JP2005320383A - Epoxy resin-curing agent and epoxy resin composition - Google Patents

Epoxy resin-curing agent and epoxy resin composition Download PDF

Info

Publication number
JP2005320383A
JP2005320383A JP2004137936A JP2004137936A JP2005320383A JP 2005320383 A JP2005320383 A JP 2005320383A JP 2004137936 A JP2004137936 A JP 2004137936A JP 2004137936 A JP2004137936 A JP 2004137936A JP 2005320383 A JP2005320383 A JP 2005320383A
Authority
JP
Japan
Prior art keywords
epoxy resin
general formula
curing agent
tetracarboxylic dianhydride
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004137936A
Other languages
Japanese (ja)
Other versions
JP4739689B2 (en
Inventor
Toshio Inoue
敏夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP2004137936A priority Critical patent/JP4739689B2/en
Publication of JP2005320383A publication Critical patent/JP2005320383A/en
Application granted granted Critical
Publication of JP4739689B2 publication Critical patent/JP4739689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin-curing agent composition which gives an epoxy resin excellent in heat resistance, toughness and transparency. <P>SOLUTION: The epoxy resin composition comprises an epoxy resin bearing at least two epoxy groups in one molecule and the epoxy resin-curing agent comprising a tetracarboxylic dianhydride compound having a tricyclic structure obtained from 1,1-diphenyl ethylene and maleic anhydride. A sealing agent for a light emitting diode comprising the epoxy resin composition is also provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、新規なエポキシ樹脂硬化剤および該硬化剤を配合してなるエポキシ樹脂組成物に関する。   The present invention relates to a novel epoxy resin curing agent and an epoxy resin composition containing the curing agent.

エポキシ樹脂(硬化物)は、耐熱性、接着性、耐水性、機械的強度、電気特性などに優れていることから、接着剤、積層板、含浸物、塗料、土木建築用材料、電気・電子部品等の分野で広く使用されている。
従来から、電子・電気機器を中心に、硬化剤として酸無水物系化合物が使用されてきた。該酸無水物系硬化剤は、脂肪族系、脂環式系、芳香族系、ハロゲン系に大別される(例えば、非特許文献1参照)。
特に近年、電気・電子分野では耐熱性と靭性(特に、耐ヒートサイクル性で評価される残留応力の低減)および高輝度LED光源に対する耐劣化性(紫外線領域の光透過性)に係る要求が高まっていることから、エポキシ樹脂および有機溶媒への溶解性に優れる脂環式テトラカルボン酸二無水物系化合物からなるエポキシ樹脂硬化剤が注目されている。
Epoxy resins (cured products) are excellent in heat resistance, adhesion, water resistance, mechanical strength, electrical properties, etc., so adhesives, laminates, impregnations, paints, materials for civil engineering and construction, electrical / electronic Widely used in the field of parts.
Conventionally, acid anhydride compounds have been used as curing agents mainly in electronic and electrical equipment. The acid anhydride curing agents are roughly classified into aliphatic, alicyclic, aromatic, and halogen types (see, for example, Non-Patent Document 1).
In particular, in recent years, in the electric and electronic fields, there has been an increasing demand for heat resistance and toughness (particularly, reduction of residual stress evaluated by heat cycle resistance) and deterioration resistance (light transmittance in the ultraviolet region) for high-intensity LED light sources. Therefore, an epoxy resin curing agent made of an alicyclic tetracarboxylic dianhydride compound excellent in solubility in an epoxy resin and an organic solvent has attracted attention.

脂環式テトラカルボン酸二無水物系のエポキシ樹脂硬化剤としてメチルシクロヘキセンテトラカルボン酸二無水物(MCTC)が知られているが、この化合物は融点が167℃で耐熱性に限界があることに加え、その生成に無水マレイン酸1モルとピペリレン1モルをディールス・アルダー反応した後、さらに当該生成物と無水マレイン酸1モルとのエン反応の2段階の工程を必要とする(例えば特許文献1参照)。無水マレイン酸とα―メチルスチレンとから得られる脂環式テトラカルボン酸二無水物系のエポキシ樹脂硬化剤(例えば特許文献2参照)にも同様の問題がある。
「エポキシ樹脂ハンドブック」新保正樹編(日刊工業新聞社昭和62年刊行)179〜210ページ 特開昭55−36406号公報 特開昭62−212419号公報
Methylcyclohexene tetracarboxylic dianhydride (MCTC) is known as an alicyclic tetracarboxylic dianhydride-based epoxy resin curing agent. This compound has a melting point of 167 ° C. and has limited heat resistance. In addition, after the Diels-Alder reaction of 1 mol of maleic anhydride and 1 mol of piperylene, a two-step process of ene reaction between the product and 1 mol of maleic anhydride is required (for example, Patent Document 1). reference). The alicyclic tetracarboxylic dianhydride type epoxy resin curing agent obtained from maleic anhydride and α-methylstyrene (for example, see Patent Document 2) has the same problem.
"Epoxy Resin Handbook", edited by Masaki Shinbo (published in Nikkan Kogyo Shimbun, 1987), pages 179-210 JP-A-55-36406 Japanese Patent Laid-Open No. 62-212419

本発明は、製造が容易であり、かつエポキシ樹脂および有機溶媒への溶解性と耐熱性に優れた脂環式テトラカルボン酸二無水物からなるエポキシ樹脂硬化剤および当該硬化剤を含むエポキシ樹脂組成物を提供することを目的とする。   The present invention is an epoxy resin curing agent comprising an alicyclic tetracarboxylic dianhydride that is easy to manufacture and has excellent solubility and heat resistance in an epoxy resin and an organic solvent, and an epoxy resin composition containing the curing agent The purpose is to provide goods.

本発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、特定のトリシクロ環構造を有するテトラカルボン酸二無水物を用いれば、上記課題を克服した新規なエポキシ樹脂硬化剤および当該硬化剤を含むエポキシ樹脂組成物が得られることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have found that a novel epoxy resin curing agent that has overcome the above problems can be obtained by using a tetracarboxylic dianhydride having a specific tricyclo ring structure. It discovered that the epoxy resin composition containing the said hardening | curing agent was obtained, and completed this invention.

本発明の第1は、一般式(1)、(2)、(3)で表されるテトラカルボン酸二無水物の少なくとも一つを含むエポキシ樹脂硬化剤である。

Figure 2005320383
Figure 2005320383
Figure 2005320383
The first of the present invention is an epoxy resin curing agent containing at least one of tetracarboxylic dianhydrides represented by general formulas (1), (2), and (3).
Figure 2005320383
Figure 2005320383
Figure 2005320383

一般式(1)〜(3)において、R1は水素原子、または炭素数1〜10のアルキル基を表し、R1はそれぞれ同一でも異なっていてもよい。R2は炭素数1〜10のアルキル基を表す。m、nは互いに独立の0〜5までの任意の整数であり、m+nが複数の場合、複数のR2は互いに同じでも異なってもよい。   In general formula (1)-(3), R1 represents a hydrogen atom or a C1-C10 alkyl group, and R1 may be same or different, respectively. R2 represents an alkyl group having 1 to 10 carbon atoms. m and n are arbitrary integers from 0 to 5 independent of each other, and when m + n is plural, plural R2s may be the same or different from each other.

本発明の第2は、本発明の第1のエポキシ樹脂硬化剤を配合してなることを特徴とするエポキシ樹脂組成物である。   2nd of this invention is an epoxy resin composition characterized by mix | blending the 1st epoxy resin hardening | curing agent of this invention.

本発明の第3は、本発明の第2のエポキシ樹脂組成物からなること特徴とする発光ダイオード封止剤である。   A third aspect of the present invention is a light-emitting diode encapsulant comprising the second epoxy resin composition of the present invention.

