JP2005315475A - Heat transfer tube type method and device for making ice - Google Patents

Heat transfer tube type method and device for making ice Download PDF

Info

Publication number
JP2005315475A
JP2005315475A JP2004132137A JP2004132137A JP2005315475A JP 2005315475 A JP2005315475 A JP 2005315475A JP 2004132137 A JP2004132137 A JP 2004132137A JP 2004132137 A JP2004132137 A JP 2004132137A JP 2005315475 A JP2005315475 A JP 2005315475A
Authority
JP
Japan
Prior art keywords
ice
cylindrical body
heat transfer
ice making
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004132137A
Other languages
Japanese (ja)
Inventor
Akira Ishikura
公 石倉
Hiroyasu Ohira
浩康 大平
Takahiro Akizuki
隆宏 秋月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2004132137A priority Critical patent/JP2005315475A/en
Publication of JP2005315475A publication Critical patent/JP2005315475A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer tube type method and device for making ice requiring less installation area, enabling the device to be easily installed at site, providing excellent area efficiency, and providing a high ice-making/concentrating efficiency. <P>SOLUTION: This ice-making device for water solution comprises a cold source tank 51, a heat source unit 50 formed by integrally installing a hot source tank 52, a brine cooler unit 53, and a control panel 56 on an L-shaped base 54, and an ice-maker unit 10 formed by integrally installing a fresh water tank 11, a raw liquid tank 12, and an ice-maker body 1 on a rectangular base 13. Space can be saved by putting the ice-maker unit 10 in the L-shaped recessed part of the heat source unit 50, and both the ice-maker unit and the heat source unit are connected to each other through a brine pipe 14. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、伝熱管式製氷方法とその装置にかかり、特に冷媒若しくはブラインを介して得られる冷熱エネルギーを熱伝面を有する筒状体に付与して、被凍結水溶液(原水も含む)を前記熱伝面に沿って流しながら、層状の氷を筒状伝熱面厚み方向に成長させて、該水溶液の製氷若しくは濃縮を行う伝熱管式製氷方法とその装置に関する。   The present invention relates to a heat transfer tube type ice making method and an apparatus thereof, and in particular, imparts cold energy obtained via a refrigerant or brine to a cylindrical body having a heat transfer surface to provide an aqueous solution to be frozen (including raw water) as described above. The present invention relates to a heat transfer tube type ice making method and apparatus for growing a layered ice in a thickness direction of a cylindrical heat transfer surface while flowing along the heat transfer surface to make or concentrate the aqueous solution.

例えば特許文献1に開示されている凍結濃縮晶析方法は、溶液を冷却し、溶液中の水分を凍結させることにより濃縮し、溶液中の溶質を結晶化させる凍結濃縮晶析方法に関するもので、則ち、凍結により生成される氷結晶を熱伝面上に張りついた状態で熱伝面から成長、巨大化させることで、氷結晶と溶液の分離を容易としたもので、そのためには、冷却面上の層状の氷を厚み方向に成長させることによって、凍結界面の進行とともに溶質成分が固液界面から溶液側に排除されるように構成している。しかしながらかかる従来技術は、製氷を目的とするものではない。   For example, the freeze-concentration crystallization method disclosed in Patent Document 1 relates to a freeze-concentration crystallization method in which a solution is cooled and concentrated by freezing water in the solution, and a solute in the solution is crystallized. In other words, the ice crystals produced by freezing are grown from the heat transfer surface in a state of being stuck on the heat transfer surface, making it easy to separate the ice crystal from the solution. By growing layered ice on the cooling surface in the thickness direction, the solute component is removed from the solid-liquid interface to the solution side as the freezing interface progresses. However, such prior art is not intended for ice making.

製氷と水溶液の濃縮の両者を達成する技術として二重管式の内筒内に冷媒を貫通循環させて内筒表面に熱伝面を形成させ、該熱伝面上に沿う被凍結水溶液の回転流に起因する前記熱伝面に沿っての物質移動により、層状の氷を厚み方向に成長させる技術が特許文献2に開示されている。
特開2000−334204号公報 特開2003−28546号公報
As a technology to achieve both ice making and aqueous solution concentration, a refrigerant is passed through and circulated in a double-pipe inner cylinder to form a heat transfer surface on the inner cylinder surface, and rotation of the aqueous solution to be frozen along the heat transfer surface Patent Document 2 discloses a technique for growing layered ice in the thickness direction by mass transfer along the heat transfer surface caused by flow.
JP 2000-334204 A JP 2003-28546 A

しかしながら、かかる従来技術によれば、製氷/濃縮部が一筒であり、しかもバッチ構造であるために、製氷能力に限界がある。
更に前記従来技術は冷熱源と温熱源との間のレイアウト関係が明瞭でなく、このため装置の小型化の検討及び現地施工についての検討や筒状に製氷した氷を円滑に砕氷する検討がなされていない。
本発明はかかる従来技術の問題に鑑み、省設置面積でしかも現場施工が容易にして面積効率がよく能力の高い製氷/濃縮効率を得ることのできる、伝熱管式製氷方法とその装置を提供することを目的とする。
However, according to such a conventional technique, the ice making / concentrating section is a single cylinder and has a batch structure, so that the ice making capacity is limited.
Furthermore, in the prior art, the layout relationship between the cold heat source and the warm heat source is not clear, and therefore, examination of downsizing of the apparatus, examination of on-site construction, and examination of smoothly breaking ice formed into a cylindrical shape have been made. Not.
SUMMARY OF THE INVENTION The present invention provides a heat transfer tube type ice making method and apparatus capable of obtaining ice making / concentrating efficiency with high area efficiency with a reduced installation area and easy on-site construction, in view of the problems of the prior art. For the purpose.

そこで、本発明はかかる課題を解決するために、冷媒若しくはブラインを介して得られる冷熱エネルギーを熱伝面を有する筒状体に付与して、被凍結水溶液(原水も含む)を前記熱伝面に沿って流しながら、層状の氷を筒状伝熱面厚み方向に成長させて、該水溶液の製氷若しくは濃縮を行う伝熱管式製氷方法において、
前記筒状体が、平行に配設した複数本の筒状体からなる筒状体群であって前記筒状体の両端開口に循環空間を形成し、該循環空間を介して前記水溶液の流れを変更させながら第1の筒状体若しくは筒状体群から第2の筒状体若しくは筒状体群へと直列に水溶液が循環しながら水溶液の製氷若しくは濃縮を行うことを特徴とする。
この場合に前記筒状体が垂直に平行配設された複数本の筒状体からなる筒状体群である場合に、前記筒状体群の下方に位置する下方循環空間の底部に設けたシール機能を有する開閉扉の下方に砕氷器及び受氷容器を配し、前記筒状体への温熱エネルギーの付与により脱氷した筒状氷の自然落下により砕氷、受氷が行われるようにしてもよく、又循環空間を介して前記水溶液の流れを変更させながら第1の筒状体群から第2の筒状体群へと直列に水溶液が循環するようにした場合には前記循環空間に分配手段が存在し、該分配手段を介して前記第2の筒状体群の夫々の筒状体に水溶液が分配されるようにするのがよい。
Therefore, in order to solve this problem, the present invention applies cold energy obtained via a refrigerant or brine to a cylindrical body having a heat transfer surface, and an aqueous solution to be frozen (including raw water) is added to the heat transfer surface. In the heat transfer tube type ice making method in which layered ice is grown in the thickness direction of the cylindrical heat transfer surface while flowing along, and the aqueous solution is made or concentrated,
The cylindrical body is a cylindrical body group composed of a plurality of cylindrical bodies arranged in parallel, forming a circulation space at both ends of the cylindrical body, and the flow of the aqueous solution through the circulation space. The aqueous solution is iced or concentrated while the aqueous solution circulates in series from the first cylindrical body or cylindrical body group to the second cylindrical body or cylindrical body group.
In this case, when the cylindrical body is a cylindrical body group made up of a plurality of cylindrical bodies arranged in parallel vertically, the cylindrical body group is provided at the bottom of the lower circulation space located below the cylindrical body group. An ice crusher and an ice receiving container are arranged below the open / close door having a sealing function so that the ice is crushed and received by the natural fall of the cylindrical ice that has been deiced by applying thermal energy to the cylindrical body. If the aqueous solution circulates in series from the first cylindrical body group to the second cylindrical body group while changing the flow of the aqueous solution through the circulation space, It is preferable that there is a distribution means, and the aqueous solution is distributed to each cylindrical body of the second cylindrical body group via the distribution means.

