JP2005319417A - Particle coating apparatus and production method for coated particle using the same - Google Patents

Particle coating apparatus and production method for coated particle using the same Download PDF

Info

Publication number
JP2005319417A
JP2005319417A JP2004140760A JP2004140760A JP2005319417A JP 2005319417 A JP2005319417 A JP 2005319417A JP 2004140760 A JP2004140760 A JP 2004140760A JP 2004140760 A JP2004140760 A JP 2004140760A JP 2005319417 A JP2005319417 A JP 2005319417A
Authority
JP
Japan
Prior art keywords
gas
organic solvent
coating
particle
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004140760A
Other languages
Japanese (ja)
Inventor
Shigetoshi Kimoto
成年 木元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2004140760A priority Critical patent/JP2005319417A/en
Publication of JP2005319417A publication Critical patent/JP2005319417A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particle coating apparatus capable of stably producing coated particles with high quality while maintaining high productivity and a production method for coated particles using the apparatus. <P>SOLUTION: The particle coating apparatus comprises: a fluidizing tank for fluidizing core particles by a high-temperature gas and capable of keeping temperature for spraying a coating solution containing an organic solvent and a coating material to the core particles; a transportation path for keeping temperature for discharging a gas containing the evaporated organic solvent out of the fluidizing tank; a gas-solid separator for separating solid matters such as particle fragments and coating dust accompanied with the gas containing the evaporated organic solvent; a condenser for separating the organic solvent from the gas containing the evaporated organic solvent after the solid matter removal; and a blower for supplying the gas to the fluidizing tank by heating the gas after the organic solvent removal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、肥料、農薬、医薬品、食品等の芯材粒子の表面に被膜を形成するための粒子被覆装置及びそれを用いる被覆粒子の製造方法に関する。   The present invention relates to a particle coating apparatus for forming a coating on the surface of core material particles such as fertilizers, agricultural chemicals, pharmaceuticals, and foods, and a method for producing coated particles using the same.

従来、被覆粒子の製造装置としては、芯材に肥料粒子を用いた被覆粒状肥料の製造装置が知られている。具体的には、肥料粒子が供給される噴流塔、噴流塔の底部から上向きに気体を噴出させる絞り部、絞り部の上方に設置されたガイド管、及びガイド管内に被膜材料を溶解または懸濁させた被覆液を噴霧するためのスプレーノズルを備えた装置が知られている(例えば、特許文献1参照)。   Conventionally, as a coated particle manufacturing apparatus, a coated granular fertilizer manufacturing apparatus using fertilizer particles as a core material is known. Specifically, a jet tower to which fertilizer particles are supplied, a throttle section for ejecting gas upward from the bottom of the jet tower, a guide pipe installed above the throttle section, and a coating material dissolved or suspended in the guide pipe An apparatus having a spray nozzle for spraying the applied coating liquid is known (see, for example, Patent Document 1).

前記の被覆粒状肥料の製造装置は、肥料粒子を噴流として流動させながら被覆液を付着乾燥させる噴流方式の装置であり、噴流塔内に供給された肥料粒子を、絞り部から噴出する気体によってガイド管内に吹き上げると共に、ガイド管の上端から周囲に落下した肥料粒子を再び噴出する気体で吹き上げ、これを繰り返しながら、樹脂を含有する被膜材料を有機溶媒に溶解または懸濁させた被覆液をスプレーノズルから肥料粒子に吹き付け、所定量の吹き付けと有機溶媒の気化を終了後、絞り部からの気体の供給を止めて、被覆肥料粒子を絞り部から落下させて排出する装置である。   The coated granular fertilizer manufacturing apparatus is a jet-type apparatus that adheres and dries the coating liquid while allowing the fertilizer particles to flow as a jet, and the fertilizer particles supplied into the jet tower are guided by the gas ejected from the throttle section. The spray nozzle sprays the coating liquid in which the coating material containing the resin is dissolved or suspended in an organic solvent while blowing up with a gas that blows up the fertilizer particles that fall from the upper end of the guide pipe to the surroundings while repeating this process. Is sprayed onto the fertilizer particles, and after the spraying of a predetermined amount and the vaporization of the organic solvent is completed, the supply of gas from the throttle portion is stopped, and the coated fertilizer particles are dropped from the throttle portion and discharged.

上記のような被覆粒子の製造においては、品質の安定、高い生産性の維持、及び要求物性の充足等が要求される。しかしながら、高い生産性を達成するためには被覆液のスプレー速度、被覆液濃度及び気化速度を上げれば良いことは自明であるが、目標品質の製品を安定的に得ることが困難であるほかに、製造装置周囲の温度変化等の外乱要因や被覆不良の多発による被膜屑が固気分離器の負荷を上げることで、装置内の気体の噴出、気体中の有機溶媒濃度や温度等のバランスが崩れやすくなる。特に、スプレー速度を極端に上げた状態において、降雨等により外気温が急激に降下する場合は、装置内の温度バランスが崩れて、気体に含まれる有機溶媒が装置内で結露し、被覆粒子の被膜に欠陥が生じると共に装置が汚染され、更に製品被覆粒子中の溶媒除去が困難になるという問題があった。   In the production of the coated particles as described above, stable quality, maintenance of high productivity, and satisfactory physical properties are required. However, in order to achieve high productivity, it is obvious that the coating liquid spray speed, coating liquid concentration and vaporization speed should be increased, but it is difficult to stably obtain products of the target quality. As a result of disturbance factors such as temperature changes around the manufacturing equipment and coating waste due to frequent coating failures, the load of the solid-gas separator is increased, and there is a balance between the ejection of gas in the equipment, the concentration of organic solvent in the gas, temperature, etc. It tends to collapse. In particular, when the outside air temperature drops drastically due to rain or the like when the spray speed is extremely high, the temperature balance in the device is disrupted, and the organic solvent contained in the gas is condensed in the device, resulting in the formation of coated particles. There was a problem that the coating was defective and the device was contaminated, and further, it was difficult to remove the solvent in the product-coated particles.

また、流動槽で気化した有機溶媒や浮遊する芯材粒子の破片や被膜屑等の固形物が、気体と共に流動槽の気体出口から排出されて、固気分離器に到るまでの搬送路において浮遊する該固形物が湿潤すると、固形物が固着しやすくなり、気体の流れが悪化して流動槽、搬送路及び固気分離器等の装置内で有機溶媒が結露し、固形物が固気分離器で堆積して閉塞を生じ、被覆粒子の製造が不可能になるほか、固気分離器等での閉塞物を除去するため、装置の停止や機器を開放することは生産性の低下や有機溶媒の漏洩等を伴うため問題であった。   Also, in the transport path from the organic solvent vaporized in the fluidized tank and the solids such as floating core particle debris and coating waste to the solid gas separator after being discharged from the gas outlet of the fluidized tank together with the gas. When the solid matter that floats becomes wet, the solid matter tends to stick, the gas flow deteriorates, the organic solvent is condensed in the apparatus such as the fluid tank, the conveyance path, and the solid-gas separator, and the solid matter becomes solid and solid. In addition to depositing in the separator and causing clogging, it becomes impossible to produce coated particles, and in order to remove the clogging in the solid-gas separator, etc., stopping the equipment or opening the equipment reduces productivity. It was a problem due to leakage of organic solvent.

気体循環型プロセスにおける装置運転条件は、製品の品質を左右する流動槽内の被覆条件によって範囲が限定されている。被覆液の噴霧量(スプレー速度)や気体の温度、気体流量等から飽和蒸気圧曲線によって求められる結露しない範囲は予測可能であるが、生産性を高めるためには露点に近い条件設定が必要である。
また、装置全体を大きくすれば有機溶媒が結露しない安全な範囲で運転し、生産量を確保することはできるが、設備コストや電気代等の用役コストが増すため低コストに逆行する。そのため、設備の熱効率が高い製造装置や製造方法が求められている。
The range of apparatus operating conditions in the gas circulation process is limited by the coating conditions in the fluidized tank that affect the quality of the product. The non-condensing range determined by the saturated vapor pressure curve can be predicted from the coating liquid spray rate (spray speed), gas temperature, gas flow rate, etc., but conditions close to the dew point are necessary to increase productivity. is there.
In addition, if the entire apparatus is enlarged, it can be operated within a safe range in which the organic solvent does not condense, and the production amount can be secured. However, since the utility cost such as equipment cost and electricity cost increases, it goes against the low cost. Therefore, a manufacturing apparatus and a manufacturing method with high thermal efficiency of facilities are required.

特公平2−31039号公報JP-B-2-31039

本発明は、高い品質の被覆粒子を安定して、かつ高い生産性を維持しつつ製造できる粒子被覆装置、及びそれを用いた被覆粒子の製造方法を提供することを課題とする。   An object of the present invention is to provide a particle coating apparatus capable of producing high quality coated particles stably while maintaining high productivity, and a method for producing coated particles using the same.

本発明者は、前記課題を解決するため鋭意検討した。その結果、高温気体の供給によって芯材粒子を流動させ、該芯材粒子に有機溶媒及び被膜材料からなる被覆液を噴霧し有機溶媒を気化させて被覆粒子を形成させるための保温可能な流動槽、気化した有機溶媒を含む気体を流動槽から排出するための保温可能な搬送路、該有機溶媒を含む気体に同伴された粒子破片や被膜屑等の固形物を分離するための固気分離器、固形物除去後の有機溶媒を含む気体から有機溶媒を分離するための凝縮器、及び有機溶媒除去後の気体を加熱して流動槽に供給するためのブロワー(送風機)を有する粒子被覆装置によって課題が解決されることを見出し本発明を完成した。   The present inventor has intensively studied to solve the above problems. As a result, a fluid tank capable of maintaining heat for causing the core particles to flow by supplying a high-temperature gas, spraying a coating liquid composed of an organic solvent and a coating material onto the core particles, and vaporizing the organic solvent to form the coated particles. , A heat-containable transport path for discharging the gas containing the vaporized organic solvent from the fluidized tank, and a solid-gas separator for separating solids such as particle fragments and coating waste accompanying the gas containing the organic solvent A particle coating apparatus having a condenser for separating the organic solvent from the gas containing the organic solvent after removing the solid matter, and a blower (blower) for heating and supplying the gas after removing the organic solvent to the fluidized tank The present invention has been completed by finding that the problems can be solved.