本発明の第4は、一般式(2)で表されるテトラカルボン酸二無水物である。

Figure 2005320383
4th of this invention is the tetracarboxylic dianhydride represented by General formula (2).
Figure 2005320383

一般式(2)において、R1は水素原子、または炭素数1〜10のアルキル基を表し、R1はそれぞれ同一でも異なっていてもよい。R2は炭素数1〜10のアルキル基を表す。m、nは互いに独立の0〜5までの任意の整数であり、m+nが複数の場合、複数のR2は互いに同じでも異なってもよい。   In General formula (2), R1 represents a hydrogen atom or a C1-C10 alkyl group, and R1 may be same or different, respectively. R2 represents an alkyl group having 1 to 10 carbon atoms. m and n are arbitrary integers from 0 to 5 independent of each other, and when m + n is plural, plural R2s may be the same or different from each other.

本発明の第5は、一般式(3)で表されるテトラカルボン酸二無水物である。

Figure 2005320383
5th of this invention is the tetracarboxylic dianhydride represented by General formula (3).
Figure 2005320383

一般式(3)において、R1は水素原子、または炭素数1〜10のアルキル基を表し、R1はそれぞれ同一でも異なっていてもよい。R2は炭素数1〜10のアルキル基を表す。m、nは互いに独立の0〜5までの任意の整数であり、m+nが複数の場合、複数のR2は互いに同じでも異なってもよい。   In General formula (3), R1 represents a hydrogen atom or a C1-C10 alkyl group, and R1 may be same or different, respectively. R2 represents an alkyl group having 1 to 10 carbon atoms. m and n are arbitrary integers from 0 to 5 independent of each other, and when m + n is plural, plural R2s may be the same or different from each other.

本発明に係る一般式(1)、(2)、(3)で表されるテトラカルボン酸二無水物の少なくとも一つを含むエポキシ樹脂硬化剤は、その特定の化学構造に由来して、硬化剤自体として、および、硬化反応前後のエポキシ樹脂組成物において以下の優れた特性を発揮する。
(1)基本構造が脂環式構造でありながら、さらに、置換基として芳香族環を有するため、未硬化のエポキシ樹脂、有機溶剤に対する溶解性に優れ、硬化反応前の取り扱い性に優れる。
(2)2つのカルボン酸無水物基に挟まれる構造がビシクロ型の脂環式構造であるため、従来の脂環式テトラカルボン酸二無水物系化合物に比べて高融点であり、エポキシ樹脂硬化物にしたときの耐熱性が優れる。
(3)基本構造が非対称であり、さらに、置換基として嵩高い芳香族環を有するため、エポキシ樹脂硬化物に屈曲性が付与され、かつ靭性を与える。
(4)主構造が脂環トリシクロ構造であるため、芳香族系エポキシ樹脂間の共役を阻害し、透明性の高いエポキシ樹脂組成物が得られる。
(5)再結晶による精製が可能であるために、高純度架橋剤としての使用が可能であり、優れた光学特性を有するエポキシ樹脂組成物が得られる。
The epoxy resin curing agent containing at least one of the tetracarboxylic dianhydrides represented by the general formulas (1), (2), and (3) according to the present invention is derived from its specific chemical structure and cured. The following excellent properties are exhibited as the agent itself and in the epoxy resin composition before and after the curing reaction.
(1) Since the basic structure is an alicyclic structure, and further has an aromatic ring as a substituent, it has excellent solubility in uncured epoxy resins and organic solvents, and is excellent in handleability before the curing reaction.
(2) Since the structure sandwiched between two carboxylic acid anhydride groups is a bicyclo type alicyclic structure, it has a higher melting point than conventional alicyclic tetracarboxylic dianhydride compounds and is cured with epoxy resin. Excellent heat resistance when used.
(3) Since the basic structure is asymmetric and further has a bulky aromatic ring as a substituent, the cured epoxy resin is given flexibility and toughness.
(4) Since the main structure is an alicyclic tricyclo structure, conjugation between aromatic epoxy resins is inhibited, and a highly transparent epoxy resin composition is obtained.
(5) Since purification by recrystallization is possible, it can be used as a high-purity crosslinking agent, and an epoxy resin composition having excellent optical properties can be obtained.

以下、本発明について詳細に説明する。
本発明は、エポキシ樹脂の硬化剤として一般式(1)、(2)、(3)で表されるテトラカルボン酸二無水物化合物を使用する点に特徴を有する。
一般式(1)で表されるテトラカルボン酸二無水物は、一般式(4)で表される化合物1モルと一般式(5)で表される化合物2モルとを反応させて得られる。(W.N.Emmerling et al 、European Polymer Journal, Vol.13, p179を参照。)一般式(2)(3)で表されるテトラカルボン酸二無水物は一般式(1)の化合物を水素化還元することによって得られる。
Hereinafter, the present invention will be described in detail.
The present invention is characterized in that a tetracarboxylic dianhydride compound represented by the general formulas (1), (2), and (3) is used as a curing agent for an epoxy resin.
The tetracarboxylic dianhydride represented by the general formula (1) is obtained by reacting 1 mol of the compound represented by the general formula (4) with 2 mol of the compound represented by the general formula (5). (See WNEmmerling et al, European Polymer Journal, Vol.13, p179.) Tetracarboxylic dianhydrides represented by general formulas (2) and (3) can be used to hydrogenate and reduce compounds of general formula (1). Obtained by.

Figure 2005320383
Figure 2005320383

Figure 2005320383
Figure 2005320383

一般式(4)、(5)において、R1は水素原子、または炭素数1〜10のアルキル基、R2は炭素数1〜10のアルキル基、R3は2価の有機基を表す。m、nは互いに独立の0〜5までの任意の整数であり、m+nが複数の場合、複数のR2は互いに同じでも、または、異なっても良い。   In the general formulas (4) and (5), R1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, R2 represents an alkyl group having 1 to 10 carbon atoms, and R3 represents a divalent organic group. m and n are arbitrary integers of 0 to 5 independent of each other. When m + n is plural, plural R2s may be the same or different from each other.

一般式(4)で表される化合物の具体例としては、1,1−ジフェニルエチレン、1,1−ジ(メチルフェニル)エチレン、1−フェニル−1−メチルフェニルエチレン、1,1−ジフェニルプロペン、1,1−ジ(メチルフェニル)プロペン、1−フェニル−1−メチルフェニルプロペン等が挙げられる。   Specific examples of the compound represented by the general formula (4) include 1,1-diphenylethylene, 1,1-di (methylphenyl) ethylene, 1-phenyl-1-methylphenylethylene, 1,1-diphenylpropene. 1,1-di (methylphenyl) propene, 1-phenyl-1-methylphenylpropene, and the like.

一般式(5)で示される化合物の具体例としては、無水マレイン酸、無水シトラコン酸(3−メチル無水マレイン酸)、3−エチル無水マレイン酸、3,4−ジメチル無水マレイン酸、3−クロル無水マレイン酸、3,4−ジメチル無水マレイン酸、等が挙げられる。   Specific examples of the compound represented by the general formula (5) include maleic anhydride, citraconic anhydride (3-methylmaleic anhydride), 3-ethylmaleic anhydride, 3,4-dimethylmaleic anhydride, 3-chloro. Maleic anhydride, 3,4-dimethylmaleic anhydride, etc. are mentioned.

一般式(4)の化合物1モルと、一般式(5)の化合物2モルとは、図1に示す経路で反応して、一般式(1)のテトラカルボン酸二無水物を生成するものと考えられる。反応の進行には、特に触媒を必要とせず、適宜、溶剤を使用して、両者を混合して加熱攪拌して得ることができる。反応温度は、溶媒を使用した場合は当該溶媒の沸点付近で行うのが一般的であるが、50〜200℃間で行うことができる。より好ましくは、60〜150℃である。反応時間は反応温度との関係から定まるが、通常0.1〜20時間の範囲が好ましい。   1 mol of the compound of the general formula (4) and 2 mol of the compound of the general formula (5) react by the route shown in FIG. 1 to produce a tetracarboxylic dianhydride of the general formula (1) Conceivable. For the progress of the reaction, a catalyst is not particularly required, and it can be obtained by using a solvent as appropriate, mixing them and heating and stirring them. When the solvent is used, the reaction temperature is generally near the boiling point of the solvent, but can be performed at 50 to 200 ° C. More preferably, it is 60-150 degreeC. Although the reaction time is determined from the relationship with the reaction temperature, it is usually preferably in the range of 0.1 to 20 hours.

