JP2005320603A - Method for manufacturing grain oriented magnetic steel sheet with superhigh magnetic flux density - Google Patents

Method for manufacturing grain oriented magnetic steel sheet with superhigh magnetic flux density Download PDF

Info

Publication number
JP2005320603A
JP2005320603A JP2004140736A JP2004140736A JP2005320603A JP 2005320603 A JP2005320603 A JP 2005320603A JP 2004140736 A JP2004140736 A JP 2004140736A JP 2004140736 A JP2004140736 A JP 2004140736A JP 2005320603 A JP2005320603 A JP 2005320603A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
flux density
magnetic flux
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004140736A
Other languages
Japanese (ja)
Other versions
JP4317484B2 (en
Inventor
Hodaka Honma
穂高 本間
Yoshiaki Hirota
芳明 広田
Takehiko Miyagawa
武彦 宮川
Yoshitaka Onishi
佳貴 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004140736A priority Critical patent/JP4317484B2/en
Publication of JP2005320603A publication Critical patent/JP2005320603A/en
Application granted granted Critical
Publication of JP4317484B2 publication Critical patent/JP4317484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Metal Rolling (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grain oriented magnetic steel sheet with a high magnetic flux density by concentrating the orientation of secondary-recrystallized grains. <P>SOLUTION: The method comprises stacking steel sheets so as to form a small gap between them, and isothermally annealing them, when annealing the steel sheet produced by smelting a steel containing 2-7 mass% Si, and casting, heating, then hot-rolling and cold-rolling it, for secondary-recrystallizing grains to convert the steel sheet into the grain oriented magnetic steel sheet. Then, the method forms the gradient of an atmosphere in the gap, thereby forms the gradient of an inhibitor in the steel sheet, promotes the unidirectional growth of secondary-recrystallized grains, and enhances the concentration degree of the orientation, to manufacture the grain oriented magnetic steel sheet with the superhigh magnetic flux density. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は変圧器、回転機、リアクトル等の鉄心材料として、工業的に最も一般的に用いられる軟磁性材料である方向性電磁鋼板に関するもので、特にその製造方法に関するものである。   The present invention relates to a grain-oriented electrical steel sheet, which is a soft magnetic material that is most commonly used industrially as an iron core material for transformers, rotating machines, reactors, and the like, and particularly relates to a manufacturing method thereof.

方向性電磁鋼板は変圧器、回転機、リアクトル等の鉄心材料として、工業的に最も一般的に用いられる軟磁性材料である。方向性電磁鋼板は、物理学で用いられるミラー指数で<100>と表現される、最も容易に磁化される結晶方位を、各結晶粒毎に比較的揃えられており、従って多結晶鋼板でありながら単結晶鋼板であるかのごとく特定方向への磁化特性が優れた、工業製品として望ましい材料である。   Oriented electrical steel sheets are the most commonly used soft magnetic materials in the industry as iron core materials for transformers, rotating machines, reactors, and the like. Oriented electrical steel sheets are expressed as <100> in the Miller index used in physics, and the crystal orientations that are most easily magnetized are relatively aligned for each crystal grain, and are therefore polycrystalline steel sheets. However, it is a desirable material as an industrial product having excellent magnetization characteristics in a specific direction as if it were a single crystal steel plate.

方向性電磁鋼板は、一般に二次再結晶と呼ばれる現象を活用して結晶の磁化容易軸を特定方向に揃えるのであるが、工業技術として公に開示された例はP.N.Gossによる特許文献1、田口と坂倉の特許文献2、今井と斎藤の特許文献3等であろう。当該技術に依れば、二次再結晶はシリコンを多く含んだ鋼に、インヒビターと通称される第二分散相としてMnSのほか種々の化合物を析出させ、冷間圧延と焼鈍を組み合わせることで二次再結晶を発現させている。
U.S.Pat.1965559(1934年) 特公昭33−4710号公報 特公昭38−8214号公報
Oriented electrical steel sheets use a phenomenon generally referred to as secondary recrystallization to align the easy axis of crystal in a specific direction. N. Patent Document 1 by Goss, Patent Document 2 by Taguchi and Sakakura, Patent Document 3 by Imai and Saito, and the like. According to this technique, secondary recrystallization is performed by precipitating various compounds in addition to MnS as a second dispersed phase, commonly called an inhibitor, in a steel rich in silicon, and combining cold rolling and annealing. The next recrystallization is developed.
U. S. Pat. 1965559 (1934) Japanese Patent Publication No.33-4710 Japanese Patent Publication No. 38-8214

ところで、二次再結晶を発現させるためには、一般に箱焼鈍による高温焼鈍が必須と言われている。即ち異常なほどまでに特定の方位粒のみを極端な大きさまで成長させるためには、高温において長時間熱エネルギーを投与する必要があるとの考え方であろうが、さらにはまたGoss方位粒の方位精度を限界にまで高めようとすれば、厳密な温度制御が必要である事も議論されている。   By the way, in order to develop secondary recrystallization, it is generally said that high temperature annealing by box annealing is essential. That is, in order to grow only specific orientation grains to an extreme size to an abnormal extent, it may be thought that it is necessary to administer heat energy for a long time at a high temperature, but also the orientation of Goss orientation grains. It is also discussed that strict temperature control is necessary to increase the accuracy to the limit.