本発明は以下によって構成される。
(1)高温気体の供給によって芯材粒子を流動させ、該芯材粒子に有機溶媒及び被膜材料からなる被覆液を噴霧し有機溶媒を気化させて被覆粒子を形成させるための保温可能な流動槽、気化した有機溶媒を含む気体を流動槽から排出するための保温可能な搬送路、該有機溶媒を含む気体に同伴された固形物を分離するための固気分離器、固形物除去後の有機溶媒を含む気体から有機溶媒を分離するための凝縮器、及び有機溶媒除去後の気体を加熱して流動槽に供給するためのブロワーを有する粒子被覆装置。
(2)固気分離器が保温可能である前記(1)項記載の粒子被覆装置。
(3)保温の熱源が水蒸気である前記(1)または(2)項記載の粒子被覆装置。
(4)固気分離器がサイクロン及びバグフィルターのいずれか一方または両方である前記(1)〜(3)項のいずれか1項記載の粒子被覆装置。
(5)芯材が肥料である前記(1)〜(4)のいずれか1項記載の粒子被覆装置。
(6)前記(1)〜(5)のいずれか1項記載の粒子被覆装置を用いる被覆粒子の製造方法。
The present invention is constituted by the following.
(1) A fluid tank capable of maintaining heat for causing core particles to flow by supplying a high-temperature gas, spraying a coating liquid composed of an organic solvent and a coating material onto the core particles and vaporizing the organic solvent to form the coated particles. , A heat-containable transport path for discharging the gas containing the vaporized organic solvent from the fluidized tank, a solid-gas separator for separating the solids entrained in the gas containing the organic solvent, and the organic after the solids are removed The particle coating apparatus which has a condenser for isolate | separating an organic solvent from the gas containing a solvent, and a blower for heating the gas after organic solvent removal, and supplying it to a fluidized tank.
(2) The particle coating apparatus according to (1) above, wherein the solid-gas separator can be kept warm.
(3) The particle coating apparatus according to (1) or (2), wherein the heat source for heat insulation is water vapor.
(4) The particle coating apparatus according to any one of (1) to (3), wherein the solid-gas separator is one or both of a cyclone and a bag filter.
(5) The particle coating apparatus according to any one of (1) to (4), wherein the core material is fertilizer.
(6) A method for producing coated particles using the particle coating apparatus according to any one of (1) to (5).

本発明の粒子被覆装置は、流動槽や搬送路が保温可能であるため、設備内の結露を防止することができ、その結果、固気分離器の閉塞が抑えられることにより安定した被覆条件を保つことができる。この装置を用いることによって、均一な被膜の形成が可能になり、被膜の欠陥の少ない、極めて優れた溶出制御機能を有する高品質の被覆粒子を、高い生産性を以って製造することができる。
また、固気分離器の掃除の回数が減少するため、生産性の向上を達成し、設備開放による有機溶媒の損失を減らすことができる。
In the particle coating apparatus of the present invention, the fluid tank and the conveyance path can be kept warm, so that dew condensation in the facility can be prevented, and as a result, the solid-gas separator can be prevented from being blocked and stable coating conditions can be obtained. Can keep. By using this apparatus, it is possible to form a uniform coating, and it is possible to produce high-quality coated particles having a very excellent elution control function with few defects in the coating with high productivity. .
Moreover, since the frequency | count of cleaning of a solid-gas separator reduces, the improvement of productivity can be achieved and the loss of the organic solvent by equipment opening can be reduced.

以下に、本発明の粒子被覆装置及びそれを用いる被覆粒子の製造方法について詳細に説明する。
本発明の粒子被覆装置について、図1により噴流層被覆装置を例として説明する。被覆装置は、流動槽(噴流塔)1、芯材粒子の破片や被膜屑等の固形物を気体から分離する固気分離器4、固形物を除去した気体に含まれる有機溶媒を冷却等により凝縮分離する凝縮器5、気体を循環送風させるブロワー6、有機溶媒を気化させるために気体を加熱するヒーター7、スプレーノズル2を通して被覆液を供給する装置(被膜材料溶解槽8、被覆液ポンプ9)、及びこれらを連結する搬送路から構成されている。
Below, the particle coating apparatus of this invention and the manufacturing method of the coated particle | grains using the same are demonstrated in detail.
The particle coating apparatus of the present invention will be described with reference to FIG. The coating apparatus includes a fluid tank (jet tower) 1, a solid-gas separator 4 that separates solids such as debris of core material particles and coating waste from a gas, and an organic solvent contained in the gas from which the solids are removed by cooling or the like. A condenser 5 for condensing and separating, a blower 6 for circulating and blowing a gas, a heater 7 for heating a gas to vaporize an organic solvent, and a device for supplying a coating liquid through a spray nozzle 2 (a coating material dissolving tank 8 and a coating liquid pump 9 ), And a transport path connecting them.

噴流塔1は、流動状態にある芯材粒子3に対し、被覆液(被膜材料溶解・懸濁液)をポンプ9によって、スプレーノズル2により噴霧し、該芯材粒子3の表面に吹き付けて、該表面を被覆すると同時に、並行して加熱器7で加熱された高温気体(有機溶媒及び水分を含有する空気)をブロワー6によって噴流塔1下部から整流缶11を通して流動槽内に流入させ、該気体によって該芯材粒子表面に付着している被覆液中の有機溶媒を瞬時に気化させる。
新たに気化された有機溶媒を含む気体は噴流塔1上部から排出され、固形物を分離除去するための固気分離器4を経た後、凝縮器5で冷却され、大部分の有機溶媒及び水分は凝縮回収後有機溶媒槽12に保管され、再び被膜材料の溶解に再利用される。大部分の有機溶媒及び水分を除去された空気を主成分とする気体は再びをブロワー6及び加熱器7を経由して噴流塔1に送られる。被覆操作を行う間、粒子温度T2が所定温度になるように前記の噴流塔1に入る高温気体の温度を制御する。ここで、粒子温度とは粒子(芯材)の表面温度を指し、測温端子の周囲に粒子(芯材)が存在する状態で計測される温度である。所定量の被膜材料で被覆された被覆粒子は、被覆粒子抜き出し口から排出され、通常は脱溶媒処理装置13、表面処理装置15を経由して製品となる。
The jet tower 1 sprays the coating liquid (coating material dissolution / suspension) with the spray nozzle 2 on the core material particles 3 in a fluidized state by the spray nozzle 2 and sprays them onto the surface of the core material particles 3. At the same time as covering the surface, a high-temperature gas (air containing an organic solvent and water) heated in parallel by the heater 7 is caused to flow from the lower part of the jet tower 1 through the rectifier 11 into the fluidized tank by the blower 6, The organic solvent in the coating liquid adhering to the surface of the core material particles is instantly vaporized by the gas.
The newly vaporized gas containing the organic solvent is discharged from the upper part of the jet tower 1, and after passing through the solid-gas separator 4 for separating and removing solids, it is cooled by the condenser 5, and most of the organic solvent and moisture are removed. Is stored in the organic solvent tank 12 after being condensed and recovered, and is reused for dissolving the coating material again. Most of the organic solvent and the gas mainly composed of air from which moisture has been removed are sent again to the jet tower 1 via the blower 6 and the heater 7. During the coating operation, the temperature of the hot gas entering the jet tower 1 is controlled so that the particle temperature T2 becomes a predetermined temperature. Here, the particle temperature refers to the surface temperature of the particle (core material) and is a temperature measured in a state where the particle (core material) exists around the temperature measuring terminal. The coated particles coated with a predetermined amount of the coating material are discharged from the coated particle extraction port, and usually become a product through the solvent removal processing device 13 and the surface processing device 15.

本発明の粒子被覆装置の運転方法は、バッチ式でも連続式でも構わない。例えば、噴流層被覆装置を用いてバッチ式運転により被覆操作を行う場合、一定量の粒子を噴流塔に仕込み、所定量の被膜材料を粒子表面に吹き付けて被覆した後、被覆粒子を噴流塔から排出する。その後新たに一定量の粒子を噴流塔に仕込み、前記と同様の操作を行う。
図1に示した装置以外の本発明に使用し得る被覆装置としては、流動層型または噴流層型の被覆装置として、特公昭42−24281号公報及び特公昭42−24282号公報に開示の、ガス体により粒子の噴水型流動層を形成せしめ、中心部に生ずる粒子分散層にコーティング剤を噴霧する装置を挙げることができる。
また、回転型の被覆装置として、特開平7−31914号公報及び特開平7−195007号公報に開示のドラムの回転によりドラム内周に具えたリフターによって粉粒体を上方に移送した後に落下させ、落下中の粉粒体表面にコーティング剤を塗布し、被膜を形成させる装置を挙げることができる。
The operation method of the particle coating apparatus of the present invention may be a batch type or a continuous type. For example, when performing a coating operation by batch operation using a spouted bed coating device, a fixed amount of particles are charged into a spout tower, a predetermined amount of coating material is sprayed onto the particle surface, and then the coated particles are removed from the spout tower. Discharge. Thereafter, a certain amount of particles are newly charged into the jet tower and the same operation as described above is performed.
As a coating apparatus that can be used in the present invention other than the apparatus shown in FIG. 1, as a fluidized bed type or spouted bed type coating apparatus, disclosed in Japanese Patent Publication Nos. 42-24281 and 42-24282, An apparatus that forms a fountain-type fluidized bed of particles with a gas body and sprays a coating agent on a particle-dispersed layer formed in the center can be exemplified.
Further, as a rotary type coating device, the powder particles are moved upward by a lifter provided on the inner periphery of the drum by the rotation of the drum disclosed in JP-A-7-31914 and JP-A-7-195007, and then dropped. An apparatus for applying a coating agent to the surface of a falling granular material to form a film can be mentioned.

本発明においては、流動槽(噴流塔)、及び流動槽内で気化した有機溶媒を気体によって搬送する搬送路は保温可能であり、更には粒子破片、被膜屑等の固形物を気体から分離するための固気分離器も保温可能であることが望ましい。
流動槽及び流動槽内で気化した有機溶媒を気体によって搬送する凝縮器までの搬送路の保温は、単に輸送管の外周を断熱材で取り囲み、気体の熱が外部に逃げるのを遮断するだけでも効果があるが、より有効なのは輸送管の外周に加熱手段を設けて積極的に搬送路を加熱することである。これにより搬送路内での結露を完全に防止できると共に、運転開始時に搬送路が冷えている場合でも、加熱によって搬送路を気体温度まで上昇させることが可能になる。加熱手段としては、輸送管の外周に水蒸気を通す管を配置するスチームトレースを採用することが最も好ましい。管内を通過する水蒸気の温度は130〜180℃が好ましく、水蒸気の通過量の調節によって輸送管内部の温度を調整することができる。加熱の熱源としては、水蒸気の他に熱水(60〜100℃)や電気を利用して加熱しても良い。
In the present invention, the fluid tank (jet tower) and the transport path for transporting the organic solvent vaporized in the fluid tank by gas can be kept warm, and further, solids such as particle fragments and coating waste are separated from the gas. Therefore, it is desirable that the solid-gas separator can be kept warm.
Insulation of the transport path to the condenser that transports the vaporized organic solvent vaporized in the fluid tank and the fluid tank simply by surrounding the outer periphery of the transport pipe with a heat insulating material and blocking the escape of the heat of the gas to the outside Although effective, it is more effective to provide heating means on the outer periphery of the transport pipe to actively heat the transport path. As a result, dew condensation in the transport path can be completely prevented, and even when the transport path is cold at the start of operation, the transport path can be raised to the gas temperature by heating. As the heating means, it is most preferable to employ a steam trace in which a pipe through which water vapor passes is arranged on the outer periphery of the transport pipe. The temperature of the water vapor passing through the pipe is preferably 130 to 180 ° C., and the temperature inside the transport pipe can be adjusted by adjusting the amount of water vapor passed through. As a heat source for heating, in addition to water vapor, heating may be performed using hot water (60 to 100 ° C.) or electricity.

