JP2005317277A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2005317277A
JP2005317277A JP2004131773A JP2004131773A JP2005317277A JP 2005317277 A JP2005317277 A JP 2005317277A JP 2004131773 A JP2004131773 A JP 2004131773A JP 2004131773 A JP2004131773 A JP 2004131773A JP 2005317277 A JP2005317277 A JP 2005317277A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
oxide
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004131773A
Other languages
Japanese (ja)
Inventor
Koko Ryu
興江 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2004131773A priority Critical patent/JP2005317277A/en
Publication of JP2005317277A publication Critical patent/JP2005317277A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new lithium-containing metal compound having excellent charging/discharging cycle property, charging voltage continuously changing in one step, and low cost, and to establish a condition for reaction and a composition optimum for synthesis, and to provide a nonaqueous electrolyte battery excellent in charging/discharging cycle property using the above compound as a cathode activator. <P>SOLUTION: The nonaqueous electrolyte battery having a cathode and an anode uses an oxide expressed by general formula (1); Li<SB>x</SB>H<SB>1-x</SB>Ni<SB>y</SB>Fe<SB>z</SB>M<SB>a</SB>O<SB>2</SB>, as a cathode activator, (wherein, M denotes one element chosen from Al, Zn, Ca, Sr, Nb, Mg, Cd, Cu, V, Cr, Mo, Ti, W, and Ag, 0<X/(Y+Z)≤1, 0.95≤Y+Z+a≤1.1, 0.025≤Z/(Y+Z)≤0.1, 0≤a≤0.05). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、Li、Ni、Fe、O、Hを含有する化合物を正極活物質に用いた非水電解質電池に関するものである。   The present invention relates to a non-aqueous electrolyte battery using a compound containing Li, Ni, Fe, O, and H as a positive electrode active material.

近年、携帯電話、ビデオカメラ等のポータブル電子機器の発達にともない、高性能の電池の開発が望まれている。正極にリチウム遷移金属複合酸化物、負極に黒鉛、非晶質炭素を用いたリチウムイオン二次電池は、作動電圧が高く、エネルギー密度が高い非水電解質二次電池として広く実用化されている。   In recent years, with the development of portable electronic devices such as mobile phones and video cameras, development of high-performance batteries is desired. Lithium ion secondary batteries using a lithium transition metal composite oxide for the positive electrode and graphite and amorphous carbon for the negative electrode are widely put into practical use as non-aqueous electrolyte secondary batteries having a high operating voltage and a high energy density.

しかしながら、従来の非水電解質二次電池の正極活物質に用いられてきたコバルト酸リチウムをはじめとするリチウム遷移金属酸化物は、その放電容量には限界があり、コストも高く、安全性においても問題点を多く抱えている。そのため、正極活物質として、高容量かつ安価な材料が求められている。その新規な正極活物質の一つとして、容量の高いオキシ水酸化ニッケルが提案されている。   However, lithium transition metal oxides such as lithium cobaltate, which have been used as the positive electrode active material of conventional nonaqueous electrolyte secondary batteries, have limited discharge capacity, high cost, and safety. I have a lot of problems. Therefore, a high-capacity and inexpensive material is required as the positive electrode active material. As one of the novel positive electrode active materials, nickel oxyhydroxide having a high capacity has been proposed.

しかし、オキシ水酸化ニッケルは、その充放電サイクル性能が劣っている。そこで、オキシ水酸化ニッケルのニッケルを、Co、Zn、Alなどの元素で置換することによって、充放電サイクル性能を向上させようとする研究開発が盛んに試みられている。   However, nickel oxyhydroxide has poor charge / discharge cycle performance. Therefore, research and development have been actively attempted to improve the charge / discharge cycle performance by replacing nickel of nickel oxyhydroxide with elements such as Co, Zn, and Al.

特許文献1では、共沈法でニッケル元素とマンガン元素を1:1で固溶させた水酸化物を作成し、この水酸化物と炭酸リチウムまたは水酸化リチウムとを、550℃以上の温度で焼成して得られた菱面体構造のLiNi1/2Mn1/2が開示されている。 In Patent Document 1, a hydroxide in which nickel element and manganese element are dissolved in 1: 1 by a coprecipitation method is prepared, and this hydroxide and lithium carbonate or lithium hydroxide are mixed at a temperature of 550 ° C. or higher. A rhombohedral LiNi 1/2 Mn 1/2 O 2 obtained by firing is disclosed.

また、特許文献2には、M(OH)(但し、MはCo、Ni、Mnの中から選択される少なくとも1種類の元素)をLi塩を含む水溶液中で化学的もしくは電気化学的に酸化して、元素Mの平均酸化数が3を超え4以下とすることを特徴とする非水電解質二次電池用正極活物質の製造方法が開示されている。 Patent Document 2 discloses that M (OH) 2 (wherein M is at least one element selected from Co, Ni, and Mn) chemically or electrochemically in an aqueous solution containing a Li salt. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery is disclosed in which the average oxidation number of the element M is greater than 3 and less than or equal to 4 by oxidation.

さらに、特許文献3では、Li、Ni、Co、Mn、Feイオンなどを含むアルカリ水溶液を、オゾンを酸化剤として用いて酸化して、少量のCo、Mn、Feを含むニッケル酸リチウムを製造する、低温直接酸化法(100℃以下)が開示されている。得られたニッケル酸リチウムは4V〜1.5Vvs.Li/Liの範囲で充放電でき、300mAh/g前後の初期放電容量を示す。ところが、このニッケル酸リチウムの放電電位は少なくとも2段階であり、充放電サイクル性能も不充分であった。 Furthermore, in Patent Document 3, an alkaline aqueous solution containing Li, Ni, Co, Mn, Fe ions, etc. is oxidized using ozone as an oxidizing agent to produce lithium nickelate containing a small amount of Co, Mn, Fe. A low temperature direct oxidation method (100 ° C. or lower) is disclosed. The obtained lithium nickelate was 4 V to 1.5 Vvs. It can be charged / discharged in the range of Li / Li + and shows an initial discharge capacity of around 300 mAh / g. However, the discharge potential of this lithium nickelate was at least two stages, and the charge / discharge cycle performance was insufficient.

また、非特許文献1には、低温(100℃以下)でリチウム含有ニッケル酸化物を作製する方法およびその充放電特性を開示している。しかし、このリチウム含有ニッケル酸化物の放電電位も2段階であり、充放電サイクル性能も十分ではなかった。   Non-Patent Document 1 discloses a method for producing a lithium-containing nickel oxide at low temperature (100 ° C. or lower) and its charge / discharge characteristics. However, the discharge potential of this lithium-containing nickel oxide was also two steps, and the charge / discharge cycle performance was not sufficient.

さらに、非特許文献2には、Niの一部をCoやZnで置換したオキシ水酸化ニッケルの合成法および電気化学特性が開示されている。このオキシ水酸化ニッケルの初期放電容量は約200mAh/gであるが、充放電サイクル性能は劣っていた。   Furthermore, Non-Patent Document 2 discloses a synthesis method and electrochemical characteristics of nickel oxyhydroxide in which a part of Ni is substituted with Co or Zn. The initial discharge capacity of this nickel oxyhydroxide was about 200 mAh / g, but the charge / discharge cycle performance was inferior.

特開2002−42813号公報JP 2002-42813 A 特開2002−42813号公報JP 2002-42813 A 特開2002−137923号公報JP 2002-137923 A J.Maruta,H.Yasuda,M.Yamachi J.Power Sources,90,89−94(2000)J. et al. Maruta, H.M. Yasuda, M .; Yamachi J. et al. Power Sources, 90, 89-94 (2000) H.Sasaki,H.Yasuda,M.Yamachi GSNews Technical Report,60(1),12−16(2001)H. Sasaki, H .; Yasuda, M .; Yamachi GSNews Technical Report, 60 (1), 12-16 (2001)

特許文献2に記載されているように、オキシ水酸化ニッケルの放電電圧の変化はリチウム基準で4.2〜1.5Vの範囲で連続的であったが、充放電サイクル性能が劣っていた。また、上記特許文献3で開示された低温直接酸化法で作製したリチウム含有ニッケル酸化物の放電容量は大きいが、放電電位が二段階であった。現在のところ、4.2〜1.5Vの範囲で連続放電でき、しかも放電容量が高く、かつ充放電サイクル性能が優れたオキシ水酸化ニッケルは得られていない。   As described in Patent Document 2, the change in the discharge voltage of nickel oxyhydroxide was continuous in the range of 4.2 to 1.5 V on the basis of lithium, but the charge / discharge cycle performance was inferior. Moreover, although the discharge capacity of the lithium-containing nickel oxide produced by the low-temperature direct oxidation method disclosed in Patent Document 3 is large, the discharge potential is in two stages. At present, nickel oxyhydroxide that can continuously discharge in the range of 4.2 to 1.5 V, has a high discharge capacity, and has excellent charge / discharge cycle performance has not been obtained.