そこで本発明者らは、公知文献にある適当な成分の鋼を熱延、冷延し、さまざまな温度で箱焼鈍する事によってその最適温度を求めるべく実験を行った。ところがここにおいて本発明者らは、この実験が極めて難しいものである事を認識するに至った。即ち、二次再結晶は高温を必要とする熱過程であると同時に、その発現に時間依存性がある経時過程でもあることが認識されたのである。
具体的には、ある狙い温度まで昇温するのに時間をかけすぎると、狙い温度に到達する前に二次再結晶が開始終了してしまう事が時々認められた。そこでこの様な事が無いように十分速い速度で所定温度まで昇温し、なおかつ鋼板内で温度むらが生じないよう厳密に温度制御を行い、実験を繰り返した。ところがまた更に実験上の困難が生じた。鋼板を焼鈍する際、試験用に一枚で焼鈍した場合と、より実生産に近い複数枚の積層で焼鈍した場合で、得られた結晶方位、ひいては磁気特性が大きく変わる事が頻発したのである。
Therefore, the present inventors conducted an experiment to obtain the optimum temperature by hot-rolling and cold-rolling steels having appropriate components in publicly known literature and performing box annealing at various temperatures. However, the present inventors have come to recognize that this experiment is extremely difficult. That is, it was recognized that secondary recrystallization is not only a thermal process that requires a high temperature, but also a aging process that is time-dependent in its expression.
Specifically, it was sometimes observed that secondary recrystallization started and ended before reaching the target temperature if it took too long to raise the temperature to a target temperature. Therefore, the temperature was raised to a predetermined temperature at a sufficiently high speed so as not to cause such a situation, and the temperature was strictly controlled so as not to cause temperature unevenness in the steel sheet, and the experiment was repeated. However, further experimental difficulties occurred. When annealing a steel sheet, the crystal orientation obtained, and thus the magnetic properties, frequently changed greatly when annealed with a single sheet for testing purposes and when annealed with multiple layers closer to actual production. .

そこでこの現象を把握すべく様々な条件を試行していた所、ある特定の条件で二次再結晶方位が極端に先鋭化し、磁束密度が従来材に無いほど高まる条件があることを知見した。例えば、磁化力800A/mでの磁束密度を示すB8 値で、1.98T以上のものが高頻度で得られた。この様に高B8 値のものは、一枚および2枚の焼鈍では得られず、必ず3枚以上の積層が必要で、かつ積層の最上下に位置した鋼板では見出されなかった。   Therefore, when various conditions were tried to grasp this phenomenon, it was found that there are conditions under which the secondary recrystallization orientation becomes extremely sharp under certain conditions and the magnetic flux density increases as compared with conventional materials. For example, a B8 value indicating a magnetic flux density at a magnetizing force of 800 A / m and a value of 1.98 T or more were frequently obtained. Such a high B8 value was not obtained by one or two annealing, and three or more laminations were necessarily required, and were not found in the steel sheet located at the bottom of the lamination.

本発明の課題は、二次再結晶方位が極端に先鋭化し、磁束密度が従来材に無いほど高まる条件を明確にすることである。尚本発明において、磁束密度が極めて高いかあるいは超高磁束密度とは、B8 /Bsが0.98以上を示すものを意味している。
そこでこの様な現象が現れる理由を探るのに、二次再結晶の進行過程を精査する事が必要と考え、AlとNを含有した素材を用いて、二次再結晶の開始および終了する時間を調べ、その中間時点で焼鈍を中断し、鋼板の結晶組織を調査した。
An object of the present invention is to clarify the conditions in which the secondary recrystallization orientation is extremely sharpened and the magnetic flux density is higher than that of a conventional material. In the present invention, the magnetic flux density is extremely high or the ultrahigh magnetic flux density means that B8 / Bs is 0.98 or more.
Therefore, in order to investigate the reason why such a phenomenon appears, it is necessary to examine the progress of secondary recrystallization, and the time to start and end secondary recrystallization using a material containing Al and N The annealing was interrupted at an intermediate point, and the crystal structure of the steel sheet was investigated.

その結果大変興味ある観察結果が得られた。即ち、二次再結晶粒は鋼板の外辺近傍部位にのみ存在し、あたかも鋳造組織に良く見られる柱状晶の様に板幅方向の両側から中心部に向かってコラム状に伸びていた。そこで、二次再結晶した部分としていない部分の違いを調べるべく様々な分析を行った結果、両部位でN量に有意な差があることが知見された。成る程確かに電磁鋼板は、箱焼鈍の前後でNやS量が大きく減少し、特に最終製品の磁気特性発現のためには、純化と称してインヒビターである析出分散相を除去する事が求められる。即ち、今回知見された超高磁束密度方向性電磁鋼板が形成される条件として、この純化が二次再結晶の進展とあいまって進行し、その際、純化の不均一さが、鋼板中位置に対してある特定の法則性を持った時、純化程度の傾きに沿って二次再結晶が進展するのではないかと推察した。   As a result, very interesting observation results were obtained. That is, the secondary recrystallized grains existed only in the vicinity of the outer edge of the steel plate, and extended in a column shape from both sides in the plate width direction to the center as if they were columnar crystals often found in the cast structure. Therefore, as a result of performing various analyzes to examine the difference between the non-secondary recrystallized portions, it was found that there is a significant difference in the N amount at both sites. Certainly, the electrical steel sheet has a large decrease in the amount of N and S before and after box annealing. In particular, in order to develop the magnetic properties of the final product, it is required to remove the precipitated dispersed phase as an inhibitor, called purification. It is done. That is, as a condition for forming the ultra-high magnetic flux density grain-oriented electrical steel sheet discovered this time, this purification proceeds in conjunction with the progress of secondary recrystallization. On the other hand, it was inferred that secondary recrystallization would progress along the slope of the degree of purification when it had a certain law.

この推察を確かめるべく、AlとNの量を様々に変え、かつ積層枚数や鋼板の大きさ、焼鈍温度を様々にとって実験を行った。また、インヒビターとしてMnS,MnSeを用いる鋼についても同様の実験を行った。その結果、超高磁束密度組織が得られた全ての条件において、二次再結晶部位のN,S,Se等のインヒビター成分が、未二次再結晶部より少ない事が認められた。   In order to confirm this inference, experiments were conducted for various amounts of Al and N, and for various numbers of laminated sheets, steel plate sizes, and annealing temperatures. A similar experiment was also performed on steel using MnS and MnSe as inhibitors. As a result, under all conditions where an ultrahigh magnetic flux density structure was obtained, it was confirmed that there were fewer inhibitor components such as N, S and Se in the secondary recrystallization site than in the non-secondary recrystallization part.

