JP2005317223A - Load commutation inverter arrangement - Google Patents

Load commutation inverter arrangement Download PDF

Info

Publication number
JP2005317223A
JP2005317223A JP2004130691A JP2004130691A JP2005317223A JP 2005317223 A JP2005317223 A JP 2005317223A JP 2004130691 A JP2004130691 A JP 2004130691A JP 2004130691 A JP2004130691 A JP 2004130691A JP 2005317223 A JP2005317223 A JP 2005317223A
Authority
JP
Japan
Prior art keywords
voltage
output
current
controller
forward converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004130691A
Other languages
Japanese (ja)
Other versions
JP4257739B2 (en
JP2005317223A5 (en
Inventor
Katsuro Ito
克郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2004130691A priority Critical patent/JP4257739B2/en
Publication of JP2005317223A publication Critical patent/JP2005317223A/en
Publication of JP2005317223A5 publication Critical patent/JP2005317223A5/ja
Application granted granted Critical
Publication of JP4257739B2 publication Critical patent/JP4257739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a load commutation inverter arrangement which can operate stably without overvoltages, even if a load impedance changes rapidly, and so on. <P>SOLUTION: The inverter arrangement is composed of a forward converter 2 for converting alternating current into direct current, an inverter 4 for converting the direct current converted by this forward converter into alternating current and supplying it to a load coil, a control means 8 for controlling the forward converter, and a voltage detection means for detecting the output voltage of the inverter. The control means is provided with a first voltage controller 83 for controlling the firing phase of the forward converter according to the difference between the detected voltage of the voltage detection means and a first reference voltage 81, and a second voltage controller 88 for calculating and amplifying the difference between the detected voltage of the voltage detection means and a second reference voltage 86, and adds the output of the second voltage controller to the output of the first voltage controller, when the detected voltage of the voltage detection means is larger than the second reference voltage. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば金属材料等の被加熱材料を誘導加熱するのに用いられる改良された負荷転流形インバータ装置に関する。   The present invention relates to an improved load commutated inverter device used for induction heating of a material to be heated such as a metal material.

従来から、金属材料等の被加熱材料を誘導加熱するのに用いられる電力変換装置としては、負荷コイルに並列に力率改善コンデンサを接続し、この進み電圧によって逆変換器のサイリスタの転流させるようにした所謂負荷転流型インバータ装置が用いられている。誘導加熱に要求される周波数は高周波であるので、損失の少ない負荷転流型インバータ装置はこの用途に適している。この場合、順変換器は、3相交流電力を直流電力に変換し、直流リアクトルを介して単相の逆変換器に直流電力を供給するように構成するのが普通である。   Conventionally, as a power conversion device used for induction heating of a heated material such as a metal material, a power factor correction capacitor is connected in parallel to a load coil, and a thyristor of an inverse converter is commutated by this advance voltage. A so-called load commutation type inverter device is used. Since the frequency required for induction heating is a high frequency, a load commutation type inverter device with little loss is suitable for this application. In this case, the forward converter is generally configured to convert the three-phase AC power into DC power and supply the DC power to the single-phase reverse converter via the DC reactor.

この負荷転流型インバータ装置の制御方法は、インバータ装置の出力電圧が与えられた電圧基準値となるように順変換器の点弧位相を制御することが多く、場合によっては、交流入力電流の制御を併用する。交流入力電流の制御を併用する場合には、電圧制御回路の制御出力と電流制御回路の制御出力を比較し、制御出力の大きい方の制御を優先させ、制御の速さと制御の精度のバランスを取るようにしてきた。また、負荷の状態によって起動時の条件等が変化するので、安定な制御で運転を継続させようとする工夫も為されている(特許文献1参照。)。
特開平11−26145号公報(第3−6頁、図1)
In this load commutation type inverter device control method, the firing phase of the forward converter is often controlled so that the output voltage of the inverter device becomes a given voltage reference value. Use control together. When using AC input current control together, compare the control output of the voltage control circuit with the control output of the current control circuit, give priority to the control with the larger control output, and balance the control speed and control accuracy. I've been taking it. Moreover, since the conditions at the time of starting, etc. change with the state of load, the device which tries to continue driving | operation by stable control is also made (refer patent document 1).
Japanese Patent Laid-Open No. 11-26145 (page 3-6, FIG. 1)

このような負荷転流型インバータ装置では、力率改善コンデンサの容量がインバータ装置の容量の数倍になる場合がある。電圧制御回路及び電流制御回路は1次遅れ進みあるいは比例積分回路で構成されるが、力率改善コンデンサの容量が大きい場合は装置を安定に動作させるためには電圧制御回路及び電流制御回路の応答時間を長くする必要があった。
ところで、負荷転流型インバータ装置の負荷は、被加熱材料先端が負荷コイルの内側に挿入されていれば、負荷コイル内に磁性体の被加熱材料が存在することにより、インバータ装置から見た負荷インピーダンスは、低いインピーダンスとなる。
In such a load commutation type inverter device, the capacity of the power factor correction capacitor may be several times the capacity of the inverter device. The voltage control circuit and the current control circuit are composed of a first-order lag advance or proportional integration circuit. If the capacity of the power factor correction capacitor is large, the response of the voltage control circuit and the current control circuit is required to operate the device stably. It was necessary to lengthen the time.
By the way, if the load of the load commutation type inverter device is inserted into the inside of the load coil, the load material seen from the inverter device is due to the presence of the magnetic material to be heated in the load coil. The impedance is low impedance.

しかしながら、被加熱材料が負荷コイルに挿入されていない状態でインバータ装置を起動すると、負荷コイルの中に被加熱材料が無いため、負荷インピーダンスは高インピーダンスとなる。従って、被加熱材料か高速で負荷コイルに進入する、あるいは抜け出すときにはインピーダンス変化が急激になる。このとき、電圧制御回路及び電流制御回路の応答時間が長いため追従できず、そのため出力電圧が過大になる、あるいは過電圧保護が動作して運転継続ができなくなることがあった。   However, when the inverter device is started in a state where the material to be heated is not inserted into the load coil, the load impedance becomes high because there is no material to be heated in the load coil. Therefore, when the material to be heated enters or leaves the load coil at a high speed, the impedance change becomes abrupt. At this time, since the response time of the voltage control circuit and the current control circuit is long, the follow-up cannot be performed. For this reason, the output voltage becomes excessive, or the overvoltage protection is activated and the operation cannot be continued.