そこで、放電電位が一段階連続で、放電容量が大きく、充放電サイクル特性に優れたオキシ水酸化ニッケルを得るためには、オキシ水酸化ニッケルのニッケルを置換する元素の種類、置換量の最適化、出発物質、反応温度などの反応条件の最適化が必要である。しかし現在のところ、有用な反応条件およびその手段は確立されていない。   Therefore, in order to obtain nickel oxyhydroxide with one-stage discharge potential, large discharge capacity, and excellent charge / discharge cycle characteristics, optimization of the type and amount of element to replace nickel in nickel oxyhydroxide It is necessary to optimize reaction conditions such as starting materials and reaction temperature. At present, however, useful reaction conditions and means have not been established.

そこで本発明の目的は、優れた充放電サイクル性能、一段階で連続した放電電位変化、および低コストの新規リチウム含有金属化合物を提案し、その合成における最適な反応条件および組成を確立し、それを正極活物質に用いた充放電サイクル特性に優れた非水電解質電池を提供することにある。   Therefore, the object of the present invention is to propose a novel lithium-containing metal compound with excellent charge / discharge cycle performance, continuous discharge potential change in one step, and low cost, and to establish optimum reaction conditions and composition in the synthesis thereof. An object of the present invention is to provide a non-aqueous electrolyte battery excellent in charge / discharge cycle characteristics using a positive electrode active material.

請求項1の発明は、正極と負極とを備えた非水電解質電池において、一般式Li1−xNiFe(但し、MはAl、Zn、Ca、Sr、Nb、Mg、Cd、Cu、V、Cr、Mo、Ti、W、Agからなる群から選ばれる少なくとも1種、0<X/(Y+Z)≦1、0.95≦Y+Z+a≦1.1、0.025≦Z/(Y+Z)≦0.1、0≦a≦0.05)で表わされる酸化物を正極活物質に用いたことを特徴とする。 The invention according to claim 1, in a non-aqueous electrolyte battery comprising the positive electrode and the negative electrode, the general formula Li x H 1-x Ni y Fe z M a O 2 ( where, M is Al, Zn, Ca, Sr, Nb , Mg, Cd, Cu, V, Cr, Mo, Ti, W, Ag, at least one selected from the group consisting of 0 <X / (Y + Z) ≦ 1, 0.95 ≦ Y + Z + a ≦ 1.1, 0. An oxide represented by 025 ≦ Z / (Y + Z) ≦ 0.1, 0 ≦ a ≦ 0.05) is used as the positive electrode active material.

請求項2の発明は、上記非水電解質電池において、前記酸化物のCuKα線を用いたX線回折パターンにおいて、回折角(2θ)18.6°±1°、38°±1°、43.5°±1°、64°±1°に回折ピークを示すことを特徴とする。   According to a second aspect of the present invention, in the non-aqueous electrolyte battery, in an X-ray diffraction pattern using CuKα rays of the oxide, diffraction angles (2θ) of 18.6 ° ± 1 °, 38 ° ± 1 °, 43. It is characterized by showing diffraction peaks at 5 ° ± 1 ° and 64 ° ± 1 °.

請求項3の発明は、上記非水電解質電池用正極活物質の製造方法において、Li、Ni、Fe、M、O、Hを含有する複数の化合物を、100℃以上250℃以下の温度で加熱することを特徴とする。   The invention of claim 3 is the method for producing a positive electrode active material for a non-aqueous electrolyte battery, wherein a plurality of compounds containing Li, Ni, Fe, M, O, and H are heated at a temperature of 100 ° C. or higher and 250 ° C. or lower. It is characterized by doing.

本発明になる非水電解質電池用正極活物質は、Ni原子とFe原子が原子レベルで混合された、LiとHとNiとFeとMとを含むリチウム含有層状酸化物である。そして、この酸化物中におけるFeのモル含有量Zの最適化により、コスト、放電容量、連続電位変化、充放電サイクル性能ともに優れた正極活物質が得られる。   The positive electrode active material for a nonaqueous electrolyte battery according to the present invention is a lithium-containing layered oxide containing Li, H, Ni, Fe, and M in which Ni atoms and Fe atoms are mixed at an atomic level. Then, by optimizing the molar content Z of Fe in the oxide, a positive electrode active material excellent in cost, discharge capacity, continuous potential change, and charge / discharge cycle performance can be obtained.

また、正極活物質としての酸化物が、X線回折パターンにおいて特定の位置にピークを示すことにより、不純物を含まない、優れた特性を示す正極活物質が得られる。   Moreover, when the oxide as the positive electrode active material has a peak at a specific position in the X-ray diffraction pattern, a positive electrode active material that does not contain impurities and exhibits excellent characteristics can be obtained.

さらに、100℃以上250℃以下の中低温で加熱することにより、本発明になるLiとHとNiとFeとMとを含むリチウム含有層状酸化物を作製できる。   Furthermore, the lithium-containing layered oxide containing Li, H, Ni, Fe, and M according to the present invention can be produced by heating at a medium to low temperature of 100 ° C. or more and 250 ° C. or less.

本発明は、非水電解質電池の正極活物質として用いられるリチウム含有金属化合物およびその製造方法に関するものである。本発明の非水電解質電池には一次電池、二次電池が含まれる。   The present invention relates to a lithium-containing metal compound used as a positive electrode active material of a nonaqueous electrolyte battery and a method for producing the same. Nonaqueous electrolyte batteries of the present invention include primary batteries and secondary batteries.

本発明者は、非水電解質電池の正極活物質として、リチウムを含有する遷移金属化合物に着目し、様々な元素の組み合わせおよびその混合割合さらに合成条件について鋭意研究を重ねてきた。   The inventor has paid attention to a transition metal compound containing lithium as a positive electrode active material of a non-aqueous electrolyte battery, and has intensively studied various combinations of elements, mixing ratios thereof, and synthesis conditions.

その結果、一般式Li1−xNiFe(但し、MはAl、Zn、Ca、Sr、Nb、Mg、Cd、Cu、V、Cr、Mo、Ti、W、Agからなる群から選ばれる少なくとも1種、0<X/(Y+Z)≦1、0.95≦Y+Z+a≦1.1、0.025≦Z/(Y+Z)≦0.1、0≦a≦0.05)で表わされる酸化物を正極活物質に用いることを見出した。 As a result, the general formula Li x H 1-x Ni y Fe z M a O 2 ( where, M is Al, Zn, Ca, Sr, Nb, Mg, Cd, Cu, V, Cr, Mo, Ti, W, At least one selected from the group consisting of Ag, 0 <X / (Y + Z) ≦ 1, 0.95 ≦ Y + Z + a ≦ 1.1, 0.025 ≦ Z / (Y + Z) ≦ 0.1, 0 ≦ a ≦ 0 .05) was used as a positive electrode active material.

この一般式Li1−xNiFeで表わされる、LiとHとNiとFeとMとを含む酸化物は、リチウム含有ニッケル酸化物中のニッケルの一部をFeで置換した、層状構造を示す酸化物で、Feの含有量を変えることによって、充放電容量、充放電の電位特性および充放電サイクル性能を制御することができると発見した。 The formula represented by Li x H 1-x Ni y Fe z M a O 2, oxide containing Li, H, Ni, Fe and M, Fe a part of nickel of lithium-containing nickel oxide It was discovered that the charge / discharge capacity, the charge / discharge potential characteristics, and the charge / discharge cycle performance can be controlled by changing the Fe content.

さらに、ニッケルの一部をAl、Zn、Ca、Sr、Nb、Mg、Cd、Cu、V、Cr、Mo、Ti、W、Agからなる群から選択される少なくとも1種で置換してもよい。   Furthermore, a part of nickel may be substituted with at least one selected from the group consisting of Al, Zn, Ca, Sr, Nb, Mg, Cd, Cu, V, Cr, Mo, Ti, W, and Ag. .