流動槽及び搬送路の断熱または加熱による保温を行うことによって、搬送中の気体温度及び輸送管内壁温度の低下が防止される。搬送中の気体温度は一定に保つ必要はなく、結露が発生しない温度以上に保たれていれば良い。流動槽及び搬送路において、実質的に結露による問題が発生するのは、気体温度または輸送管内壁温度が露点までの差が3℃未満の温度まで低下する場合である。従って、流動槽及び搬送路の保温は、気体温度または輸送管内壁温度が露点より3℃以上、好ましくは5℃以上高い温度となるように調整するのが良い。   By performing heat insulation by heat insulation or heating of the fluid tank and the conveyance path, a decrease in the gas temperature during conveyance and the temperature of the inner wall of the transport pipe is prevented. The gas temperature during conveyance does not need to be kept constant as long as it is maintained at a temperature at which condensation does not occur. A problem due to condensation substantially occurs in the fluid tank and the conveyance path when the gas temperature or the inner wall temperature of the transport pipe is lowered to a temperature lower than 3 ° C. Therefore, the heat retention of the fluid tank and the conveyance path is preferably adjusted so that the gas temperature or the inner wall temperature of the transport pipe is 3 ° C. or more, preferably 5 ° C. or more higher than the dew point.

本発明において、固気分離器を保温する場合も、流動槽及び搬送路を保温する場合と同様である。固気分離器としては比較的大きな粒子(粒径5μm以上)の除去効率の高いサイクロン及び小さな粒子(粒径1μm以上)の除去効率の高いバグフィルターのいずれか一方または両方の利用が好ましい。これらは粒子被覆装置の条件によって任意に選択することができるが、サイクロン及びバグフィルターの併用は効率的に小さな粒子を除去できるため、装置の汚染が少ないメリットを有する。
サイクロンは含塵気体に旋回運動を与え、粒子に作用する遠心力によって粒子を気体から分離する遠心分離器であり、接線流入型や軸流案内羽根型等の型式が挙げられる。これらの中でも構造が最も簡単な接線流入型が好ましい。
バグフィルターの構造は各機種によって様々であるが、例えばパルスエアー方式のバグフィルターの場合は一般的に、ハウジング部、トッププレナム部、ホッパー部、ろ布によって構成される。一般的なろ布は、径15〜50cm、長さ1〜5mの円筒形の袋であり、使用時の条件によってその材質等が選択される。バグフィルターのろ布としてカートリッジ型フィルターを用いたものが設置面積、保守性、除塵性能の点で優れており好ましい。具体例としては、日本ドナルドソン社製のTD型やダウンフロー型を挙げることができる。
In the present invention, the case where the solid-gas separator is kept warm is the same as the case where the fluid tank and the conveyance path are kept warm. As the solid-gas separator, it is preferable to use either or both of a cyclone having a high removal efficiency of relatively large particles (particle size of 5 μm or more) and a bag filter having a high removal efficiency of small particles (particle size of 1 μm or more). These can be arbitrarily selected depending on the conditions of the particle coating apparatus. However, the combined use of the cyclone and the bag filter has an advantage that the apparatus is less contaminated because it can efficiently remove small particles.
The cyclone is a centrifugal separator that imparts a swirling motion to the dust-containing gas and separates the particles from the gas by centrifugal force acting on the particles, and examples thereof include a tangential inflow type and an axial flow guide vane type. Among these, the tangential inflow type having the simplest structure is preferable.
The structure of the bag filter varies depending on each model. For example, in the case of a pulse air type bag filter, the bag filter is generally constituted by a housing part, a top plenum part, a hopper part, and a filter cloth. A general filter cloth is a cylindrical bag having a diameter of 15 to 50 cm and a length of 1 to 5 m, and the material or the like is selected depending on the conditions during use. A bag filter using a cartridge-type filter is preferable in terms of installation area, maintainability, and dust removal performance. Specific examples include a TD type and a downflow type manufactured by Nippon Donaldson.

固気分離器を設計能力通りに使用するためには、結露を防ぐ必要があり、特に閉塞しやすいバグフィルターにおいてはろ布を収納したハウジング部(バグフィルター周囲の鉄皮)や固形物を収集するホッパー等の外周を、保温材で覆って保温する。好ましくはスチームトレース等の加熱手段を併用して積極的に加熱する。固気分離器の内部にスチームトレース等の加熱手段を有していても良い。保温の程度は、搬送路と同様に温度を調整することで、固気分離器内の結露を防止する事ができる。   In order to use the solid-gas separator as designed, it is necessary to prevent condensation. Especially in bag filters that are easily clogged, collect the housing part (iron skin around the bag filter) and solid matter containing the filter cloth. Cover the outer periphery of the hopper with a heat insulating material to keep it warm. Preferably, the heating is positively performed in combination with a heating means such as steam trace. You may have heating means, such as a steam trace, inside the solid-gas separator. The degree of heat retention can prevent condensation in the solid-gas separator by adjusting the temperature in the same manner as the conveyance path.

固気分離器の固形物分離性能としては、JIS7種標準粉体(JISZ8901試験用ダスト、中位径30μm)をろ過速度1.5m/min、単位ろ過面積当たりのダスト投入量2000g/m(ダスト濃度0.88g/mで一定供給)の測定条件下において、エアフィルター直後にアブソリュートフィルターを設け、定風量制御でエアを引き、エアフィルターにダストを吸引させ、除塵効率=100×(1−アブソリュートフィルター重量増/投入ダスト全重量)にて算出した値が、95.0%以上、好ましくは99.5%以上の性能を有することが好ましい。特に、粒径が5μmを超える固形物には、被覆不良の被膜屑や流動中に破砕した尿素等の芯材等が挙げられるが、これらから搬送管や循環系にある装置の汚染を防ぐことは装置の安定運転、製品品質の維持・向上に寄与する。 As the solids separation performance of the solid-gas separator, a JIS 7 standard powder (JIS Z8901 test dust, medium diameter 30 μm) was filtered at a rate of 1.5 m / min, and the dust input per unit filtration area was 2000 g / m 2 ( Under a measurement condition of a dust concentration of 0.88 g / m 2 ), an absolute filter is provided immediately after the air filter, air is drawn with constant air flow control, dust is sucked into the air filter, dust removal efficiency = 100 × (1 It is preferred that the value calculated by (absolute filter weight increase / total input dust weight) has a performance of 95.0% or more, preferably 99.5% or more. In particular, solids with a particle size exceeding 5 μm include poorly coated film scraps and core materials such as urea crushed during flow, etc., from which contamination of the equipment in the transport pipe and the circulation system is prevented. Contributes to the stable operation of equipment and the maintenance and improvement of product quality.

本発明においては、流動槽及び搬送路、更に好ましくは固気分離器内での結露を防ぐため、これらを保温することによって気体温度の降下を防止する。しかし、搬送路入口(流動槽出口)温度を凝縮器まで維持すると凝縮器の負荷が増すため、それに対応して設備費、ランニングコストも高価となる。そのため、固気分離器出口から凝縮器入口までの搬送路は加熱しなくても良い。ただし、冬場は夏場と比べて外気温が低く凝縮器入口までの気体温度が下がるため、結露対策として固気分離器から凝縮器までの搬送路には、凝縮器の位置を固気分離器よりも低くする等により、下りの傾斜を付けるのが好ましい。   In the present invention, in order to prevent dew condensation in the fluid tank and the conveyance path, more preferably in the solid-gas separator, the temperature of the gas tank is prevented from being lowered by keeping them warm. However, if the conveyance path inlet (fluid tank outlet) temperature is maintained up to the condenser, the load on the condenser increases, and accordingly, the equipment cost and running cost are also increased. Therefore, the conveyance path from the solid-gas separator outlet to the condenser inlet does not have to be heated. However, since the outside air temperature is lower in winter and the gas temperature to the condenser inlet is lower than in summer, the condenser position is placed on the transport path from the solid-gas separator to the condenser to prevent condensation. It is preferable to provide a downward slope, for example, by lowering.

高温気体によって供給される熱量は被膜材料を溶解または懸濁した有機溶媒の気化潜熱等に使用されるため、定常状態においては高温気体の温度と被覆される粒子(芯材)の表面温度はそれぞれ一定であり、有機溶媒を気化した後の気体温度も溶媒の種類にもよるが概ね一定となる。しかし、保温可能でない装置で被覆操作を行なえば、昼夜、季節、天気による外気温の変動により、気体中の有機溶媒の濃度が高い流動槽、流動槽出口から凝縮器に至る搬送路、及び固気分離器の中での露点が変動し、結露に至る場合がある。
尚、高温気体の温度は、有機溶媒の気化等に必要とされる熱量が供給されるように、装置の運転条件に応じて適宜選択されるが、実際に被覆操作が行われる定常状態においては110〜175℃が一般的である。
The amount of heat supplied by the high-temperature gas is used for the latent heat of vaporization of the organic solvent in which the coating material is dissolved or suspended. Therefore, in the steady state, the temperature of the high-temperature gas and the surface temperature of the coated particles (core material) are respectively The gas temperature after vaporizing the organic solvent is also substantially constant depending on the type of the solvent. However, if the coating operation is performed with a device that cannot maintain heat, a fluidized tank with a high concentration of organic solvent in the gas, a transport path from the fluidized tank outlet to the condenser, and a solid phase due to fluctuations in the outside temperature due to daytime, season, and weather. The dew point in the air separator may fluctuate, leading to condensation.
The temperature of the hot gas is appropriately selected according to the operating conditions of the apparatus so that the amount of heat required for vaporization of the organic solvent is supplied, but in a steady state where the coating operation is actually performed. 110-175 ° C is common.

本発明の粒子被覆装置を使用すれば、装置の前記部位での結露が抑制できるため、製品は被膜の欠陥が少なく、装置は汚れが少なくて長期運転安定性を有し、従来にない生産性、環境保全性に優れた被覆操作が可能である。この理由は、本発明の装置が保温可能でない装置と比較して、装置の各部位での気体温度が安定し、装置周囲の急激な温度変化の影響を受け難いため、流動槽内での有機溶媒の気化が良好に維持できることが一因と考えられる。   If the particle coating apparatus of the present invention is used, it is possible to suppress dew condensation at the above-mentioned part of the apparatus, so that the product has fewer coating defects, the apparatus has less fouling, has long-term operational stability, and unprecedented productivity. It is possible to perform coating operation with excellent environmental conservation. This is because the gas temperature at each part of the device is stable and less susceptible to sudden temperature changes around the device, compared to a device in which the device of the present invention is not capable of keeping warm. It is thought that one reason is that the vaporization of the solvent can be maintained well.