次に、この様な成分変動が何ゆえに生じるのかを検討した。鋼板を積層したときにのみこの様な現象が現れる事に着目し、積層する時に鋼板表面にMgO粉末を塗布し、塗布量を変化させることで積層間隙を変えて実験を行った。すると、間隙が大きくなればなる程前述のコラム状組織の発達が抑制され、また純化進行の場所的不均一も解消されていた。 更に特筆すべきは、鋼板全体での総純化量も間隙が大きいほど多かった。この事から、鋼板間隙に存在する気体量が影響するのではないかと考えて更に実験を進め、箱焼鈍を水素とArの2種の雰囲気で、同一間隙で行った。するとAr中では明瞭なコラム状組織は得られなかったが、水素中では顕著なコラム状組織が得られた。   Next, the reason why such a component variation occurs was examined. Paying attention to the fact that such a phenomenon appears only when the steel plates are laminated, an experiment was performed by changing the lamination gap by applying MgO powder to the steel plate surface during lamination and changing the coating amount. Then, as the gap became larger, the development of the columnar structure described above was suppressed, and the spatial nonuniformity of the purification progress was also eliminated. Furthermore, it should be noted that the total purification amount of the entire steel sheet was larger as the gap was larger. Based on this fact, further experiments were conducted considering that the amount of gas existing in the gap between the steel plates might have an effect, and box annealing was performed in the same gap in two atmospheres of hydrogen and Ar. Then, a clear columnar structure was not obtained in Ar, but a remarkable columnar structure was obtained in hydrogen.

鋼中NやS,Seは、雰囲気中水素と反応してNH3 もしくはH2 S、H2 Se化して純化されると考えられるが、その反応速度は雰囲気中の水素濃度に依存するのである。つまり純化反応で消費された水素の補給速度が、純化そのものの進行速度を決定付けると考える事ができよう。そのモデルに立脚すれば、鋼板の積層間隙が十分に狭い時、補給される水素および入れ替えで除去されるNH3 やH2 S等の純化ガスの移動つまり拡散が遅れ、その速度が二次再結晶の進行程度に至った時、純化程度の場所的勾配が顕著になると考える事が出来る。
以上の考察に基づき、様々な成分および工程条件を経た鋼板を二次再結晶焼鈍実験に供し、明確な技術条件範囲を得て本発明に至った。
N, S, and Se in steel are considered to be purified by reacting with hydrogen in the atmosphere to form NH 3 or H 2 S, H 2 Se, but the reaction rate depends on the hydrogen concentration in the atmosphere. . In other words, it can be considered that the replenishment speed of hydrogen consumed in the purification reaction determines the progress speed of the purification itself. Based on that model, when the stacking gap between the steel plates is sufficiently narrow, the movement of the replenished hydrogen and the purifying gas such as NH 3 and H 2 S that are removed by replacement, that is, the diffusion is delayed, and the speed is reduced to the second time. It can be considered that the local gradient of the degree of purification becomes prominent when the degree of progress of the crystal is reached.
Based on the above considerations, steel plates having undergone various components and process conditions were subjected to a secondary recrystallization annealing experiment, and a clear technical condition range was obtained, leading to the present invention.

即ち、本発明の要旨は次の通りである。
(1)Siを2〜7質量%含む鋼を溶製し、鋳造し、加熱の後熱延し、冷延し、得られた鋼板を、シート状で積層またはタイトコイル状に巻いて箱焼鈍する方向性電磁鋼板の製造方法において、箱焼鈍における保定温度までの加熱時の昇温速度を100℃/hr以上とし、引き続き850〜1100℃の間の保定温度で1hr以上保定焼鈍を行い、かつ保定時間内における温度偏差を25℃以内とすることを特徴とする、極めて磁束密度の高い方向性電磁鋼板の製造方法。
That is, the gist of the present invention is as follows.
(1) Steel containing 2 to 7% by mass of Si is melted, cast, heated and then hot-rolled and cold-rolled, and the obtained steel sheet is laminated in a sheet form or wound into a tight coil and box annealed In the method for producing a grain-oriented electrical steel sheet, the rate of temperature rise during heating to the holding temperature in box annealing is set to 100 ° C./hr or more, and then the holding annealing is performed at a holding temperature between 850 to 1100 ° C. for 1 hr or more, and A method for producing a grain-oriented electrical steel sheet having an extremely high magnetic flux density, characterized in that a temperature deviation within a holding time is within 25 ° C.