本発明になる酸化物において、0<X/(Y+Z)≦1とする理由は、リチウム層状酸化物を作製することによって、放電状態の活物質が得られるが、リチウムの含有量が1より大きい化合物は得られなかったためである。ただし、充放電反応の進行に伴って、(X/(Y+Z))の値は0〜2の間で変化することができる。   In the oxide according to the present invention, the reason why 0 <X / (Y + Z) ≦ 1 is that an active material in a discharged state is obtained by producing a lithium layered oxide, but the lithium content is larger than 1. This is because the compound was not obtained. However, as the charge / discharge reaction proceeds, the value of (X / (Y + Z)) can vary between 0 and 2.

0.95≦Y+Z+a≦1.1とする理由は、これによって、本発明の酸化物に含まれる遷移金属と酸素との原子比を1/2近辺に制御することができ、層状構造の本発明の酸化物が得られるためである。   The reason for satisfying 0.95 ≦ Y + Z + a ≦ 1.1 is that the atomic ratio between the transition metal and oxygen contained in the oxide of the present invention can be controlled in the vicinity of ½, and the present invention has a layered structure. It is because the oxide of this is obtained.

0.025≦Z/(Y+Z)≦0.1とする理由は、Z/(Y+Z)の値が0.025よりも小さい場合には、酸化物の放電曲線が2段階となり、本発明の目的を達成することができず、また、この値が0.1よりも大きい場合には、FeがNiサイトに完全に置換されずに不純物として残るためである。   The reason why 0.025 ≦ Z / (Y + Z) ≦ 0.1 is that when the value of Z / (Y + Z) is smaller than 0.025, the discharge curve of the oxide has two stages, and the object of the present invention If this value is larger than 0.1, Fe remains as an impurity without being completely replaced by Ni sites.

0≦a≦0.05とする理由は、本発明の酸化物が、NiとFe以外の金属Mを含有する場合、この範囲である場合に結晶構造の安定化に有効であるが、0.05よりも大きい場合には、放電容量の低下を引き起こすためである。   The reason why 0 ≦ a ≦ 0.05 is effective in stabilizing the crystal structure when the oxide of the present invention contains a metal M other than Ni and Fe, and is within this range. This is because when it is larger than 05, the discharge capacity is reduced.

また、本発明は、前記酸化物のCuKα線を用いたX線回折パターンにおいて、回折角(2θ)18.6°±1°、38°±1°、43.5°±1°、64°±1°に回折ピークを示すことを特徴とする。X線回折パターンがこのような回折ピークを示すことにより、層状構造を有する六方晶の酸化物が得られるからである。なお、このX線回折パターンにおける38°±1°のピークは、36.5±1°と37.5±1°のピークが重なったピークである。   Further, according to the present invention, in the X-ray diffraction pattern using CuKα ray of the oxide, the diffraction angle (2θ) is 18.6 ° ± 1 °, 38 ° ± 1 °, 43.5 ° ± 1 °, 64 °. It shows a diffraction peak at ± 1 °. This is because a hexagonal oxide having a layered structure can be obtained when the X-ray diffraction pattern shows such a diffraction peak. The 38 ° ± 1 ° peak in this X-ray diffraction pattern is a peak obtained by overlapping the 36.5 ± 1 ° and 37.5 ± 1 ° peaks.

さらに本発明の正極活物質に用いる酸化物は、Li、Ni、Fe、M、O、Hを含有する複数化合物を、100℃以上250℃以下の温度で加熱して得ることができる。   Furthermore, the oxide used for the positive electrode active material of the present invention can be obtained by heating a plurality of compounds containing Li, Ni, Fe, M, O, and H at a temperature of 100 ° C. or higher and 250 ° C. or lower.

出発物質であるLi、Ni、Fe、M、O、Hを含有する複数の化合物は、水和水および結晶水を含んでいても含まなくてもよいが、正極活物質に用いる酸化物は水和水を含まないことが好ましい。また酸化物には酸素−水素結合が存在し、結晶水が含まれる場合もあるが、結晶水の含有量が少ないほど、酸化物を正極活物質に用いた場合に、良好なサイクル性能を示すからである。   A plurality of compounds containing Li, Ni, Fe, M, O, and H, which are starting materials, may or may not contain hydration water and crystallization water, but the oxide used for the positive electrode active material is water. It is preferable not to contain Japanese water. In addition, the oxide has oxygen-hydrogen bonds and may contain crystallization water, but the lower the crystallization water content, the better the cycle performance when the oxide is used as the positive electrode active material. Because.

得られた酸化物から水和水や結晶水を除去するためには、100℃以上の温度で熱処理すればよい。さらに、この正極活物質中の水和水を除去し、正極活物質の結晶化を促進させるために、中温での加熱処理が効果的である。   In order to remove hydrated water or crystal water from the obtained oxide, heat treatment may be performed at a temperature of 100 ° C. or higher. Furthermore, in order to remove hydration water in the positive electrode active material and promote crystallization of the positive electrode active material, a heat treatment at an intermediate temperature is effective.

また、本発明の正極活物質である酸化物には酸素−水素結合が存在するが、加熱処理温度が高すぎる場合には、この酸素−水素結合が破壊される恐れがある。したがって、好ましい加熱処理温度は100℃以上250℃以下であり、さらに、加熱処理温度は150〜200℃の範囲が最も好ましい。   Moreover, although the oxide which is a positive electrode active material of the present invention has an oxygen-hydrogen bond, when the heat treatment temperature is too high, the oxygen-hydrogen bond may be broken. Therefore, the preferable heat treatment temperature is 100 ° C. or more and 250 ° C. or less, and the heat treatment temperature is most preferably in the range of 150 to 200 ° C.

また、この酸化物の加熱処理の雰囲気は特に限定されないが、加熱処理中の酸化物の組成変化を防止するためには、アルゴン雰囲中が好ましい。   The atmosphere for the heat treatment of the oxide is not particularly limited, but an argon atmosphere is preferable in order to prevent a change in the composition of the oxide during the heat treatment.

さらに、実施例には示していないが、上記本発明の活物質をリチウム塩と共に100℃〜250℃の温度範囲内で加熱処理することによって、リチウムを本発明の活物質に導入することもできる。   Further, although not shown in the examples, lithium can be introduced into the active material of the present invention by heat-treating the active material of the present invention with a lithium salt within a temperature range of 100 ° C. to 250 ° C. .

本発明の正極活物質に用いる酸化物の製造方法は、遷移金属の平均酸化数が3未満である水酸化物から出発し、リチウムイオンを含有するアルカリ性水溶液中またはアルコール系電解液中で遷移金属の平均酸化数が3以上になるまで酸化させた場合に、発明の効果をより引き出すことができる。   The manufacturing method of the oxide used for the positive electrode active material of the present invention starts with a hydroxide whose transition metal has an average oxidation number of less than 3, and transition metal in an alkaline aqueous solution containing lithium ions or in an alcohol electrolyte. The effect of the invention can be further extracted when the oxidation is performed until the average oxidation number of becomes 3 or more.

本発明の酸化物において、遷移金属を原子レベルで混合させるための方法としては共沈法が好ましい。出発物質である遷移金属水酸化物を水酸化リチウム(LiOH)の水溶液中に分散させ、80℃の温度にて酸化剤で酸化させる。   In the oxide of the present invention, a coprecipitation method is preferable as a method for mixing the transition metal at the atomic level. The starting transition metal hydroxide is dispersed in an aqueous solution of lithium hydroxide (LiOH) and oxidized with an oxidizing agent at a temperature of 80 ° C.

酸化剤の種類は特に限定されない。酸素、オゾンまたはペルオキソ二硫酸塩、もしくは次亜塩素酸塩、過マンガン酸塩、二クロム酸塩、臭素、塩素から選択される少なくとも1種を用いることがこのましい。また、酸化剤を用いる化学的な酸化方法だけではなく、電気化学的な手法を用いてもよい。   The kind of oxidizing agent is not particularly limited. It is preferable to use at least one selected from oxygen, ozone or peroxodisulfate, or hypochlorite, permanganate, dichromate, bromine, and chlorine. Further, not only a chemical oxidation method using an oxidizing agent but also an electrochemical method may be used.

本発明の非水電解質電池で用いられる負極材料としては、金属リチウムやリチウムイオンを吸蔵・放出することが可能な物質が用いられる。リチウムイオンを吸蔵・放出することが可能な物質としては、黒鉛、非晶質炭素、酸化物、窒化物およびリチウム合金が挙げられる。リチウム合金としては、例えばリチウムとアルミニウム、亜鉛、ビスマス、カドミウム、アンチモン、シリコン、鉛、錫との合金を用いることができる。また、これらの合金材料のマトリックス金属として銅、ニッケル、チタン、モリブデンなどリチウムと合金化しにくい金属が含まれても良い。   As the negative electrode material used in the nonaqueous electrolyte battery of the present invention, a material capable of occluding and releasing metallic lithium and lithium ions is used. Examples of the substance capable of inserting and extracting lithium ions include graphite, amorphous carbon, oxide, nitride, and lithium alloy. As the lithium alloy, for example, an alloy of lithium and aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, and tin can be used. Moreover, metals that are difficult to alloy with lithium, such as copper, nickel, titanium, and molybdenum, may be included as matrix metals of these alloy materials.

さらに、本発明の正極活物質である酸化物中のリチウム含有量に合わせて、負極活物質としては、リチウムを含む物質あるいはリチウムを含まない物質を使用することができる。ただし、本発明の正極活物質である酸化物中のリチウム含有量が少ない場合、すなわちX/(Y+Z)の値が1よりかなり小さい場合には、負極活物質には予めリチウムを含有させたものを使用するのが好ましく、特にリチウム金属との組み合せがより好ましい。   Furthermore, according to the lithium content in the oxide which is the positive electrode active material of the present invention, a material containing lithium or a material not containing lithium can be used as the negative electrode active material. However, when the lithium content in the oxide which is the positive electrode active material of the present invention is small, that is, when the value of X / (Y + Z) is considerably smaller than 1, the negative electrode active material previously contains lithium. Is preferable, and a combination with lithium metal is particularly preferable.

本発明の非水電解質電池で用いられる非水電解質としては、非水電解液であっても、ポリマー電解質、固体電解質であっても構わない。非水電解液に用いられる溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1、2−ジメトキシエタン、1、2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒およびこれらの混合溶媒が例示される。   The non-aqueous electrolyte used in the non-aqueous electrolyte battery of the present invention may be a non-aqueous electrolyte, a polymer electrolyte, or a solid electrolyte. Solvents used for the non-aqueous electrolyte include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane. And polar solvents such as 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane and methyl acetate, and mixed solvents thereof.

また、非水電解液の溶質としては、LiPF、LiBF、LiAsF、LiClO、LiSCN、LiCFCO、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCFおよびLiN(COCFCFなどの塩もしくはこれらの混合物が例示される。 Moreover, as a solute of the nonaqueous electrolytic solution, LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiSCN, LiCF 3 CO 2 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2). Illustrative are salts such as CF 3 ) 2 , LiN (COCF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 or mixtures thereof.

以下に、本発明の正極活物質に用いる酸化物の合成方法およびこの酸化物を用いた非水電解質二次電池について、実施例に基づき詳細に説明する。しかしながら、本発明は、以下の実施例によって限定されるものではない。   Below, the synthesis | combining method of the oxide used for the positive electrode active material of this invention and the nonaqueous electrolyte secondary battery using this oxide are demonstrated in detail based on an Example. However, the present invention is not limited to the following examples.

[実施例1〜4および比較例1〜4]
[実施例1]
まず、窒素で溶存酸素を除去した4Mの水酸化リチウム(LiOH)水溶液を、窒素をパージした反応容器中に設置した。つぎに、このLiOH水溶液中に、水酸化ニッケル(Ni(OH))と水酸化鉄(Fe(OH))とを、Ni:Feのモル比が97.5:2.5となるように分散させた。
[Examples 1 to 4 and Comparative Examples 1 to 4]
[Example 1]
First, a 4M lithium hydroxide (LiOH) aqueous solution from which dissolved oxygen was removed with nitrogen was placed in a reaction vessel purged with nitrogen. Next, in this LiOH aqueous solution, nickel hydroxide (Ni (OH) 2 ) and iron hydroxide (Fe (OH) 2 ) are mixed so that the molar ratio of Ni: Fe is 97.5: 2.5. Dispersed.

さらに、Ni(OH)とFe(OH)とを分散させたLiOH水溶液を80℃に加熱し、この水溶液中に、NiとFeの合計当量1に対して1.6当量のNaClOを投入し、80℃を保持しながら6時間攪拌し、酸化させた。続いて吸引濾過し、得られた物質をさらに65℃で乾燥した。 Further, a LiOH aqueous solution in which Ni (OH) 2 and Fe (OH) 2 are dispersed is heated to 80 ° C., and 1.6 equivalents of NaClO are added to the total equivalent of Ni and Fe in this aqueous solution. Then, the mixture was stirred for 6 hours while maintaining 80 ° C. to be oxidized. Subsequent suction filtration and the resulting material was further dried at 65 ° C.

ICP分析の結果、得られた最終生成物の酸化物の組成は、Li0.7230.277Ni0.975Fe0.025であった。 As a result of ICP analysis, the composition of the obtained final product oxide was Li 0.723 H 0.277 Ni 0.975 Fe 0.025 O 2 .

このように得られた酸化物を正極活物質とした正極板を製作した。酸化物86wt%、導電材としてアセチレンブラック5wt%、結着剤としてポリ二フッ化ビニリデン9wt%とを、n−メチル−2−ピロリドン(NMP)を用いて、ドライルーム内で混合してペースト状にし、集電体のアルミニウム網に塗布した後、70℃で真空乾燥して、合剤層の厚みが180μm、大きさが15mm×15mmの正極板を得た。   A positive electrode plate using the oxide thus obtained as a positive electrode active material was manufactured. An oxide 86 wt%, acetylene black 5 wt% as a conductive material, and polyvinylidene difluoride 9 wt% as a binder are mixed in a dry room using n-methyl-2-pyrrolidone (NMP) to form a paste Then, after applying to the aluminum net of the current collector, vacuum drying was performed at 70 ° C. to obtain a positive electrode plate having a mixture layer thickness of 180 μm and a size of 15 mm × 15 mm.

この正極板1枚と、負極として同じ大きさのリチウム金属板2枚とを用い、電解液には1Mの過塩素酸リチウム(LiClO)を含むエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶液50mlを用いて、本発明になる電池A1を製作した。 Using one positive electrode plate and two lithium metal plates of the same size as the negative electrode, the electrolyte contains 1 M lithium perchlorate (LiClO 4 ) and ethylene carbonate (EC) and diethyl carbonate (DEC). A battery A1 according to the present invention was manufactured using 50 ml of the mixed solution.

[実施例2]
LiOH水溶液中に分散させたNi(OH)とFe(OH)とをNi:Feのモル比が95:5としたこと以外は実施例1と同様にして、組成がLi0.8270.173Ni0.95Fe0.05のである酸化物を得て、これを正極活物質とした本発明による電池A2を作製した。
[Example 2]
The composition is Li 0.827 H in the same manner as in Example 1 except that Ni (OH) 2 and Fe (OH) 2 dispersed in an LiOH aqueous solution have a Ni: Fe molar ratio of 95: 5. An oxide of 0.173 Ni 0.95 Fe 0.05 O 2 was obtained, and a battery A2 according to the present invention was produced using this as a positive electrode active material.

[実施例3]
LiOH水溶液中に分散させたNi(OH)とFe(OH)とをNi:Feのモル比が92.5:7.5としたこと以外は実施例1と同様にして、組成がLi0.6430.357Ni0.925Fe0.075のである酸化物を得て、これを正極活物質とした本発明による電池A3を作製した。
[Example 3]
The composition of Li (OH) 2 and Fe (OH) 2 dispersed in an LiOH aqueous solution was the same as that of Example 1 except that the molar ratio of Ni: Fe was 92.5: 7.5. An oxide of 0.643 H 0.357 Ni 0.925 Fe 0.075 O 2 was obtained, and a battery A3 according to the present invention was produced using this as a positive electrode active material.

[実施例4]
LiOH水溶液中に分散させたNi(OH)とFe(OH)とをNi:Feのモル比が90:10としたこと以外は実施例1と同様にして、組成がLi0.5990.401Ni0.90Fe0.10のである酸化物を得て、これを正極活物質とした本発明による電池A4を作製した。
[Example 4]
The composition is Li 0.599 H in the same manner as in Example 1 except that Ni (OH) 2 and Fe (OH) 2 dispersed in an LiOH aqueous solution have a Ni: Fe molar ratio of 90:10. A battery A4 according to the present invention was prepared using 0.401 Ni 0.90 Fe 0.10 O 2 as the positive electrode active material.

[比較例1]
LiOH水溶液中にNi(OH)のみを分散させたこと以外は実施例1と同様にして、組成がLi0.6190.381NiOのである酸化物を得て、これを正極活物質とした比較例1の電池B1を作製した。
[Comparative Example 1]
An oxide having a composition of Li 0.619 H 0.381 NiO 2 was obtained in the same manner as in Example 1 except that only Ni (OH) 2 was dispersed in a LiOH aqueous solution, and this was obtained as a positive electrode active material. A battery B1 of Comparative Example 1 was prepared.

[比較例2]
LiOH水溶液中に分散させたNi(OH)とFe(OH)とをNi:Feのモル比が99:1としたこと以外は実施例1と同様にして、組成がLi0.7020.298Ni0.99Fe0.01のである酸化物を得て、これを正極活物質とした比較例2の電池B2を作製した。
[Comparative Example 2]
The composition is Li 0.702 H in the same manner as in Example 1 except that Ni (OH) 2 and Fe (OH) 2 dispersed in an LiOH aqueous solution have a Ni: Fe molar ratio of 99: 1. An oxide of 0.298 Ni 0.99 Fe 0.01 O 2 was obtained, and a battery B2 of Comparative Example 2 was produced using this as a positive electrode active material.

[比較例3]
LiOH水溶液中に分散させたNi(OH)とFe(OH)とをNi:Feのモル比が85:15としたこと以外は実施例1と同様にして、組成がLi0.2820.718Ni0.85Fe0.15のである酸化物を得て、これを正極活物質とした比較例3の電池B3を作製した。
[Comparative Example 3]
Ni dispersed in aqueous LiOH (OH) 2 and Fe (OH) 2 and Ni: except that the molar ratio of Fe was 85:15 in the same manner as in Example 1, the composition is Li 0.282 H An oxide of 0.718 Ni 0.85 Fe 0.15 O 2 was obtained, and a battery B3 of Comparative Example 3 was produced using this as a positive electrode active material.

[比較例4]
Ni(OH)を50℃の蒸留水中に分散させ、1.2当量のNaClOを投入し、50℃を保持しながら6時間攪拌し、酸化させた。続いて吸引濾過し、蒸留水で洗浄した。また、この濾過水洗1回繰り返した後に、65℃で乾燥した。このようにして組成がHNiOを得て、これを正極活物質とした以外は実施例1と同様にして、比較例4の電池B4を製作した。
[Comparative Example 4]
Ni (OH) 2 was dispersed in distilled water at 50 ° C., 1.2 equivalents of NaClO were added, and the mixture was stirred for 6 hours while maintaining 50 ° C. to be oxidized. Subsequently, the solution was suction filtered and washed with distilled water. Moreover, after repeating this filtration water washing once, it dried at 65 degreeC. Thus, a battery B4 of Comparative Example 4 was produced in the same manner as in Example 1 except that HNiO 2 having a composition was obtained and this was used as a positive electrode active material.

表1に実施例1〜4および比較例1〜4の電池に用いた正極活物質の内容をまとめた。なお、表1において、Ni、Feの平均価数は、過マンガン酸カリウムを用いた酸化還元滴定によって求めた。   Table 1 summarizes the contents of the positive electrode active materials used in the batteries of Examples 1 to 4 and Comparative Examples 1 to 4. In Table 1, the average valences of Ni and Fe were determined by oxidation-reduction titration using potassium permanganate.

Figure 2005317277
Figure 2005317277

[充放電試験]
上記の方法によって得られた実施例1〜4の電池A1〜A4、比較例1〜4の電池B1〜B4を、25℃、0.25mA/cm2の電流密度で4.2Vまで定電流で充電したのち、0.25mA/cm2の電流密度で1.5Vまで定電流にて放電をおこなった。同じ条件で20サイクルの充電、放電を繰り返しておこなった。
[Charge / discharge test]
The batteries A1 to A4 of Examples 1 to 4 obtained by the above method and the batteries B1 to B4 of Comparative Examples 1 to 4 were constant current up to 4.2 V at 25 ° C. and a current density of 0.25 mA / cm 2. After charging, discharging was performed at a constant current up to 1.5 V at a current density of 0.25 mA / cm 2 . 20 cycles of charging and discharging were repeated under the same conditions.

表2に、実施例1〜4および比較例1〜4の電池の充放電試験の結果をまとめた。ここで「容量保持率」は、1サイクル目の放電容量に対する20サイクル目の放電容量の比(%)と定義した。なお、表1の値は各電池10セルについての平均値を示す。   In Table 2, the result of the charging / discharging test of the battery of Examples 1-4 and Comparative Examples 1-4 was put together. Here, “capacity retention” was defined as the ratio (%) of the discharge capacity at the 20th cycle to the discharge capacity at the 1st cycle. In addition, the value of Table 1 shows the average value about each battery 10 cell.

Figure 2005317277
Figure 2005317277

表1および表2の結果から、つぎのことが明らかになった。Feを含む正極活物質を用いた本発明の実施例1〜4の電池A1〜A4は、Feを含まない正極活物質B1を用いた比較例1の電池B1やFe/(Fe+Ni)モル比が0.01である比較例2の電池B2と比較して、充放電サイクル性能(容量保持率)が向上していることがわかった。特に、Fe/(Ni+Fe)モル比が0.05〜0.10の、実施例2〜4の電池A2、A3、A4では、放電容量と充放電サイクル性能との総合性能が、比較例1、2の電池B1、B2より優れていた。しかしながら、Fe/(Fe+Ni)モル比が0.15である比較例3の電池B3およびリチウムを含まない正極活物質を用いた比較例4の電池B4では、放電容量および充放電サイクル性能共に良くなかった。   From the results in Tables 1 and 2, the following became clear. The batteries A1 to A4 of Examples 1 to 4 of the present invention using the positive electrode active material containing Fe have the same molar ratio as the battery B1 of Comparative Example 1 using the positive electrode active material B1 not containing Fe or Fe / (Fe + Ni). It was found that the charge / discharge cycle performance (capacity retention) was improved as compared with the battery B2 of Comparative Example 2 which was 0.01. In particular, in the batteries A2, A3, and A4 of Examples 2 to 4 having a Fe / (Ni + Fe) molar ratio of 0.05 to 0.10, the overall performance of the discharge capacity and the charge / discharge cycle performance is Comparative Example 1, 2 batteries B1 and B2. However, the battery B3 of Comparative Example 3 having a Fe / (Fe + Ni) molar ratio of 0.15 and the battery B4 of Comparative Example 4 using a positive electrode active material not containing lithium are not good in both discharge capacity and charge / discharge cycle performance. It was.

比較例1の電池B1の充放電曲線を図1に、実施例3の電池A3の充放電曲線を図2に示す。図1および図2において、記号■は1サイクル目の充電曲線、記号□は1サイクル目の放電曲線、記号●は2サイクル目の充電曲線、記号○は2サイクル目の放電曲線を示す。   The charge / discharge curve of the battery B1 of Comparative Example 1 is shown in FIG. 1, and the charge / discharge curve of the battery A3 of Example 3 is shown in FIG. 1 and 2, the symbol ■ indicates the charge curve of the first cycle, the symbol □ indicates the discharge curve of the first cycle, the symbol ● indicates the charge curve of the second cycle, and the symbol ○ indicates the discharge curve of the second cycle.

図1からわかるように、比較例1の電池B1の放電曲線は少なくとも2段となっていた。これに対し、図2に示した実施例3の電池A3の放電曲線は、電位変化が連続となり、二次電池により適していることがわかった。そこで、放電性能の良い実施例A13電池の正極活物質について更なる性能向上を試みた。   As can be seen from FIG. 1, the discharge curve of the battery B1 of Comparative Example 1 was at least two stages. In contrast, the discharge curve of the battery A3 of Example 3 shown in FIG. 2 shows that the potential change is continuous and is more suitable for the secondary battery. Therefore, further improvement in performance was attempted for the positive electrode active material of Example A13 battery having good discharge performance.

[X線回折(XRD)測定]
実施例1〜実施例3および比較例3で用いた酸化物に対し、CuKα線を用いて粉末XRD測定をおこなった。そのX線回折パターンを図3に示した。図3において、記号Aは実施例1で用いたLi0.7230.277Ni0.975Fe0.025の、記号Bは実施例2で用いたLi0.8270.173Ni0.95Fe0.05の、記号Cは実施例3で用いたLi0.6430.357Ni0.925Fe0.075の、記号Dは比較例3で用いたLi0.2820.718Ni0.85Fe0.15の、X線回折パターンを示す。
[X-ray diffraction (XRD) measurement]
Powder XRD measurement was performed on the oxides used in Examples 1 to 3 and Comparative Example 3 using CuKα rays. The X-ray diffraction pattern is shown in FIG. In FIG. 3, symbol A is Li 0.723 H 0.277 Ni 0.975 Fe 0.025 O 2 used in Example 1, and symbol B is Li 0.827 H 0.173 used in Example 2. Ni 0.95 Fe 0.05 O 2 , symbol C is Li 0.643 H 0.357 Ni 0.925 Fe 0.075 O 2 used in Example 3, symbol D is used in Comparative Example 3 of li 0.282 H 0.718 Ni 0.85 Fe 0.15 O 2, shows a X-ray diffraction pattern.

図3において、記号A、B、Cで示した酸化物では、回折角(2θ)の18.6°±1°、38°±1°、43.5°±1°、64°±1°において回折ピークを示すことがわかった。なお、図3における38°±1°のピークは、36.5±1°と37.5±1°のピークが重なったピークである。この結果から、これらの酸化物では、明らかに、Feがリチウム置換した層状オキシ水酸化ニッケルのNiサイトの一部がFeで置換されていることがわかった。   In the oxides indicated by symbols A, B, and C in FIG. 3, diffraction angles (2θ) of 18.6 ° ± 1 °, 38 ° ± 1 °, 43.5 ° ± 1 °, 64 ° ± 1 ° Was found to show a diffraction peak. Note that the peak at 38 ° ± 1 ° in FIG. 3 is a peak obtained by overlapping the peaks at 36.5 ± 1 ° and 37.5 ± 1 °. From these results, it was found that in these oxides, a part of the Ni sites of the layered nickel oxyhydroxide in which Fe was replaced with lithium was replaced with Fe.

なお、図3の記号Dで示したように、比較例3で用いた酸化物のX線回折パターンには、回折角(2θ)の18.6°±1°、36.5±1°において回折ピークを示すが、43.5°±1°、64°±1°においては回折ピークを示さず、37.5±1°付近に新しいピークが観察された。この酸化物の結晶構造は、六方晶の酸化物からずれたγ型構造になっていることがわかった。   As indicated by the symbol D in FIG. 3, the X-ray diffraction pattern of the oxide used in Comparative Example 3 has diffraction angles (2θ) of 18.6 ° ± 1 ° and 36.5 ± 1 °. Although a diffraction peak was shown, no diffraction peak was shown at 43.5 ° ± 1 ° and 64 ° ± 1 °, and a new peak was observed around 37.5 ± 1 °. It was found that the crystal structure of this oxide was a γ-type structure deviated from the hexagonal oxide.

しかし、回折ピークは示していないが、比較例4で用いた正極活物質では低角度側の12°付近に新たな回折ピークが観察された。このピークは明らかに未反応の水酸化鉄またはオキシ水酸化鉄によるものである。このことから、オキシ水酸化ニッケルのNiサイトのFeによる置換には限界があると言える。   However, although no diffraction peak is shown, a new diffraction peak was observed in the vicinity of 12 ° on the low angle side in the positive electrode active material used in Comparative Example 4. This peak is clearly due to unreacted iron hydroxide or iron oxyhydroxide. From this, it can be said that there is a limit to the replacement of nickel oxyhydroxide with Ni sites by Fe.

また、オキシ水酸化ニッケルのNiサイトが10mol%以下のFeで置換された実施例1〜4のリチウム置換オキシ水酸化ニッケルでは、低角度側の12°付近に明確な回折ピークが観察されなかった。このことは、実施例1〜4で正極活物質として用いた酸化物には、未反応の水酸化鉄またはオキシ水酸化鉄はふくまれていないことを示すものである。   In addition, in the lithium-substituted nickel oxyhydroxide of Examples 1 to 4 in which the Ni site of nickel oxyhydroxide was substituted with 10 mol% or less of Fe, no clear diffraction peak was observed near 12 ° on the low angle side. . This indicates that the oxide used as the positive electrode active material in Examples 1 to 4 does not contain unreacted iron hydroxide or iron oxyhydroxide.

[実施例6〜11]
[実施例6]
実施例3で得られた組成がLi0.6430.357Ni0.925Fe0.075のである酸化物を、いすゞ製作所製電気環状炉(AT−E58型)を用いて、アルゴンをフローしながら100℃で16時間加熱処理した。これを正極活物質として用いたこと以外は実施例1と同様にして、本発明の電池A6を製作した。
[Examples 6 to 11]
[Example 6]
An oxide having a composition of Li 0.643 H 0.357 Ni 0.925 Fe 0.075 O 2 obtained in Example 3 was converted to argon using an electric annular furnace (AT-E58 type) manufactured by Isuzu. Was heated for 16 hours at 100 ° C. A battery A6 of the present invention was produced in the same manner as in Example 1 except that this was used as the positive electrode active material.

[実施例7]
加熱処理温度を150℃にしたこと以外は実施例6と同様にして、本発明の電池A7を製作した。
[Example 7]
A battery A7 of the present invention was produced in the same manner as in Example 6 except that the heat treatment temperature was 150 ° C.

[実施例8]
加熱処理温度を250℃にしたこと以外は実施例6と同様にして、本発明の電池A8を製作した。
[Example 8]
A battery A8 of the present invention was produced in the same manner as in Example 6 except that the heat treatment temperature was 250 ° C.

[実施例9]
加熱処理温度を400℃にしたこと以外は実施例6と同様にして、本発明の電池A9を製作した。
[Example 9]
A battery A9 of the present invention was produced in the same manner as in Example 6 except that the heat treatment temperature was 400 ° C.

[実施例10]
加熱処理温度を600℃にしたこと以外は実施例6と同様にして、本発明の電池A10を製作した。
[Example 10]
A battery A10 of the present invention was produced in the same manner as in Example 6 except that the heat treatment temperature was 600 ° C.

[実施例11]
加熱処理温度を800℃にしたこと以外は実施例6と同様にして、本発明の電池A11を製作した。
[Example 11]
A battery A11 of the present invention was produced in the same manner as in Example 6 except that the heat treatment temperature was 800 ° C.

[充放電試験]
実施例6〜11で得られた電池A6〜A11を、25℃、0.25mA/cm2の電流密度で4.2Vまで定電流で充電したのち、0.25mA/cm2の電流密度で1.5Vまで定電流にて放電をおこなった。同じ条件で20サイクルの充電、放電を繰り返しておこなった。
[Charge / discharge test]
The batteries A6 to A11 obtained in Examples 6 to 11 were charged at a constant current of up to 4.2 V at a current density of 0.25 mA / cm 2 at 25 ° C., and then 1 at a current density of 0.25 mA / cm 2. Discharge was performed at a constant current up to 5V. 20 cycles of charging and discharging were repeated under the same conditions.

表3に、実施例6〜11の電池A6〜A11に用いた正極活物質の加熱処理温度および充放電試験の結果をまとめた。ここで「容量保持率」は、1サイクル目の放電容量に対する20サイクル目の放電容量の比(%)と定義した。なお、表3の値は各電池10セルについての平均値を示す。また、表3には比較のため、実施例3のデータも掲載した。   In Table 3, the heat processing temperature of the positive electrode active material used for battery A6-A11 of Examples 6-11 and the result of the charging / discharging test were put together. Here, “capacity retention” was defined as the ratio (%) of the discharge capacity at the 20th cycle to the discharge capacity at the 1st cycle. In addition, the value of Table 3 shows the average value about each battery 10 cell. Table 3 also shows data of Example 3 for comparison.

Figure 2005317277
Figure 2005317277

表3から明らかなように、実施例3で用いた正極活物質を150〜800℃で加熱処理した実施例6〜11の電池では、放電容量は若干減少するが、充放電サイクル性能が顕著に向上することがわかった。特に100℃〜250℃の温度で加熱処理した正極活物質を用いた実施例6〜8が、大きな放電容量と良好な充放電サイクル性能を示すことがわかった。   As is clear from Table 3, in the batteries of Examples 6 to 11 in which the positive electrode active material used in Example 3 was heat-treated at 150 to 800 ° C., the discharge capacity was slightly reduced, but the charge / discharge cycle performance was remarkable. It turns out that it improves. It turned out that Examples 6-8 using especially the positive electrode active material heat-processed at the temperature of 100 to 250 degreeC show a big discharge capacity and favorable charging / discharging cycling performance.

実施例7および実施例8に用いた正極活物質は、250℃以下で加熱処理したので、活物質中の水和水は除去され、結晶中の酸素−水素結合が安定して存在する酸化物であることから、リチウムの挿入/放出が可能なサイトおよび拡散パスが確保できたことにより、本発明の正極活物質の放電容量および充放電サイクル性能が向上することが明らかとなった。   Since the positive electrode active material used in Example 7 and Example 8 was heat-treated at 250 ° C. or lower, the hydration water in the active material was removed, and the oxide in which oxygen-hydrogen bonds in the crystal existed stably Thus, it has been clarified that the discharge capacity and charge / discharge cycle performance of the positive electrode active material of the present invention are improved by securing the sites and diffusion paths where lithium can be inserted / released.

一方、400℃以上の温度で加熱処理した実施例9〜実施例11で用いた正極活物質は、理由がまだわかっていないが、NiまたはFeがLiサイトへ拡散し、LiサイトにNiまたはFeが存在する岩塩相が生成され、放電容量が減少したものと考えられる。   On the other hand, for the positive electrode active materials used in Examples 9 to 11 heat-treated at a temperature of 400 ° C. or higher, the reason is not yet known, but Ni or Fe diffuses into the Li site, and Ni or Fe in the Li site. It is considered that the rock salt phase with the presence of is generated and the discharge capacity is reduced.

[実施例12〜15]
[実施例12]
LiOH水溶液中に、水酸化ニッケル(Ni(OH))と水酸化鉄(Fe(OH))と水酸化アルミニウム(Al(OH)))を、Ni:Fe:Alのモル比が92.5:6.5:1.0となるように分散させた以外は実施例1と同様にして、組成がLi0.6430.357Ni0.925Fe0.065Al0.010である酸化物を得た。この酸化物を、いすゞ製作所製電気環状炉(AT−E58型)を用いて、アルゴンをフローしながら350℃で16時間加熱処理した。そして、実施例1と同等にして、これを正極活物質とした本発明による電池A12を作製した。
[Examples 12 to 15]
[Example 12]
In a LiOH aqueous solution, nickel hydroxide (Ni (OH) 2 ), iron hydroxide (Fe (OH) 2 ), and aluminum hydroxide (Al (OH) 3 ) are mixed at a molar ratio of Ni: Fe: Al of 92. .5: 6.5: 1.0 The composition is Li 0.643 H 0.357 Ni 0.925 Fe 0.065 Al 0.010 O in the same manner as in Example 1 except that the dispersion is made to be 1.0. 2 was obtained. This oxide was heat-treated at 350 ° C. for 16 hours while flowing argon using an electric annular furnace (AT-E58 type) manufactured by Isuzu. Then, in the same manner as in Example 1, a battery A12 according to the present invention was produced using this as a positive electrode active material.

[実施例13]
LiOH水溶液中に、水酸化ニッケル(Ni(OH))と水酸化鉄(Fe(OH))と水酸化アルミニウム(Al(OH)))を、Ni:Fe:Alのモル比が92.5:2.5:5.0となるように分散させた以外は実施例1と同様にして、組成がLi0.6430.357Ni0.925Fe0.025Al0.050である酸化物を得た。この酸化物を、実施例12と同様の条件で加熱処理し、実施例1と同等にして、これを正極活物質とした本発明による電池A13を作製した。
[Example 13]
In a LiOH aqueous solution, nickel hydroxide (Ni (OH) 2 ), iron hydroxide (Fe (OH) 2 ), and aluminum hydroxide (Al (OH) 3 ) are mixed at a molar ratio of Ni: Fe: Al of 92. .5: 2.5: 5.0 The composition is Li 0.643 H 0.357 Ni 0.925 Fe 0.025 Al 0.050 O in the same manner as in Example 1 except that the dispersion is made to be 2.5: 5.0. 2 was obtained. This oxide was heat-treated under the same conditions as in Example 12 to make a battery A13 according to the present invention using this as a positive electrode active material, in the same manner as in Example 1.

[実施例14]
LiOH水溶液中に、水酸化ニッケル(Ni(OH))と水酸化鉄(Fe(OH))と硫酸亜鉛(ZnSO)を、Ni:Fe:Znのモル比が92.5:6.5:1.0となるように分散させた以外は実施例1と同様にして、組成がLi0.6430.357Ni0.925Fe0.065Zn0.010である酸化物を得た。この酸化物を、実施例12と同様の条件で加熱処理し、実施例1と同等にして、これを正極活物質とした本発明による電池A14を作製した。
[Example 14]
In a LiOH aqueous solution, nickel hydroxide (Ni (OH) 2 ), iron hydroxide (Fe (OH) 2 ), and zinc sulfate (ZnSO 4 ) have a molar ratio of Ni: Fe: Zn of 92.5: 6. 5: Oxide having a composition of Li 0.643 H 0.357 Ni 0.925 Fe 0.065 Zn 0.010 O 2 in the same manner as in Example 1 except that the dispersion was made to be 1.0. Got. This oxide was heat-treated under the same conditions as in Example 12 to make a battery A14 according to the present invention using this as a positive electrode active material, in the same manner as in Example 1.

[実施例15]
LiOH水溶液中に、水酸化ニッケル(Ni(OH))と水酸化鉄(Fe(OH))と水酸化亜鉛(ZnSO)を、Ni:Fe:Znのモル比が92.5:2.5:5.0となるように分散させた以外は実施例1と同様にして、組成がLi0.6430.357Ni0.925Fe0.025Zn0.050である酸化物を得た。この酸化物を、実施例12と同様の条件で加熱処理し、実施例1と同等にして、これを正極活物質とした本発明による電池A15を作製した。
[Example 15]
In a LiOH aqueous solution, nickel hydroxide (Ni (OH) 2 ), iron hydroxide (Fe (OH) 2 ) and zinc hydroxide (ZnSO 4 ) are mixed at a molar ratio of Ni: Fe: Zn of 92.5: 2. .5: Oxidation having a composition of Li 0.643 H 0.357 Ni 0.925 Fe 0.025 Zn 0.050 O 2 in the same manner as in Example 1 except that the dispersion was made to be 5.0. I got a thing. This oxide was heat-treated under the same conditions as in Example 12 to make a battery A15 according to the present invention using this as a positive electrode active material in the same manner as in Example 1.

[充放電試験]
実施例12〜15で得られた電池A12〜A15を、25℃、0.25mA/cm2の電流密度で4.2Vまで定電流で充電したのち、0.25mA/cm2の電流密度で1.5Vまで定電流にて放電をおこなった。同じ条件で20サイクルの充電、放電を繰り返しておこなった。
[Charge / discharge test]
The batteries A12 to A15 obtained in Examples 12 to 15 were charged at a constant current of up to 4.2 V at a current density of 0.25 mA / cm 2 at 25 ° C., and then 1 at a current density of 0.25 mA / cm 2. Discharge was performed at a constant current up to 5V. 20 cycles of charging and discharging were repeated under the same conditions.

表4に、実施例12〜15の電池A12〜A15に用いた正極活物質の組成および充放電試験の結果をまとめた。ここで「容量保持率」は、1サイクル目の放電容量に対する20サイクル目の放電容量の比(%)と定義した。なお、表4の値は各電池10セルについての平均値を示す。また、表4には、比較のため、実施例7のデータも掲載した。   Table 4 summarizes the compositions of the positive electrode active materials used in the batteries A12 to A15 of Examples 12 to 15 and the results of the charge / discharge test. Here, “capacity retention” was defined as the ratio (%) of the discharge capacity at the 20th cycle to the discharge capacity at the 1st cycle. In addition, the value of Table 4 shows the average value about each battery 10 cell. Table 4 also includes data of Example 7 for comparison.

Figure 2005317277
Figure 2005317277

表4から、FeとAlを含む正極活物質を用いた本発明の実施例12、13の電池A12、A13、およびFeとZnを含む正極活物質を用いた本発明の実施例14、15の電池A14、A15では、放電容量がFeのみを含む実施例7の電池A7とほぼ同じで、充放電サイクル性能(容量保持率)は、実施例7の電池A7よりも優れていた。   From Table 4, the batteries A12 and A13 of Examples 12 and 13 of the present invention using the positive electrode active material containing Fe and Al, and the Examples 14 and 15 of the present invention using the positive electrode active material containing Fe and Zn are shown. In the batteries A14 and A15, the discharge capacity was almost the same as the battery A7 of Example 7 containing only Fe, and the charge / discharge cycle performance (capacity retention) was superior to the battery A7 of Example 7.

この結果から、本発明の一般式Li1−xNiFeで表わされる、LiとHとNiとFeとM(但しM=Al、Zn、Ca、Sr、Nb、Mg、Cd、Cu、V、Cr、Mo、Ti、W、Agからなる群から選択される少なくとも1種)とを含む酸化物を正極活物質に用いることにより、充放電容量、充放電の電位特性および充放電サイクル性能に優れた非水電解質電池が得られることがわかった。 This result is represented by the general formula Li x H 1-x Ni y Fe z M a O 2 of the present invention, Li, H and Ni and Fe and M (where M = Al, Zn, Ca, Sr, Nb, By using an oxide containing at least one selected from the group consisting of Mg, Cd, Cu, V, Cr, Mo, Ti, W, and Ag as the positive electrode active material, the charge / discharge capacity and the charge / discharge potential It was found that a nonaqueous electrolyte battery excellent in characteristics and charge / discharge cycle performance was obtained.

比較例1の電池B1の充放電曲線を示す図。The figure which shows the charging / discharging curve of battery B1 of the comparative example 1. FIG. 実施例3の電池A3の充放電曲線を示す図。The figure which shows the charging / discharging curve of battery A3 of Example 3. FIG. 実施例1〜実施例3および比較例3で用いた酸化物のX線回折パターンを示す。The X-ray-diffraction pattern of the oxide used in Example 1- Example 3 and Comparative Example 3 is shown.

Claims (3)

正極と負極とを備えた非水電解質電池において、一般式Li1−xNiFe(但し、MはAl、Zn、Ca、Sr、Nb、Mg、Cd、Cu、V、Cr、Mo、Ti、W、Agからなる群から選ばれる少なくとも1種、0<X/(Y+Z)≦1、0.95≦Y+Z+a≦1.1、0.025≦Z/(Y+Z)≦0.1、0≦a≦0.05)で表わされる酸化物を正極活物質に用いたことを特徴とする非水電解質電池。 In the nonaqueous electrolyte battery comprising the positive electrode and the negative electrode, the general formula Li x H 1-x Ni y Fe z M a O 2 ( where, M is Al, Zn, Ca, Sr, Nb, Mg, Cd, Cu, At least one selected from the group consisting of V, Cr, Mo, Ti, W, Ag, 0 <X / (Y + Z) ≦ 1, 0.95 ≦ Y + Z + a ≦ 1.1, 0.025 ≦ Z / (Y + Z) <0.1, 0 <= a <= 0.05) The nonaqueous electrolyte battery characterized by using the oxide represented by the positive electrode active material. 前記酸化物のCuKα線を用いたX線回折パターンにおいて、回折角(2θ)18.6°±1°、38°±1°、43.5°±1°、64°±1°に回折ピークを示すことを特徴とする請求項1記載の非水電解質電池。 In the X-ray diffraction pattern using CuKα ray of the oxide, diffraction peaks at diffraction angles (2θ) of 18.6 ° ± 1 °, 38 ° ± 1 °, 43.5 ° ± 1 °, 64 ° ± 1 ° The nonaqueous electrolyte battery according to claim 1, wherein Li、Ni、Fe、M、O、Hを含有する複数の化合物を、100℃以上250℃以下の温度で加熱することを特徴とする請求項1または2記載の非水電解質電池用正極活物質の製造方法。


























The positive electrode active material for a non-aqueous electrolyte battery according to claim 1 or 2, wherein a plurality of compounds containing Li, Ni, Fe, M, O, and H are heated at a temperature of 100 ° C to 250 ° C. Manufacturing method.


























JP2004131773A 2004-04-27 2004-04-27 Nonaqueous electrolyte battery Pending JP2005317277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004131773A JP2005317277A (en) 2004-04-27 2004-04-27 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004131773A JP2005317277A (en) 2004-04-27 2004-04-27 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2005317277A true JP2005317277A (en) 2005-11-10

Family

ID=35444481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131773A Pending JP2005317277A (en) 2004-04-27 2004-04-27 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2005317277A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134218A (en) * 2005-11-11 2007-05-31 Kansai Electric Power Co Inc:The Nonaqueous electrolyte secondary battery
JP2008010157A (en) * 2006-06-27 2008-01-17 Gs Yuasa Corporation:Kk Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery equipped therewith
JP2008226752A (en) * 2007-03-15 2008-09-25 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
CN110447132A (en) * 2017-11-30 2019-11-12 株式会社Lg化学 Anode additive, preparation method and anode and lithium secondary battery comprising it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134218A (en) * 2005-11-11 2007-05-31 Kansai Electric Power Co Inc:The Nonaqueous electrolyte secondary battery
JP2008010157A (en) * 2006-06-27 2008-01-17 Gs Yuasa Corporation:Kk Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery equipped therewith
JP2008226752A (en) * 2007-03-15 2008-09-25 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
CN110447132A (en) * 2017-11-30 2019-11-12 株式会社Lg化学 Anode additive, preparation method and anode and lithium secondary battery comprising it
US11329287B2 (en) 2017-11-30 2022-05-10 Lg Energy Solution, Ltd. Cathode additive, preparation method thereof, and cathode and lithium secondary battery comprising the same
CN110447132B (en) * 2017-11-30 2022-06-07 株式会社Lg化学 Positive electrode additive, method for preparing same, and positive electrode and lithium secondary battery comprising same

Similar Documents

Publication Publication Date Title
JP4523807B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
US20050079417A1 (en) Negative active material for non-aqueous electrolyte battery, method of preparing same, and non-aqueous electrolyte battery comprising same
US9337473B2 (en) Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2006128115A (en) Negative electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery having this
JP2003142101A (en) Positive electrode for secondary battery and secondary battery using the same
JP4086654B2 (en) Lithium-containing composite oxide, method for producing the same, and non-aqueous secondary battery
WO2018092359A1 (en) Positive electrode active material for batteries, and battery
JP2007109477A (en) Nonaqueous electrolyte secondary battery and its positive electrode active material
JP2012503293A (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR101115416B1 (en) Positive active material for rechargeable, method of preparing same, and rechargeable lithium battery including same
JP2008120679A (en) Lithium-containing compound oxide, method for producing the same, and nonaqueous secondary battery
US9893356B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of producing cathode active material for nonaqueous electrolyte secondary battery
JP2005281128A (en) Method for producing lithium-containing iron oxyhydroxide and nonaqueous electrolyte electrochemical cell using electrode containing lithium-containing iron oxyhydroxide obtained by the same
JP5205788B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and method for producing nonaqueous electrolyte secondary battery
JP3667468B2 (en) Nonaqueous electrolyte lithium secondary battery and method for producing positive electrode material thereof
WO2011096236A1 (en) Process for production of composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5447452B2 (en) Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery using the positive electrode active material, and method for producing lithium manganese silver composite oxide
WO2017047022A1 (en) Positive electrode active material and battery
JP2022520866A (en) A lithium secondary battery containing a positive electrode active material, a method for producing the same, and a positive electrode containing the positive electrode.
JP2005317277A (en) Nonaqueous electrolyte battery
JP2013004401A (en) Positive electrode active material for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
JP2005353330A (en) Nonaqueous electrolyte electrochemical cell
JP4851699B2 (en) Anode active material for non-aqueous electrolyte electrochemical cell and non-aqueous electrolyte electrochemical cell using the same
JP5003030B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery including the same
JP4562824B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213