以下、反応経路を図1にしたがって説明する。
一般式(4)と一般式(5)の化合物とは、炭素・炭素二重結合の電子密度差を誘因として電荷移動錯体を形成する。
したがって、一般式(4)および一般式(5)それぞれの化合物に存在する置換基が、両者の炭素・炭素二重結合の電子密度差を減少させないようにすることが好ましい。すなわち、一般式(4)の化合物の芳香族環以外の炭素に電子吸引性の強い置換基を存在させすることは好ましくなく、一般式(5)の化合物の炭素に電子供与性の強い置換基を存在させることは好ましくない。さらに、立体障害効果を有する置換基の存在も好ましくない。
Hereinafter, the reaction route will be described with reference to FIG.
The compound of the general formula (4) and the general formula (5) forms a charge transfer complex by inducing the difference in the electron density of the carbon / carbon double bond.
Therefore, it is preferable that the substituents present in the compounds of the general formula (4) and the general formula (5) do not reduce the difference in electron density between the carbon and carbon double bonds of both. That is, it is not preferred that a substituent other than the aromatic ring in the compound of the general formula (4) has a strong electron-withdrawing substituent, and a strong electron-donating substituent is present in the carbon of the compound of the general formula (5). It is not preferable to exist. Furthermore, the presence of a substituent having a steric hindrance effect is also undesirable.

したがって、一般式(4)中のR1および一般式(5)中のR1の少なくとも1つが水素原子であることが好ましい。また、R1およびR2は、それぞれがアルキル基である場合、炭素数10以下であることが好ましく、炭素数5以下がさらに好ましく、特にメチル基、プロピル基が好ましい。
また、一般式(4)の化合物については、m+n≦4とすることが好ましく、特に、m+n≦2が好ましい。したがって、最も好ましい一般式(4)で表される化合物は1,1−ジフェニルエチレンであり、最も好ましい一般式(5)で表される化合物は無水マレイン酸である。
Therefore, it is preferable that at least one of R1 in the general formula (4) and R1 in the general formula (5) is a hydrogen atom. Further, when each of R1 and R2 is an alkyl group, it preferably has 10 or less carbon atoms, more preferably 5 or less carbon atoms, and particularly preferably a methyl group or a propyl group.
Moreover, about the compound of General formula (4), it is preferable to set it as m + n <= 4, and m + n <= 2 is especially preferable. Therefore, the most preferable compound represented by the general formula (4) is 1,1-diphenylethylene, and the most preferable compound represented by the general formula (5) is maleic anhydride.

一般式(4)と一般式(5)とから形成される電荷移動錯体は、分子内環化反応により六員環(シクロヘキサジエン環)となり、当該六員環化合物内のシクロヘキサジエン部と原料化合物一般式(5)の炭素・炭素二重結合部とが、ディールス・アルダー反応を経由して一般式(1)の化合物を生成するものと考えられる。当該ディールス・アルダーによって生成する炭素・炭素二重結合部は高温環境下で逆ディールス・アルダー反応で分解することがあるので、公知の還元法等を用いて常法により水素添加して当該部分を飽和結合として一般式(2)で表されるテトラカルボン酸二無水物、さらに、側鎖の芳香族環を水添して一般式(3)で表されるテトラカルボン酸二無水物とする。   The charge transfer complex formed from the general formula (4) and the general formula (5) becomes a six-membered ring (cyclohexadiene ring) by an intramolecular cyclization reaction, and the cyclohexadiene part in the six-membered ring compound and the raw material compound It is considered that the carbon / carbon double bond portion of the general formula (5) forms the compound of the general formula (1) via the Diels-Alder reaction. Since the carbon / carbon double bond produced by the Diels-Alder may be decomposed by the reverse Diels-Alder reaction in a high temperature environment, hydrogenation is performed by a conventional method using a known reduction method, etc. The tetracarboxylic dianhydride represented by the general formula (2) as a saturated bond and the aromatic ring in the side chain are hydrogenated to obtain a tetracarboxylic dianhydride represented by the general formula (3).

接触還元方法は、金属触媒として、パラジウム、ルテニウム、ロジウム、白金、ニッケル、コバルト等を使用して、溶媒中で、水素圧を常圧から10MPa(100kg/cm2)の範囲、温度を0〜150℃の範囲で行うことができる。
さらに詳しく述べれば、一般式(2)で表されるテトラカルボン酸二無水物を高い収率で得る場合は、パラジウム系触媒存在下で水素圧を1MPa〜5MPaの範囲とし、温度を室温〜50℃の範囲で5〜20時間接触還元を行うとよく、一般式(3)で表されるテトラカルボン酸二無水物を高い収率で得る場合は、パラジウム系触媒存在下で水素圧を5MPa〜8MPaの範囲とし、温度を50〜100℃の範囲で5〜20時間接触還元を行うとよい。
In the catalytic reduction method, palladium, ruthenium, rhodium, platinum, nickel, cobalt, etc. are used as a metal catalyst, and the hydrogen pressure is in a range from normal pressure to 10 MPa (100 kg / cm 2) in a solvent, and the temperature is 0 to 150. It can be performed in the range of ° C.
More specifically, when the tetracarboxylic dianhydride represented by the general formula (2) is obtained in a high yield, the hydrogen pressure is set in the range of 1 MPa to 5 MPa in the presence of the palladium-based catalyst, and the temperature is set to room temperature to 50-50. It is better to perform catalytic reduction in the range of 5 ° C. for 5 to 20 hours. When the tetracarboxylic dianhydride represented by the general formula (3) is obtained with a high yield, the hydrogen pressure in the presence of a palladium catalyst is 5 MPa The catalytic reduction may be performed in the range of 8 MPa and the temperature in the range of 50 to 100 ° C for 5 to 20 hours.

一般式(1)、(2)、(3)で表されるテトラカルボン酸二無水物は、従前のエポキシ樹脂硬化剤に使用されているテトラカルボン酸二無水物に比べて、特段の反応条件変更を要さずに実質的にひとつの反応操作で、エン反応等と比較して温和な条件下による反応で、副生成物を生じることなく得られる。特に高い純度が要求される光学機能部材中で使用されるエポキシ樹脂組成物の硬化剤製造として極めて優れた特性を発揮する。これらの中でも、一般式(2)、(3)で表されるテトラカルボン酸二無水物は、高温環境下でも逆ディールス・アルダー反応がないので、高い耐熱性、あるいは、長期の安定性が要求されるエポキシ樹脂組成物の硬化剤として優れている。   The tetracarboxylic dianhydrides represented by the general formulas (1), (2), and (3) have special reaction conditions compared to the tetracarboxylic dianhydrides used in conventional epoxy resin curing agents. It can be obtained in substantially one reaction operation without modification, and by a reaction under mild conditions as compared with an ene reaction or the like without generating a by-product. In particular, it exhibits extremely excellent properties as a production of a curing agent for an epoxy resin composition used in an optical functional member requiring high purity. Among these, the tetracarboxylic dianhydrides represented by the general formulas (2) and (3) do not have a reverse Diels-Alder reaction even in a high-temperature environment, so high heat resistance or long-term stability is required. It is excellent as a curing agent for epoxy resin compositions.

本発明に係る一般式(1)、(2)、(3)で表されるテトラカルボン酸二無水物は、2つのカルボン酸二無水物基がトリシクロ環構造中に非対称に配置されていること、および、側鎖(例えば、n=0であればベンゼン環。)を有していることを特徴とする。本発明者らは、当該基本構造が、エポキシ樹脂およびエポキシ樹脂組成物の耐熱性、有機溶剤への溶解性、靭性の付与に大きく関与しているものと考えている。   In the tetracarboxylic dianhydride represented by the general formulas (1), (2), and (3) according to the present invention, two carboxylic dianhydride groups are arranged asymmetrically in a tricyclo ring structure. And a side chain (for example, a benzene ring if n = 0). The present inventors consider that the basic structure is greatly involved in imparting heat resistance, solubility in organic solvents, and toughness of the epoxy resin and the epoxy resin composition.