(2)箱焼鈍に先立って、鋼板表面に焼鈍分離剤を塗布して隣接する鋼板間の雰囲気の存在できる間隙を0.5mm相当以下とすることを特徴とする、前記(1)記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。
(3)鋼組成として、NとAl、またはSとMn、またはSeとMnの組み合わせの少なくとも1種を含有し、その含有量はN、S、およびSeのうちの1種または2種以上を0.015〜0.04質量%とし、熱延に先立つスラブあるいは鋼塊加熱温度を1250℃以上とすることを特徴とする、前記(1)または(2)に記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。
(4)鋼組成としてCを0.03〜0.1質量%含有し、冷延後箱焼鈍に先立って湿潤雰囲気中で脱炭焼鈍を行う事を特徴とする、前記(1)ないし(3)のいずれかに記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。
(5)冷延後、箱焼鈍の保定焼鈍に至るまでの間に窒化処理を施し、鋼板中のNを0.015〜0.04質量%とする事を特徴とする、前記(1)ないし(4)のいずれかに記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。
(6)熱延後熱延板焼鈍を行う事を特徴とする、前記(1)ないし(5)のいずれかに記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。
(7)箱焼鈍で保定焼鈍後1100℃以上に加熱する事を特徴とする、前記(1)ないし(6)のいずれかに記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。
(8)箱焼鈍後平坦化焼鈍を行う事を特徴とする、前記(1)ないし(7)のいずれかに記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。
(9)箱焼鈍後絶縁被膜塗布を行う事を特徴とする、前記(1)ないし(8)のいずれかに記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。
(10)鋼板に磁区制御を行う事を特徴とする、前記(1)ないし(9)のいずれかに記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。
(2) Prior to box annealing, an annealing separator is applied to the surface of the steel sheet so that a gap where an atmosphere between adjacent steel sheets can exist is 0.5 mm or less. A method for producing a grain-oriented electrical steel sheet having a high magnetic flux density.
(3) As a steel composition, it contains at least one of N and Al, or S and Mn, or a combination of Se and Mn, and the content is one or more of N, S, and Se. The direction of extremely high magnetic flux density according to (1) or (2) above, characterized in that the slab or steel ingot heating temperature prior to hot rolling is 0.015 to 0.04% by mass, and is 1250 ° C. or higher. Method for producing an electrical steel sheet.
(4) The steel composition contains C in an amount of 0.03 to 0.1% by mass, and is decarburized and annealed in a humid atmosphere prior to box annealing after cold rolling. ) In which the magnetic flux density is extremely high.
(5) The above (1) to (1), characterized in that after cold rolling, nitriding treatment is performed before the box annealing is maintained until the annealing is performed, and N in the steel sheet is 0.015 to 0.04% by mass. (4) The method for producing a grain-oriented electrical steel sheet having a very high magnetic flux density according to any one of (4).
(6) The method for producing a grain-oriented electrical steel sheet having extremely high magnetic flux density according to any one of (1) to (5), wherein hot-rolled sheet annealing is performed after hot rolling.
(7) The method for producing a grain-oriented electrical steel sheet having a very high magnetic flux density according to any one of (1) to (6), wherein heating is performed to 1100 ° C. or higher after holding annealing by box annealing.
(8) The method for producing a grain-oriented electrical steel sheet with extremely high magnetic flux density according to any one of (1) to (7), wherein flattening annealing is performed after box annealing.
(9) The method for producing a grain-oriented electrical steel sheet with extremely high magnetic flux density according to any one of (1) to (8), wherein an insulating coating is applied after box annealing.
(10) The method for producing a grain-oriented electrical steel sheet having a very high magnetic flux density according to any one of the above (1) to (9), wherein magnetic domain control is performed on the steel sheet.

本発明により、二次再結晶の粒成長における結晶方位選択性を極限まで高められた焼鈍方法が確立され、超高磁束密度方向性電磁鋼板の製造が可能となる。   According to the present invention, an annealing method in which the crystal orientation selectivity in grain growth of secondary recrystallization is enhanced to the limit is established, and an ultrahigh magnetic flux density grain-oriented electrical steel sheet can be manufactured.

次に、本発明の実施形態について述べる。
Si量は、2%を下回ると高温焼鈍で相変態を生じ、適切な粒成長が妨げられるので2%以上とした。7%を上回ると加工性が極端に劣化し、また磁性向上効果も認められなかったので7%以下とした。
Next, an embodiment of the present invention will be described.
If the Si content is less than 2%, phase transformation occurs due to high-temperature annealing, and appropriate grain growth is hindered. If it exceeds 7%, the workability is extremely deteriorated and the effect of improving the magnetism is not recognized.

二次再結晶に必要なインヒビターは、AlN,MnS,MnSeの1種または2種以上を用いる事が出来る。インヒビターの量としてはAlNを形成するN、MnSを形成するS、MnSeを形成するSeの1種または2種以上が0.015%を下回ると二次再結晶が不安定となり、インヒビター不足が明瞭に認められる。0.04%を上回ると、鋳造、熱延で割れやブリスターと呼ばれる膨れを生じるので、0.04%以下とした。   As the inhibitor necessary for secondary recrystallization, one or more of AlN, MnS, and MnSe can be used. The amount of the inhibitor is N forming AlN, S forming MnS, or one or more of Se forming MnSe being less than 0.015%, secondary recrystallization becomes unstable, and there is a clear lack of inhibitors. Recognized. If it exceeds 0.04%, cracks and blisters called blisters are produced by casting and hot rolling, so the content was made 0.04% or less.

鋼中にCを添加すると、二次再結晶方位の先鋭化に有利である。一次再結晶組織の整粒化が見て取れ、安定した二次再結晶の進行に寄与していると考えられる。この効果は0.03%以上の添加で認められた。一方0.1%を超えて添加すると鋼が脆化し、冷延等に支障が生じたので、0.1%以下とした。なお、Cは最終製品において磁気特性を劣化させるか、あるいは添加量が多いと箱焼鈍中に相変態を誘発して二次再結晶を阻害するので、二次再結晶に先立って除去する必要があり、湿潤雰囲気中でのCOガス化脱炭が有効である。   Addition of C to the steel is advantageous for sharpening the secondary recrystallization orientation. It can be seen that the primary recrystallization structure is sized and contributes to the progress of stable secondary recrystallization. This effect was observed when 0.03% or more was added. On the other hand, if added over 0.1%, the steel became brittle and hindered cold rolling and the like. In addition, since C deteriorates magnetic characteristics in the final product or induces a phase transformation during box annealing and inhibits secondary recrystallization if added in a large amount, it must be removed prior to secondary recrystallization. Yes, CO gasification decarburization in a humid atmosphere is effective.

箱焼鈍中の鋼板積層間隙は、上記実験に基づき効果の認められる上限を探り、0.5mm以下であれば超高磁束密度鋼板を得る事が出来た。この際鋼板表面に、MgO粉末等、焼鈍分離剤などを塗布すると間隙が充填され、効果が増すが、その際も充填率を考慮し、(間隙)×(1−(充填率))が0.5mm以下となる、即ち実質的に間隙中に存在する気体体積が0.5mm隙間相当であった時に同等の効果が得られた。この間隙は、切板の積層でも、タイトコイルを形成した時の板間の間隙でも、あるいは単板をブロックや耐熱基板で挟み込んで形成された間隙でも、いずれでも全く同等であった。   The upper limit of the effect of the steel plate lamination during the box annealing was investigated based on the above experiment, and an ultrahigh magnetic flux density steel plate could be obtained if it was 0.5 mm or less. At this time, if the surface of the steel sheet is coated with MgO powder or an annealing separator, the gap is filled and the effect is increased. In this case, considering the filling rate, (gap) × (1− (filling rate)) is 0. The same effect was obtained when the gas volume was 0.5 mm or less, that is, the gas volume substantially existing in the gap was equivalent to the 0.5 mm gap. This gap was exactly the same whether it was a stack of cut plates, a gap between plates when a tight coil was formed, or a gap formed by sandwiching a single plate with a block or a heat-resistant substrate.