本発明の粒子被覆装置には、流動槽内で被覆された後、抜き出し口から抜き出された被覆粒子に残存する有機溶媒を完全に除去し回収するための脱溶媒処理装置、更に脱有機溶媒された被覆粒子の表面に用途に応じた処理を施すための表面処理装置を設置することが好ましい。また、流動槽内の下部と上部、流動槽出口、固気分離器、凝縮器、及びこれら機器を経由する気体の搬送路には、気体温度を測定するための温度計を設置することが好ましい。流動槽のガイド管(図1の10)は、筒状であり安定的に噴流を発生させることが可能であり、固定式でも可動式でも良い。本発明に用いられる気体としては、被覆液中に含まれる物質によって、空気、窒素等の不活性気体等が適宜使用される。被覆液を噴霧するスプレーノズルの形状等に特に制限はなく、スプレーの量、被覆液の濃度等を勘案して適宜選定すれば良い。   The particle coating apparatus of the present invention includes a desolvation processing apparatus for completely removing and recovering the organic solvent remaining in the coated particles that have been coated in the fluidized tank and then withdrawn from the outlet, and further the deorganic solvent It is preferable to install a surface treatment apparatus for performing a treatment according to the application on the surface of the coated particles. Moreover, it is preferable to install a thermometer for measuring the gas temperature in the lower and upper portions in the fluid tank, the fluid tank outlet, the solid-gas separator, the condenser, and the gas conveyance path passing through these devices. . The guide tube (10 in FIG. 1) of the fluid tank is cylindrical and can stably generate a jet, and may be fixed or movable. As the gas used in the present invention, an inert gas such as air or nitrogen is appropriately used depending on the substance contained in the coating liquid. The shape of the spray nozzle for spraying the coating liquid is not particularly limited, and may be appropriately selected in consideration of the amount of spray, the concentration of the coating liquid, and the like.

本発明の被覆粒子の製造方法は、前記の粒子被覆装置を用いる。本製造方法において、被覆される粒子(芯材)に特に制限はなく、粒状であれば、肥料、農薬、食品、医薬品等各種の粒子を使用することができる。本製造方法は、特に大量生産が必要な肥料や農薬の被覆粒子の製造に好適である。   The method for producing coated particles of the present invention uses the particle coating apparatus described above. In this production method, the particles to be coated (core material) are not particularly limited, and various particles such as fertilizers, agricultural chemicals, foods, and pharmaceuticals can be used as long as they are granular. This production method is particularly suitable for the production of fertilizer and agricultural chemical coated particles that require mass production.

芯材が粒状肥料である場合、その有効成分に特に制限はなく、従来公知のものが使用できる。前記の肥料としては、窒素質肥料、燐酸質肥料、加里質肥料のほか、植物必須要素のカルシウム、マグネシウム、硫黄、鉄、微量要素やケイ素等を含有する肥料を挙げることができ、具体的には、窒素質肥料として、硫酸アンモニア、尿素、硝酸アンモニアのほか、イソブチルアルデヒド縮合尿素、アセトアルデヒド縮合尿素等が挙げられ、燐酸質肥料としては過燐酸石灰、熔成リン肥、焼成リン肥等が挙げられ、加里質肥料としては、硫酸加里、塩化加里、ケイ酸加里肥料等が挙げられ、その形態としては特に限定されない。また、肥料の三要素の合計成分量が30%以上の高度化成肥料や配合肥料、更には、有機質肥料でもよい。また、硝酸化成抑制材や農薬を添加または付着させた肥料でもよい。また、有効成分は1種であっても、2種以上の複合成分からなるものであっても良い。   When the core material is a granular fertilizer, the active ingredient is not particularly limited, and conventionally known ones can be used. Examples of the fertilizers include nitrogenous fertilizers, phosphate fertilizers and calcareous fertilizers, as well as fertilizers containing plant essential elements such as calcium, magnesium, sulfur, iron, trace elements and silicon. Nitrogenous fertilizers include ammonium sulfate, urea, ammonia nitrate, isobutyraldehyde condensed urea, acetaldehyde condensed urea, etc., and phosphoric fertilizers include lime superphosphate, molten phosphorus fertilizer, calcined phosphorus fertilizer, etc. Examples of the calcareous fertilizer include potassium sulfate, potassium chloride, and potassium silicate fertilizer, and the form is not particularly limited. Moreover, the advanced chemical fertilizer and compound fertilizer whose total component amount of the three elements of a fertilizer is 30% or more, Furthermore, organic fertilizer may be sufficient. Further, it may be a fertilizer to which a nitrification inhibitor or a pesticide is added or adhered. Further, the active ingredient may be one type or may be composed of two or more composite components.

芯材が農薬粒剤である場合、その有効成分に特に制限はなく、従来公知のものが使用できる。具体的には、病害防除剤、害虫防除剤、有害動物防除剤、雑草防除剤、植物生長調節剤を挙げることができ、これらであればその種類に制限なく使用することができる。病害防除剤とは、農作物等を病原微生物の有害作用から保護するために用いられる薬剤であり、主として殺菌剤が挙げられる。害虫防除剤とは、農作物等の害虫を防除する薬剤であり、主として殺虫剤が挙げられる。有害動物防除剤とは、農作物等を加害する植物寄生性ダニ、植物寄生性線虫、野鼠、鳥、その他の有害動物を防除するために用いる薬剤である。雑草防除剤とは農作物や樹木等に有害となる草木植物の防除に用いられる薬剤であり、除草剤とも呼ばれる。植物生長調節剤とは、植物の生理機能の増進または抑制を目的に用いられる薬剤である。   When the core material is an agrochemical granule, the active ingredient is not particularly limited, and conventionally known ones can be used. Specific examples include a disease control agent, a pest control agent, a harmful animal control agent, a weed control agent, and a plant growth regulator, and any of these can be used without limitation. A disease control agent is a chemical | medical agent used in order to protect agricultural products etc. from the harmful effect of a pathogenic microbe, and a disinfectant is mainly mentioned. A pest control agent is a chemical | medical agent which controls pests, such as agricultural crops, and an insecticide is mainly mentioned. The harmful animal control agent is a drug used for controlling plant parasitic mites, plant parasitic nematodes, wild boars, birds, and other harmful animals that harm crops and the like. The weed control agent is a drug used for controlling a plant or plant that is harmful to agricultural crops or trees, and is also called a herbicide. A plant growth regulator is a drug used for the purpose of enhancing or suppressing the physiological function of a plant.

該農薬は、常温で固体の粉状であることが望ましいが常温で液体であっても良い。また、本発明においては、農薬が水溶性であっても、水難溶性であっても、水不溶性のものであっても用いることができ特に限定されるものではない。また、有効成分は1種であっても、2種以上の複合成分からなるものであっても良い。   The pesticide is preferably in the form of a solid powder at room temperature, but may be liquid at room temperature. In the present invention, the pesticide can be used regardless of whether it is water-soluble, poorly water-soluble or water-insoluble. Further, the active ingredient may be one type or may be composed of two or more composite components.

本発明で用いる芯材粒子は、前述の有効成分を1種以上含有するものであれば良いが、本発明の効果を損なわない範囲であれば、上記以外の成分として、クレー、カオリン、タルク、ベントナイト、炭酸カルシウム等の担体や、ポリビニルアルコール、カルボキシメチルセルロースナトリウム、澱粉類等の結合剤を含有するものであっても構わない。また、必要に応じ、例えばポリオキシエチレンノニルフェニルエーテル等の界面活性剤や廃糖蜜、動物油、植物油、水素添加油、脂肪酸、脂肪酸金属塩、パラフィン、ワックス、グリセリン等を含有したものであっても構わない。更には、前述の粒子を樹脂や無機物で被覆したものであってもよい。   The core particles used in the present invention may be those containing one or more of the above-mentioned active ingredients, but as long as the effects of the present invention are not impaired, clay, kaolin, talc, It may contain a carrier such as bentonite or calcium carbonate, or a binder such as polyvinyl alcohol, sodium carboxymethyl cellulose, or starch. Further, if necessary, for example, a surfactant such as polyoxyethylene nonylphenyl ether, molasses, animal oil, vegetable oil, hydrogenated oil, fatty acid, fatty acid metal salt, paraffin, wax, glycerin, etc. I do not care. Further, the particles described above may be coated with a resin or an inorganic material.

これらの芯材粒子の粒径は特に制限はないが、例えば、肥料の場合においては1.0〜10.0mmであり、特に1〜5mmのものが好ましい。農薬の場合においては0.3〜3.0mmであることが好ましい。これらは篩いを用いることにより、前記範囲内で任意の粒径を選択することができる。   The particle diameter of these core particles is not particularly limited. For example, in the case of fertilizer, it is 1.0 to 10.0 mm, and particularly preferably 1 to 5 mm. In the case of an agrochemical, it is preferable that it is 0.3-3.0 mm. By using a sieve, any particle size can be selected within the above range.

芯材粒子の造粒方法としては、押出造粒法、流動層式造粒法、動転造粒法、圧縮造粒法、被覆造粒法、吸着造粒法等を用いることができる。本発明においては、これらの造粒法の何れを使用しても良い。   As the granulation method of the core material particles, extrusion granulation method, fluidized bed granulation method, dynamic rolling granulation method, compression granulation method, coating granulation method, adsorption granulation method, and the like can be used. Any of these granulation methods may be used in the present invention.

これらの芯材粒子の形状は球形に近いものが好ましく、粒度分布も狭いものが溶出特性の面から好ましい。具体的には、下記式で求められた円形度係数が、好ましくは0.7以上、より好ましくは0.75以上、更に好ましくは0.8以上の球状である。円形度係数の最大値は1であり、1に近づくほど粒子は真円に近づき、粒子形状が真円から崩れるに従って円形度係数は小さくなる。
円形度係数={(4π×粒子の投影面積)/(粒子投影図の輪郭の長さ)
The shape of these core material particles is preferably close to a spherical shape, and those having a narrow particle size distribution are preferable from the viewpoint of elution characteristics. Specifically, the circularity coefficient obtained by the following formula is preferably a sphere having a sphericity of preferably 0.7 or more, more preferably 0.75 or more, and still more preferably 0.8 or more. The maximum value of the circularity coefficient is 1, and as the value approaches 1, the particle approaches a perfect circle, and the circularity coefficient decreases as the particle shape collapses from the perfect circle.
Circularity coefficient = {(4π × projection area of particle) / (length of contour of particle projection) 2 }

例えば、施用後一定期間有効成分の溶出が抑制された溶出抑制期間(以下、d1という)と、施用後一定期間経過後、該有効成分の溶出が持続する溶出期間(以下、d2という)とからなる時限溶出型の溶出機能を有する被覆粒子では、円形度係数が0.7を下回る芯材粒子が増えると、該粒子を用いて得られる時限溶出型の溶出機能を有する被覆粒子のd1における溶出抑制が不十分となり、有効成分の洩れを生じやすくなる傾向にあるため、芯材粒子の円形度係数は0.7以上のものであることが好ましい。   For example, from an elution suppression period (hereinafter referred to as d1) in which elution of an active ingredient is suppressed for a certain period after application, and an elution period (hereinafter referred to as d2) in which elution of the active ingredient continues after a certain period after application. In the coated particles having a timed elution type elution function, when the core particles having a circularity coefficient of less than 0.7 increase, elution of the coated particles having a timed elution type elution function obtained using the particles at d1 Since the suppression tends to be insufficient and the active ingredient tends to leak, the core material particles preferably have a circularity coefficient of 0.7 or more.

本発明の粒子被覆装置及び被覆粒子の製造方法において、芯材粒子の被覆に用いられる被膜材料は特に限定されるものではないが、時限溶出型の被覆粒子を製造する場合には、粒子に含まれる有効成分の溶出を厳密に制御できる材料、組成のものを選択すれば良い。このような被膜材料としては、硫黄に代表される無機被膜材、フェノール樹脂、アルキド樹脂、ポリウレタン等の熱硬化性樹脂、及びポリエチレン、ポリプロピレン等のポリオレフィンやポリ塩化ビニリデン等の熱可塑性樹脂が挙げられる。
これらのうち、肥料や農薬のように、厳密かつ長期に亘る溶出制御が求められる有効成分を含む粒子を被覆する場合は、被膜材料として熱硬化性樹脂や熱可塑性樹脂を用いることが好ましく、より高度な溶出制御が必要であれば、熱可塑性樹脂を用いることが特に好ましい。
In the particle coating apparatus and the method for producing coated particles of the present invention, the coating material used for coating the core particles is not particularly limited, but is included in the case of producing time-dissolved coated particles. A material and composition that can strictly control the elution of the active ingredient to be selected may be selected. Examples of such coating materials include inorganic coating materials typified by sulfur, thermosetting resins such as phenolic resins, alkyd resins, and polyurethanes, and thermoplastic resins such as polyolefins such as polyethylene and polypropylene, and polyvinylidene chloride. .
Of these, when coating particles containing active ingredients that require strict and long-term elution control, such as fertilizers and agricultural chemicals, it is preferable to use a thermosetting resin or a thermoplastic resin as the coating material, If high elution control is necessary, it is particularly preferable to use a thermoplastic resin.

好ましい熱可塑性樹脂としては具体的に、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、エチレン−酢酸ビニル共重合体、及びエチレン−α−オレフィン共重合体、ポリプロピレン、エチレン−ポリプロピレン共重合体、エチレン−ブタジエン共重合体、エチレン−一酸化炭素共重合体、エチレン−ヘキセン共重合体、ポリブテン、ブテン−エチレン共重合体、ブテン−プロピレン共重合体、ポリスチレン、エチレン−酢酸ビニル−一酸化炭素共重合体、エチレン−アクリル酸共重合体、エチレン−メタアクリル酸共重合体及びエチレン−メタアクリル酸エステル共重合体等が例示でき、塩化ビニリデン系重合体としては、塩化ビニリデン−塩化ビニル共重合体あるいはジエン系重合体の水素化物が例示できる。尚、上記の樹脂はメルトフローレイトや分子量、分子量分布、使用触媒、製造プロセス等は特に限定されるものではない。   Specific examples of preferable thermoplastic resins include low density polyethylene, high density polyethylene, linear low density polyethylene, ultra-low density polyethylene, ethylene-vinyl acetate copolymer, and ethylene-α-olefin copolymer, polypropylene, Ethylene-polypropylene copolymer, ethylene-butadiene copolymer, ethylene-carbon monoxide copolymer, ethylene-hexene copolymer, polybutene, butene-ethylene copolymer, butene-propylene copolymer, polystyrene, ethylene- Examples include vinyl acetate-carbon monoxide copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, and ethylene-methacrylic acid ester copolymer. As vinylidene chloride-based polymers, Vinylidene-vinyl chloride copolymer or diene polymer water Product can be exemplified. The above resin is not particularly limited in terms of melt flow rate, molecular weight, molecular weight distribution, catalyst used, production process and the like.

これらの中でも、α−オレフィンにエチレンを含めた場合の、α−オレフィン(共)重合体及びα−オレフィン−ビニルエステル共重合体は、溶出制御性、被膜強度の面から好ましい。該α−オレフィン(共)重合体の中でもポリエチレンが好ましく、低分子量ポリエチレンが生分解性を有する点で更に好ましい。被膜材料に低分子量ポリエチレンを含む場合には、被膜の物理的強度不足を補うため、他のエチレン−1−オクテン共重合体等のα−オレフィン(共)重合体、またはエチレン−酢酸ビニル共重合体等のα−オレフィン−ビニルエステル共重合体等との併用が好ましい。   Among these, an α-olefin (co) polymer and an α-olefin-vinyl ester copolymer when ethylene is included in the α-olefin are preferable from the viewpoints of elution controllability and film strength. Among the α-olefin (co) polymers, polyethylene is preferable, and low molecular weight polyethylene is more preferable in terms of biodegradability. When the coating material contains low molecular weight polyethylene, other alpha-olefin (co) polymers such as ethylene-1-octene copolymer or ethylene-vinyl acetate copolymer is used to compensate for the lack of physical strength of the coating. Use in combination with an α-olefin-vinyl ester copolymer such as a coalescence is preferred.

本発明で使用される好ましい被覆液は、前記熱可塑性樹脂の貧溶媒溶液にそれ以外の被膜材料を添加して得られる。該被覆液はこれを粒子に噴霧すると共に有機溶媒を瞬時に気化させて被膜を形成する被覆方法において特に有効である。該被覆液に使用される樹脂と貧溶媒である有機溶媒とは、高温では樹脂が高濃度で溶解し、低温では樹脂が析出してゼリー状となる組合わせが好ましい。この組合わせは非常に緻密な被膜を形成するので、特に時限溶出型の被膜形成に適している。   A preferable coating solution used in the present invention is obtained by adding other coating materials to the poor solvent solution of the thermoplastic resin. The coating solution is particularly effective in a coating method in which the coating liquid is sprayed onto the particles and the organic solvent is instantly vaporized to form a coating. The resin used in the coating solution and the organic solvent which is a poor solvent are preferably a combination in which the resin is dissolved at a high concentration at a high temperature and the resin is precipitated at a low temperature to form a jelly. Since this combination forms a very dense film, it is particularly suitable for forming a time-eluting film.

上記以外の被膜材料としては、タルク、マイカ、セリタイト、ガラスフレーク、各種金属箔、黒鉛、BN(六方晶)、MIO(板状酸化鉄)、板状炭カル、板状水酸化アルミニウム等の板状フィラー、炭酸カルシウム、シリカ、クレー、各種鉱石粉砕品、硫黄等粉体状の無機フィラーや、澱粉、酸化澱粉、変性澱粉、セルロース、カルボキシ変性セルロース、寒天等の有機フィラー、界面活性剤等が挙げられる。無機フィラーの量は全被膜材料中において3〜90重量%が好ましく、20〜80重量%がより好ましい。この範囲であれば、被膜の物理的強度の低下も少ない。有機フィラーの量は全被膜材料中において40重量%以下が好ましく、この範囲であれば、溶出の制御に支障がない。有機フィラーは時限溶出型被覆粒子の溶出速度調節剤としても用いられる場合がある。   Other coating materials include talc, mica, cerite, glass flakes, various metal foils, graphite, BN (hexagonal crystal), MIO (plate iron oxide), plate carbon cal, plate aluminum hydroxide and other plates. Filler, calcium carbonate, silica, clay, various ore pulverized products, powdered inorganic filler such as sulfur, starch, oxidized starch, modified starch, cellulose, carboxy-modified cellulose, organic filler such as agar, surfactant, etc. Can be mentioned. The amount of the inorganic filler is preferably 3 to 90% by weight, and more preferably 20 to 80% by weight in the entire coating material. If it is this range, the fall of the physical strength of a film will also be few. The amount of the organic filler is preferably 40% by weight or less in the entire coating material. The organic filler may also be used as an elution rate modifier for the time elution type coated particles.

被膜におけるフィラー分散の変動係数は、50%以下であることが好ましく、35%以下であることがより好ましい。変動係数が50%以下であると、得られる被覆粒子間の溶出機能のばらつきは小さくなる傾向にある。変動係数は0に近いほど好ましいが、5%に満たない場合には、下記の変動係数の測定方法では、フィラーの形状による測定誤差のために測定が困難であることから、本発明において変動係数は、好ましくは5〜50%、より好ましくは5〜35%である。   The coefficient of variation of filler dispersion in the coating is preferably 50% or less, and more preferably 35% or less. When the coefficient of variation is 50% or less, variation in the elution function between the coated particles obtained tends to be small. The coefficient of variation is preferably closer to 0. However, when the coefficient of variation is less than 5%, the following coefficient of variation measurement method is difficult to measure due to a measurement error due to the shape of the filler. Is preferably 5 to 50%, more preferably 5 to 35%.

被膜おけるフィラー分散の変動係数とは、1個の粒子の被膜の切断面において、膜厚方向を縦、膜表面に対して平行方向を横とし、1個の粒子の被膜の切断面から任意に、縦×横=20μm×50μmの範囲を10箇所、任意に抽出した20粒について走査型電子顕微鏡で観察し、各箇所に存在するフィラー数を計測し、その計測結果から求めた(該変動係数=標準偏差/平均値×100)ものである。   The coefficient of variation of the filler dispersion in the coating is arbitrarily determined from the cutting surface of one particle coating, with the film thickness direction being vertical and the direction parallel to the film surface being transverse to the cutting surface of one particle coating. , Vertical × horizontal = 20 μm × 50 μm in 10 locations, 20 particles extracted arbitrarily were observed with a scanning electron microscope, the number of fillers present in each location was measured, and obtained from the measurement results (the coefficient of variation = Standard deviation / average value x 100).

上記の樹脂には、ポリオールの脂肪酸エステルに代表されるノニオン界面活性剤、非イオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤等から、界面活性剤のエステル化度、アルキル基の鎖長、アルキレンオキサイドの付加モル数及び純度を考慮しつつ選択して使用することができる。
界面活性剤の量は、特に限定されるものではないが、樹脂に対して0.01〜15重量%が好ましく、0.1〜5重量%がより好ましい。これらの被覆材料は有機溶媒に溶解・懸濁・分散されてスプレーノズルから噴霧される。
Examples of the resin include nonionic surfactants typified by fatty acid esters of polyols, nonionic surfactants, cationic surfactants, anionic surfactants, and the like. The chain length, the number of added moles of alkylene oxide and the purity can be selected and used.
The amount of the surfactant is not particularly limited, but is preferably 0.01 to 15% by weight, more preferably 0.1 to 5% by weight based on the resin. These coating materials are dissolved, suspended, and dispersed in an organic solvent and sprayed from a spray nozzle.

更に上記の樹脂には、被膜材料中の樹脂を分解させるため、種々の有機金属化合物を用いてもよい。有機金属化合物としては、例えば有機金属錯体や有機酸金属塩等が挙げられる。中でも光分解性の調節が容易なことから、鉄錯体やカルボン酸鉄が好ましい。例えば、鉄錯体としては、鉄アセチルアセトナート、鉄アセトニルアセトネート、鉄のジアルキルジチオカルバメート、ジチオホスフェート、キサンテート、及びベンズチアゾール等が挙げられる。カルボン酸鉄としては、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、ベヘン酸、オレイン酸、リノール酸、リノレン酸等の鉄化合物が挙げられる。これらは単独で添加しても良いし、2種以上を組み合わせて添加しても良い。被膜材料中の有機金属化合物の割合は、0.0001〜1重量%が好ましく、より好ましくは0.001〜0.5重量%である。上記の割合であれば、被覆粒子の使用時に所期の被膜の崩壊性または分解性が得られ、保管中における被覆粒子の品質の変化が少ない。   Further, various organometallic compounds may be used for the above resin in order to decompose the resin in the coating material. Examples of organometallic compounds include organometallic complexes and organic acid metal salts. Among these, iron complexes and iron carboxylates are preferable because the photodegradability can be easily adjusted. Examples of the iron complex include iron acetylacetonate, iron acetonylacetonate, iron dialkyldithiocarbamate, dithiophosphate, xanthate, and benzthiazole. Examples of the iron carboxylate include iron compounds such as caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, behenic acid, oleic acid, linoleic acid, and linolenic acid. These may be added alone or in combination of two or more. The ratio of the organometallic compound in the coating material is preferably 0.0001 to 1% by weight, more preferably 0.001 to 0.5% by weight. If it is said ratio, the desired disintegration or decomposability | degradability of a film will be obtained at the time of use of a coating particle, and the change of the quality of the coating particle during storage will be few.

本発明で用いられる有機溶媒に特に制限はないが、樹脂成分を溶解し、粒子を溶解しないものが好ましい。具体的にはテトラクロロエチレン、ジクロロエタン、トリクロロエタン等のハロゲン化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類を挙げることができる。   Although there is no restriction | limiting in particular in the organic solvent used by this invention, The thing which melt | dissolves a resin component and does not melt | dissolve particle | grains is preferable. Specifically, halogenated hydrocarbons such as tetrachloroethylene, dichloroethane and trichloroethane, aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane and heptane, ketones such as acetone and methyl ethyl ketone, acetic acid Examples include esters such as ethyl and butyl acetate.

以下、実施例によって本発明を説明するが、本発明はこれらにより限定されるものではない。
実施例1
粒子被覆装置
図1によって実施例1に用いた粒子被覆装置を説明する。噴流塔1は塔径450mm、高さ6000mm、空気噴出口径100mm、円錐角50度の形状であり、芯材(粒子)投入口及び被覆粒子排出口を有する。2はスプレーノズル、3は芯材(粒子)である。
4は内径420mm、長さ1337mmのサイクロン型固気分離器、5は有効伝熱面積34.2mの多管式冷却凝縮器である。6は1000Nm/h仕様のルーツ型ブロワー、7は有効伝熱面積17.9mのフィンチューブ型ヒーターである。8は容量130Lの攪拌機付き被膜材料溶解槽であり、加熱用スチームジャケットと温度調節器を備えている。9は最大送液量100L/hのダイヤフラム型被覆液ポンプである。10は内径120mm、長さ660mmのテフロン(登録商標)製ガイド管、11は整流缶である。
噴流塔1及び噴流塔出口から凝縮器5までの搬送路に保温材を巻いて保温した。また、固気分離器の周囲に50〜100mm間隔でパイプを巻き回し、0.2MPa(ゲージ圧)の水蒸気を通し、水蒸気出口にスチームトラップを設置し、その上から保温材を巻いて保温した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by these.
Example 1
Particle Coating Device The particle coating device used in Example 1 will be described with reference to FIG. The jet tower 1 has a tower diameter of 450 mm, a height of 6000 mm, an air outlet diameter of 100 mm, and a cone angle of 50 degrees, and has a core material (particle) inlet and a coated particle outlet. 2 is a spray nozzle, 3 is a core material (particle).
4 is a cyclone solid-gas separator having an inner diameter of 420 mm and a length of 1337 mm, and 5 is a multi-tube cooling condenser having an effective heat transfer area of 34.2 m 2 . 6 is a root type blower of 1000 Nm 3 / h specification, and 7 is a fin tube type heater having an effective heat transfer area of 17.9 m 2 . 8 is a coating material dissolution tank with a stirrer having a capacity of 130 L, which includes a heating steam jacket and a temperature controller. Reference numeral 9 denotes a diaphragm type coating liquid pump having a maximum liquid feeding amount of 100 L / h. 10 is a guide tube made of Teflon (registered trademark) having an inner diameter of 120 mm and a length of 660 mm, and 11 is a rectifying can.
A heat insulating material was wound around the conveyance path from the jet tower 1 and the outlet of the jet tower to the condenser 5 to keep the heat. In addition, pipes were wound around the solid-gas separator at intervals of 50 to 100 mm, water vapor of 0.2 MPa (gauge pressure) was passed, a steam trap was installed at the water vapor outlet, and a heat insulating material was wound from above to hold the heat. .

2.被覆粒子の製造
前記の粒子被覆装置を用いて、次の方法により被覆粒子を製造した。ブロワー6を起動し、ヒーター7で熱せられた100℃の加熱気体を、整流缶11を介して噴流塔1下部から上部に送風し、噴流塔出口から固気分離器4、凝縮器5、ブロワー6、ヒーター7及び整流缶11を連結する搬送路のよって約1時間循環させ装置を予熱した。噴流塔1の側面に設置した投入口から、芯材である尿素粒子を噴流塔1内に投入し、芯材を噴流状態にした。この際、粒子(芯材)温度が70±2℃となるように、高温気体の流量及び温度を調節した。流量はブロワー6と整流缶11の間に設置した流量計で測定しながら調節し、温度は粒子温度や噴流塔出口温度で測定しながら調節した。
2. Production of coated particles Coated particles were produced by the following method using the particle coating apparatus. The blower 6 is started, and a heated gas of 100 ° C. heated by the heater 7 is blown from the lower part of the jet tower 1 to the upper part through the rectifier 11, and the solid-gas separator 4, condenser 5, blower is discharged from the outlet of the jet tower. 6, the apparatus was preheated by circulating for about 1 hour by the conveyance path connecting the heater 7 and the rectifier 11. Urea particles, which are core materials, were introduced into the jet tower 1 from the inlet provided on the side surface of the jet tower 1 to make the core material into a jet state. At this time, the flow rate and temperature of the hot gas were adjusted so that the particle (core material) temperature would be 70 ± 2 ° C. The flow rate was adjusted while measuring with a flow meter installed between the blower 6 and the flow rectifier 11, and the temperature was adjusted while measuring with the particle temperature or the jet tower outlet temperature.

他方、被膜材料溶解槽8に被膜材料成分としてポリエチレン(低密度ポリエチレン、密度0.923g/cm(JIS K 6760)、メルトフローレート(MFR)0.3g/10min(JIS K 6760))45重量部、コーンスターチ5重量部、タルク(平均粒径10μm)50重量部、ステアリン酸第二鉄0.01重量部及び有機溶媒テトラクロロエチレン1900重量部を投入し、スチームジャケットに水蒸気を通して、液温100±2℃で1時間混合攪拌して樹脂を溶解し、被膜材料成分濃度5重量%の均一な被膜材料溶解・懸濁液(被覆液)を調整した。被膜材料溶解槽8は被覆操作が終了するまで常時攪拌した。 On the other hand, polyethylene (low density polyethylene, density 0.923 g / cm 3 (JIS K 6760), melt flow rate (MFR) 0.3 g / 10 min (JIS K 6760)) 45 wt. Part, corn starch 5 parts by weight, talc (average particle size 10 μm) 50 parts by weight, ferric stearate 0.01 parts by weight and organic solvent tetrachloroethylene 1900 parts by weight, steam was passed through the steam jacket, and the liquid temperature 100 ± 2 The resin was dissolved by mixing and stirring at 1 ° C. for 1 hour to prepare a uniform coating material dissolution / suspension (coating solution) having a coating material component concentration of 5% by weight. The coating material dissolution tank 8 was constantly stirred until the coating operation was completed.

被覆液を、噴流塔の下部に設置されたスプレーノズル2に流速180kg/hで輸送し、流動中の芯材に噴霧し吹付け被覆操作を行なった。尚、被覆液の温度が80℃以下にならないように、溶解槽8からスプレーノズル2に至るまでの配管を二重構造にし、水蒸気を通して加熱しながら被覆液を輸送した。
被覆操作は、流動中の芯材の温度が70℃に達した時点から開始し、被覆量が最終の被覆粒子の12%になるまで行ない、その後、粒子温度を70±2℃に維持しつつ、10分間加熱気体のみを吹付けて有機溶媒を気化させた。気化終了後、被覆粒子を整流缶下部の抜き出し口から排出し、有機溶媒を含まない気体により脱溶媒処理を行なった後、ホワイトカーボン粉体を被覆する表面処理を経て最終製品の被覆粒子を得た。
2回目からは予熱時間を10分間とした以外は、同様の操作を繰り返し、連続10回のバッチ式生産を行なった。被覆粒子の収量は各回とも66kgであり、被覆粒子を切断し芯材を水洗して被膜を乾燥した後、被膜の重量を測定したところ、各回ともに被覆粒子のに対する被膜量は11.8重量%であった。
The coating liquid was transported at a flow rate of 180 kg / h to the spray nozzle 2 installed in the lower part of the jet tower, and sprayed onto the flowing core material to perform spray coating operation. In addition, the piping from the dissolution tank 8 to the spray nozzle 2 was made into a double structure so that the temperature of the coating liquid would not be 80 ° C. or less, and the coating liquid was transported while being heated through water vapor.
The coating operation starts when the temperature of the flowing core material reaches 70 ° C., and is performed until the coating amount reaches 12% of the final coated particles, and then the particle temperature is maintained at 70 ± 2 ° C. Only the heated gas was sprayed for 10 minutes to vaporize the organic solvent. After vaporization is completed, the coated particles are discharged from the outlet at the bottom of the flow straightening can, and after desolvation treatment with a gas not containing an organic solvent, the coated particles of the final product are obtained through a surface treatment that coats white carbon powder. It was.
From the second time, the same operation was repeated except that the preheating time was 10 minutes, and continuous batch production was performed 10 times. The yield of the coated particles was 66 kg each time. After the coated particles were cut, the core material was washed with water and the coating was dried, and the weight of the coating was measured, the coating amount with respect to the coated particles was 11.8% by weight each time. Met.

3.被膜の形成条件
一流体ノズル:出口径0.8mmフルコーン型
芯材 :尿素粒子(粒径:2.0mm〜4.2mm)
芯材投入量 :60kg
被覆中の粒子(芯材)温度:70℃
溶解温度 :100〜110℃
被覆液温度 :80〜100℃
気体温度 :135〜145℃
気体風量 :450Nm/h
スプレー流速:180kg/h
芯材の円形度係数(式{(4π×粒子の投影面積)/(粒子投影図の輪郭の長さ)}によって求められた値)は、NIRECO社製のIMAGE ANALYZER LUZEX-FSを用いて測定した。測定はランダムに取り出した粒子100個を用いて行った。測定結果は0.9945であった。
3. Film formation conditions One-fluid nozzle: outlet diameter 0.8 mm Full cone type core material: urea particles (particle size: 2.0 mm to 4.2 mm)
Core material input: 60kg
Particle (core material) temperature during coating: 70 ° C
Melting temperature: 100-110 ° C
Coating liquid temperature: 80-100 ° C
Gas temperature: 135-145 ° C
Gas flow rate: 450 Nm 3 / h
Spray flow rate: 180 kg / h
The circularity coefficient of the core material (value determined by the formula {(4π × projection area of particle) / (length of contour of particle projection) 2 }) is calculated using IMAGE ANALYZER LUZEX-FS manufactured by NIRECO. It was measured. The measurement was performed using 100 particles taken out at random. The measurement result was 0.9945.

(実施例2)
実施例1の装置において固気分離器として有効ろ過面積2.5m、内部に内径202mm、長さ460mm、集塵効率99.9%(JIS7種標準粉体使用時;関東ローム焼成ダスト、中位径30μm)のカートリッジ型フィルター(ポリエステル製)6本とスチームトレス配管を設置したバグフィルターを用い、固気分離器は周囲に50〜100mm間隔で水蒸気のパイプを巻きまわし、0.2MPa(ゲージ圧)の水蒸気を通し、水蒸気出口にスチームトラップを設置し、その上から保温材を巻いて保温した。その他は実施例1の装置、製造方法に準じて被覆粒子の製造を行った。実施例1に準じて被覆粒子に対する被膜量を測定した結果、11.8重量%であり、被覆粒子の収量は各回とも66kgであった。
(Example 2)
Effective filtration area 2.5 m 2 as a solid-gas separator in the apparatus of Example 1, inside diameter 202 mm, length 460 mm, dust collection efficiency 99.9% (when using JIS 7 standard powder; Kanto loam calcined dust, medium Using a bag filter equipped with 6 cartridge type filters (made of polyester) with a diameter of 30 μm and steamless piping, the solid-gas separator is wound around a water vapor pipe at intervals of 50 to 100 mm, 0.2 MPa (gauge Pressure) of steam, a steam trap was installed at the steam outlet, and a heat insulating material was wound from above to hold the heat. Others produced coated particles according to the apparatus and production method of Example 1. As a result of measuring the coating amount with respect to the coated particles according to Example 1, it was 11.8% by weight, and the yield of the coated particles was 66 kg each time.

(実施例3)
実施例1の装置において噴流塔出口からサイクロン、バグフィルターの順に直結して固気分離器を配置し、バグフィルターで実施例2と同様に水蒸気を通して保温した。その他は実施例1の装置、製造方法に準じて被覆粒子の製造を行った。実施例1に準じて被覆粒子に対する被膜量を測定した結果、11.8重量%であり、被覆粒子の収量は各回とも66kgであった。
(Example 3)
In the apparatus of Example 1, a solid-gas separator was directly connected in the order of the cyclone and the bag filter from the outlet of the jet tower, and the bag filter was kept warm by passing water vapor in the same manner as in Example 2. Others produced coated particles according to the apparatus and production method of Example 1. As a result of measuring the coating amount with respect to the coated particles according to Example 1, it was 11.8% by weight, and the yield of the coated particles was 66 kg each time.

(実施例4)
実施例1の装置において、噴流塔出口から固気分離器までの搬送路に保温材を巻き、固気分離器から凝縮器までの搬送路の保温材を取り除くほかは実施例1と同様の装置、製造方法に準じて被覆粒子の製造を行った。実施例1に準じて被覆粒子に対する被膜量を測定した結果、11.8重量%であり、被覆粒子の収量は各回とも66kgであった。
Example 4
In the apparatus of the first embodiment, the apparatus is the same as that of the first embodiment except that the heat insulating material is wound around the conveyance path from the jet tower outlet to the solid gas separator, and the heat insulating material is removed from the conveyance path from the solid gas separator to the condenser. The coated particles were produced according to the production method. As a result of measuring the coating amount with respect to the coated particles according to Example 1, it was 11.8% by weight, and the yield of the coated particles was 66 kg each time.

(比較例)
実施例1の装置において気体の搬送路及び噴流塔に保温手段を有さない状態で、実施例1の製造方法に準じて被覆粒子の製造を行った。実施例1に準じて被覆粒子に対する被膜量を測定した結果、11.7重量%であり、被覆粒子の収量は各回とも66kgであった。
(Comparative example)
In the apparatus of Example 1, coated particles were produced according to the production method of Example 1 in a state where the gas conveyance path and the jet tower did not have a heat retaining means. As a result of measuring the coating amount with respect to the coated particles according to Example 1, it was 11.7% by weight, and the yield of the coated particles was 66 kg each time.

4.噴流塔及び固気分離器の観察結果
実施例1〜4の運転時は、噴流塔内の様子を覗窓から観察した結果、噴流塔内での結露の発生は無く、良好な運転状態を持続することができた。
10回目の運転終了後、固気分離器を開放し、状態を観察した。実施例1〜4においては、結露の発生が見られず、分離された固形物が乾燥した状態で収集できた。バグフィルターは水蒸気による保温を実施した方が、ろ過損失による差圧が一定であり、分離された固形物の乾燥状態が良好であった。また、噴流塔出口温度が約70℃であり、保温することで凝縮器入口の温度が58℃であったのが、実施例4では、凝縮器入口温が固気分離器から凝縮器までの搬送路で外気温により50℃まで下がり、凝縮器への負荷を低減できた。尚、気体の露点は46.8℃であった。
比較例では、噴流塔覗窓から観察した結果、8回目の途中から噴流塔内で結露が発生した。そこで、スプレー流速を180kg/hから150kg/hまで下げて対処した。このときの凝縮器入口の温度が48℃であった。8回目運転終了後、固気分離器を開放し状態を観察したところ、固形物は湿潤状態であった。バグフィルターの差圧も上昇し、1回の運転あたり1回以上ジェットパルスによってフィルターを逆洗洗浄処理しており、閉塞気味であった。
4). Observation results of jet tower and solid-gas separator During operation in Examples 1 to 4, as a result of observing the inside of the jet tower from the viewing window, no condensation occurred in the jet tower, and a good operating state was maintained. We were able to.
After completion of the tenth operation, the solid-gas separator was opened and the state was observed. In Examples 1 to 4, no condensation was observed, and the separated solids could be collected in a dry state. When the bag filter was kept warm with water vapor, the differential pressure due to filtration loss was constant, and the dried state of the separated solid was better. Also, the temperature at the outlet of the jet tower was about 70 ° C., and the temperature at the condenser inlet was 58 ° C. by keeping the temperature. In Example 4, the temperature at the condenser inlet was from the solid-gas separator to the condenser. In the conveyance path, the temperature dropped to 50 ° C. due to the outside air temperature, and the load on the condenser could be reduced. The dew point of the gas was 46.8 ° C.
In the comparative example, as a result of observation from the spout tower observation window, dew condensation occurred in the spout tower from the middle of the eighth time. Therefore, the spray flow rate was reduced from 180 kg / h to 150 kg / h. The condenser inlet temperature at this time was 48 ° C. After completion of the eighth operation, the solid-gas separator was opened and the state was observed. The solid was wet. The differential pressure of the bag filter also increased, and the filter was backwashed with one or more jet pulses per operation, which seemed to be blocked.

5.被覆粒子の溶出測定
実施例1〜4及び比較例で得られた被覆粒子(芯材:尿素)を10gと予め25℃に調整をしておいた蒸留水200mlとを250mlのポリ容器に投入し、25℃設定のインキュベーターに静置した。7日後該容器から水を全て抜き取り、抜き取った水に含まれる尿素量(尿素溶出量)を定量分析(ジメチルアミノベンズアルデヒド法 「詳解肥料 分析法 第二改訂版」養賢堂)により求めた。水を抜き取った後のサンプルは再度ポリ瓶に入れ、該容器に再度蒸留水を200ml投入し同様に静置した。尿素溶出量の積算値が90%に達するまでこの操作を繰り返した。
その後該被覆粒子を乳鉢で磨り潰し、該粒子の内容物を水200mlに溶解後上記と同様の方法で尿素残量を定量分析した。積算尿素溶出量と尿素残量を加えた量を尿素全量とし、7日毎の尿素溶出割合(溶出率)を算出した。
尚、被覆粒子は1回目、5回目、8回目、10回目の製造によって得られた被覆粒子を用いた。
測定の結果、実施例1〜4で得られた被覆粒子は、7日目の尿素成分の溶出率は1〜10回目に得られた被覆粒子が全ての0.5%以下であり、21日目の溶出率が全て1%以下であった。また、溶出率が80%に達する日数は、98〜103日と安定しており、欠陥粒子の少ない被覆粒子が安定して連続生産できることを示している。
5). Measurement of Elution of Coated Particles 10 g of coated particles (core material: urea) obtained in Examples 1 to 4 and Comparative Example and 200 ml of distilled water adjusted to 25 ° C. in advance are put into a 250 ml plastic container. And left in an incubator set at 25 ° C. Seven days later, all the water was extracted from the container, and the amount of urea contained in the extracted water (urea elution amount) was determined by quantitative analysis (dimethylaminobenzaldehyde method “detailed fertilizer analysis method second revised edition” Yokendo). The sample after draining water was put into a plastic bottle again, and 200 ml of distilled water was again put into the container and left in the same manner. This operation was repeated until the integrated value of urea elution amount reached 90%.
Thereafter, the coated particles were ground with a mortar, and the contents of the particles were dissolved in 200 ml of water, and then the urea remaining amount was quantitatively analyzed in the same manner as described above. The urea addition rate (elution rate) every 7 days was calculated by adding the total urea elution amount and the remaining amount of urea as the total amount of urea.
The coated particles obtained by the first, fifth, eighth and tenth productions were used.
As a result of the measurement, the coated particles obtained in Examples 1 to 4 had an elution rate of the urea component on the 7th day of the coated particles obtained in the 1st to 10th times of 0.5% or less, and 21 days. The elution rates of the eyes were all 1% or less. Moreover, the number of days for which the elution rate reaches 80% is stable as 98 to 103 days, indicating that coated particles with few defective particles can be stably produced continuously.

比較例で得られた被覆粒子は、7日目の尿素成分の溶出率は1回目が0.5%、5回目が4.2%、8回目が11.6%と抑制効果が低く、固気分離器が閉塞傾向になるのに従って徐々に悪くなる傾向を示した。製造回数が増すほど溶出抑制ができなくなり、品質安定性、時限溶出型の溶出機能を有する被覆粒子を得ることは困難である。   In the coated particles obtained in the comparative example, the elution rate of the urea component on the 7th day was 0.5% for the first time, 4.2% for the 5th time, 11.6% for the 8th time, and the suppression effect was low. The gas separator tended to get worse gradually as it became obstructed. As the number of production increases, it becomes impossible to suppress elution, and it is difficult to obtain coated particles having quality stability and a time elution type elution function.

6.赤インク試験
実施例1〜4、比較例の被覆粒子の溶出性能を評価するために赤インク試験を行った。得られた被覆粒子を各10g正確にはかり粒子数を測定し(X)とする。この粒子を赤インク液(横河製ペンレコーダインクG9620ANを350g計量し蒸留水10リットルに十分に溶解させた液)に浸し、23℃で2時間静置した後、蒸留水で該粒子を十分に洗浄する。その後該粒子表面の水分を蒸発乾燥し、該粒子を白色品と赤色品(被膜の一部が染まったものを含む)に選別する。赤色品の粒子数を計り(Y)とする。赤色に着色した粒子数率を下記式により算出した。
赤色着色粒子数率(%) = Y/X × 100
赤色着色粒子数率が小さい程被膜の欠陥が少ないことを表す。
6). Red ink test In order to evaluate the elution performance of the coated particles of Examples 1 to 4 and Comparative Example, a red ink test was performed. Each of the obtained coated particles is accurately weighed and measured for the number of particles (X). After immersing these particles in a red ink liquid (350 g of Yokogawa's pen recorder ink G9620AN weighed sufficiently in 10 liters of distilled water) and allowing to stand at 23 ° C. for 2 hours, the particles were sufficiently removed with distilled water. To wash. Thereafter, the moisture on the surface of the particles is evaporated and dried, and the particles are sorted into a white product and a red product (including a part of the film stained). Count the number of red particles (Y). The number ratio of particles colored in red was calculated by the following formula.
Red colored particle number ratio (%) = Y / X × 100
It shows that there are few defects of a film, so that the number ratio of red colored particles is small.

その結果、実施例1〜4の赤色着色粒子数率は製造回数によらず全て3%以下であったのに対し、比較例は4回目の製造までは実施例と同様であったが、その後徐々に増加し、8回目で10%に到達した。比較例の8回目の製造サンプルを触ったところ被膜表面がふわふわしており気泡が多く含まれているようであった。これは乾燥状態が悪く、被膜に有機溶媒を多く含んだ状態で乾燥したものと思われる。この被膜に爪を立てると容易に剥離した。   As a result, the percentages of red colored particles in Examples 1 to 4 were all 3% or less regardless of the number of productions, whereas the comparative examples were the same as the examples until the fourth production, It gradually increased and reached 10% at the 8th time. When the production sample of the 8th time of the comparative example was touched, the coating surface was fluffy and it seemed that many bubbles were contained. This is because the dry state is poor, and it seems that the film was dried with a lot of organic solvent. It peeled easily when a nail was stood on this film.

本発明の粒子被覆装置及び被覆粒子の製造方法は、肥料、農薬、医薬品、食品等の被覆粒子の製造に好適に利用可能である。   The particle coating apparatus and the method for producing coated particles of the present invention can be suitably used for producing coated particles such as fertilizers, agricultural chemicals, pharmaceuticals, and foods.

本発明の粒子被覆装置の一例を示すフローシート。The flow sheet which shows an example of the particle coating apparatus of this invention.

符号の説明Explanation of symbols

1:噴流塔
2:スプレーノズル
3:芯材(粒子)
4:固気分離器
5:凝縮器
6:ブロワー
7:ヒーター
8:被膜材料溶解槽
9:被覆液ポンプ
10:ガイド管
11:整流缶
12:有機溶媒槽
13:脱溶媒処理装置
14:溶媒回収装置
15:表面処理装置
T1:気体温度計
T2:粒子温度計
T3:排気温度計
T4:搬送路温度計
F:気体流量計
1: Jet tower 2: Spray nozzle 3: Core material (particles)
4: Solid-gas separator 5: Condenser 6: Blower 7: Heater 8: Coating material dissolution tank 9: Coating liquid pump 10: Guide tube 11: Rectifier can 12: Organic solvent tank 13: Desolvation treatment equipment 14: Solvent recovery Apparatus 15: Surface treatment apparatus T1: Gas thermometer T2: Particle thermometer T3: Exhaust thermometer T4: Conveyance path thermometer F: Gas flow meter

Claims (6)

高温気体の供給によって芯材粒子を流動させ、該芯材粒子に有機溶媒及び被膜材料からなる被覆液を噴霧し有機溶媒を気化させて被覆粒子を形成させるための保温可能な流動槽、気化した有機溶媒を含む気体を流動槽から排出するための保温可能な搬送路、該有機溶媒を含む気体に同伴された固形物を分離するための固気分離器、固形物除去後の有機溶媒を含む気体から有機溶媒を分離するための凝縮器、及び有機溶媒除去後の気体を加熱して流動槽に供給するためのブロワーを有する粒子被覆装置。   A fluidized tank capable of keeping heat to cause the core particles to flow by supplying a high-temperature gas, spray a coating liquid composed of an organic solvent and a coating material on the core particles to vaporize the organic solvent, and form the coated particles. Including a heat-conveying path for discharging a gas containing an organic solvent from a fluidized tank, a solid-gas separator for separating a solid entrained in the gas containing the organic solvent, and an organic solvent after the solid is removed A particle coating apparatus comprising: a condenser for separating an organic solvent from a gas; and a blower for heating the gas after the organic solvent is removed and supplying the heated tank. 固気分離器が保温可能である請求項1記載の粒子被覆装置。   The particle coating apparatus according to claim 1, wherein the solid-gas separator can be kept warm. 保温の熱源が水蒸気である請求項1または2記載の粒子被覆装置。   The particle coating apparatus according to claim 1 or 2, wherein the heat source for heat insulation is water vapor. 固気分離器がサイクロン及びバグフィルターのいずれか一方または両方である請求項1〜3のいずれか1項記載の粒子被覆装置。   The particle coating apparatus according to any one of claims 1 to 3, wherein the solid-gas separator is one or both of a cyclone and a bag filter. 芯材が肥料である請求項1〜4のいずれか1項記載の粒子被覆装置。   The particle coating apparatus according to any one of claims 1 to 4, wherein the core material is fertilizer. 請求項1〜5のいずれか1項記載の粒子被覆装置を用いる被覆粒子の製造方法。

The manufacturing method of the covering particle | grains using the particle | grain coating apparatus of any one of Claims 1-5.

JP2004140760A 2004-05-11 2004-05-11 Particle coating apparatus and production method for coated particle using the same Withdrawn JP2005319417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004140760A JP2005319417A (en) 2004-05-11 2004-05-11 Particle coating apparatus and production method for coated particle using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004140760A JP2005319417A (en) 2004-05-11 2004-05-11 Particle coating apparatus and production method for coated particle using the same

Publications (1)

Publication Number Publication Date
JP2005319417A true JP2005319417A (en) 2005-11-17

Family

ID=35467091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004140760A Withdrawn JP2005319417A (en) 2004-05-11 2004-05-11 Particle coating apparatus and production method for coated particle using the same

Country Status (1)

Country Link
JP (1) JP2005319417A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188294A (en) * 2009-02-19 2010-09-02 Nbc Meshtec Inc Sifter mesh and sifter
JP2010280867A (en) * 2009-06-08 2010-12-16 Sumitomo Chemical Co Ltd Olefin polymerization reactor, polyolefin manufacturing system, and polyolefin manufacturing method
JP2010280870A (en) * 2009-06-08 2010-12-16 Sumitomo Chemical Co Ltd Jet layer apparatus, polyolefin manufacturing system, and polyolefin manufacturing method
CN102503674A (en) * 2011-10-25 2012-06-20 瓮福(集团)有限责任公司 Method for coating diammonium phosphate product
KR101545384B1 (en) 2013-04-30 2015-08-18 주식회사 엘지화학 Fluidized bed reactor and process for manufacturing carbon nanostructures using same
JP2018510122A (en) * 2016-01-29 2018-04-12 ホンサムダン カンパニー,リミテッド Red Ginseng Concentrated Liquid Granules and Method for Producing Red Ginseng Concentrated Liquid Granules Using Red Ginseng Concentrated Liquid Powder and Fluidized Bed Coating Machine
CN108675881A (en) * 2018-07-27 2018-10-19 遵义大兴复肥有限责任公司 Processing unit (plant) for making fertilizer
CN109161226A (en) * 2018-11-02 2019-01-08 巢湖学院 A kind of inorganic nanometer powder surface organic decorating device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188294A (en) * 2009-02-19 2010-09-02 Nbc Meshtec Inc Sifter mesh and sifter
JP2010280867A (en) * 2009-06-08 2010-12-16 Sumitomo Chemical Co Ltd Olefin polymerization reactor, polyolefin manufacturing system, and polyolefin manufacturing method
JP2010280870A (en) * 2009-06-08 2010-12-16 Sumitomo Chemical Co Ltd Jet layer apparatus, polyolefin manufacturing system, and polyolefin manufacturing method
CN102503674A (en) * 2011-10-25 2012-06-20 瓮福(集团)有限责任公司 Method for coating diammonium phosphate product
CN102503674B (en) * 2011-10-25 2014-05-07 瓮福(集团)有限责任公司 Method for coating diammonium phosphate product
KR101545384B1 (en) 2013-04-30 2015-08-18 주식회사 엘지화학 Fluidized bed reactor and process for manufacturing carbon nanostructures using same
JP2018510122A (en) * 2016-01-29 2018-04-12 ホンサムダン カンパニー,リミテッド Red Ginseng Concentrated Liquid Granules and Method for Producing Red Ginseng Concentrated Liquid Granules Using Red Ginseng Concentrated Liquid Powder and Fluidized Bed Coating Machine
CN108675881A (en) * 2018-07-27 2018-10-19 遵义大兴复肥有限责任公司 Processing unit (plant) for making fertilizer
CN108675881B (en) * 2018-07-27 2023-09-19 遵义大兴复肥有限责任公司 A processingequipment for making fertilizer
CN109161226A (en) * 2018-11-02 2019-01-08 巢湖学院 A kind of inorganic nanometer powder surface organic decorating device
CN109161226B (en) * 2018-11-02 2023-07-21 巢湖学院 Inorganic nano powder surface organic modification device

Similar Documents

Publication Publication Date Title
JPS6034517B2 (en) How to granulate urea in a fluidized bed
JP2005319417A (en) Particle coating apparatus and production method for coated particle using the same
JP5473241B2 (en) Coated granules
BR112012005418B1 (en) process for preparing granules and said granules
CA1205978A (en) Method and apparatus for pelletizing sulphur
JPH0899802A (en) Water surface floating agrochemical granule having regulated disintegration and dispersibility on water surface and its carrier
UA123727C2 (en) Method for the manufacture of a urea-based particulate material containing elemental sulphur
JP4642238B2 (en) Coated bioactive granules
JP5014554B2 (en) Method for producing coated bioactive granules
JPH0899803A (en) Water surface floating spreadable nondisintegrating granule
RU2107660C1 (en) Granulates of alkali metal cyanides and method of preparation thereof
JP2017124957A (en) Coated granular material
JP5116220B2 (en) Coated granular fertilizer and method for producing the same
JP4804631B2 (en) Particles for coated bioactive substance, coated bioactive substance and method for producing the same, and composition containing coated bioactive substance
JP2019156681A (en) Coated granular fertilizer, method of producing coated granular fertilizer, mixed fertilizer, and cultivation method
JP4937689B2 (en) Time-dissolved coated granular fertilizer
Alberto et al. Enhanced solubility of foliar fertilizer via spray dryer: Process analysis and productivity optimization by response surface methodology
EA009533B1 (en) Process for the preparation of urea granules
JPH10130014A (en) Coated granular material improved in hydrophilicity and its production
JP2019084522A (en) Method for producing coated granular matter, granular mixture, and plant cultivation method
JP4804634B2 (en) Coated bioactive granular material subjected to anti-floating treatment and method for producing the same
JPH10118557A (en) Granule coating method
JP2023009027A (en) coated granular fertilizer
EP1595942B1 (en) Process for encapsulating or immobilisation of microorganisms
CN212417867U (en) Fluidized bed workbin and horizontal or spraying fluidized bed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070911