本発明は上記に鑑みて為されたもので、その目的は負荷インピーダンスの急変などがあっても、過電圧がなく安定に運転可能な負荷転流型インバータ装置を提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to provide a load commutation type inverter device that can be stably operated without overvoltage even when there is a sudden change in load impedance.

上記目的を達成するために、本発明の負荷転流型インバータ装置は、交流を直流に変換する順変換器と、この順変換器により変換された直流を交流に変換して負荷コイルに給電する逆変換器と、前記順変換器を制御する制御手段と、前記逆変換器の出力電圧を検出する電圧検出手段とから構成され、前記制御手段は、前記電圧検出手段の検出電圧と第1の基準電圧との差に応じて前記順変換器の点弧位相を制御する第1の電圧制御器と、前記電圧検出手段の検出電圧と第2の基準電圧との差を演算増幅する第2の電圧制御器を備え、前記電圧検出手段の検出電圧が前記第2の基準電圧より大きいとき、前記第2の電圧制御器の出力を前記第1の電圧制御器の出力に加算するようにしたことを特徴としている。   In order to achieve the above object, a load commutation type inverter device according to the present invention includes a forward converter that converts alternating current into direct current, and converts the direct current converted by the forward converter into alternating current to supply power to a load coil. An inverter, a controller for controlling the forward converter, and a voltage detector for detecting an output voltage of the inverter; the controller detects a voltage detected by the voltage detector and a first voltage A first voltage controller for controlling an ignition phase of the forward converter in accordance with a difference from a reference voltage; and a second voltage for calculating and amplifying a difference between a detection voltage of the voltage detection means and a second reference voltage. A voltage controller is provided, and when the detected voltage of the voltage detecting means is larger than the second reference voltage, the output of the second voltage controller is added to the output of the first voltage controller. It is characterized by.

本発明によれば、負荷インピーダンスの急変などがあっても、過電圧がなく安定に運転可能な負荷転流型インバータ装置を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, even if there is a sudden change of load impedance, it becomes possible to provide a load commutation type inverter device that can be stably operated without overvoltage.

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例1に係る負荷転流型インバータ装置のブロック構成図である。   FIG. 1 is a block diagram of a load commutation type inverter device according to Embodiment 1 of the present invention.

交流電源1の3相交流を順変換器2で直流に変換する。得られた直流は直流リアクトル3で電流が平滑され逆変換器4に供給される。逆変換器4の交流出力は、起動回路5を介し力率改善コンデンサ61及び負荷コイル62から成る並列共振負荷6に供給される。起動回路5は逆変換器4の起動時に逆変換器4のサイリスタをスムースに転流させるための補助回路である。また、被加熱材料7は負荷コイル62が発生する高周波磁束により渦電流損を生じて加熱されるように構成されている。順変換器2は制御回路8によって制御されている。この制御のため電圧検出器9と電圧検出回路10により検出された逆変換器4の出力電圧がフィードバック電圧信号として制御回路8に与えられている。   The three-phase alternating current of the alternating current power source 1 is converted into direct current by the forward converter 2. The obtained direct current is smoothed by a direct current reactor 3 and supplied to an inverse converter 4. The AC output of the inverse converter 4 is supplied to the parallel resonant load 6 including the power factor correction capacitor 61 and the load coil 62 via the starting circuit 5. The start circuit 5 is an auxiliary circuit for smoothly commutating the thyristor of the reverse converter 4 when the reverse converter 4 is started. Further, the material to be heated 7 is configured to be heated by causing eddy current loss by the high frequency magnetic flux generated by the load coil 62. The forward converter 2 is controlled by the control circuit 8. For this control, the output voltage of the inverse converter 4 detected by the voltage detector 9 and the voltage detection circuit 10 is given to the control circuit 8 as a feedback voltage signal.

以下制御回路8の内部構成について説明する。   Hereinafter, an internal configuration of the control circuit 8 will be described.

第1の電圧基準設定回路81で設定された電圧基準は、電圧検出回路10の出力と第1の差分回路82で比較され、その出力は第1の電圧制御器83で演算増幅され、加算器84の一方の入力となる。加算器84の出力は順変換器2のサイリスタの点弧位相を制御する位相制御回路85の入力となる。   The voltage reference set by the first voltage reference setting circuit 81 is compared with the output of the voltage detection circuit 10 by the first difference circuit 82, and the output is calculated and amplified by the first voltage controller 83, and the adder One input of 84. The output of the adder 84 becomes an input of a phase control circuit 85 that controls the firing phase of the thyristor of the forward converter 2.

また、過電圧を制限するための第2の電圧基準設定回路86が設けられ、その出力と、電圧検出回路10の出力との差分を第2の差分回路87で演算する。第2の差分回路87の出力を第2の電圧制御器88に入力し、この出力を加算器84の他方の入力とする。ここで第2の電圧制御器88はその出力が負の値とならないような出力リミット機能をもつ回路で構成する。また第2の電圧基準設定回路86の出力は第1の電圧基準設定回路81の出力より高く、且つ装置の過電圧保護レベルよりも低い値、例えば定格電圧の105%に設定する。   Further, a second voltage reference setting circuit 86 for limiting overvoltage is provided, and the second difference circuit 87 calculates the difference between the output thereof and the output of the voltage detection circuit 10. The output of the second difference circuit 87 is input to the second voltage controller 88, and this output is used as the other input of the adder 84. Here, the second voltage controller 88 is constituted by a circuit having an output limit function so that its output does not become a negative value. The output of the second voltage reference setting circuit 86 is set to a value higher than the output of the first voltage reference setting circuit 81 and lower than the overvoltage protection level of the apparatus, for example, 105% of the rated voltage.

次に、上記構成における作用とその効果について説明する。   Next, the operation and effects of the above configuration will be described.

通常運転中は、逆変換器4の出力電圧が第2の電圧基準設定値86の出力より低いので、第2の差分回路87の出力は負の値となる、従って第2の電圧制御器88の出力も負の値を取ろうとするが、第2の電圧制御器88には負の値と成らないように出力下限値が0に設定されているため、第2の電圧制御器88の出力は0となる。加算器84には第1の電圧制御器83と第2の電圧制御器88の出力が入力されるが、第2の電圧制御器88の出力が0であるため、加算器84の出力は第1の電圧制御器83の出力と等しくなり。順変換器2は第1の電圧制御器83の信号で制御されることになる。   During normal operation, since the output voltage of the inverse converter 4 is lower than the output of the second voltage reference set value 86, the output of the second difference circuit 87 has a negative value, and therefore the second voltage controller 88. The output of the second voltage controller 88 is set to 0 so that the second voltage controller 88 does not become a negative value. Becomes 0. The output of the first voltage controller 83 and the second voltage controller 88 is input to the adder 84. Since the output of the second voltage controller 88 is 0, the output of the adder 84 is the first output. 1 is equal to the output of the voltage controller 83. The forward converter 2 is controlled by a signal from the first voltage controller 83.

次に、負荷変動等の要因により逆変換器4の出力電圧が第2の電圧基準設定値86の出力より高くなった場合を考える。この時には、第2の差分回路87の出力は正の値となり、第2の電圧制御器88の出力は第2の差分回路87の出力に比例する。従って加算器84の出力は第1の電圧制御器83の出力に第2の電圧制御器88の出力を加えた値となる。位相制御回路85はこれにより順変換器2の点弧位相を遅らせるように動作するので、順変換器2の出力電圧が下がり、従って逆変換器4の出力電圧も下がり、逆変換器4の出力電圧が過電圧保護レベルに達するのを抑制する。   Next, consider a case where the output voltage of the inverter 4 becomes higher than the output of the second voltage reference set value 86 due to factors such as load fluctuations. At this time, the output of the second difference circuit 87 becomes a positive value, and the output of the second voltage controller 88 is proportional to the output of the second difference circuit 87. Therefore, the output of the adder 84 is a value obtained by adding the output of the second voltage controller 88 to the output of the first voltage controller 83. As a result, the phase control circuit 85 operates so as to delay the firing phase of the forward converter 2, so that the output voltage of the forward converter 2 decreases, and hence the output voltage of the inverse converter 4 also decreases, and the output of the inverse converter 4. Suppresses the voltage from reaching the overvoltage protection level.

以上の説明で明らかなように、本発明によれば負荷変動等によって生じる過電圧を効果的に抑制できる。また、通常運転中は第2の電圧制御器88の出力は0になるので、第1の電圧制御器83の応答時間を早くした場合に生じるような不安定現象の発生はない。   As is clear from the above description, according to the present invention, it is possible to effectively suppress overvoltage caused by load fluctuation or the like. Further, since the output of the second voltage controller 88 is 0 during normal operation, there is no occurrence of an unstable phenomenon that occurs when the response time of the first voltage controller 83 is increased.

図2は、本発明の実施例2に係る負荷転流型インバータ装置の回路構成図である。この実施例2の各部について、図1の実施例1に係る負荷転流型インバータ装置の各部と同一部分は同一符号で示し、その説明を省略する。この実施例2が実施例1と異なる点は、順変換器2の入力電流を検出する電流検出器11と電流検出回路12を設け、この出力と電流基準設定回路89で設定された電流基準を差分回路90で比較し、電流制御器91で演算増幅するようにした点、この電流制御器91の出力と第1の電圧制御器83の出力を高出力優先回路92の入力とし、高出力優先回路92に入力された信号の大きい方を選択して加算器93の一方の入力とするようにした点、更に第2の電圧制御器88の出力を加算器93の他方の入力とし、加算器93の出力を位相制御回路85に与えるようにした点である。   FIG. 2 is a circuit configuration diagram of the load commutation inverter device according to the second embodiment of the present invention. About each part of this Example 2, the same part as each part of the load commutation type inverter apparatus which concerns on Example 1 of FIG. 1 is shown with the same code | symbol, and the description is abbreviate | omitted. The second embodiment is different from the first embodiment in that a current detector 11 and a current detection circuit 12 for detecting the input current of the forward converter 2 are provided, and the current reference set by the output and the current reference setting circuit 89 is used. The difference circuit 90 compares and the current controller 91 performs operational amplification. The output of the current controller 91 and the output of the first voltage controller 83 are input to the high output priority circuit 92, and the high output priority is given. The larger signal input to the circuit 92 is selected and used as one input of the adder 93, and the output of the second voltage controller 88 is used as the other input of the adder 93. The output of 93 is provided to the phase control circuit 85.

次に、上記構成における作用とその効果について説明する。   Next, the operation and effects of the above configuration will be described.

通常運転中は、逆変換器4の出力電圧が第2の電圧基準設定値86の出力より低いので、第2の差分回路87の出力は負の値となる、従って第2の電圧制御器88の出力も負の値をとろうとするが、第2の電圧制御器88には負の値とならないように出力下限値が0に設定されているため、第2の電圧制御器88の出力は0となる。また、通常は第1の電圧制御器83の出力値が電流制御器91の出力より大きいので、高出力優先回路92の出力は第1の電圧制御器83の出力と等しい。加算器93には高出力優先回路92と第2の電圧制御器88の出力が入力されるが、第2の電圧制御器88の出力は0であるため、加算器93の出力は高出力優先回路92の出力と等しい。したがって順変換器2は第1の電圧制御器83の信号で制御されることになり、第2の電圧制御器88の出力は運転に寄与しない。   During normal operation, since the output voltage of the inverse converter 4 is lower than the output of the second voltage reference set value 86, the output of the second difference circuit 87 has a negative value, and therefore the second voltage controller 88. Although the output lower limit value is set to 0 so that the second voltage controller 88 does not become a negative value, the output of the second voltage controller 88 is 0. Further, since the output value of the first voltage controller 83 is usually larger than the output of the current controller 91, the output of the high output priority circuit 92 is equal to the output of the first voltage controller 83. The output of the high output priority circuit 92 and the second voltage controller 88 is input to the adder 93. However, since the output of the second voltage controller 88 is 0, the output of the adder 93 is high output priority. It is equal to the output of the circuit 92. Therefore, the forward converter 2 is controlled by the signal of the first voltage controller 83, and the output of the second voltage controller 88 does not contribute to the operation.

また、電流変動等があり第1の電圧制御器83の出力値が電流制御器91の出力より小さくなり、高出力優先回路92の出力が電流制御器91の出力と等しくなる場合は、逆変換器4の出力電圧が第1の電圧基準設定回路81の設定値より低い場合であるから、第1の差分回路82の出力は負の値となる。同様に第2の電圧制御器88の出力も負の値をとろうとするが、第2の電圧制御器88には負の値とならないように出力下限値が0に設定されているため、第2の電圧制御器88の出力は0となる。従って順変換器2は第1の電圧制御器83の出力で制御されることになり、第2の電圧制御器88の出力は運転に寄与しない。   Further, when there is a current fluctuation or the like, the output value of the first voltage controller 83 becomes smaller than the output of the current controller 91, and the output of the high output priority circuit 92 becomes equal to the output of the current controller 91, the reverse conversion is performed. Since the output voltage of the device 4 is lower than the set value of the first voltage reference setting circuit 81, the output of the first difference circuit 82 is a negative value. Similarly, the output of the second voltage controller 88 also attempts to take a negative value, but the output lower limit value is set to 0 so that the second voltage controller 88 does not become a negative value. The output of the second voltage controller 88 is zero. Therefore, the forward converter 2 is controlled by the output of the first voltage controller 83, and the output of the second voltage controller 88 does not contribute to the operation.

負荷変動等の要因により逆変換器4の出力電圧が第2の電圧基準設定値86の出力より高くなると、第2の差分回路87の出力は正の値となり、入力に比例した出力が得られる。加算器93の出力は高出力優先回路92の出力に第2の電圧制御器88の出力を加えた値となり、これが位相制御回路85に与えられる。位相制御回路85はこの信号により順変換器2の点弧位相を遅らせるので、順変換器2の出力電圧が下がり、逆変換器4の出力電圧も下がり、過電圧保護レベルに達することなく安定に運転を継続することができる。   When the output voltage of the inverter 4 becomes higher than the output of the second voltage reference set value 86 due to factors such as load fluctuations, the output of the second difference circuit 87 becomes a positive value, and an output proportional to the input is obtained. . The output of the adder 93 is a value obtained by adding the output of the second voltage controller 88 to the output of the high output priority circuit 92, and this is given to the phase control circuit 85. Since the phase control circuit 85 delays the ignition phase of the forward converter 2 by this signal, the output voltage of the forward converter 2 decreases, the output voltage of the inverse converter 4 also decreases, and the stable operation is achieved without reaching the overvoltage protection level. Can continue.

以上の説明で明らかなように、第2の実施例によれば、電流変動を抑制することが可能で且つ負荷変動等によって生じる過電圧を効果的に抑制することができる。また、通常運転中は第2の電圧制御器88の出力は0になるので、第1の電圧制御器83の応答時間を速くした場合に生じるような不安定現象の発生はない。   As is apparent from the above description, according to the second embodiment, it is possible to suppress current fluctuation and effectively suppress overvoltage caused by load fluctuation or the like. Further, since the output of the second voltage controller 88 is 0 during normal operation, there is no occurrence of an unstable phenomenon that occurs when the response time of the first voltage controller 83 is increased.

図3は、本発明の実施例3に係る負荷転流型インバータ装置の回路構成図である。この実施例3の各部について、図2の実施例2に係る負荷転流型インバータ装置の各部と同一部分は同一符号で示し、その説明を省略する。この実施例3が実施例2と異なる点は、加算器93に代えて第1の電圧制御器83の出力を一方の入力とする加算器94を設け、第2の電圧制御器88の出力を加算器94の他方の入力とし、加算器94の出力を高出力優先回路92に与えるようにした点である。   FIG. 3 is a circuit configuration diagram of the load commutation inverter device according to the third embodiment of the present invention. About each part of this Example 3, the same part as each part of the load commutation type inverter apparatus which concerns on Example 2 of FIG. 2 is shown with the same code | symbol, and the description is abbreviate | omitted. The third embodiment is different from the second embodiment in that an adder 94 is provided which takes the output of the first voltage controller 83 as one input in place of the adder 93, and the output of the second voltage controller 88 is changed. This is that the other input of the adder 94 is used and the output of the adder 94 is given to the high output priority circuit 92.

実施例2で説明したように、通常運転中は第2の電圧制御器88の出力は0となり、また第1の電圧制御器83の出力は電流制御器91の出力より大きいので高出力優先回路92の出力は第1の電圧制御器83の出力と等しくなる。   As described in the second embodiment, the output of the second voltage controller 88 is 0 during normal operation, and the output of the first voltage controller 83 is larger than the output of the current controller 91. The output of 92 is equal to the output of the first voltage controller 83.

電流変動等により第1の電圧制御器83の出力値が電流制御器91の出力より小さく、高出力優先回路92の出力が電流制御器91の出力と等しくなる場合は、逆変換器4の出力電圧が第1の電圧基準設定回路81の設定値より低い場合であるので、上記と同様に、第2の電圧制御器88の出力は運転に寄与しない。   When the output value of the first voltage controller 83 is smaller than the output of the current controller 91 due to current fluctuation or the like, and the output of the high output priority circuit 92 becomes equal to the output of the current controller 91, the output of the inverse converter 4 Since the voltage is lower than the set value of the first voltage reference setting circuit 81, the output of the second voltage controller 88 does not contribute to the operation as described above.

負荷変動等の要因により逆変換器4の出力電圧が第2の電圧基準設定回路86の出力より高くなると、第2の差分回路87の出力は正の値となり、入力に比例した出力が得られる。加算器94の出力は第1の電圧制御器83の出力に第2の電圧制御器88の出力を加えた値を高レベル優先回路92に入力する。   When the output voltage of the inverse converter 4 becomes higher than the output of the second voltage reference setting circuit 86 due to factors such as load fluctuation, the output of the second difference circuit 87 becomes a positive value, and an output proportional to the input is obtained. . As the output of the adder 94, a value obtained by adding the output of the second voltage controller 88 to the output of the first voltage controller 83 is input to the high level priority circuit 92.

このように逆変換器4の出力電圧が高いときは、もともと電流制御器91の出力より第1の電圧制御器83の出力のほうが大きいので、高出力優先回路92の出力は加算器94の出力を選択し、これを位相制御回路85に与える。位相制御回路85はこれにより順変換器2の点弧位相を遅らせるので、順変換2の出力電圧が下がり、従って逆変換器4の出力電圧も下がり、過電圧保護レベルに達することなく安定に運転できる。   Thus, when the output voltage of the inverse converter 4 is high, since the output of the first voltage controller 83 is originally larger than the output of the current controller 91, the output of the high output priority circuit 92 is the output of the adder 94. Is supplied to the phase control circuit 85. As a result, the phase control circuit 85 delays the ignition phase of the forward converter 2, so that the output voltage of the forward converter 2 is lowered, and hence the output voltage of the inverse converter 4 is also lowered. .

以上の説明で明らかなように、第3の実施例によっても負荷変動等によって生じる過電圧を効果的に抑制できる。また、通常運転中は第2の電圧制御器88の出力は0になるので、第1の電圧制御器83の応答時間を早くした場合に生じるような不安定現象の発生はない。   As is apparent from the above description, the third embodiment can effectively suppress overvoltage caused by load fluctuations and the like. Further, since the output of the second voltage controller 88 is 0 during normal operation, there is no occurrence of an unstable phenomenon that occurs when the response time of the first voltage controller 83 is increased.

図4は、本発明の実施例4に係る負荷転流型インバータ装置の回路構成図である。この実施例4の各部について、図2の実施例2に係る負荷転流型インバータ装置の各部と同一部分は同一符号で示し、その説明を省略する。この実施例4が実施例2と異なる点は、加算器92を除去し、優先回路92の出力を直接位相制御回路85に与えるようにした点、また第1の差分回路82の出力を第3の電圧制御器95で演算増幅し、この電圧制御器95の出力と第2の電圧制御器88の出力を加算回路96で加算し、加算回路96の出力で第1の電圧制御器83Aの下限リミット値を変化させるようにした点である。   FIG. 4 is a circuit configuration diagram of the load commutation inverter device according to the fourth embodiment of the present invention. About each part of this Example 4, the same part as each part of the load commutation type inverter apparatus which concerns on Example 2 of FIG. 2 is shown with the same code | symbol, and the description is abbreviate | omitted. The fourth embodiment is different from the second embodiment in that the adder 92 is removed and the output of the priority circuit 92 is directly supplied to the phase control circuit 85, and the output of the first difference circuit 82 is the third. The output of the voltage controller 95 and the output of the second voltage controller 88 are added by the adder circuit 96, and the output of the adder circuit 96 is used as the lower limit of the first voltage controller 83A. This is the point where the limit value is changed.

実施例2で説明したように、通常運転中は第2の電圧制御器88の出力は0となり、また第1の電圧制御器83Aの出力は電流制御器91の出力より大きいので、高出力優先回路92の出力は第1の電圧制御器83Aの出力と等しくなる。   As described in the second embodiment, during normal operation, the output of the second voltage controller 88 is 0, and the output of the first voltage controller 83A is larger than the output of the current controller 91. The output of the circuit 92 is equal to the output of the first voltage controller 83A.

電流変動等により第1の電圧制御器83Aの出力値が電流制御器91の出力より小さく、高出力優先回路92の出力が電流制御器91の出力となっている場合は、逆変換器4の出力電圧が第1の電圧基準設定回路81の設定値より低い場合であるので。上記と同様、第2の電圧制御器88の出力は運転に寄与しない。   When the output value of the first voltage controller 83A is smaller than the output of the current controller 91 due to current fluctuation or the like, and the output of the high output priority circuit 92 is the output of the current controller 91, the inverter 4 This is because the output voltage is lower than the set value of the first voltage reference setting circuit 81. As above, the output of the second voltage controller 88 does not contribute to operation.

第1の電圧制御器83Aと第3の電圧制御器95には同一信号が入力されるので基本的にその出力は同じである。第1の電圧制御器83Aの下限値は加算回路96の出力で制限されるが、通常条件では加算回路96の出力は前述のとおり第3の電圧制御器95の出力と等しいため、第1の電圧制御器83Aの出力は、下限リミット値制限のない時の第1の電圧制御器83Aの出力と等しい値となる。この信号は電流制御器91の出力より大きいので高出力優先回路92の出力は第1の電圧制御器83Aの出力と等しい。従って順変換器2は第1の電圧制御器83Aの信号で制御されることになり、第2の電圧制御器88の出力は運転に寄与しない。   Since the same signal is input to the first voltage controller 83A and the third voltage controller 95, the output is basically the same. The lower limit value of the first voltage controller 83A is limited by the output of the adder circuit 96. Under normal conditions, the output of the adder circuit 96 is equal to the output of the third voltage controller 95 as described above. The output of the voltage controller 83A is equal to the output of the first voltage controller 83A when there is no lower limit value limit. Since this signal is larger than the output of the current controller 91, the output of the high output priority circuit 92 is equal to the output of the first voltage controller 83A. Therefore, the forward converter 2 is controlled by the signal of the first voltage controller 83A, and the output of the second voltage controller 88 does not contribute to the operation.

負荷変動等の要因により逆変換器4の出力電圧が第2の電圧基準設定回路86の出力より高くなると、第2の差分回路87の出力は正の値となり、入力に比例した出力が得られる。加算器96の入力は第3の電圧制御器95の出力と第2の電圧制御器88の出力が加えられた値となり、この加算された出力が第1の電圧制御器83Aの下限リミット値となる。その結果、第1の電圧制御器83Aの出力は加算器96の出力値まで持ちあがる。このように逆変換器4の出力電圧が高いときは、もともと電流制御器91の出力より第1の電圧制御器83Aの出力の方が大きいので、高出力優先回路92の出力は第1の電圧制御器83Aの出力が選択される。高出力優先回路92の出力信号は位相制御回路85に入力され、位相制御回路85はこれにより順変換器2の点弧位相を遅らせるので、順変換器2の出力電圧が下がり、逆変換器4の出力電圧も下がり、過電圧保護レベルに達することなく安定に運転できる。   When the output voltage of the inverse converter 4 becomes higher than the output of the second voltage reference setting circuit 86 due to factors such as load fluctuation, the output of the second difference circuit 87 becomes a positive value, and an output proportional to the input is obtained. . The input of the adder 96 becomes a value obtained by adding the output of the third voltage controller 95 and the output of the second voltage controller 88, and this added output becomes the lower limit value of the first voltage controller 83A. Become. As a result, the output of the first voltage controller 83A is raised to the output value of the adder 96. Thus, when the output voltage of the inverse converter 4 is high, since the output of the first voltage controller 83A is originally larger than the output of the current controller 91, the output of the high output priority circuit 92 is the first voltage. The output of the controller 83A is selected. The output signal of the high output priority circuit 92 is input to the phase control circuit 85, and the phase control circuit 85 thereby delays the ignition phase of the forward converter 2, so that the output voltage of the forward converter 2 decreases and the inverse converter 4 The output voltage also drops, and stable operation is possible without reaching the overvoltage protection level.

また、一旦上昇した逆変換器4の出力電圧が上記の制御動作により低減し、第2の差分回路87の出力がある値から0に低下し、第1の電圧制御器83Aの下限リミット値が急激に低減しても、第1の電圧制御器83Aの出力は本来の第1の電圧制御器83Aの応答時間で変化するため、逆変換器4の出力電圧の変化は他の実施例に比較し滑らかとなる。   The output voltage of the inverse converter 4 once increased is reduced by the above control operation, the output of the second difference circuit 87 is decreased from a certain value to 0, and the lower limit value of the first voltage controller 83A is reduced. Even if it is sharply reduced, the output of the first voltage controller 83A changes with the original response time of the first voltage controller 83A. Therefore, the change in the output voltage of the inverse converter 4 is compared with the other embodiments. And smooth.

以上の説明で明らかなように、第4の実施例によっても負荷変動等によって生じる過電圧を効果的に抑制できる。また、通常運転中は第2の電圧制御器88の出力は0になるので、第1の電圧制御器83Aの応答時間を早くした場合に生じるような不安定現象の発生はない。   As is apparent from the above description, the fourth embodiment can also effectively suppress overvoltage caused by load fluctuation or the like. Further, since the output of the second voltage controller 88 is 0 during normal operation, there is no occurrence of an unstable phenomenon that occurs when the response time of the first voltage controller 83A is increased.

図5は、本発明の実施例5に係る負荷転流型インバータ装置の回路構成図である。この実施例5の各部について、図1の実施例1に係る負荷転流型インバータ装置の各部と同一部分は同一符号で示し、その説明を省略する。この実施例5が実施例1と異なる点は、第2の電圧制御器88Aの制御特性を、入力値が下限リミットとなるようにし、且つ1次遅れの制御要素を付加するようにした点である。   FIG. 5 is a circuit configuration diagram of the load commutation inverter device according to the fifth embodiment of the present invention. About each part of this Example 5, the same part as each part of the load commutation type inverter apparatus which concerns on Example 1 of FIG. 1 is shown with the same code | symbol, and the description is abbreviate | omitted. The fifth embodiment is different from the first embodiment in that the control characteristic of the second voltage controller 88A is such that the input value becomes the lower limit and a control element with a first order delay is added. is there.

このように構成することによって、第2の差分回路87の出力がステップ状に上昇したときには第2の電圧制御器88Aの出力はその下限リミットが押し上げられることにより瞬時のステップ状に上昇し、逆に第2の差分回路87の出力がステップ状に低減しても第2の電圧制御器88Aの1次遅れの制御特性により第2の電圧制御器88Aの出力は所定の時定数をもって滑らかに低減する。   With this configuration, when the output of the second difference circuit 87 rises stepwise, the output of the second voltage controller 88A rises instantaneously as the lower limit is pushed up, and vice versa. Even if the output of the second difference circuit 87 is reduced stepwise, the output of the second voltage controller 88A is smoothly reduced with a predetermined time constant due to the first-order lag control characteristics of the second voltage controller 88A. To do.

以上の実施例5によれば、逆変換器4が過電圧になったときには素早くこれを抑え、一旦過電圧が抑えられれば、過電圧制御を1次遅れの特性とすることにより制御の発散を防止するので、より安定な過電圧抑制を可能とした負荷転流型インバータ装置を提供することが可能となる。   According to the fifth embodiment described above, when the reverse converter 4 becomes overvoltage, this is quickly suppressed, and once the overvoltage is suppressed, control voltage divergence is prevented by setting the overvoltage control to a first-order lag characteristic. Thus, it is possible to provide a load commutation type inverter device that enables more stable overvoltage suppression.

尚、本発明の実施例1乃至実施例5によれば、第1の電圧制御器83の内部の制御定数については変更することなく、そのままの形で使用するようにしているので、運転信頼性が高く、また第1の電圧制御器83の制御定数の調整と第2の電圧制御器88の制御定数の調整を互いに独立して行うことができるので、現場での調整作業が容易な負荷転流型インバータ装置を提供することができる。   According to the first to fifth embodiments of the present invention, the control constant inside the first voltage controller 83 is not changed and is used as it is, so that the operation reliability is improved. In addition, since the adjustment of the control constant of the first voltage controller 83 and the adjustment of the control constant of the second voltage controller 88 can be performed independently of each other, it is easy to adjust the load on site. A flow type inverter device can be provided.

本発明の実施例1に係る負荷転流型インバータ装置のブロック構成図。The block block diagram of the load commutation type inverter apparatus which concerns on Example 1 of this invention. 本発明の実施例2に係る負荷転流型インバータ装置のブロック構成図。The block block diagram of the load commutation type inverter apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係る負荷転流型インバータ装置のブロック構成図。The block block diagram of the load commutation type inverter apparatus which concerns on Example 3 of this invention. 本発明の実施例4に係る負荷転流型インバータ装置のブロック構成図。The block block diagram of the load commutation type inverter apparatus which concerns on Example 4 of this invention. 本発明の実施例5に係る負荷転流型インバータ装置のブロック構成図。The block block diagram of the load commutation type inverter apparatus which concerns on Example 5 of this invention.

符号の説明Explanation of symbols

1 交流電源
2 順変換器
3 直流リアクトル
4 逆変換器
5 起動回路
6 並列共振負荷
61 力率改善コンデンサ
62 負荷コイル
7 被加熱材料
8 制御回路
9 電圧検出器
10 電圧検出回路
11 電流検出器
12 電流検出回路
81 第1の電圧基準設定回路
82 第1の差分回路
83、83A 第1の電圧制御器
84 加算回路
85 位相制御回路
86 第2の電圧基準設定回路
87 第2の差分回路
88、88A 第2の電圧制御器
89 電流基準設定回路
90 差分回路
91 電流制御器
92 高出力優先回路
93、94 加算回路
95 第3の電圧制御器
96 加算回路

DESCRIPTION OF SYMBOLS 1 AC power supply 2 Forward converter 3 DC reactor 4 Reverse converter 5 Starting circuit 6 Parallel resonance load 61 Power factor improvement capacitor 62 Load coil 7 Material to be heated 8 Control circuit 9 Voltage detector 10 Voltage detection circuit 11 Current detector 12 Current Detection circuit 81 First voltage reference setting circuit 82 First difference circuit 83, 83A First voltage controller 84 Adder circuit 85 Phase control circuit 86 Second voltage reference setting circuit 87 Second difference circuit 88, 88A 2 voltage controller 89 current reference setting circuit 90 difference circuit 91 current controller 92 high output priority circuit 93, 94 addition circuit 95 third voltage controller 96 addition circuit

Claims (6)

交流を直流に変換する順変換器と、
この順変換器により変換された直流を交流に変換して負荷コイルに給電する逆変換器と、
前記順変換器を制御する制御手段と、
前記逆変換器の出力電圧を検出する電圧検出手段と
から構成され、
前記制御手段は、
前記電圧検出手段の検出電圧と第1の基準電圧との差に応じて前記順変換器の点弧位相を制御する第1の電圧制御器と、
前記電圧検出手段の検出電圧と第2の基準電圧との差を演算増幅する第2の電圧制御器を備え、
前記電圧検出手段の検出電圧が前記第2の基準電圧より大きいとき、前記第2の電圧制御器の出力を前記第1の電圧制御器の出力に加算するようにしたことを特徴とする負荷転流型インバータ装置。
A forward converter that converts alternating current to direct current;
An inverse converter that converts the direct current converted by the forward converter into alternating current and feeds the load coil;
Control means for controlling the forward converter;
Voltage detecting means for detecting the output voltage of the inverse converter,
The control means includes
A first voltage controller for controlling an ignition phase of the forward converter according to a difference between a detection voltage of the voltage detection means and a first reference voltage;
A second voltage controller for calculating and amplifying a difference between a detection voltage of the voltage detection means and a second reference voltage;
When the detected voltage of the voltage detecting means is greater than the second reference voltage, the output of the second voltage controller is added to the output of the first voltage controller. Flow type inverter device.
交流を直流に変換する順変換器と、
この順変換器により変換された直流を交流に変換して負荷コイルに給電する逆変換器と、
前記順変換器を制御する制御手段と、
前記逆変換器の出力電圧を検出する電圧検出手段と、
前記順変換器の入力電流を検出する電流検出手段と
から構成され、
前記制御手段は、
前記電圧検出手段の検出電圧と第1の基準電圧との差を演算増幅する第1の電圧制御器と、
前記電流検出手段の検出電流と基準電流との差を演算増幅する電流制御回路と、
前記電圧制御回路の出力と前記電流制御回路の出力を比較して大きい方の信号を選択して前記順変換器の点弧位相を決定する高出力優先回路と、
前記電圧検出手段の検出電圧と第2の基準電圧との差を演算増幅する第2の電圧制御器とを備え、
前記電圧検出手段の検出電圧が前記第2の基準電圧より大きいとき、前記第2の電圧制御器の出力を前記高出力優先回路の出力に加算するようにしたことを特徴とする負荷転流型インバータ装置。
A forward converter that converts alternating current to direct current;
An inverse converter that converts the direct current converted by the forward converter into alternating current and feeds the load coil;
Control means for controlling the forward converter;
Voltage detection means for detecting an output voltage of the inverse converter;
A current detecting means for detecting an input current of the forward converter;
The control means includes
A first voltage controller for calculating and amplifying a difference between a detection voltage of the voltage detection means and a first reference voltage;
A current control circuit for calculating and amplifying a difference between a detection current of the current detection means and a reference current;
A high output priority circuit that compares the output of the voltage control circuit and the output of the current control circuit to select the larger signal and determine the firing phase of the forward converter;
A second voltage controller for calculating and amplifying the difference between the detection voltage of the voltage detection means and the second reference voltage;
A load commutation type wherein the output of the second voltage controller is added to the output of the high output priority circuit when the detection voltage of the voltage detection means is greater than the second reference voltage. Inverter device.
交流を直流に変換する順変換器と、
この順変換器により変換された直流を交流に変換して負荷コイルに給電する逆変換器と、
前記順変換器を制御する制御手段と、
前記逆変換器の出力電圧を検出する電圧検出手段と、
前記順変換器の入力電流を検出する電流検出手段と
から構成され、
前記制御手段は、
前記電圧検出手段の検出電圧と第1の基準電圧との差を演算増幅する第1の電圧制御器と、
前記電流検出手段の検出電流と基準電流との差を演算増幅する電流制御回路と、
前記電圧制御回路の出力と前記電流制御回路の出力を比較して大きい方の信号を選択して前記順変換器の点弧位相を決定する高出力優先回路と、
前記電圧検出手段の検出電圧と第2の基準電圧との差を演算増幅する第2の電圧制御器とを備え、
前記電圧検出手段の検出電圧が前記第2の基準電圧より大きいとき、前記第2の電圧制御器の出力を前記第1の電圧制御器の出力に加算するようにしたことを特徴とする負荷転流型インバータ装置。
A forward converter that converts alternating current to direct current;
An inverse converter that converts the direct current converted by the forward converter into alternating current and feeds the load coil;
Control means for controlling the forward converter;
Voltage detection means for detecting an output voltage of the inverse converter;
A current detecting means for detecting an input current of the forward converter;
The control means includes
A first voltage controller for calculating and amplifying a difference between a detection voltage of the voltage detection means and a first reference voltage;
A current control circuit for calculating and amplifying a difference between a detection current of the current detection means and a reference current;
A high output priority circuit that compares the output of the voltage control circuit and the output of the current control circuit to select the larger signal and determine the firing phase of the forward converter;
A second voltage controller for calculating and amplifying the difference between the detection voltage of the voltage detection means and the second reference voltage;
When the detected voltage of the voltage detecting means is greater than the second reference voltage, the output of the second voltage controller is added to the output of the first voltage controller. Flow type inverter device.
交流を直流に変換する順変換器と、
この順変換器により変換された直流を交流に変換して負荷コイルに給電する逆変換器と、
前記順変換器を制御する制御手段と、
前記逆変換器の出力電圧を検出する電圧検出手段と、
前記順変換器の入力電流を検出する電流検出手段と
から構成され、
前記制御手段は、
前記電圧検出手段の検出電圧と第1の基準電圧との差を演算増幅し、下限リミット値を有する第1の電圧制御器と、
前記電流検出手段の検出電流と基準電流との差を演算増幅する電流制御回路と、
前記電圧制御回路の出力と前記電流制御回路の出力を比較して大きい方の信号を選択して前記順変換器の点弧位相を決定する高出力優先回路と、
前記電圧検出手段の検出電圧と第2の基準電圧との差を演算増幅する第2の電圧制御器と、
前記電圧検出手段の検出電圧と第1の基準電圧との差を演算増幅し、その出力で前記下限リミット値を変化させるようにした第3の電圧制御器とを備え、
前記電圧検出手段の検出電圧が前記第2の基準電圧より大きいとき、
前記第2の電圧制御器の出力を前記第3の電圧制御器の出力に加算するようにしたことを特徴とする負荷転流型インバータ装置。
A forward converter that converts alternating current to direct current;
An inverse converter that converts the direct current converted by the forward converter into alternating current and feeds the load coil;
Control means for controlling the forward converter;
Voltage detection means for detecting an output voltage of the inverse converter;
A current detecting means for detecting an input current of the forward converter;
The control means includes
A first voltage controller that amplifies and amplifies the difference between the detection voltage of the voltage detection means and the first reference voltage, and has a lower limit value;
A current control circuit for calculating and amplifying a difference between a detection current of the current detection means and a reference current;
A high output priority circuit that compares the output of the voltage control circuit and the output of the current control circuit to select the larger signal and determine the firing phase of the forward converter;
A second voltage controller for calculating and amplifying a difference between a detection voltage of the voltage detection means and a second reference voltage;
A third voltage controller that computes and amplifies the difference between the detection voltage of the voltage detection means and the first reference voltage, and changes the lower limit value by its output;
When the detection voltage of the voltage detection means is larger than the second reference voltage,
A load commutation type inverter device characterized in that the output of the second voltage controller is added to the output of the third voltage controller.
前記第2の電圧制御器は、入力が上昇するときには瞬時に応答し、入力が低減するときには遅れ応答となるような入出力特性を持つことを特徴とする請求項1乃至請求項4のいずれか1項に記載した負荷転流型インバータ装置。   5. The input / output characteristics according to claim 1, wherein the second voltage controller has an input / output characteristic that responds instantaneously when the input increases, and becomes a delayed response when the input decreases. The load commutation type inverter device described in item 1. 前記第2の基準電圧は前記第1の基準電圧及び前記逆変換器の定格電圧より高く、且つ前記逆変換器の過電圧保護レベルより低い値としたことを特徴とする請求項1乃至請求項4のいずれか1項に記載した負荷転流型インバータ装置。

5. The second reference voltage is higher than the first reference voltage and the rated voltage of the inverse converter and lower than an overvoltage protection level of the inverse converter. The load commutation type inverter device described in any one of the above.

JP2004130691A 2004-04-27 2004-04-27 Load commutation type inverter device Expired - Lifetime JP4257739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130691A JP4257739B2 (en) 2004-04-27 2004-04-27 Load commutation type inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130691A JP4257739B2 (en) 2004-04-27 2004-04-27 Load commutation type inverter device

Publications (3)

Publication Number Publication Date
JP2005317223A true JP2005317223A (en) 2005-11-10
JP2005317223A5 JP2005317223A5 (en) 2007-04-05
JP4257739B2 JP4257739B2 (en) 2009-04-22

Family

ID=35444436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130691A Expired - Lifetime JP4257739B2 (en) 2004-04-27 2004-04-27 Load commutation type inverter device

Country Status (1)

Country Link
JP (1) JP4257739B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248386A (en) * 2007-03-08 2008-10-16 Jfe Steel Kk Heat-treatment method for steel material
CN113676032A (en) * 2021-07-07 2021-11-19 阳春新钢铁有限责任公司 System and method for controlling overvoltage of load reversing inverter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248386A (en) * 2007-03-08 2008-10-16 Jfe Steel Kk Heat-treatment method for steel material
CN113676032A (en) * 2021-07-07 2021-11-19 阳春新钢铁有限责任公司 System and method for controlling overvoltage of load reversing inverter

Also Published As

Publication number Publication date
JP4257739B2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
US9685903B2 (en) Method and system for controlling a power output of an inverter
CN107836077B (en) Motor control device
JP5972505B1 (en) Inverter device
JP4084615B2 (en) Electromagnetic induction heating cooker
JP2010268551A (en) Inverter equipment
JP4257739B2 (en) Load commutation type inverter device
JP2007020262A (en) Power converter
JP2005312144A (en) Load commutation type inverter device
JP4421246B2 (en) Distributed power supply
JP4617944B2 (en) Inverter cross current control device
JP2005051907A (en) Power converter
US10615683B2 (en) Method for controlling inverter
JP6759830B2 (en) Power converter
JP3146792B2 (en) Inverter device
JP2003324847A (en) Method and apparatus for compensating voltage flicker
JP2010119248A (en) Power generating system
JPH07163188A (en) Torque boost controller for induction motor
JP2006166674A (en) Voltage type inverter
JP4568063B2 (en) Control device for frequency converter
JP2007089323A (en) Power conversion device
KR100589428B1 (en) A control circuit for current balancing in rectifiers of exciter for generator
JP2005333767A (en) Power converter
JP2001045799A (en) Inverter-type engine generator
JP5264697B2 (en) Discharge lamp lighting device and lighting fixture
JP3301165B2 (en) Induction motor control device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090128

R150 Certificate of patent or registration of utility model

Ref document number: 4257739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140213

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term