ちなみに充填率の測定は、積層状態の鋼板全体の嵩密度を測定する事で計算できる。例えばMgO粉末を塗布する場合は、積層した状態で全体の嵩体積を測定する。鋼板のみの体積は鋼板重量と鋼板比重から得られるから、嵩体積と鋼板体積の差が間隙の総体積である。次に鋼板積層した状態での重量を測定し、鋼板のみの重量との差を求める。これが塗布されたMgO粉末の重量であり、MgOの比重で割ればMgOの総体積が得られる。即ち、間隙の総体積でMgOの総体積を割れば、これが充填率である。さらには間隙の総体積を間隙の数、即ち(鋼板の積層枚数−1)で割れば、1つの間隙当りの体積が得られ、これから間隙も計算できる。   Incidentally, the measurement of the filling rate can be calculated by measuring the bulk density of the entire laminated steel sheet. For example, when applying MgO powder, the whole bulk volume is measured in the laminated state. Since the volume of only the steel sheet is obtained from the weight of the steel sheet and the specific gravity of the steel sheet, the difference between the bulk volume and the steel sheet volume is the total volume of the gap. Next, the weight in the state where the steel plates are laminated is measured, and the difference from the weight of only the steel plates is obtained. This is the weight of the coated MgO powder, and the total volume of MgO can be obtained by dividing by the specific gravity of MgO. That is, if the total volume of MgO is divided by the total volume of the gap, this is the filling rate. Further, by dividing the total volume of the gap by the number of the gaps, that is, (the number of laminated steel sheets-1), the volume per gap can be obtained, and the gap can also be calculated from this.

次に箱焼鈍条件であるが、まず昇温速度について説明する。
好適な昇温速度は引き続く保定温度にも依存するものであって、特に保定温度即ち二次再結晶が進行する温度が高いときは、二次再結晶潜伏時間が短く、その間に昇温を完了しなければならないため、例えば鋼成分によっても条件は変動するが、保定温度が1000℃程度であれば潜伏時間は1時間程度である事が多く、この場合には1000℃/hrが要求される。然しながら保定温度が850℃程度であれば数時間の潜伏時間が認められた。その中で、100℃/hrを下回る昇温では、超高磁束密度組織が得られる保定温度や鋼成分、その他の製造条件を見出すことが出来なかったので、昇温速度の下限を100℃/hrとした。
Next, regarding the box annealing conditions, first, the rate of temperature increase will be described.
The preferred heating rate depends on the subsequent holding temperature, especially when the holding temperature, that is, the temperature at which secondary recrystallization proceeds is high, the secondary recrystallization incubation time is short, and the heating is completed during that time. For example, if the holding temperature is about 1000 ° C., the incubation time is often about 1 hour. In this case, 1000 ° C./hr is required. . However, if the retention temperature was about 850 ° C., a latent time of several hours was observed. Among them, at a temperature increase of less than 100 ° C./hr, it was not possible to find a holding temperature, a steel component, and other production conditions for obtaining an ultrahigh magnetic flux density structure. hr.

箱焼鈍の保定はこの間に二次再結晶が開始し、終了する事を目的として行うが、この温度が低い時は保定時間が長くなる事が認められた。然しながら850℃を下回るといくら保持しても二次再結晶は発現せず、遂には鋼板表層域での粗大粒化等が生じて所定の組織が得られなかったので、850℃以上とした。1100℃を超えると正常粒成長が発達して、二次再結晶組織が得られなかったので1100℃以下とした。保定時間は1時間以下でも二次再結晶する事はあるが、雰囲気や板間間隙を調整して超高磁束密度組織が得られるようにした時は、1100℃であっても1hrを下回ることはできなかったので、1hr以上とした。   The box annealing was held for the purpose of starting and ending secondary recrystallization during this period, but it was found that the holding time was prolonged when this temperature was low. However, when the temperature is below 850 ° C., secondary recrystallization does not appear no matter how much the temperature is maintained, and finally, coarse graining or the like occurs in the surface layer region of the steel sheet, and a predetermined structure cannot be obtained. When the temperature exceeded 1100 ° C., normal grain growth developed and a secondary recrystallized structure could not be obtained. Even if the holding time is less than 1 hour, secondary recrystallization may occur, but when the atmosphere and inter-plate gap are adjusted so that an ultra-high magnetic flux density structure can be obtained, it will be less than 1 hr even at 1100 ° C. Therefore, it was set to 1 hr or more.

また保定時の温度変動であるが、二次再結晶の開始時間は温度変化に対して極めて敏感に反応した。即ち二次再結晶の進行途上で、その成長の先端位置における純化程度を調べたところ、これが十分進行していなくても、僅かに温度が上昇してしまうと二次再結晶の進行が可能となってしまっていた。つまり純化勾配に沿ってコラム状二次再結晶粒が成長していくのであるが、その途上で温度が高温側に変動した時、成長端の先方で新たな二次再結晶粒が発生してしまう事があり、それによってコラム状組織の形成が阻害されてしまったのである。この様に、コラム状組織を形成するのに有意な純化勾配を覆すほどの温度偏差は25℃超であった。つまり二次再結晶進行中の温度変動が25℃以下であれば、健全なコラム状組織、即ち超高磁束密度組織が十分形成された。   Moreover, although it was the temperature fluctuation at the time of holding | maintenance, the start time of secondary recrystallization reacted very sensitively with respect to the temperature change. That is, during the course of secondary recrystallization, the degree of purification at the tip of the growth was examined, and even if this did not progress sufficiently, secondary recrystallization could proceed if the temperature rose slightly. It had become. In other words, columnar secondary recrystallized grains grow along the purification gradient, but when the temperature fluctuates to the high temperature side, new secondary recrystallized grains are generated at the tip of the growth end. This has hindered the formation of columnar structures. Thus, the temperature deviation enough to overturn the purification gradient significant for forming the columnar structure was more than 25 ° C. That is, if the temperature fluctuation during the progress of secondary recrystallization is 25 ° C. or less, a healthy columnar structure, that is, an ultrahigh magnetic flux density structure is sufficiently formed.