上記基本的特性に加えて、より優れた耐熱性と芳香族系材料との親和性を所望する場合は一般式(2)で表されるテトラカルボン酸二無水物、よりすぐれた透明性と溶解性を所望する場合は一般式(3)で表されるテトラカルボン酸二無水物を単独で使用するが、これらの特性をバランスよく所望する場合は、混合して使用しても良い。なお、一般式(1)で表されるテトラカルボン酸二無水物も、化学修飾や架橋反応を所望する場合、300℃以上で残渣を大量に残さない熱分解を所望する場合は併用することが好ましい。また、LED封止剤等、長期にわたり広範な温度で使用され、かつ、高い透明性が要求される用途においては、分解可能性の問題に加えて酸価劣化の問題を考慮して、一般式(2)、または(3)、特に一般式(3)で表されるテトラカルボン酸二無水物を使用することが好ましい。   In addition to the above basic characteristics, if you want better heat resistance and affinity with aromatic materials, tetracarboxylic dianhydride represented by general formula (2), better transparency and dissolution When desired, the tetracarboxylic dianhydride represented by the general formula (3) is used alone. However, when these properties are desired in a well-balanced manner, they may be mixed and used. In addition, the tetracarboxylic dianhydride represented by the general formula (1) may be used in combination when a chemical modification or a crosslinking reaction is desired, or when a thermal decomposition that does not leave a large amount of residue at 300 ° C. or higher is desired. preferable. In addition, in applications where LED sealants and the like are used at a wide range of temperatures for a long time and high transparency is required, the general formula is considered in consideration of the problem of acid value deterioration in addition to the problem of decomposability. It is preferable to use (2) or (3), particularly a tetracarboxylic dianhydride represented by the general formula (3).

また、本発明に係るエポキシ樹脂組成物を得るためには、一般式(1)、(2)、(3)で表されるテトラカルボン酸二無水物中に開環重付加反応や閉環反応の進行に関して立体障害となる置換基を含まないことが好ましく、一般式(1)、(2)、(3)の中でも、1,1−ジフェニルエチレンと無水マレイン酸から合成されるテトラカルボン酸二無水物が好ましい。   In order to obtain the epoxy resin composition according to the present invention, a ring-opening polyaddition reaction or a ring-closing reaction is carried out in the tetracarboxylic dianhydride represented by the general formulas (1), (2), and (3). It is preferable that it does not contain a substituent that causes steric hindrance with respect to the progress. Among general formulas (1), (2), and (3), tetracarboxylic dianhydride synthesized from 1,1-diphenylethylene and maleic anhydride Things are preferred.

本発明に係るテトラカルボン酸二無水物を含むエポキシ樹脂硬化剤を使用するに際して、そのまま使用するか、他のエポキシ樹脂硬化剤と併用するか、あるいは通常のエポキシ樹脂硬化剤組成物を構成する他の化合物と混合して硬化剤組成物として使用しても良いし、あらかじめジアミン化合物と反応させて得られる繰り返しイミド構造を有するものを得てこれを硬化剤として使用しても良い。
本発明に係る効果を得るためには、使用されるエポキシ硬化剤のうち、1種のみ使用する場合および2種以上使用する場合のいずれにおいても、一般式(1)、(2)、(3)で表されるテトラカルボン酸二無水物を、少なくとも5質量%以上、好ましくは10質量%以上、さらに好ましくは、40質量%以上使用する。なお、これらの使用法、配合比は上記段落0029に記載の各化合物の特性に基づいて決定すればよい。なお、それ以外の硬化剤は、公知のエポキシ樹脂硬化剤に用いられる化合物を使用してよい。
When using an epoxy resin curing agent containing a tetracarboxylic dianhydride according to the present invention, it can be used as it is, in combination with another epoxy resin curing agent, or to constitute a normal epoxy resin curing agent composition It may be used as a curing agent composition by mixing with the above compound, or it may be used as a curing agent by obtaining a compound having a repeated imide structure obtained by reacting with a diamine compound in advance.
In order to obtain the effect according to the present invention, the general formulas (1), (2), (3) are used in both cases where only one type of epoxy curing agent is used and when two or more types are used. ) Is used at least 5% by mass, preferably 10% by mass or more, and more preferably 40% by mass or more. In addition, what is necessary is just to determine these usage methods and compounding ratio based on the characteristic of each compound as described in the said paragraph 0029. In addition, you may use the compound used for a well-known epoxy resin hardening | curing agent for the other hardening | curing agent.

本発明において用いられるエポキシ樹脂に特に制限はなく、1分子当り2以上のエポキシ基を持つものであればよい。芳香族系の化合物であれば、グリシジルエーテル類、グリシジルエステル類、グリシジルアミン類、具体例としては、例えば、ビスフェノールA又はビスフェノールFとエピクロロヒドリンを原料とするエポキシ化合物、フェノールノボラック樹脂またはクレゾールノボラック樹脂のポリグリシジルエーテル等が挙げられる。相当する市販品としては、「エピコート827」、「828」、「エピコート834」、「1001」、「1004」「エピコート152」、「154」、「180S65」等である。   There is no restriction | limiting in particular in the epoxy resin used in this invention, What is necessary is just to have two or more epoxy groups per molecule. If it is an aromatic compound, glycidyl ethers, glycidyl esters, glycidyl amines, specific examples include, for example, epoxy compounds, phenol novolac resins or cresols made from bisphenol A or bisphenol F and epichlorohydrin. Examples thereof include polyglycidyl ethers of novolak resins. The corresponding commercially available products are “Epicoat 827”, “828”, “Epicoat 834”, “1001”, “1004”, “Epicoat 152”, “154”, “180S65”, and the like.

本発明に係るエポキシ樹脂硬化剤とエポキシ樹脂との混合比率は、(エポキシ樹脂中のエポキシ基):((一般式(1)で表されるテトラカルボン酸二無水物中の酸無水物基)+(他の硬化剤の硬化反応に関与する官能基))のモル当量比が0.5〜1.5となるような範囲である(以下これを「官能基当量比」と称する。)。エポキシ樹脂組成物を硬化するに際しては、通常の方法に従って処理すれば良く、温度範囲は50〜200℃、好ましくは100〜200℃の範囲で硬化反応所要時間とのバランスで選択すればよい。   The mixing ratio of the epoxy resin curing agent and the epoxy resin according to the present invention is (epoxy group in epoxy resin): ((acid anhydride group in tetracarboxylic dianhydride represented by general formula (1)) The molar equivalent ratio of + (functional group involved in the curing reaction of another curing agent) is in the range of 0.5 to 1.5 (hereinafter referred to as “functional group equivalent ratio”). When the epoxy resin composition is cured, the epoxy resin composition may be treated according to an ordinary method, and the temperature range may be selected in the range of 50 to 200 ° C., preferably 100 to 200 ° C., in balance with the time required for the curing reaction.

硬化反応においては、公知の硬化促進剤を添加してもよい。また、本発明に係るエポキシ樹脂組成物は、本発明の効果を損なわない範囲で、反応性希釈剤、可塑剤、シリカ等の無機充填剤、難燃剤、離型剤、消泡剤、沈降防止剤、酸化防止剤、シランカップリング剤、染料、顔料、着色剤等を配合することができる。   In the curing reaction, a known curing accelerator may be added. In addition, the epoxy resin composition according to the present invention is a reactive diluent, a plasticizer, an inorganic filler such as silica, a flame retardant, a mold release agent, an antifoaming agent and an anti-settling agent as long as the effects of the present invention are not impaired. An agent, an antioxidant, a silane coupling agent, a dye, a pigment, a colorant and the like can be blended.

以下、実施例を挙げ本発明の内容を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and the content of this invention is demonstrated concretely, this invention is not limited to these.

<テトラカルボン酸二無水物の合成>
容量20mlのナス型フラスコに1,1−ジフェニルエチレン5.10gと無水マレイン酸2.78g(モル比1:1)を入れ、10分間溶存酸素を脱気した後、油浴を140℃に保ち5時間加熱攪拌した。反応系の温度は106℃であった。反応終了後、トルエンをフラスコに加えて析出する沈殿物を濾過して集めた。濾過物の重量は3.65gであった。本実施例おいては、1,1−ジフェニルエチレンは反応原料として仕込まれたと同時に、過剰分は溶剤として機能している。本実施例の収率は、1,1−ジフェニルエチレン2.55gと無水マレイン酸2.78g(モル比1:2)を基準として、68%である。
(DSC分析による融点測定)
酢酸エチルから再結晶した当該化合物は、20℃/minでの昇温条件で290℃ に明確な吸熱ピークを示した。
<Synthesis of tetracarboxylic dianhydride>
Place 1,1-diphenylethylene 5.10 g and maleic anhydride 2.78 g (molar ratio 1: 1) into a 20 ml eggplant type flask, degas the dissolved oxygen for 10 minutes, and then keep the oil bath at 140 ° C. The mixture was heated and stirred for 5 hours. The temperature of the reaction system was 106 ° C. After completion of the reaction, toluene was added to the flask, and the deposited precipitate was collected by filtration. The weight of the filtrate was 3.65 g. In this example, 1,1-diphenylethylene is charged as a reaction raw material, and at the same time, the excess functions as a solvent. The yield of this example is 68% based on 2.51 g of 1,1-diphenylethylene and 2.78 g of maleic anhydride (molar ratio 1: 2).
(Melting point measurement by DSC analysis)
The compound recrystallized from ethyl acetate showed a clear endothermic peak at 290 ° C. under the temperature rising condition at 20 ° C./min.

<テトラカルボン酸二無水物の構造決定>
(マススペクトル)
マススペクトルの結果、生成物の分子量は376であった。
(IRスペクトル測定)
700cm−1〜740cm−1:1置換芳香族帰属ピーク
760cm−1〜860cm−1:炭素・炭素二重結合帰属ピーク
1780cm−1〜1880cm−1:カルボン酸無水物帰属ピーク
(1HNMRスペクトル測定)
1H NMRスペクトル(DMSO−d6)
2.55(m、2H)、2.75(m、2H):カルボニル基隣接炭素上の水素
3.50〜3.60(m、2H)
3.70(t、1H):シクロへキセン環とシクロヘキサジエン環結合部炭素上の水素
3.80(m、2H):シクロヘキセン中のメチン水素
6.00(t、1H)、6.25(t、1H):炭素・炭素二重結合部の水素
7.20(d、2H)、7.35(t、1H)、7.45(t、2H):1置換ベンゼン部の水素
以上の分析結果から、生成物の化学構造は一般式(1)の構造を満足するテトラカルボン酸二無水物のうち、下記の化学式(1)で表されるテトラカルボン酸二無水物であることを確認した。なお、当該化合物の構造決定に関しては、上記非特許文献1も参照した。
<Determining the structure of tetracarboxylic dianhydride>
(Mass spectrum)
As a result of mass spectrum, the molecular weight of the product was 376.
(IR spectrum measurement)
700 cm-1 to 740 cm-1: 1 substituted aromatic attribute peak 760 cm-1 to 860 cm-1: carbon / carbon double bond attribute peak 1780 cm-1 to 1880 cm-1: carboxylic acid anhydride attribute peak (1H NMR spectrum measurement)
1H NMR spectrum (DMSO-d6)
2.55 (m, 2H), 2.75 (m, 2H): hydrogen on carbon adjacent to the carbonyl group 3.50 to 3.60 (m, 2H)
3.70 (t, 1H): hydrogen on carbon at the cyclohexene ring and cyclohexadiene ring bond 3.80 (m, 2H): methine hydrogen in cyclohexene 6.00 (t, 1H), 6.25 ( t, 1H): hydrogen in carbon-carbon double bond portion 7.20 (d, 2H), 7.35 (t, 1H), 7.45 (t, 2H): hydrogen in 1-substituted benzene portion From the results, the chemical structure of the product was confirmed to be a tetracarboxylic dianhydride represented by the following chemical formula (1) among the tetracarboxylic dianhydrides satisfying the structure of the general formula (1). . Regarding the structure determination of the compound, Non-Patent Document 1 was also referred to.

Figure 2005320383
Figure 2005320383

化学式(1)で表される上記テトラカルボン酸二無水物を1gを10mlのTHFに溶解し、10%パラジウム/カーボン触媒(小島薬品製)100mgを加えて、50℃、5〜4.50MPa(水素圧)で水素化還元を16時間行った。触媒を除去後、THFを減圧蒸留して白色の結晶を95%の収率で回収した。
当該結晶のHNMRスペクトル測定を上記と同様に行ったところ、δ=6.00〜6.25の領域に現れる炭素・炭素二重結合部分の2個の水素原子に帰属されるピーク面積が消滅し、化学式(1)中の11位の炭素・炭素二重結合(2置換オレフィン)が水素化還元されたことを示した。一方、δ=1.00〜2.00にはシクロアルカン系メチン水素は新たに出現せず芳香族環族の核水添が生じていないことを示した。なお、これ以外に大きな変化は見られなかった。また、IRスペクトル解析から無水カルボニル基が残存していることを確認し、また、マススペクトルの結果から分子量が化学式(6)の化合物より2多い378になっていることを確認した。
この結果から、当該還元処理化合物が、一般式(2)の構造を満足する化学式(7)で表されるテトラカルボン酸二無水物であることが確認された。
1 g of the above tetracarboxylic dianhydride represented by the chemical formula (1) is dissolved in 10 ml of THF, 100 mg of 10% palladium / carbon catalyst (manufactured by Kojima Pharmaceutical) is added, and 50 ° C., 5 to 4.50 MPa ( Hydrogen reduction was carried out for 16 hours. After removing the catalyst, THF was distilled under reduced pressure to recover white crystals in a yield of 95%.
When the 1 HNMR spectrum of the crystal was measured in the same manner as described above, the peak area attributed to two hydrogen atoms of the carbon / carbon double bond portion appearing in the region of δ = 6.00 to 6.25 disappeared. It was shown that the carbon / carbon double bond (disubstituted olefin) at the 11th position in the chemical formula (1) was hydroreduced. On the other hand, at δ = 1.00 to 2.00, no cycloalkane-based methine hydrogen appeared, indicating that no aromatic ring nuclear hydrogenation occurred. There were no other major changes. Further, it was confirmed from IR spectrum analysis that an anhydrous carbonyl group remained, and from the results of mass spectrum, it was confirmed that the molecular weight was 378, which is 2 more than the compound of the chemical formula (6).
From this result, it was confirmed that the said reduction process compound is the tetracarboxylic dianhydride represented by Chemical formula (7) which satisfies the structure of General formula (2).

Figure 2005320383
Figure 2005320383

化学式(1)で表されるテトラカルボン酸二無水物1gを10mlのTHFに溶解し、10%パラジウム/カーボン触媒(小島薬品製)50mgを加えて、100℃、1〜0.95MPa(水素圧)で水素化還元を6時間行った。触媒を除去後、THFを減圧蒸留して白色の結晶を95%の収率で回収した。
当該結晶のHNMRスペクトル測定を上記と同様に行ったところ、δ=6.00〜6.25の領域に現れる炭素・炭素二重結合部分の2個の水素原子に帰属されるピーク面積とδ=7.20〜7.45の領域に現れる一置換ベンゼン環部分の5個の水素原子に帰属されるピーク面積との比が、還元処理前の2:5から、1.2:5に変化し、δ=6.00近傍にメチン系水素のピークが新たに出現し、化学式(1)中の11位の炭素・炭素二重結合(2置換オレフィン)の一部が水素化還元されたことを示した。
一方、δ=1.00〜2.00にはシクロアルカン系メチン水素は新たに出現せず芳香族環族の核水添が生じていないことを示した。なお、これ以外に大きな変化は見られなかった。また、IRスペクトル解析から無水カルボニル基が残存していることを確認した。
この結果から、当該還元処理化合物が化学式(1)で表されるテトラカルボン酸二無水物約60モル%と化学式(2)で表されるテトラカルボン酸二無水物約40モル%とから構成されることが確認された。
以下、当該方法で得られた化合物を「水添テトラカルボン酸二無水物混合物A」という。
1 g of tetracarboxylic dianhydride represented by the chemical formula (1) is dissolved in 10 ml of THF, 50 mg of 10% palladium / carbon catalyst (manufactured by Kojima Pharmaceutical) is added, and 100 ° C., 1 to 0.95 MPa (hydrogen pressure) ) For 6 hours. After removing the catalyst, THF was distilled under reduced pressure to recover white crystals in a yield of 95%.
When the 1 HNMR spectrum of the crystal was measured in the same manner as described above, the peak area attributed to two hydrogen atoms of the carbon / carbon double bond portion appearing in the region of δ = 6.00 to 6.25 and δ = The ratio of the peak area attributed to the five hydrogen atoms of the monosubstituted benzene ring portion appearing in the region of 7.20 to 7.45 changed from 2: 5 before the reduction treatment to 1.2: 5 In addition, a new methine hydrogen peak appeared near δ = 6.00, and a part of the carbon / carbon double bond (2-substituted olefin) at the 11th position in the chemical formula (1) was hydrogenated and reduced. showed that.
On the other hand, at δ = 1.00 to 2.00, no cycloalkane-based methine hydrogen appeared, indicating that no aromatic ring nuclear hydrogenation occurred. There were no other major changes. Further, it was confirmed from IR spectrum analysis that an anhydrous carbonyl group remained.
From this result, the reduction compound is composed of about 60 mol% of tetracarboxylic dianhydride represented by chemical formula (1) and about 40 mol% of tetracarboxylic dianhydride represented by chemical formula (2). It was confirmed that
Hereinafter, the compound obtained by this method is referred to as “hydrogenated tetracarboxylic dianhydride mixture A”.

化学式(1)で表される上記テトラカルボン酸二無水物を1gを10mlのTHFに溶解し、10%パラジウム/カーボン触媒(小島薬品製)100mgを加えて、120℃、9.00〜8.50MPa(水素圧)で水素化還元を16時間行った。触媒を除去後、THFを減圧蒸留して白色の結晶を95%の収率で回収した。
当該結晶のHNMRスペクトル測定を上記と同様に行ったところ、δ=6.00〜6.25の領域に現れる炭素・炭素二重結合部分の2個の水素原子に帰属されるピークおよびδ=7.20〜7.00の領域に現れる芳香族環の水素原子に帰属されるピークが消滅し、化学式(1)中の11位の炭素・炭素二重結合(2置換オレフィン)が水素化されかつ芳香族環が核水添されたことを示した。一方、δ=1.00〜2.00にはシクロアルカン系メチン水素が出現した。また、IRスペクトル解析から無水カルボニル基が残存していることを確認し、また、マススペクトルの結果から分子量が化学式(6)の化合物より8多い386になっていることを確認した。
この結果から、当該還元処理化合物が、一般式(3)の構造を満足する化学式(3)で表されるテトラカルボン酸二無水物であることが確認された。
これらの脂環式テトラカルボン酸二無水物系化合物の合成経路を図2に示した。
1 g of the above tetracarboxylic dianhydride represented by the chemical formula (1) is dissolved in 10 ml of THF, 100 mg of 10% palladium / carbon catalyst (manufactured by Kojima Pharmaceutical) is added, 120 ° C., 9.00 to 8.80. Hydrogenation reduction was performed for 16 hours at 50 MPa (hydrogen pressure). After removing the catalyst, THF was distilled under reduced pressure to recover white crystals in a yield of 95%.
When the 1 HNMR spectrum of the crystal was measured in the same manner as described above, a peak attributed to two hydrogen atoms of the carbon / carbon double bond portion appearing in the region of δ = 6.00 to 6.25 and δ = The peak attributed to the hydrogen atom of the aromatic ring appearing in the region of 7.20 to 7.00 disappears, and the carbon / carbon double bond (2-substituted olefin) at position 11 in chemical formula (1) is hydrogenated. And the aromatic ring was nuclear hydrogenated. On the other hand, cycloalkane methine hydrogen appeared at δ = 1.00 to 2.00. Further, it was confirmed from IR spectrum analysis that an anhydrous carbonyl group remained, and from the result of mass spectrum, it was confirmed that the molecular weight was 386, which is 8 more than the compound of the chemical formula (6).
From this result, it was confirmed that the said reduction process compound is the tetracarboxylic dianhydride represented by Chemical formula (3) which satisfies the structure of General formula (3).
The synthesis route of these alicyclic tetracarboxylic dianhydride compounds is shown in FIG.

Figure 2005320383
Figure 2005320383

化学式(1)で表されるテトラカルボン酸二無水物1gを10mlのTHFに溶解し、10%パラジウム/カーボン触媒(小島薬品製)50mgを加えて、100℃、1〜0.95MPa(水素圧)で水素化還元を6時間行った。触媒を除去後、THFを減圧蒸留して白色の結晶を95%の収率で回収した。
当該結晶のHNMRスペクトル測定を上記と同様に行ったところ、δ=6.00〜6.25の領域に現れる炭素・炭素二重結合部分の2個の水素原子に帰属されるピークが消滅し、化学式(1)中の11位の炭素・炭素二重結合(2置換オレフィン)が水素化されたことを示した。また、δ=7.20〜7.45の領域に現れる一置換ベンゼン環部分の5個の水素原子に帰属されるピーク面積とδ=1.00〜2.00にはシクロアルカン系メチン水素が新たに出現した。なお、これ以外に大きな変化は見られなかった。また、IRスペクトル解析から無水カルボニル基が残存していることを確認した。
それぞれのピーク面積の比から、当該還元処理化合物が化学式(1)で表されるテトラカルボン酸二無水物約50モル%と化学式(3)で表されるテトラカルボン酸二無水物約50モル%とから構成されることが確認された。
以下、当該方法で得られた化合物を「水添テトラカルボン酸二無水物混合物B」という。
1 g of tetracarboxylic dianhydride represented by the chemical formula (1) is dissolved in 10 ml of THF, 50 mg of 10% palladium / carbon catalyst (manufactured by Kojima Pharmaceutical) is added, and 100 ° C., 1 to 0.95 MPa (hydrogen pressure) ) For 6 hours. After removing the catalyst, THF was distilled under reduced pressure to recover white crystals in a yield of 95%.
When the 1 HNMR spectrum of the crystal was measured in the same manner as described above, the peak attributed to two hydrogen atoms of the carbon / carbon double bond portion that appeared in the region of δ = 6.00 to 6.25 disappeared. The carbon-carbon double bond (disubstituted olefin) at position 11 in chemical formula (1) was hydrogenated. Further, the peak area attributed to five hydrogen atoms of the mono-substituted benzene ring portion appearing in the region of δ = 7.20 to 7.45 and δ = 1.00 to 2.00 include cycloalkane methine hydrogen. Newly appeared. There were no other major changes. Further, it was confirmed from IR spectrum analysis that an anhydrous carbonyl group remained.
From the ratio of the respective peak areas, the reduction compound is about 50 mol% tetracarboxylic dianhydride represented by chemical formula (1) and about 50 mol% tetracarboxylic dianhydride represented by chemical formula (3). It was confirmed that it was composed of
Hereinafter, the compound obtained by this method is referred to as “hydrogenated tetracarboxylic dianhydride mixture B”.

<エポキシ樹脂未硬化組成物の製造>(実施例1〜11)
化学式(1)〜(3)で表されるテトラカルボン酸二無水物、および、「水添テトラカルボン酸二無水物混合物A」、「水添テトラカルボン酸二無水物混合物B」のそれぞれとビスフェノールA型エポキシ樹脂(エピコート828:(ジャパンエポキシレジン油化シェル(株)製、エポキシ当量=185)とを表1に示す官能基当量比の割合で混合し、硬化促進剤としてベンジルジメチルアミン(BDMA)(東京化成工業(株)試薬)をエポキシ樹脂100重量部に対し1重量部添加してよく攪拌したところ、溶液は均一となった。
<Production of epoxy resin uncured composition> (Examples 1 to 11)
Tetracarboxylic dianhydrides represented by chemical formulas (1) to (3), “hydrogenated tetracarboxylic dianhydride mixture A”, “hydrogenated tetracarboxylic dianhydride mixture B” and bisphenol A type epoxy resin (Epicoat 828: (manufactured by Japan Epoxy Resin Oil Co., Ltd., epoxy equivalent = 185)) was mixed at a ratio of functional group equivalent ratio shown in Table 1, and benzyldimethylamine (BDMA) was used as a curing accelerator. ) (Tokyo Chemical Industry Co., Ltd. reagent) was added in an amount of 1 part by weight to 100 parts by weight of the epoxy resin and stirred well.

<靭性(耐ヒートサイクル)評価>
上記エポキシ樹脂未硬化組成物をトランスファー成形機(成形条件175℃、硬化時間2分間)で成形を行い、その後175℃で8時間後硬化し、日本工業規格JIS C―2105(電気絶縁用無溶剤レジン試験方法)に準拠した熱伝導率の異なる金属ワッシャーを封入した硬化物試験片を得た。
ヒートサイクル試験:5個の試験片が150℃から0℃まで冷却する際に発生してくるクラックを観察し、その平均クラック数を算出した。
<Toughness (heat cycle resistance) evaluation>
The above epoxy resin uncured composition is molded by a transfer molding machine (molding conditions: 175 ° C., curing time: 2 minutes), then post-cured at 175 ° C. for 8 hours, and Japanese Industrial Standard JIS C-2105 (no solvent for electrical insulation) A cured product test piece was obtained in which metal washers having different thermal conductivities in accordance with the resin test method) were encapsulated.
Heat cycle test: The cracks generated when five test pieces were cooled from 150 ° C. to 0 ° C. were observed, and the average number of cracks was calculated.

<耐熱性(熱変形温度)評価>
上記エポキシ樹脂未硬化組成物をトランスファー成形機(成形条件175℃、硬化時間2分間)で成形を行い、その後175℃で8時間後硬化し、日本工業規格JIS K―6901の方法に準拠して試験片を作成し、熱変形温度(HDT)ついて測定を行った。
<Evaluation of heat resistance (thermal deformation temperature)>
The epoxy resin uncured composition is molded by a transfer molding machine (molding conditions: 175 ° C., curing time: 2 minutes) and then post-cured at 175 ° C. for 8 hours, in accordance with the method of Japanese Industrial Standard JIS K-6901. Test pieces were prepared and measured for heat distortion temperature (HDT).

<耐UV光透過性評価>
上記エポキシ樹脂未硬化組成物をトランスファー成形機(成形条件175℃、硬化時間2分間)で成形を行い、その後175℃で8時間後硬化し、冷却後、150mm×75mmの試験片を切り出し、400nmにおける初期透過率と100時間照射後の透過率を測定した。紫外線照射装置はスガ試験機社製「Dew Panel Light ControlWeather Meter DWPL−5R」)を使用し、UVランプを試験片に照射し、ただし、ブラックパネル温度は63℃、照射強度は3mW/cm2とした。
<UV light transmission resistance evaluation>
The epoxy resin uncured composition is molded by a transfer molding machine (molding conditions: 175 ° C., curing time: 2 minutes), then post-cured at 175 ° C. for 8 hours, cooled, and a test piece of 150 mm × 75 mm is cut out to 400 nm. The initial transmittance and the transmittance after irradiation for 100 hours were measured. The UV irradiation device used was “Dew Panel LightWeather Meter DWPL-5R” manufactured by Suga Test Instruments Co., Ltd., and the test piece was irradiated with a UV lamp. However, the black panel temperature was 63 ° C. and the irradiation intensity was 3 mW / cm 2. .

[比較例1]
硬化剤としてMH−700(新日本理化(株)製:メチルヘキサヒドロ無水フタル酸を主成分とする酸無水物系硬化剤。官能基(酸無水物基)=約168g/eq。)を使用して、実施例1に準じて試験片を作成し、評価した。
[Comparative Example 1]
MH-700 (manufactured by Shin Nippon Rika Co., Ltd .: acid anhydride curing agent mainly composed of methylhexahydrophthalic anhydride. Functional group (acid anhydride group) = about 168 g / eq.) Is used as a curing agent. Then, a test piece was prepared and evaluated according to Example 1.

評価結果を表1に示す。
表1から、本発明に係る硬化剤を使用したエポキシ樹脂組成物から得られた硬化物は、広範な環境温度変化においてもクラック発生数が少なく靭性に優れ、荷重下における耐熱性に優れ、UV光に対して初期透過率が高くかつ透過率の低下が小さい。この結果は、温度環境変化への対応の機械的特性、透明性維持性にすぐれた耐熱性エポキシ樹脂組成物であることを示し、LED用封止剤として使用したときに極めて優れた特性として発揮されることが予測される。
The evaluation results are shown in Table 1.
From Table 1, the cured product obtained from the epoxy resin composition using the curing agent according to the present invention has a small number of cracks even in a wide range of environmental temperature changes, excellent toughness, excellent heat resistance under load, UV The initial transmittance for light is high and the decrease in transmittance is small. This result shows that it is a heat-resistant epoxy resin composition with excellent mechanical properties and transparency maintaining ability to cope with changes in temperature environment, and exhibits extremely excellent properties when used as an LED sealant. It is predicted that

Figure 2005320383
Figure 2005320383

本発明に係るエポキシ樹脂硬化剤組成物における一般式(1)、(2)、(3)で表される脂環式テトラカルボン酸無水物は高融点を有する固体であるが、優れた有機溶剤への溶解性を有している。
また、本発明にかかるエポキシ樹脂硬化剤を配合してなるエポキシ樹脂組成物の硬化物は、耐熱性、靭性に優れていることから、接着剤、塗料、土木建築用材料、電気・電子部品の絶縁材料など、様々な分野で使用することができる。
さらに、透明性が高く、発光装置の封止材料として使用できる。特に、高輝度の青色(460nm付近に主発光がある)LEDの開発や紫外線領域(例えば350〜400nm)の透過性能の維持性能に優れるから、青色LEDの性能が向上したことにより3原色の表示が可能となり、ディスプレイユニット用の封止材料として用いることができる。
The alicyclic tetracarboxylic acid anhydride represented by the general formulas (1), (2) and (3) in the epoxy resin curing agent composition according to the present invention is a solid having a high melting point, but is an excellent organic solvent. Solubility in water.
In addition, the cured product of the epoxy resin composition obtained by blending the epoxy resin curing agent according to the present invention is excellent in heat resistance and toughness, so that adhesives, paints, civil engineering and building materials, electrical / electronic parts It can be used in various fields such as insulating materials.
Furthermore, it has high transparency and can be used as a sealing material for a light emitting device. In particular, the development of high-intensity blue LEDs (main emission near 460 nm) and the maintenance performance of the transmission performance in the ultraviolet region (for example, 350 to 400 nm) are excellent. And can be used as a sealing material for a display unit.