請求項4以降記載の発明はかかる発明を好適に実施するための装置に関する発明で、冷媒若しくはブラインを介して得られる冷熱エネルギーを熱伝面を有する筒状体に付与して、被凍結水溶液(原水も含む)を前記熱伝面に沿って流しながら、層状の氷を筒状伝熱面厚み方向に成長させて、該水溶液の製氷若しくは濃縮を行う伝熱管式製氷装置において、
前記筒状体が、平行に配設した複数本の筒状体からなる筒状体群からなり、前記筒状体の両端開口に循環空間を形成し、該循環空間を介して前記水溶液の流れを変更させながら第1の筒状体若しくは筒状体群から第2の筒状体若しくは筒状体群へと直列に水溶液が循環するように構成した製氷器を有することを特徴とする。
この場合も前記筒状体が垂直に平行配設された複数本の筒状体からなる筒状体群である場合に、前記製氷器が筒状体群の下方に位置する下方循環空間の底部に設けたシール機能を有する開閉扉を有する製氷器であって、該製氷器の下方に砕氷器及び受氷容器を順次配し、前記筒状体への温熱エネルギーの付与により脱氷した筒状氷の自然落下により砕氷、受氷が行われるように構成してもよく、又循環空間を介して前記水溶液の流れを変更させながら第1の筒状体群から第2の筒状体群へと直列に水溶液が循環するようにした場合には前記筒状体群を構成する隣接する筒状体間に循環空間に向けて延在する邪魔板等の分配手段を配設し、該分配手段を介して前記第2の筒状体群の夫々の筒状体に水溶液が分配されるように構成するのがよい。
又前記砕氷器は、砕氷用回転歯群が上下2段構成の砕氷器であって、上段側の砕氷用の回転歯群が、砕氷密度が固定の固定回転歯群であり、下段側の砕氷密度設定用の回転歯群が、砕氷密度が可変の可変回転歯群であるのがよく、更に前記冷熱エネルギーが冷媒により冷却されたブラインである場合に、前記製氷器が筒状体群の下方に位置する下方循環空間の底部に設けたシール機能を有する開閉扉を有する製氷器であって、該製氷器の下方に砕氷器及び受氷容器を順次配した製氷器ユニットと、
冷凍サイクルによりブラインを冷却及び加熱するブラインクーラと冷却された冷ブラインを貯蔵する冷ブラインタンクと、加熱された温ブラインを貯蔵する温ブラインタンクとが配置された熱源ユニットとを設けて、両者が隣接若しくは結合配置されているのがよい。
The invention described in the fourth and subsequent aspects is an invention relating to an apparatus for suitably carrying out the invention, in which cold energy obtained via a refrigerant or brine is applied to a cylindrical body having a heat transfer surface, and an aqueous solution to be frozen ( In a heat transfer tube type ice making device that grows layered ice in the thickness direction of the cylindrical heat transfer surface while flowing along the heat transfer surface (including raw water), and ice-making or concentrating the aqueous solution,
The cylindrical body is composed of a cylindrical body group composed of a plurality of cylindrical bodies arranged in parallel. A circulation space is formed at both end openings of the cylindrical body, and the aqueous solution flows through the circulation space. It is characterized by having an ice maker configured to circulate an aqueous solution in series from the first cylindrical body or group of cylindrical bodies to the second cylindrical body or group of cylindrical bodies while changing the above.
Also in this case, when the cylindrical body is a cylindrical body group consisting of a plurality of cylindrical bodies arranged in parallel vertically, the bottom portion of the lower circulation space where the ice making device is located below the cylindrical body group An ice maker having an opening / closing door having a sealing function provided in the ice maker, wherein an ice crusher and an ice receiving container are sequentially arranged below the ice maker, and the ice is removed by applying thermal energy to the cylindrical body It may be configured such that ice is naturally crushed and received, and the flow of the aqueous solution is changed through the circulation space from the first cylindrical body group to the second cylindrical body group. When the aqueous solution circulates in series, a distribution means such as a baffle plate extending toward the circulation space is disposed between adjacent cylindrical bodies constituting the cylindrical body group, and the distribution means It is preferable that the aqueous solution is distributed to each cylindrical body of the second cylindrical body group via the.
The ice breaker is an ice breaker having two upper and lower ice breaking rotation teeth, the upper ice breaking rotation tooth is a fixed rotation tooth having a fixed ice breaking density, and the lower ice breaking. The rotating tooth group for density setting is preferably a variable rotating tooth group with variable ice breaking density, and when the cold energy is brine cooled by a refrigerant, the ice maker is below the cylindrical body group. An ice maker having an open / close door having a sealing function provided at the bottom of the lower circulation space located in the ice maker, wherein an ice maker and an ice receiving container are sequentially arranged below the ice maker,
Provided with a heat source unit in which a brine cooler for cooling and heating the brine by the refrigeration cycle, a cold brine tank for storing the cooled cold brine, and a warm brine tank for storing the heated warm brine are provided, Adjacent or combined arrangements are preferred.

本発明によれば、製氷/濃縮部を構成する複数の筒状体が平行に並列配置されており、しかもそれが循環空間を介して実質的に直列構造になっているために、省スペースでしかも大きな製氷能力を得ることができる。
又製氷器の下方に砕氷器及び受氷容器を順次配し、前記筒状体への温熱エネルギーの付与により脱氷した筒状氷の自然落下により砕氷、受氷が行われるように製氷器ユニットを構成すれば一層の省スペースと駆動機構や駆動力の低減を図ることができる。
更に前記筒状体群を構成する隣接する筒状体間に循環空間に向けて延在する邪魔板等の分配手段を配設し、該分配手段を介して前記第2の筒状体群の夫々の筒状体に水溶液が分配されるように構成すれば、必ずしも筒状体同士の直列多段構造を構成することなく、2〜3段構成の製氷器を構成でき、凍結濃度や凍結密度更には均質な氷の製氷が可能となる。
According to the present invention, since the plurality of cylindrical bodies constituting the ice making / concentrating part are arranged in parallel in parallel, and it has a substantially serial structure through the circulation space, it is possible to save space. Moreover, a large ice making capacity can be obtained.
In addition, an ice breaker and an ice receiving container are sequentially arranged below the ice making device, and an ice making unit is configured so that ice is crushed and received by natural falling of the cylindrical ice that has been deiced by applying thermal energy to the cylindrical body. If this is configured, it is possible to further reduce the space and reduce the driving mechanism and driving force.
Further, a distribution means such as a baffle plate extending toward the circulation space is disposed between adjacent cylindrical bodies constituting the cylindrical body group, and the second cylindrical body group is disposed via the distribution means. If an aqueous solution is distributed to each cylindrical body, a two- to three-stage ice maker can be configured without necessarily forming an in-line multistage structure between the cylindrical bodies. Makes it possible to make homogeneous ice.

又前記砕氷器が、砕氷用回転歯群が上下2段構成の砕氷器であって、上段側の砕氷用の回転歯群が、砕氷密度が固定の固定回転歯群であり、下段側の砕氷密度設定用の回転歯群が、砕氷密度が可変の可変回転歯群であることにより駆動源によけいな負荷がかかることなく適切な砕氷密度の氷が得られる。
又製氷器ユニットと熱源ユニットとを前記のように構成して両者が隣接配置されていることにより、装置の小型化と現地施工の容易化を図ることができる。
Further, the ice breaker is an ice breaker having two upper and lower ice breaking rotation teeth, the upper ice breaking rotation teeth are fixed rotation teeth having a fixed ice breaking density, and the lower ice breaking Since the rotating tooth group for setting the density is a variable rotating tooth group having a variable ice breaking density, ice having an appropriate ice breaking density can be obtained without applying a significant load to the drive source.
Further, the ice maker unit and the heat source unit are configured as described above, and the two are disposed adjacent to each other, so that the apparatus can be downsized and the construction on site can be facilitated.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、本発明の水溶液の製氷/凍結濃縮装置(以下製氷装置という)の概略の構成を示す概略図で、図2、図3は図1の装置のユニットレイアウト構成を示し、図2は平面図、図3は正面図である。図4(A)は図1の製氷器本体の他の実施例を示す要部正面断面図で、(B)は(A)のA−A線断面図である。   FIG. 1 is a schematic diagram showing a schematic configuration of an aqueous ice making / freezing and concentrating apparatus (hereinafter referred to as an ice making apparatus) according to the present invention. FIGS. 2 and 3 show a unit layout configuration of the apparatus shown in FIG. A plan view and FIG. 3 are front views. FIG. 4A is a front sectional view of a principal part showing another embodiment of the ice making device main body of FIG. 1, and FIG. 4B is a sectional view taken along line AA of FIG.

図1および図2に示すように、本発明の水溶液の製氷装置は、冷熱源タンク51、温熱源タンク52とブラインクーラユニット53及び制御盤56がL型のベース54上に一体に据え付けられた熱源ユニット50と、清水タンク11と原液タンク12と製氷器本体1が長方形ベース13上に一体的に据え付けられた製氷器ユニット10よりなり、製氷器ユニット10は熱源ユニット50のL字状凹部に入り込んで省スペース化を図り、そして両者はブライン配管14で接続されている。ブライン配管14は、温ブラインと冷ブラインが3方弁15とポンプ16を介して選択的に製氷器本体1側に導入可能に構成されている。   As shown in FIGS. 1 and 2, the aqueous ice making apparatus of the present invention has a cold heat source tank 51, a hot heat source tank 52, a brine cooler unit 53, and a control panel 56 integrally installed on an L-type base 54. The heat source unit 50, the fresh water tank 11, the stock solution tank 12, and the ice maker body 1 are composed of an ice maker unit 10 that is integrally installed on a rectangular base 13, and the ice maker unit 10 is formed in an L-shaped recess of the heat source unit 50. It enters and saves space, and both are connected by a brine pipe 14. The brine pipe 14 is configured such that warm brine and cold brine can be selectively introduced to the ice making device main body 1 side via the three-way valve 15 and the pump 16.

図3は、製氷器ユニット10側のレイアウト構成を示し、製氷器本体1の下に、製氷器本体1より自然落下した筒状氷を砕氷する砕氷器4、及びその下に砕氷した氷を受氷して潜熱蓄熱槽として機能させるために、その下部貯留部の冷水(中水)をポンプ61により熱交換器62を介して循環させ、該熱交換器62で清浄水を冷却して冷水を造る受氷容器6とから構成されている。   FIG. 3 shows a layout configuration on the ice making unit 10 side. Under the ice making body 1, an ice breaker 4 that breaks the cylindrical ice that naturally falls from the ice making body 1 and the ice that has been crushed under it are received. In order to function as a latent heat storage tank by icing, the cold water (medium water) in the lower reservoir is circulated through the heat exchanger 62 by the pump 61, and the clean water is cooled by the heat exchanger 62. It is comprised from the ice receiving container 6 to make.

次に本装置の製氷器本体1の構成を図1に基づいて説明する。
製氷器本体1は、内部に冷ブライン若しくは温ブラインが流通する通路を有する方形状の外容器21と、該外容器21内に長手方向に左右に垂直に垂下される5本の角状内筒22a…が並列配置されており、内筒22a…の上方と下方には、原液が、図上左側の内筒22aから右側の内筒22bへと上昇と下降を繰り返しながら隣接する内筒22b…へ直列に循環するように構成された液循環空間23,24が形成されている。
液循環空間の上方循環空間23では、第1の内筒22aと第2の内筒22b間に、又第3の内筒22cと第4の内筒22d間に夫々仕切り板25(壁)が設けられ、一方下方循環空間24では、第2の内筒22bと第3の内筒22c間に、又第4の内筒22dと第5の内筒22e間に夫々仕切り板26(壁)が設けられ、又第5の内筒22eの下方循環空間24と第1の内筒22aの上方循環空間23は循環ポンプ29が介装された循環管30で接続されている。
この結果前記ポンプ29の駆動により、循環液が第1の内筒22aの上方区分け空間231より第1の内筒22a→第1、2の内筒の下方区分け空間241→第2の内筒22b→第2、3の内筒の上方区分け空間232→第3の内筒22c→第3、4の内筒の下方区分け空間242→第4の内筒22d→第4、5の内筒の上方区分け空間233→第5の内筒22eと、循環液が製氷を行うために垂直に垂下された5つの角状内筒22a…間に直列に液を循環させることができる。
Next, the structure of the ice maker main body 1 of this apparatus is demonstrated based on FIG.
The ice maker body 1 includes a rectangular outer container 21 having a passage through which cold brine or warm brine flows, and five rectangular inner cylinders suspended vertically in the longitudinal direction in the outer container 21. 22a ... are arranged in parallel, and adjacent to the upper and lower sides of the inner cylinders 22a ..., the stock solution repeats rising and lowering from the left inner cylinder 22a to the right inner cylinder 22b. Liquid circulation spaces 23 and 24 configured to circulate in series are formed.
In the upper circulation space 23 of the liquid circulation space, there are partition plates 25 (walls) between the first inner cylinder 22a and the second inner cylinder 22b and between the third inner cylinder 22c and the fourth inner cylinder 22d, respectively. In the lower circulation space 24, partition plates 26 (walls) are provided between the second inner cylinder 22b and the third inner cylinder 22c, and between the fourth inner cylinder 22d and the fifth inner cylinder 22e, respectively. The lower circulation space 24 of the fifth inner cylinder 22e and the upper circulation space 23 of the first inner cylinder 22a are connected by a circulation pipe 30 in which a circulation pump 29 is interposed.
As a result, when the pump 29 is driven, the circulating fluid flows from the upper partition space 231 of the first inner cylinder 22a to the first inner cylinder 22a → the lower partition space 241 of the first and second inner cylinders → the second inner cylinder 22b. → Upper section space 232 of second and third inner cylinders → Third inner cylinder 22c → Lower section space 242 of third and fourth inner cylinders → Fourth inner cylinder 22d → Upper of fourth and fifth inner cylinders The liquid can be circulated in series between the partitioning space 233 → the fifth inner cylinder 22e and the five rectangular inner cylinders 22a that are vertically suspended to make the circulating liquid ice.

又下方循環空間24の、第1、2の内筒の下方区分け空間241と第3、4の内筒の下方区分け空間242及び第5の内筒22eの下方区分け空間243底面には夫々上方に向け開放可能なシール機構(不図示)が外周囲に取り付けられた開閉扉31が設けられ、製氷時は前記開閉扉31を閉塞してシール機構により循環空間24をシールして液循環しながら製氷可能に構成し、一方前記扉31を開放して温ブラインを流すことにより、自然落下により脱氷させることができる。   The lower circulation space 24 has a lower partition space 241 for the first and second inner cylinders, a lower partition space 242 for the third and fourth inner cylinders, and a bottom surface of the lower partition space 243 for the fifth inner cylinder 22e. An open / close door 31 having a seal mechanism (not shown) that can be directed to the outside is provided around the outer periphery. During ice making, the open / close door 31 is closed and the circulation space 24 is sealed by the seal mechanism to circulate the liquid and make ice. On the other hand, by opening the door 31 and flowing warm brine, it can be deiced by natural fall.

このように開閉扉31は、製氷中は循環冷ブライン液をシールし脱氷中は氷落下のため開放する複合機能を有し、しかもシール材のメンテナンス及びシール材の磨耗防止のため、図6に示すように開閉扉31の回動支点311を上下動させる上下動機構312と、回動支点311を中心に回転する回転機構313を付設して製氷時は開閉扉31の回動支点311がシール位置まで上昇した後回転閉塞させ、一方脱氷時は、扉31の回動支点311がシール位置より下方に待避した後に回転開放するように構成している。
又シール機構に圧力が掛かると安全弁の働きで循環ポンプ29の回転を制御している。
As described above, the open / close door 31 has a combined function of sealing the circulating cold brine solution during ice making and opening it during ice removal due to ice falling, and for maintenance of the sealing material and prevention of wear of the sealing material, FIG. As shown in the figure, a vertical movement mechanism 312 that moves the pivot fulcrum 311 of the door 31 up and down and a rotation mechanism 313 that rotates around the pivot fulcrum 311 are attached. After raising to the sealing position, the rotation is closed, and at the time of deicing, the rotation fulcrum 311 of the door 31 is retracted downward from the sealing position and is then opened to rotate.
When pressure is applied to the sealing mechanism, the rotation of the circulation pump 29 is controlled by the action of a safety valve.

図1に戻り図中33は、第1、2の内筒22a…の下方区分け空間241に設けられた原液導入/濃縮液排出口で、製氷時には3方弁36により選択的に原液タンク12より原液が製氷器本体1内に導入されて製氷が行われ、一方製氷が終了したら3方弁36を切り換えて循環ポンプ29を駆動させながら第1、2の内筒22a、22bの下方区分け空間241より濃縮液を濃縮タンク(不図示)に排出するように構成されている。   Returning to FIG. 1, reference numeral 33 denotes a stock solution inlet / concentrate discharge port provided in the lower section space 241 of the first and second inner cylinders 22a... The stock solution is introduced into the ice making machine body 1 for ice making. On the other hand, when the ice making is completed, the three-way valve 36 is switched to drive the circulation pump 29 and the lower partition space 241 of the first and second inner cylinders 22a and 22b. More concentrated liquid is discharged to a concentration tank (not shown).

又外容器21にはブライン循環通路37(図4参照)が形成され、3方弁15、ポンプ16、戻り側の3方弁15を介して冷熱源タンク51(冷ブラインタンク)と温熱源タンク52(温ブラインタンク)とが夫々接続されている。この結果製氷時には、ポンプ16、3方弁15を介して冷熱源タンク51より冷ブラインが外容器21内のブライン循環通路37に供給され、一方脱氷時には、3方弁15の切換えにより温熱源タンク52より温ブラインが外容器21内のブライン循環通路37に供給されるように構成できる。   Also, a brine circulation passage 37 (see FIG. 4) is formed in the outer container 21, and a cold heat source tank 51 (cold brine tank) and a hot heat source tank are passed through the three-way valve 15, the pump 16, and the return-side three-way valve 15. 52 (warm brine tank) are connected to each other. As a result, during ice making, cold brine is supplied from the heat source tank 51 via the pump 16 and the three-way valve 15 to the brine circulation passage 37 in the outer container 21, while when deicing, the heat source is switched by switching the three-way valve 15. It can be configured such that the warm brine is supplied from the tank 52 to the brine circulation passage 37 in the outer container 21.

ブラインクーラユニット53は圧縮機531、凝縮器532、膨張弁533、蒸発器534からなる冷媒冷凍サイクルが形成され、冷熱源タンク51(冷ブラインタンク)は蒸発器534側と熱交換し、温熱源タンク52(温ブラインタンク)は凝縮器532側と熱交換されて夫々冷ブラインと温ブラインをタンク51,52内に貯留するように構成している。
そしてブラインクーラユニット53は例えばアンモニアガス使用の冷凍サイクルで構成しているが、凍結の温度制御は圧縮機の発停や蒸発圧力調整弁により行われ、間接式のような高精度の制御性が得られず、特にアンモニア冷媒使用の場合は漏洩時の除害対策が必要である。そこで本発明はブラインクーラユニット53で二次冷媒(ブライン)を冷却し、ポンプ16で前記製氷器本体1へ強制的に循環させ被凍結水溶液(原水)に間接的に熱の授受を行わせている。そのため、一次冷媒サイクルと二次冷媒(ブライン)サイクルの二つにより構成し、高精度の温度制御と自動運転を可能にしている。
The brine cooler unit 53 forms a refrigerant refrigeration cycle including a compressor 531, a condenser 532, an expansion valve 533, and an evaporator 534, and the cold heat source tank 51 (cold brine tank) exchanges heat with the evaporator 534 side to generate a heat source. The tank 52 (warm brine tank) is configured to exchange heat with the condenser 532 side and store cold brine and warm brine in the tanks 51 and 52, respectively.
The brine cooler unit 53 is composed of, for example, a refrigeration cycle using ammonia gas, and the temperature control of freezing is performed by the start / stop of the compressor and the evaporation pressure adjusting valve. In particular, when ammonia refrigerant is used, it is necessary to take measures to eliminate the leakage. Therefore, in the present invention, the secondary refrigerant (brine) is cooled by the brine cooler unit 53 and is forcedly circulated to the ice making machine body 1 by the pump 16 to indirectly transfer the heat to the aqueous solution to be frozen (raw water). Yes. Therefore, it comprises two primary refrigerant cycles and secondary refrigerant (brine) cycles, enabling highly accurate temperature control and automatic operation.

そして、図1の砕氷器4は図5に示すようにモータ41、プーリ42、ベルト43により駆動するスプロケット群からなる回転歯群44、45が左右に一対づつ、上下二段構成で配設されており、下段側の1の回転歯群45aはハンドル軸46を利用して相手側の回転歯群45bへ接近可能に構成し、砕氷密度を変化可能に構成している。
尚、左右の回転歯群45a、45bはスプロケット配設ピッチ位置をずらして相手側のスプロケット群へ接近した場合に互いにぶつからないように構成している。
尚、図5の(A)は上段側回転歯群の構成を示す平面図、(B)は砕氷器の正面図、(C)は下段側回転歯群の構成を示す平面図である。
As shown in FIG. 5, the ice breaker 4 shown in FIG. 1 is provided with a motor 41, a pulley 42, and a rotating tooth group 44, 45 composed of a sprocket group driven by a belt 43 in a pair of upper and lower stages. The lower one rotation tooth group 45a is configured to be accessible to the counterpart rotation tooth group 45b using the handle shaft 46, and the ice breaking density can be changed.
The left and right rotating tooth groups 45a and 45b are configured so as not to collide with each other when the sprocket arrangement pitch position is shifted to approach the counterpart sprocket group.
5A is a plan view showing the configuration of the upper rotation tooth group, FIG. 5B is a front view of the ice crusher, and FIG. 5C is a plan view showing the configuration of the lower rotation tooth group.

図1の受氷容器6は砕氷器4で砕氷した砕氷を利用して負荷よりの熱を熱交換器62と熱交換して冷水を製造するもので、該容器上部に熱交換後の中水の散水スプレー65、ポンプ、中水利用のための3方弁を具える。又中水は清水タンク11に貯留されるように構成している。   The ice receiving container 6 of FIG. 1 uses the crushed ice crushed by the ice breaker 4 to produce cold water by exchanging heat from the load with the heat exchanger 62, and in the upper part of the container, intermediate water after heat exchange is produced. Water spray 65, pump, and three-way valve for medium water use. Further, the intermediate water is configured to be stored in the fresh water tank 11.

上記構成のもとに、本発明の原水の製氷若しくは濃縮における好適な運転方法は、以下の手順に基づき行うようにしてある。
a、被凍結水溶液を原水タンクより3方弁36を介して内筒22a…群及び上下循環空間23,24に7〜9割程度充填する。
b、冷水ブラインより3方弁15を介して外容器21内に冷ブラインを導入して内筒22a…を氷点以下にしながら循環ポンプ29により冷ブラインを循環させながら製氷を行う。この際冷ブラインの循環量を調整して緩速にて結氷を行う。
c、そして、前記したように、冷ブラインの循環量を調整して緩速にて結氷を行うために、凍結界面は内筒22a…中心方向に進行するが、進行とともに溶質成分が固液界面から溶液側に後退濃縮される。
d、所定の結氷量確認後、ポンプ16を停止して冷ブラインの供給を停止する。その後原液タンク12側の3方弁36を切り換えて、濃縮溶液を濃縮液タンク39に排出する。
この際濃縮液の完全排除を狙い、配管391に傾斜を用いポンプ36下部の濃縮液タンク39に速やかに排除可能に構成してある。
又3方弁36により配管の一部を共用化して濃縮液排除と原液供給ラインの簡素化を図っている。
e、ついで、下方循環空間23,24の開閉扉31を開放した後3方弁15を温熱源タンク52側に切り換えて、外容器21内へ温ブラインを供給して、前記内筒22a…の熱伝面の温度を高温にして熱伝面より筒状真氷の剥離脱氷をする。
f、と同時に砕氷器4を運転して筒状氷の砕氷を図るが、回転歯群44a−44b、45a−45bからなる回転歯は氷を引き込む方向、即ち左右に一対の回転歯群44a−44b、45a−45b群が中心側に向けて回転して時間短縮と機能安定化を図っている。
又左右一対の回転歯群44a−44b、45a−45bは、上下二段構成で配設されており、下段側の1の回転歯群45aはハンドル軸46を利用して相手側の回転歯群45bへ接近可能に構成し、砕氷密度を変化可能に構成し、例えば砕氷径30〜80mmの氷を生成する。
Based on the above configuration, a suitable operation method for making or concentrating raw water of the present invention is performed based on the following procedure.
a, Fill the inner cylinder 22a... and the upper and lower circulation spaces 23 and 24 with about 70 to 90% from the raw water tank through the three-way valve 36.
b. The cold brine is introduced from the cold water brine into the outer container 21 through the three-way valve 15 to make the inner cylinder 22a. At this time, the amount of cold brine is adjusted to freeze at a slow speed.
c. As described above, in order to adjust the circulation amount of the cold brine and freeze slowly, the freezing interface advances toward the inner cylinder 22a..., but the solute component becomes a solid-liquid interface as it progresses. From the solution to the solution side.
d. After the predetermined amount of ice formation is confirmed, the pump 16 is stopped and the supply of cold brine is stopped. Thereafter, the three-way valve 36 on the stock solution tank 12 side is switched to discharge the concentrated solution to the concentrated solution tank 39.
At this time, with the aim of complete removal of the concentrated liquid, the pipe 391 is inclined so that the concentrated liquid tank 39 under the pump 36 can be quickly removed.
Further, a part of the piping is shared by the three-way valve 36 so as to simplify the concentrate removal and the stock solution supply line.
e. Next, after opening the opening / closing door 31 of the lower circulation spaces 23, 24, the three-way valve 15 is switched to the heat source tank 52 side to supply hot brine into the outer container 21, and the inner cylinder 22a. The temperature of the heat transfer surface is increased, and the cylindrical ice is peeled and deiced from the heat transfer surface.
f, at the same time, the ice breaker 4 is operated to break the cylindrical ice, but the rotating teeth 44a-44b, 45a-45b have a pair of rotating teeth 44a- The 44b and 45a-45b groups rotate toward the center side to shorten the time and stabilize the function.
The pair of left and right rotating tooth groups 44a-44b and 45a-45b are arranged in a two-stage configuration, and the one rotating tooth group 45a on the lower stage side uses the handle shaft 46 and the other rotating tooth group. It is configured to be accessible to 45b and is configured to be capable of changing the ice breaking density, for example, ice having an ice breaking diameter of 30 to 80 mm is generated.

従って本実施例によれば、製氷器本体1、シール機構付き開閉扉31、砕氷器4及び受氷容器6を重力方向に配置して氷は自由落下により受氷容器6にたまるようにしてあるために、コンベア等の搬送部分が不要である。
又製氷器本体1より濃縮液タンク39は下側に配置され、その製氷器本体1よりの配管391は下向き傾斜のために濃縮液は自由落下で動力が不要となる。
又製氷器本体1の内筒への冷却及び加熱源には冷凍サイクルの冷媒ではなくブラインによる間接熱を用いているために、素人でも運転可能である。
又製氷器ユニット10と熱源ユニット50をドッキング若しくは隣接配置することで現地施行の簡略化を図っている。
Therefore, according to the present embodiment, the ice making device body 1, the door 31 with the sealing mechanism, the ice breaker 4 and the ice receiving container 6 are arranged in the gravity direction so that the ice is collected in the ice receiving container 6 by free fall. Therefore, a conveyance part such as a conveyor is unnecessary.
Further, the concentrate tank 39 is disposed below the ice maker main body 1 and the piping 391 from the ice maker main body 1 is inclined downward, so that the concentrate falls freely and no power is required.
Moreover, since the indirect heat | fever by the brine is used for the cooling and heating source to the inner cylinder of the ice making apparatus main body 1 instead of the refrigerant | coolant of a refrigerating cycle, even an amateur can drive | operate.
In addition, the ice making unit 10 and the heat source unit 50 are docked or arranged adjacent to each other to simplify the on-site implementation.

図4は本発明の他の実施例にかかる製氷器本体1の要部構成を示す。
本実施例は内部に冷ブライン若しくは温ブラインが流通する通路を有する方形状の外容器21と、該外容器21内に長手方向に左右に垂直に垂下される4本の角状内筒22Ba…が並列配置されており、内筒22Ba…の上方と下方には、原液が、図上左側の内筒群22Ba…から右側の内筒群22Bc…へと上昇と下降により隣接する内筒群22Ba…へ直列に循環するように構成され、そして外容器21と上下液循環空間23B,24Bの間には夫々断熱材49を介装して液循環空間23B,24B内で氷ができないように構成している。
FIG. 4 shows a configuration of a main part of an ice making body 1 according to another embodiment of the present invention.
In the present embodiment, a rectangular outer container 21 having a passage through which cold brine or warm brine circulates, and four rectangular inner cylinders 22Ba suspended vertically in the longitudinal direction in the outer container 21. Are arranged in parallel, and the upper and lower sides of the inner cylinders 22Ba ..., the undiluted solution is adjacent to the inner cylinder group 22Ba by rising and lowering from the inner cylinder group 22Ba ... on the left side to the inner cylinder group 22Bc ... on the right side. Is configured to circulate in series, and between the outer container 21 and the upper and lower liquid circulation spaces 23B, 24B, a heat insulating material 49 is interposed, so that ice is not formed in the liquid circulation spaces 23B, 24B. doing.

液循環空間の上方循環空間23Bはドーム状に形成し、仕切板を設けずに、第1の内筒22Baと第2の内筒22Bbが上昇流で、又第3の内筒22Bcと第4の内筒22Bdが下降流で液が循環するように2本ずつ筒群の循環構成にしている。
即ち第3の内筒22Bcと第4の内筒22Bdの間に邪魔板48を上方循環空間23B側に突設させて第1の内筒22Baと第2の内筒22Bbの上昇流によりドーム状の上方循環空間23Bに導いた液を邪魔板48により第3の内筒22Bcと第4の内筒22Bdに均等に振り分けて下降流を形成するように構成している。
一方下方循環空間24Bは、第2の内筒22Bbと第3の内筒22Bc間に、仕切り板34(壁)が設けられ、又第1の内筒22Baと第2の内筒22Bb間に邪魔板47が下方循環空間24側に突設して設けられている。
これにより第1、2の内筒の下方区分け空間245に設けた循環液入口331より導入された循環液が第1、第2の内筒群よりの上昇流によりドーム状の上方循環空間23Bに導いた後、邪魔板48により第3、と第4の内筒に均等に振り分けられて下降流を形成してその下方区分け空間246より導出口341を介して、図1と同様な循環管とポンプにより、液導入口331を介して第1、2の内筒の下方区分け空間245に戻りながらその循環により循環液の製氷と原液の濃縮がなされる点は前記実施例と同様である。
この結果前記循環液が第1、2の内筒の下方区分け空間245→第1,2の内筒22Ba、22Bb群→ドーム状の上方循環空間23B→第3及び第4の内筒22Bc、22Bd群→第3、4の内筒の下方区分け空間246と、循環液が4つの角状内筒22Ba…間に2列並列群で且つ該内筒群間を直列に液が循環するように構成される。
又下方循環空間24Bの、下方区分け空間245と下方区分け空間246の夫々の底面には開閉扉(不図示)が設けられていることは図1と同様であるので、その説明は省略するが、製氷時は前記開閉扉を閉塞して冷ブラインを流しながら液循環して製氷し、一方前記開閉扉31を開放して温ブラインを流すことにより、自然落下により脱氷できることは前記実施例と同様である。
The upper circulation space 23B of the liquid circulation space is formed in a dome shape, and without providing a partition plate, the first inner cylinder 22Ba and the second inner cylinder 22Bb are in upward flow, and the third inner cylinder 22Bc and the fourth inner cylinder 22Bc. The inner cylinder 22Bd is configured to circulate two cylinders each so that the liquid circulates in a downward flow.
That is, a baffle plate 48 is provided between the third inner cylinder 22Bc and the fourth inner cylinder 22Bd so as to protrude toward the upper circulation space 23B, and the dome shape is formed by the upward flow of the first inner cylinder 22Ba and the second inner cylinder 22Bb. The liquid guided to the upper circulation space 23B is equally distributed to the third inner cylinder 22Bc and the fourth inner cylinder 22Bd by the baffle plate 48 to form a downward flow.
On the other hand, in the lower circulation space 24B, a partition plate 34 (wall) is provided between the second inner cylinder 22Bb and the third inner cylinder 22Bc, and between the first inner cylinder 22Ba and the second inner cylinder 22Bb. A plate 47 is provided protruding from the lower circulation space 24 side.
As a result, the circulating fluid introduced from the circulating fluid inlet 331 provided in the lower partition space 245 of the first and second inner cylinders enters the dome-shaped upper circulating space 23B by the upward flow from the first and second inner cylinder groups. After being guided, the baffle plate 48 is equally distributed to the third and fourth inner cylinders to form a downward flow, and from the lower partition space 246 through the outlet 341, a circulation pipe similar to FIG. The circulating solution is made of ice and concentrated in the same manner as in the previous embodiment by returning to the lower partitioning space 245 of the first and second inner cylinders via the liquid inlet 331 by the pump.
As a result, the circulating fluid is divided into the lower partition space 245 of the first and second inner cylinders, the first and second inner cylinders 22Ba and 22Bb, the dome-shaped upper circulation space 23B, and the third and fourth inner cylinders 22Bc and 22Bd. A structure in which the liquid circulates in a two-row parallel group between the group → the third and fourth inner cylinders in the lower section space 246 and the four rectangular inner cylinders 22Ba, and in series between the inner cylinder groups. Is done.
In addition, since the opening and closing doors (not shown) are provided on the bottom surfaces of the lower partition space 245 and the lower partition space 246 in the lower circulation space 24B, they are the same as in FIG. During ice making, the open / close door is closed and liquid brine is circulated while flowing cold brine to make ice, while the open / close door 31 is opened and warm brine is flown to allow deicing by natural fall as in the previous embodiment. It is.

又本実施例においても、断熱材49により挟まれる外容器21にブライン循環通路37が形成され、図1に示すように3方弁15、ポンプ16、戻り3方弁15を介して冷熱源タンク51(冷ブラインタンク)と温熱源タンク52(温ブラインタンク)とが接続されているが、その図示は省略している。
尚、ブライン循環通路37は、アルミの製氷缶で構成している外容器21の断熱材取り付けフランジの直下に上下2段で貫通形成され、即ち上方、下方循環空間23B,24B内で夫々液が製氷しないように製氷部(外容器部)とターン部(循環空間23B,24B)に断熱材49を介在させて且つ断熱材直下のフランジ近傍にブラインを供給するように構成している。
尚、本実施例においてはターン部(循環空間23B,24B)の均一流れを制御する邪魔板48,47を内筒と同様に垂直に突設してあるために、製氷・脱氷に支障が出ない。
Also in this embodiment, the brine circulation passage 37 is formed in the outer container 21 sandwiched by the heat insulating material 49, and the cold heat source tank is passed through the three-way valve 15, the pump 16, and the return three-way valve 15 as shown in FIG. 51 (cold brine tank) and a hot heat source tank 52 (warm brine tank) are connected, but the illustration is omitted.
The brine circulation passage 37 is formed in two upper and lower stages directly below the heat-insulating material mounting flange of the outer container 21 made of an aluminum ice can, that is, the liquid flows in the upper and lower circulation spaces 23B and 24B, respectively. In order to prevent ice making, the heat insulating material 49 is interposed between the ice making part (outer container part) and the turn part (circulation spaces 23B and 24B), and brine is supplied to the vicinity of the flange immediately below the heat insulating material.
In the present embodiment, the baffle plates 48 and 47 for controlling the uniform flow of the turn portions (circulation spaces 23B and 24B) are vertically projected in the same manner as the inner cylinder. Does not appear.

本発明は、省設置面積でしかも現場施工が容易にして面積効率がよく能力の高い製氷/濃縮効率を得ることのできる、伝熱管式製氷方法とその装置を提供できる。   INDUSTRIAL APPLICABILITY The present invention can provide a heat transfer tube type ice making method and apparatus capable of obtaining ice making / concentrating efficiency with a small installation area, easy on-site construction, high area efficiency and high capacity.

本発明の水溶液の製氷/凍結濃縮装置(製氷装置)の概略構成を示す。The schematic structure of the ice making / freezing concentration apparatus (ice making apparatus) of the aqueous solution of the present invention is shown. 図2、図3は図1の装置のユニットレイアウト構成を示し、図2は平面図である。2 and 3 show a unit layout configuration of the apparatus of FIG. 1, and FIG. 2 is a plan view. 図3は図2の正面図である。FIG. 3 is a front view of FIG. 他の実施例の、(A)は製氷器本体の要部正面断面図、(B)は(A)のA−A線断面図である。(A) of the other Example is principal part front sectional drawing of an ice maker main body, (B) is the sectional view on the AA line of (A). 図1の砕氷器を示す。Fig. 2 shows the ice breaker of Fig. 1. 図1の開閉扉の概略図を示す。The schematic of the opening / closing door of FIG. 1 is shown.

符号の説明Explanation of symbols

1 製氷器本体
4 砕氷器
10 製氷器ユニット
11 清水タンク
12 原液タンク
21 外容器
22a… 角状内筒
23,24 液循環空間
44、45 回転歯群
50 熱源ユニット
51 冷熱源タンク
52 温熱源タンク
53 ブラインクーラユニット
DESCRIPTION OF SYMBOLS 1 Icemaker main body 4 Icebreaker 10 Icemaker unit 11 Fresh water tank 12 Stock solution tank 21 Outer container 22a ... Square inner cylinder 23, 24 Liquid circulation space 44, 45 Rotating tooth group 50 Heat source unit 51 Cold heat source tank 52 Heat source tank 53 Brine cooler unit

Claims (8)

冷媒若しくはブラインを介して得られる冷熱エネルギーを熱伝面を有する筒状体に付与して、被凍結水溶液(原水も含む)を前記熱伝面に沿って流しながら、層状の氷を筒状伝熱面厚み方向に成長させて、該水溶液の製氷若しくは濃縮を行う伝熱管式製氷方法において、
前記筒状体が、平行に配設した複数本の筒状体からなる筒状体群であって前記筒状体の両端開口に循環空間を形成し、該循環空間を介して前記水溶液の流れを変更させながら第1の筒状体若しくは筒状体群から第2の筒状体若しくは筒状体群へと直列に水溶液が循環しながら水溶液の製氷若しくは濃縮を行うことを特徴とする伝熱管式製氷方法。
The cold energy obtained through the refrigerant or brine is applied to the cylindrical body having the heat transfer surface, and the layered ice is transferred to the tube while the aqueous solution to be frozen (including raw water) flows along the heat transfer surface. In a heat transfer tube type ice making method for growing in the hot surface thickness direction and making or concentrating the aqueous solution,
The cylindrical body is a cylindrical body group composed of a plurality of cylindrical bodies arranged in parallel, forming a circulation space at both ends of the cylindrical body, and the flow of the aqueous solution through the circulation space. A heat transfer tube that performs ice making or concentration of an aqueous solution while the aqueous solution circulates in series from the first cylindrical body or group of cylindrical bodies to the second cylindrical body or group of cylindrical bodies while changing the temperature Formula ice making method.
前記筒状体が垂直に平行配設された複数本の筒状体からなる筒状体群である請求項1記載の伝熱管式製氷方法において、
前記筒状体群の下方に位置する下方循環空間の底部に設けたシール機能を有する開閉扉の下方に砕氷器及び受氷容器を配し、前記筒状体への温熱エネルギーの付与により脱氷した筒状氷の自然落下により砕氷、受氷が行われるようにした請求項1記載の伝熱管式製氷方法。
The heat transfer tube type ice making method according to claim 1, wherein the cylindrical body is a cylindrical body group composed of a plurality of cylindrical bodies arranged in parallel vertically.
An ice crusher and an ice receiving container are arranged below the opening / closing door provided at the bottom of the lower circulation space located below the cylindrical body group, and deicing is performed by applying thermal energy to the cylindrical body. The heat transfer tube type ice making method according to claim 1, wherein ice breaking and ice receiving are carried out by natural fall of the cylindrical ice.
循環空間を介して前記水溶液の流れを変更させながら第1の筒状体群から第2の筒状体群へと直列に水溶液が循環するようにした請求項1記載の伝熱管式製氷方法において、
前記循環空間に分配手段が存在し、該分配手段を介して前記第2の筒状体群の夫々の筒状体に水溶液が分配されるようにした請求項1記載の伝熱管式製氷方法。
The heat transfer tube type ice making method according to claim 1, wherein the aqueous solution circulates in series from the first cylindrical body group to the second cylindrical body group while changing the flow of the aqueous solution through the circulation space. ,
The heat transfer tube type ice making method according to claim 1, wherein a distributing means is present in the circulation space, and the aqueous solution is distributed to each cylindrical body of the second cylindrical body group via the distributing means.
冷媒若しくはブラインを介して得られる冷熱エネルギーを熱伝面を有する筒状体に付与して、被凍結水溶液(原水も含む)を前記熱伝面に沿って流しながら、層状の氷を筒状伝熱面厚み方向に成長させて、該水溶液の製氷若しくは濃縮を行う伝熱管式製氷装置において、
前記筒状体が、平行に配設した複数本の筒状体からなる筒状体群からなり、前記筒状体の両端開口に循環空間を形成し、該循環空間を介して前記水溶液の流れを変更させながら第1の筒状体若しくは筒状体群から第2の筒状体若しくは筒状体群へと直列に水溶液が循環するように構成した製氷器を有することを特徴とする伝熱管式製氷装置。
The cold energy obtained through the refrigerant or brine is applied to the cylindrical body having the heat transfer surface, and the layered ice is transferred to the tube while the aqueous solution to be frozen (including raw water) flows along the heat transfer surface. In a heat transfer tube type ice making device that grows in the thickness direction of the hot surface and makes or concentrates the aqueous solution,
The cylindrical body is composed of a cylindrical body group composed of a plurality of cylindrical bodies arranged in parallel. A circulation space is formed at both end openings of the cylindrical body, and the aqueous solution flows through the circulation space. A heat transfer tube comprising an ice maker configured to circulate an aqueous solution in series from the first cylindrical body or group of cylindrical bodies to the second cylindrical body or group of cylindrical bodies while changing the temperature Ice making equipment.
前記筒状体が垂直に平行配設された複数本の筒状体からなる筒状体群である請求項4記載の伝熱管式製氷装置において、
前記製氷器が筒状体群の下方に位置する下方循環空間の底部に設けたシール機能を有する開閉扉を有する製氷器であって、該製氷器の下方に砕氷器及び受氷容器を順次配し、前記筒状体への温熱エネルギーの付与により脱氷した筒状氷の自然落下により砕氷、受氷が行われるように構成した請求項4記載の伝熱管式製氷装置。
The heat transfer tube type ice making device according to claim 4, wherein the cylindrical body is a cylindrical body group composed of a plurality of cylindrical bodies arranged in parallel vertically.
An ice making machine having an opening / closing door having a sealing function provided at the bottom of a lower circulation space where the ice making machine is located below the cylindrical body group, and an ice breaker and an ice receiving container are sequentially arranged below the ice making machine. The heat transfer tube type ice making device according to claim 4, wherein ice breaking and ice receiving are performed by the natural fall of the cylindrical ice that has been deiced by applying thermal energy to the cylindrical body.
循環空間を介して前記水溶液の流れを変更させながら第1の筒状体群から第2の筒状体群へと直列に水溶液が循環するようにした請求項4記載の伝熱管式製氷装置において、
前記筒状体群を構成する隣接する筒状体間に循環空間に向けて延在する邪魔板等の分配手段を配設し、該分配手段を介して前記第2の筒状体群の夫々の筒状体に水溶液が分配されるように構成した請求項4記載の伝熱管式製氷装置。
The heat transfer tube ice making device according to claim 4, wherein the aqueous solution circulates in series from the first cylindrical body group to the second cylindrical body group while changing the flow of the aqueous solution through the circulation space. ,
Distributing means such as a baffle plate extending toward the circulation space is disposed between adjacent cylindrical bodies constituting the cylindrical body group, and each of the second cylindrical body groups is disposed via the distributing means. The heat transfer tube ice making device according to claim 4, wherein the aqueous solution is distributed to the cylindrical body.
前記砕氷器は、砕氷用回転歯群が上下2段構成の砕氷器であって、上段側の砕氷用の回転歯群が、砕氷密度が固定の固定回転歯群であり、下段側の砕氷密度設定用の回転歯群が、砕氷密度が可変の可変回転歯群であることを特徴とする請求項4記載の伝熱管式製氷装置。   The ice breaker is an ice breaker having two-stage upper and lower ice breaking rotary tooth groups, the upper ice breaking tooth group is a fixed rotating tooth group having a fixed ice breaking density, and the lower ice breaking density. The heat transfer tube type ice making device according to claim 4, wherein the setting rotary tooth group is a variable rotary tooth group having a variable ice breaking density. 前記冷熱エネルギーが冷媒により冷却されたブラインである請求項4記載の伝熱管式製氷装置において、
前記製氷器が筒状体群の下方に位置する下方循環空間の底部に設けたシール機能を有する開閉扉を有する製氷器であって、該製氷器の下方に砕氷器及び受氷容器を順次配した製氷器ユニットと、
冷凍サイクルによりブラインを冷却及び加熱するブラインクーラと冷却された冷ブラインを貯蔵する冷ブラインタンクと、加熱された温ブラインを貯蔵する温ブラインタンクとが配置された熱源ユニットとを設け、
前記両ユニットが隣接若しくは結合配置されている請求項4記載の伝熱管式製氷装置。
The heat transfer tube type ice making device according to claim 4, wherein the cold energy is brine cooled by a refrigerant.
An ice making machine having an opening / closing door having a sealing function provided at the bottom of a lower circulation space where the ice making machine is located below the cylindrical body group, and an ice breaker and an ice receiving container are sequentially arranged below the ice making machine. An ice maker unit,
A brine cooler that cools and heats the brine by the refrigeration cycle, a cold brine tank that stores the cooled cold brine, and a heat source unit in which a warm brine tank that stores the heated warm brine is disposed,
The heat transfer tube type ice making device according to claim 4, wherein the two units are adjacent to each other or connected together.
JP2004132137A 2004-04-27 2004-04-27 Heat transfer tube type method and device for making ice Pending JP2005315475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132137A JP2005315475A (en) 2004-04-27 2004-04-27 Heat transfer tube type method and device for making ice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132137A JP2005315475A (en) 2004-04-27 2004-04-27 Heat transfer tube type method and device for making ice

Publications (1)

Publication Number Publication Date
JP2005315475A true JP2005315475A (en) 2005-11-10

Family

ID=35443090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132137A Pending JP2005315475A (en) 2004-04-27 2004-04-27 Heat transfer tube type method and device for making ice

Country Status (1)

Country Link
JP (1) JP2005315475A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064356A (en) * 2006-09-05 2008-03-21 Mayekawa Mfg Co Ltd Ozone ice manufacturing method and device, and ozone ice manufactured thereby
JP2008237990A (en) * 2007-03-26 2008-10-09 Kagome Co Ltd Advancing freeze concentration method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424755U (en) * 1977-07-22 1979-02-17
JPS6451151A (en) * 1987-08-20 1989-02-27 Hokuei Tekko Kk Ice grinder
JP2000258004A (en) * 1999-03-11 2000-09-22 Kansai Electric Power Co Inc:The Ice making unit
JP2002253189A (en) * 2001-02-27 2002-09-10 Mayekawa Mfg Co Ltd Method for freezing juice and apparatus therefor
JP2003028546A (en) * 2001-07-11 2003-01-29 Mayekawa Mfg Co Ltd Method and device for ice making and concentrating aqueous solution and method for operating the device and ice-melting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424755U (en) * 1977-07-22 1979-02-17
JPS6451151A (en) * 1987-08-20 1989-02-27 Hokuei Tekko Kk Ice grinder
JP2000258004A (en) * 1999-03-11 2000-09-22 Kansai Electric Power Co Inc:The Ice making unit
JP2002253189A (en) * 2001-02-27 2002-09-10 Mayekawa Mfg Co Ltd Method for freezing juice and apparatus therefor
JP2003028546A (en) * 2001-07-11 2003-01-29 Mayekawa Mfg Co Ltd Method and device for ice making and concentrating aqueous solution and method for operating the device and ice-melting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064356A (en) * 2006-09-05 2008-03-21 Mayekawa Mfg Co Ltd Ozone ice manufacturing method and device, and ozone ice manufactured thereby
JP2008237990A (en) * 2007-03-26 2008-10-09 Kagome Co Ltd Advancing freeze concentration method

Similar Documents

Publication Publication Date Title
US8443621B2 (en) Ice maker and method for making ice
US20110185760A1 (en) Ice maker for refrigerator
US20080156026A1 (en) Refrigerator and ice maker
US5653114A (en) Method and system for electronically controlling the location of the formation of ice within a closed loop water circulating unit
US2569113A (en) Automatic ice cube producing and storing apparatus
US20080156025A1 (en) System and method for making ice
KR930006413B1 (en) Thermal storage unit with coil expension during melt
US20080155999A1 (en) System and method for making ice
CN101206092A (en) Refrigeratory
US4321802A (en) Ice and water-making refrigeration apparatus
US20120017627A1 (en) Apparatus for purifying water
JP2005315475A (en) Heat transfer tube type method and device for making ice
CN205048827U (en) Ice making device
KR200193565Y1 (en) Refrigerating system dispensing cold water, hot water and ice
US12017929B2 (en) Recrystallization water treatment system and heat-exchange devices (embodiments) for its implementation
KR101470958B1 (en) An ice machine with an integrated water-air cooling system
KR200403761Y1 (en) Forice-on-coil a device inclusion of thermal stroage package system
KR100715839B1 (en) Forice-on-coil a device inclusion of thermal stroage package system
KR20130067220A (en) Ice maker easy separation
JPH0438176Y2 (en)
KR200312190Y1 (en) Ice builder
CN2305594Y (en) Calandria cold storage air conditioner cold water device capable of deicing
JP2000205710A (en) Ice making machine
JP2659567B2 (en) Thermal storage refrigeration system
WO2022135128A1 (en) Icemaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100416