二次再結晶完了後、インヒビターとして存在した析出分散相は除去される事で磁気特性が格段に向上する。その為には1100℃以上の温度で雰囲気と反応させる事が必要であった。
大量生産時には、品質の鋼板内ばらつきを抑えるのに熱延板焼鈍を施すのが有効である。鋼成分にも依存するが、900℃程度でも効果は見られ、1000℃〜1100℃程度が有効であった。
また箱焼鈍後の鋼板表面に絶縁被膜を塗布することによって、電気機器内に積層状態で使用される時の実機磁気特性が向上できた。またレーザーケガキ、溝形成、異物混入等によっても磁気特性が向上できた。
After the completion of secondary recrystallization, the precipitated dispersed phase present as an inhibitor is removed, so that the magnetic properties are remarkably improved. For this purpose, it was necessary to react with the atmosphere at a temperature of 1100 ° C. or higher.
In mass production, it is effective to perform hot-rolled sheet annealing in order to suppress variations in quality within the steel sheet. Although depending on the steel components, the effect was observed even at about 900 ° C., and about 1000 ° C. to 1100 ° C. was effective.
In addition, by applying an insulating film to the surface of the steel sheet after box annealing, the actual machine magnetic properties when used in a laminated state in an electrical device could be improved. Magnetic properties could also be improved by laser marking, groove formation, foreign matter contamination, and the like.

表1に示す成分の鋼を溶製し、厚さ100mm、幅400mmで連続鋳造し、1トンのスラブとした後、1300℃で加熱して板厚2mmに熱延した。1100℃で2分間焼鈍し、酸洗し、板厚0.3mmまで冷延した。それを幅200mmの2コイルに分割して、850℃で2分間、露点60℃のN2 が25%、残りH2 の雰囲気中で脱炭焼鈍した後、表面にMgO粉末を水スラリー化して塗布し、乾燥して、内側直径400mmでタイトコイルに巻き取った。この時、巻取り重量を20kgの小コイルと500kgの大コイルの2つを作成した。 Steels having the components shown in Table 1 were melted and continuously cast at a thickness of 100 mm and a width of 400 mm to form a 1-ton slab, and then heated at 1300 ° C. to hot-roll to a plate thickness of 2 mm. It annealed at 1100 degreeC for 2 minutes, pickled, and cold-rolled to plate | board thickness 0.3mm. After dividing it into two coils with a width of 200 mm and decarburizing and annealing in an atmosphere of 850 ° C. for 2 minutes, N 2 with a dew point of 60 ° C. and 25% of the remaining H 2 , MgO powder was slurried on the surface. It was applied, dried and wound on a tight coil with an inner diameter of 400 mm. At this time, a coil with a winding weight of 20 kg and a large coil of 500 kg were prepared.

引き続き乾水素中で1000℃まで加熱し、保定したが、小コイルは30分で直ちに昇温が完了したが、大コイルは1000℃に到達するまでに12時間を要した。1000℃到達後、990℃から1010℃の温度ばらつきの範囲内で3時間保定し、引き続き1200℃まで加熱して20時間保持し、室温まで冷却した。850℃で平坦化焼鈍処理を行った後に磁気測定を行い、B8 値を求めた。   Subsequently, heating to 1000 ° C. was maintained in dry hydrogen and the temperature was maintained, but the heating of the small coil was completed immediately in 30 minutes, but it took 12 hours for the large coil to reach 1000 ° C. After reaching 1000 ° C., the temperature was maintained for 3 hours within the range of temperature variation from 990 ° C. to 1010 ° C., subsequently heated to 1200 ° C., held for 20 hours, and cooled to room temperature. After performing a flattening annealing process at 850 ° C., magnetic measurement was performed to obtain a B8 value.

Figure 2005320603
Figure 2005320603

表1から、所定の成分で十分な昇温速度で1000℃まで加熱した場合、極めて高いB8 値が得られた事が見て取れる。ホ材において、一見B8 値が小さく思えるが、Si含有量が高いため飽和磁束密度が低下しているためで、結晶方位集積度はニ材とほぼ同等であった。なお、イ材小コイル材の結晶組織写真を図1に示す。顕著な柱状晶組織が鋼板両幅から中心に向かって伸びているのが観察できる。   From Table 1, it can be seen that an extremely high B8 value was obtained when heating to 1000 ° C. with a sufficient temperature increase rate with a given component. At first glance, the B8 value seemed to be small in the E material, but the saturation magnetic flux density was lowered due to the high Si content, and the degree of crystal orientation integration was almost the same as that of the D material. A photograph of the crystal structure of the small coil material is shown in FIG. It can be observed that a remarkable columnar crystal structure extends from both widths of the steel plate toward the center.

ト材において、十分な二次再結晶組織が得られなかったわけであるが、上記工程に加えて、脱炭焼鈍の後半で雰囲気中にアンモニアガスを添加し、鋼板中N量を0.02%としてから箱焼鈍を行い、その際まず一度800℃で2時間保定してから、小コイルは20分で1050℃まで昇温し、大コイルは15時間かけて1050℃まで昇温し、引き続き1150℃で30時間保持してから冷却、平坦化処理を行った所、小コイル材のB8 は1.98Tに達した。一方大コイルは1.88Tであった。   In the steel material, a sufficient secondary recrystallization structure was not obtained. In addition to the above steps, ammonia gas was added to the atmosphere in the latter half of the decarburization annealing, so that the N content in the steel sheet was 0.02%. Then, box annealing is performed. At that time, the temperature is first held at 800 ° C. for 2 hours, then the small coil is heated to 1050 ° C. in 20 minutes, the large coil is heated to 1050 ° C. over 15 hours, and then 1150 After holding at 30 ° C. for 30 hours and then cooling and flattening, B8 of the small coil material reached 1.98T. On the other hand, the large coil was 1.88T.