テトラカルボン酸二無水物を生成する反応経路図Reaction path diagram for producing tetracarboxylic dianhydride 実施例に係るテトラカルボン酸二無水物を生成する反応経路図Reaction path diagram for producing tetracarboxylic dianhydride according to the example

Claims (5)

一般式(1)、(2)、(3)で表されるテトラカルボン酸二無水物の少なくとも一つを含むエポキシ樹脂硬化剤。
Figure 2005320383
Figure 2005320383
Figure 2005320383
一般式(1)〜(3)において、R1は水素原子、または炭素数1〜10のアルキル基を表し、R1はそれぞれ同一でも異なっていてもよい。R2は炭素数1〜10のアルキル基を表す。m、nは互いに独立の0〜5までの任意の整数であり、m+nが複数の場合、複数のR2は互いに同じでも異なってもよい。
An epoxy resin curing agent comprising at least one of tetracarboxylic dianhydrides represented by general formulas (1), (2), and (3).
Figure 2005320383
Figure 2005320383
Figure 2005320383
In general formula (1)-(3), R1 represents a hydrogen atom or a C1-C10 alkyl group, and R1 may be same or different, respectively. R2 represents an alkyl group having 1 to 10 carbon atoms. m and n are arbitrary integers from 0 to 5 independent of each other, and when m + n is plural, plural R2s may be the same or different from each other.
請求項1に記載のエポキシ樹脂硬化剤を配合してなることを特徴とするエポキシ樹脂組成物。   An epoxy resin composition comprising the epoxy resin curing agent according to claim 1. 請求項2記載のエポキシ樹脂組成物からなること特徴とする発光ダイオード封止剤。   A light-emitting diode encapsulant comprising the epoxy resin composition according to claim 2. 一般式(2)で表されるテトラカルボン酸二無水物。
Figure 2005320383
一般式(2)において、R1は水素原子、または炭素数1〜10のアルキル基を表し、R1はそれぞれ同一でも異なっていてもよい。R2は炭素数1〜10のアルキル基を表す。m、nは互いに独立の0〜5までの任意の整数であり、m+nが複数の場合、複数のR2は互いに同じでも異なってもよい。
A tetracarboxylic dianhydride represented by the general formula (2).
Figure 2005320383
In General formula (2), R1 represents a hydrogen atom or a C1-C10 alkyl group, and R1 may be same or different, respectively. R2 represents an alkyl group having 1 to 10 carbon atoms. m and n are arbitrary integers from 0 to 5 independent of each other, and when m + n is plural, plural R2s may be the same or different from each other.
一般式(3)で表されるテトラカルボン酸二無水物。
Figure 2005320383
一般式(3)において、R1は水素原子、または炭素数1〜10のアルキル基を表し、R1はそれぞれ同一でも異なっていてもよい。R2は炭素数1〜10のアルキル基を表す。m、nは互いに独立の0〜5までの任意の整数であり、m+nが複数の場合、複数のR2は互いに同じでも異なってもよい。
A tetracarboxylic dianhydride represented by the general formula (3).
Figure 2005320383
In General formula (3), R1 represents a hydrogen atom or a C1-C10 alkyl group, and R1 may be same or different, respectively. R2 represents an alkyl group having 1 to 10 carbon atoms. m and n are arbitrary integers from 0 to 5 independent of each other, and when m + n is plural, plural R2s may be the same or different from each other.
JP2004137936A 2004-05-06 2004-05-06 Epoxy resin curing agent and epoxy resin composition Expired - Fee Related JP4739689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137936A JP4739689B2 (en) 2004-05-06 2004-05-06 Epoxy resin curing agent and epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137936A JP4739689B2 (en) 2004-05-06 2004-05-06 Epoxy resin curing agent and epoxy resin composition

Publications (2)

Publication Number Publication Date
JP2005320383A true JP2005320383A (en) 2005-11-17
JP4739689B2 JP4739689B2 (en) 2011-08-03

Family

ID=35467882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137936A Expired - Fee Related JP4739689B2 (en) 2004-05-06 2004-05-06 Epoxy resin curing agent and epoxy resin composition

Country Status (1)

Country Link
JP (1) JP4739689B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320388A (en) * 2004-05-06 2005-11-17 Nippon Petrochemicals Co Ltd Polyester resin composition
KR20150044007A (en) 2013-10-15 2015-04-23 닛뽄 가야쿠 가부시키가이샤 Multifunctional acid anhydride, thermosetting resin composition, prepreg and cured article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218414A (en) * 1986-03-18 1987-09-25 Matsushita Electric Works Ltd Epoxy resin composition
JPS62253614A (en) * 1986-01-11 1987-11-05 Matsushita Electric Works Ltd Epoxy resin composition
JPS6363715A (en) * 1986-09-03 1988-03-22 Dainippon Ink & Chem Inc Novel thermosetting resin composition
JPH0559153A (en) * 1991-09-04 1993-03-09 Tonen Corp Epoxy resin curing agent
JPH0718059A (en) * 1993-06-30 1995-01-20 Shikoku Chem Corp Epoxy resin composition
JPH09211467A (en) * 1996-02-01 1997-08-15 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent
JP2003160639A (en) * 2001-11-27 2003-06-03 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device
JP2005206782A (en) * 2003-12-24 2005-08-04 Nippon Petrochemicals Co Ltd Polyamic acid and polyimide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253614A (en) * 1986-01-11 1987-11-05 Matsushita Electric Works Ltd Epoxy resin composition
JPS62218414A (en) * 1986-03-18 1987-09-25 Matsushita Electric Works Ltd Epoxy resin composition
JPS6363715A (en) * 1986-09-03 1988-03-22 Dainippon Ink & Chem Inc Novel thermosetting resin composition
JPH0559153A (en) * 1991-09-04 1993-03-09 Tonen Corp Epoxy resin curing agent
JPH0718059A (en) * 1993-06-30 1995-01-20 Shikoku Chem Corp Epoxy resin composition
JPH09211467A (en) * 1996-02-01 1997-08-15 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent
JP2003160639A (en) * 2001-11-27 2003-06-03 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device
JP2005206782A (en) * 2003-12-24 2005-08-04 Nippon Petrochemicals Co Ltd Polyamic acid and polyimide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320388A (en) * 2004-05-06 2005-11-17 Nippon Petrochemicals Co Ltd Polyester resin composition
JP4485845B2 (en) * 2004-05-06 2010-06-23 新日本石油株式会社 Polyester resin composition
KR20150044007A (en) 2013-10-15 2015-04-23 닛뽄 가야쿠 가부시키가이샤 Multifunctional acid anhydride, thermosetting resin composition, prepreg and cured article

Also Published As

Publication number Publication date
JP4739689B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
KR102393692B1 (en) Thermosetting resin composition
CN104447869B (en) It is a kind of containing DOPO and the asymmetric bismaleimide of molecular structure, preparation method and in the application prepared in compound resin
TW200930739A (en) Resin composition, prepreg and laminate using the same
JP6236222B2 (en) Cyanate ester composition and use thereof
EP1923416A1 (en) Adamantane derivative, epoxy resin, and optical electronic member using resin composition comprising them
JPWO2016104195A1 (en) Thermosetting resin composition
JP6351757B2 (en) Thermosetting resin composition
JP2011012153A (en) Liquid composition and mounting material for electronic use
JP5826751B2 (en) Epoxy resin composition and cured product
KR20190027852A (en) Curable resin mixture and method for producing curable resin composition
JP4739689B2 (en) Epoxy resin curing agent and epoxy resin composition
JP2006306837A (en) Phenolic hydroxy group-bearing compound, thermosetting resin composition and semiconductor sealing material
TWI821349B (en) Composition for curable resin, cured product of the composition, method of manufacturing the composition and the cured product, and semiconductor device
JP4798749B2 (en) Imide type epoxy resin curing agent composition and epoxy resin composition
JP2006188605A (en) Hydrogenated epoxy resin, method for producing the same and epoxy resin composition
JP2006249145A (en) Epoxy resin, its manufacturing method and epoxy resin composition
JP2008195907A (en) Thermosetting benzoxazine resin composition
JP2011052102A (en) Epoxy resin curing agent, method for producing the same and epoxy resin composition
JP2021187934A (en) Polyamide acid, polyimide and polyimide film
US5216173A (en) N-cyanoimides
JP4698165B2 (en) Polyamic acid and polyimide
JP6228592B2 (en) Borazine compounds, borazine compositions, cross-linked borazine
JP2015155385A (en) Tetracarboxylic acid dianhydride, polyamic acid and polyimide having fluorene skeleton
JP3873578B2 (en) Method for producing episulfide compound, curable composition containing episulfide compound obtained thereby, and cured product thereof
JP2010120989A (en) Epoxy resin composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061229

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Ref document number: 4739689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees