい。
With such a configuration, it is possible to reliably prevent the free end portions of the first and second reinforcing
(第3実施例)
図6は第3実施例を示している。上述してきた第1、第2実施例では、特に既設の柱と柱との間にアルミサッシなどが設けられている場合に好適なものとして説明したが、通常の柱単体の補強をする場合は、下記の構成として耐震効果を得ることができる。なお、図6において使用した符号は、第1実施例及び第2実施例と同一構成要素については同一符号とした。
(Third embodiment)
FIG. 6 shows a third embodiment. In the first and second embodiments described above, it has been described as being particularly suitable when an aluminum sash or the like is provided between the existing pillars. However, when reinforcing an ordinary pillar alone, The seismic effect can be obtained with the following configuration. In FIG. 6, the same reference numerals are used for the same components as those in the first and second embodiments.
図6に示すように、本実施例においては、既設柱1の全体を補強部材9により囲繞し、この補強部材9を、ポリマーセメントモルタル等の樹脂モルタル又はこの樹脂モルタルに骨材を混入した樹脂コンクリートからなる補強用増厚材4で埋設している。
As shown in FIG. 6, in this embodiment, the entire existing
補強部材9として、ここでは実施例1同様に主筋31と帯筋32とからなる補強筋としたが、実施例1の変形例で説明したようなメッシュ体であっても良いし、実施例2で説明したような鋼板であっても構わない。
Here, the reinforcing member 9 is the reinforcing bar composed of the
つまり、補強用増厚材4を、通常のモルタルやコンクリートなどに代えて、ポリマーセメントモルタル等の樹脂モルタル又はこの樹脂モルタルに骨材を混入した樹脂コンクリートを用いることにより、補強用増厚材の付着力、引張強度、曲げ強度を向上させることができ、さらに、樹脂モルタルや樹脂コンクリートは、通常のモルタルやコンクリートなどよりも靭性と柔軟性とを有していることから、補強部材9との接着力も強力であり、従来から知られている巻立て工法を採用しながらも十分な耐震構造を得ることができる。
That is, the reinforcing
また、前記補強用増厚材として、アクリル酸エステル共重合体を主成分とする複合ポリマーエマルジョンと、酸化珪素、酸化カルシウム、酸化鉄を主成分とした主材、又はセメント、砂、砂利を主成分としたコンクリートとを、1:3〜8の割合で混合して生成したものとすることができる。 Further, as the reinforcing thickener, a composite polymer emulsion mainly composed of an acrylate copolymer and a main material mainly composed of silicon oxide, calcium oxide and iron oxide, or mainly cement, sand and gravel. It can be produced by mixing the component concrete with a ratio of 1: 3-8.
この場合、補強用増厚材は前述した樹脂モルタルや樹脂コンクリートよりもさらに高い付着力、十分な引張強度及び曲げ強度、そして十分な靭性と柔軟性とが期待できることから補強部材との接着力も極めて高くなり、やはり従来の巻立て工法を採用しながら、肉厚の薄い補強としつつ、かつより確実な補強効果、耐震効果を得ることができる。 In this case, the thickening material for reinforcement can be expected to have higher adhesion, sufficient tensile strength and bending strength, and sufficient toughness and flexibility than the resin mortar and resin concrete described above. It becomes high, and it is possible to obtain a more reliable reinforcement effect and earthquake resistance effect while adopting a conventional winding method, making the reinforcement thin.
1 既設柱
3a 第1の補強部材
3b 第2の補強部材
4 補強用増厚材
6a 第1の補強鋼板
6b 第2の補強鋼板
7 接着剤
9 補強部材
DESCRIPTION OF
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004141387A JP2005320819A (en) | 2004-05-11 | 2004-05-11 | Existing column reinforcing structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004141387A JP2005320819A (en) | 2004-05-11 | 2004-05-11 | Existing column reinforcing structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005320819A true JP2005320819A (en) | 2005-11-17 |
Family
ID=35468284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004141387A Pending JP2005320819A (en) | 2004-05-11 | 2004-05-11 | Existing column reinforcing structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005320819A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007278043A (en) * | 2006-04-12 | 2007-10-25 | Ohbayashi Corp | Method and structure for reinforcing reinforced concrete structural member |
JP2014077248A (en) * | 2012-10-09 | 2014-05-01 | Ube Ind Ltd | Seismic strengthening structure and seismic strengthening method |
JP5974157B1 (en) * | 2015-12-02 | 2016-08-23 | 株式会社ブルーム | Reinforced structure of reinforced concrete structure |
JP2016186223A (en) * | 2016-08-02 | 2016-10-27 | 宇部興産株式会社 | Seismic strengthening structure and method |
KR20210014717A (en) * | 2018-10-15 | 2021-02-09 | 경기대학교 산학협력단 | Reinforced pre-assembly unit method for enlarging and strengthening cross-section of column |
JP2022101896A (en) * | 2020-12-25 | 2022-07-07 | 恵和株式会社 | Method for repairing roof |
TWI833190B (en) * | 2022-03-31 | 2024-02-21 | 日商恵和股份有限公司 | Roof repair methods and roof repair structures |
-
2004
- 2004-05-11 JP JP2004141387A patent/JP2005320819A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007278043A (en) * | 2006-04-12 | 2007-10-25 | Ohbayashi Corp | Method and structure for reinforcing reinforced concrete structural member |
JP2014077248A (en) * | 2012-10-09 | 2014-05-01 | Ube Ind Ltd | Seismic strengthening structure and seismic strengthening method |
JP5974157B1 (en) * | 2015-12-02 | 2016-08-23 | 株式会社ブルーム | Reinforced structure of reinforced concrete structure |
JP2016186223A (en) * | 2016-08-02 | 2016-10-27 | 宇部興産株式会社 | Seismic strengthening structure and method |
KR20210014717A (en) * | 2018-10-15 | 2021-02-09 | 경기대학교 산학협력단 | Reinforced pre-assembly unit method for enlarging and strengthening cross-section of column |
KR102340570B1 (en) * | 2018-10-15 | 2021-12-21 | 경기대학교 산학협력단 | Reinforced pre-assembly unit method for enlarging and strengthening cross-section of column |
JP2022101896A (en) * | 2020-12-25 | 2022-07-07 | 恵和株式会社 | Method for repairing roof |
JP7379320B2 (en) | 2020-12-25 | 2023-11-14 | 恵和株式会社 | Roof repair method |
TWI833190B (en) * | 2022-03-31 | 2024-02-21 | 日商恵和股份有限公司 | Roof repair methods and roof repair structures |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100704874B1 (en) | Structures of prefabricated concrete pier strengthened in shear by steel pipe | |
JP2005320819A (en) | Existing column reinforcing structure | |
JP3880738B2 (en) | Reinforcement method of concrete structure by cement mortar composite board with carbon fiber sheet | |
JP5273663B2 (en) | Anchor structure using anticorrosion PC strand, construction method thereof, and composite anchor member | |
JP4267842B2 (en) | Structure made of polymer cement mortar and construction method of the structure | |
JP2004060269A (en) | Method of reinforcing column with wing wall | |
JP3653691B2 (en) | Seismic reinforcement method and structure for existing buildings | |
JP4171403B2 (en) | Precast concrete joint structure | |
JP4545667B2 (en) | Floor slab repair method using buried formwork | |
JP5922993B2 (en) | Structure and lining method using multiple fine crack type fiber reinforced cement composites | |
JP2012184575A (en) | Method for repairing steel structure | |
JP6065199B2 (en) | Bridge | |
JP2005307676A (en) | Connection structure of foundation pile head and upper foundation | |
JP2003328319A (en) | Repair structure for high structure, and repair method for high structure | |
JP3565957B2 (en) | Bridge pier reinforcement method | |
JP5936059B2 (en) | Ready-made pile | |
JP6108335B2 (en) | Beam-column joint structure | |
JP2002371795A (en) | Structure and method for repairing body structure | |
JP2001193286A (en) | Repair and reinforcing method for surface of structure | |
JP4552114B2 (en) | Synthetic wall | |
JP2018150681A (en) | Column member reinforcement method using high performance fiber-reinforced cementitious composite and structure body | |
JP2005336776A (en) | Reinforcing structure and reinforcing method of pc girder | |
JP2004036347A (en) | Reinforcing structure of existing concrete wall | |
JP2003301456A (en) | Composite underground wall and execution method therefor, and cut-off material expandable with water | |
JPH07317211A (en) | Steel pipe reinforced concrete pile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070112 |
|
A621 | Written request for application examination |
Effective date: 20070411 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070419 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081010 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081021 |
|
A02 | Decision of refusal |
Effective date: 20090303 Free format text: JAPANESE INTERMEDIATE CODE: A02 |