実施例1のイ材の脱炭焼鈍板を200mm×800mmに100枚切り出し、直接通電加熱に供した。電流は板長手方向に流し、両端を電極でグリップしたが、全ての板に等しく電流が流れるべく、全幅200mm×10mmのグリップ領域に対して、各脱炭板の間に、0.2mmから1mmの厚みのグリップ領域と同じ大きさの板切れを差込み、挟み込んで鋼板に軽く張力をかけた。その結果、各鋼板間には、差込んだ板切れの厚みと同じ間隙が形成された。雰囲気組成は窒素と水素50%ずつであった。通電加熱であったので昇温は極めて早く、980℃まで加熱したが所要時間は5分であった。その後1000℃まで2.5時間かけて昇温し、その後直ちに1250℃まで加熱して5時間保定し、室温に冷却した。表2に、板間隙と得られたB8 値の関係を示す。
表2から、板間隙が広がるとB8 値が低下することが解る。
100 pieces of the decarburized and annealed timber of Example 1 were cut into 200 mm × 800 mm and directly subjected to electric heating. The current flowed in the longitudinal direction of the plate and both ends were gripped by electrodes, but in order to allow the current to flow equally to all the plates, a thickness of 0.2 mm to 1 mm between each decarburizing plate for a grip area of 200 mm x 10 mm in width. A piece of the same size as the grip area was inserted and sandwiched, and the steel plate was lightly tensioned. As a result, the same gap as the thickness of the inserted piece was formed between the steel plates. The atmosphere composition was nitrogen and hydrogen 50% each. Since it was energized heating, the temperature rose very quickly, and it was heated to 980 ° C., but the required time was 5 minutes. Thereafter, the temperature was raised to 1000 ° C. over 2.5 hours, then immediately heated to 1250 ° C., held for 5 hours, and cooled to room temperature. Table 2 shows the relationship between the plate gap and the obtained B8 value.
From Table 2, it can be seen that the B8 value decreases as the plate gap increases.

Figure 2005320603
Figure 2005320603

実施例2と同じ切板で誘導加熱も試みた。今度は積層板同士を通電させる必要は無いが、融着を防ぐため、繊維状耐火物を綿状にあつらえたものを板間に薄く挿入した。この時、板間隙を十分小さくするために鋼板の板面方向に加圧した。この時の、板間間隙と耐火物充填率と得られたB8 値の関係を表3に示す。充填率は、耐火物重量を実測し、別途測定した比重から求められる実体積と間隙から求められる嵩体積の比として計算した。
表3から、間隙が広がっても耐火物充填率を高くし、実効間隙を0.5mm以下とすれば十分効果が発揮される事がわかる。
Induction heating was also attempted with the same cut plate as in Example 2. This time, it is not necessary to energize the laminated plates, but in order to prevent fusion, a fiber refractory with a cotton shape was inserted thinly between the plates. At this time, pressure was applied in the plate surface direction of the steel plate in order to sufficiently reduce the plate gap. Table 3 shows the relationship between the gap between the plates, the refractory filling rate, and the obtained B8 value. The filling rate was calculated as a ratio of the actual volume obtained from the specific gravity measured separately and the bulk volume obtained from the gap, by actually measuring the weight of the refractory.
From Table 3, it can be seen that even if the gap is widened, if the refractory filling rate is increased and the effective gap is 0.5 mm or less, the effect is sufficiently exerted.

Figure 2005320603
Figure 2005320603

表1のイ材は、磁束密度が極めて高く、それだけでも磁気吸引力を活用する電気機器には有用性が十分高まるが、鉄損値は、励磁磁束密度1.7T、50Hzにおいて1.2W/kgと良好ではなかった。そこでこの材料に燐酸系張力被膜を焼付によって塗布したところ、同じ条件での鉄損値は0.95W/kgと良好な値を示した。さらにレーザーケガキ、エッチングによる溝形成、超硬歯車による溝形成とその後の歪取焼鈍、Sb打ち込み技術を適用したところ、鉄損はそれぞれ、0.81、0.85、0.87、0.86W/kgとなり、目を見張るほどの鉄損低減効果が得られた。   The material in Table 1 has a very high magnetic flux density, and by itself, the usefulness is sufficiently enhanced for an electric device that utilizes magnetic attraction. However, the iron loss value is 1.2 W / magnetism at an excitation magnetic flux density of 1.7 T and 50 Hz. It was not good with kg. Therefore, when a phosphoric acid-based tension coating was applied to this material by baking, the iron loss value under the same conditions showed a good value of 0.95 W / kg. Furthermore, when laser scribing, groove formation by etching, groove formation by cemented carbide gear and subsequent strain relief annealing and Sb implantation technology were applied, the iron losses were 0.81, 0.85, 0.87, and 0.86 W, respectively. / Kg, and the iron loss reduction effect was astonishing.

実施例におけるイ材の結晶組織写真を示す図である。It is a figure which shows the crystal structure photograph of the i material in an Example.

Claims (10)

Siを2〜7質量%含む鋼を溶製し、鋳造し、加熱の後熱延し、冷延し、得られた鋼板を、シート状で積層またはタイトコイル状に巻いて箱焼鈍する方向性電磁鋼板の製造方法において、箱焼鈍における保定温度までの加熱時の昇温速度を100℃/hr以上とし、引き続き850〜1100℃の間の保定温度で1hr以上保定焼鈍を行い、かつ保定時間内における温度偏差を25℃以内とすることを特徴とする、極めて磁束密度の高い方向性電磁鋼板の製造方法。   Directionality in which steel containing 2 to 7% by mass of Si is melted, cast, heated and then hot-rolled and cold-rolled, and the obtained steel sheet is laminated in sheet form or wound in a tight coil form and box annealed In the method for producing electrical steel sheets, the heating rate during heating up to the holding temperature in box annealing is set to 100 ° C./hr or more, and then holding annealing is performed at a holding temperature between 850 to 1100 ° C. for 1 hour or more and within the holding time. A method for producing a grain-oriented electrical steel sheet having a very high magnetic flux density, characterized in that the temperature deviation in is within 25 ° C. 箱焼鈍に先立って、鋼板表面に焼鈍分離剤を塗布して隣接する鋼板間に雰囲気の存在できる間隙を0.5mm相当以下とすることを特徴とする、請求項1記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。   Prior to box annealing, an annealing separator is applied to the surface of the steel sheet so that a gap where an atmosphere can exist between the adjacent steel sheets is 0.5 mm or less, and the magnetic flux density is extremely high. A method for producing grain-oriented electrical steel sheets. 鋼組成として、NとAl、またはSとMn、またはSeとMnの組み合わせの少なくとも1種を含有し、その含有量はN、S、およびSeのうちの1種または2種以上を0.015〜0.04質量%とし、熱延に先立つスラブあるいは鋼塊加熱温度を1250℃以上とすることを特徴とする、請求項1または2記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。   The steel composition contains at least one of N and Al, or S and Mn, or a combination of Se and Mn, and the content is 0.015 of one or more of N, S, and Se. The method for producing a grain-oriented electrical steel sheet having a very high magnetic flux density according to claim 1 or 2, wherein a slab or steel ingot heating temperature prior to hot rolling is set to 1250 ° C or higher. 鋼組成としてCを0.03〜0.1質量%含有し、冷延後箱焼鈍に先立って湿潤雰囲気中で脱炭焼鈍を行う事を特徴とする、請求項1ないし3のいずれかに記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。   The steel composition contains 0.03 to 0.1% by mass of C, and is decarburized and annealed in a humid atmosphere prior to box annealing after cold rolling. A method for producing a grain-oriented electrical steel sheet having an extremely high magnetic flux density. 冷延後、箱焼鈍の保定焼鈍に至るまでの間に窒化処理を施し、鋼板中のNを0.015〜0.04質量%とする事を特徴とする、請求項1ないし4のいずれかに記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。   5. The nitriding treatment is performed after cold rolling until the holding annealing of the box annealing, so that N in the steel sheet is 0.015 to 0.04 mass%. A method for producing a grain-oriented electrical steel sheet having an extremely high magnetic flux density as described in 1. 熱延後熱延板焼鈍を行う事を特徴とする、請求項1ないし5のいずれかに記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。   6. The method for producing a grain-oriented electrical steel sheet with extremely high magnetic flux density according to claim 1, wherein hot-rolled sheet annealing is performed after hot rolling. 箱焼鈍で保定焼鈍後1100℃以上に加熱する事を特徴とする、請求項1ないし6のいずれかに記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet having a very high magnetic flux density according to any one of claims 1 to 6, wherein the annealing is carried out by box annealing and then heated to 1100 ° C or higher after holding annealing. 箱焼鈍後平坦化焼鈍を行う事を特徴とする、請求項1ないし7のいずれかに記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet with extremely high magnetic flux density according to any one of claims 1 to 7, wherein flattening annealing is performed after box annealing. 箱焼鈍後絶縁被膜塗布を行う事を特徴とする、請求項1ないし8のいずれかに記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet having a very high magnetic flux density according to any one of claims 1 to 8, wherein an insulating coating is applied after box annealing. 鋼板に磁区制御を行う事を特徴とする、請求項1ないし9のいずれかに記載の極めて磁束密度の高い方向性電磁鋼板の製造方法。
The method for producing a grain-oriented electrical steel sheet having a very high magnetic flux density according to claim 1, wherein magnetic domain control is performed on the steel sheet.
JP2004140736A 2004-05-11 2004-05-11 Manufacturing method of ultra high magnetic flux density grain-oriented electrical steel sheet Expired - Fee Related JP4317484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004140736A JP4317484B2 (en) 2004-05-11 2004-05-11 Manufacturing method of ultra high magnetic flux density grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004140736A JP4317484B2 (en) 2004-05-11 2004-05-11 Manufacturing method of ultra high magnetic flux density grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2005320603A true JP2005320603A (en) 2005-11-17
JP4317484B2 JP4317484B2 (en) 2009-08-19

Family

ID=35468076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004140736A Expired - Fee Related JP4317484B2 (en) 2004-05-11 2004-05-11 Manufacturing method of ultra high magnetic flux density grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4317484B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057118A (en) * 2011-08-12 2013-03-28 Jfe Steel Corp Method for producing grain-oriented electrical steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057118A (en) * 2011-08-12 2013-03-28 Jfe Steel Corp Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP4317484B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5853352B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5927754B2 (en) Oriented electrical steel sheet and manufacturing method thereof
WO2014013615A1 (en) Process for producing grain-oriented electrical steel sheet
RU2610204C1 (en) Method of making plate of textured electrical steel
JP2009263782A (en) Grain-oriented magnetic steel sheet and manufacturing method therefor
JP5782527B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
KR101346537B1 (en) Method for treating steel for directional electromagnetic steel plate and method for producing directional electromagnetic steel plate
KR20180113556A (en) Method for manufacturing directional electromagnetic steel sheet
US9536657B2 (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR102579761B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2020509153A (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2017106111A (en) Manufacturing method of oriented electromagnetic steel sheet
JP2009197299A (en) Method for producing high silicon steel sheet
JP4317484B2 (en) Manufacturing method of ultra high magnetic flux density grain-oriented electrical steel sheet
CN114829657B (en) Oriented electrical steel sheet and method for manufacturing same
JP4873770B2 (en) Unidirectional electrical steel sheet
JP2008169450A (en) Method for producing high-silicon steel sheet
JP2005023393A (en) Production method of grain-oriented magnetic steel sheet
JP6228956B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JP5754170B2 (en) Method for producing grain-oriented electrical steel sheet
CN113166874B (en) Oriented electrical steel sheet and method for manufacturing the same
US20220396846A1 (en) Method for manufacturing non-oriented electrical steel sheet
JPH04228525A (en) Ultrahigh silicon grain-oriented magnetic steel sheet and its manufacture
JPH04362132A (en) Production of double oriented silicon steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090522

R151 Written notification of patent or utility model registration

Ref document number: 4317484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees