JP2005315130A - Intake control device of internal combustion engine - Google Patents

Intake control device of internal combustion engine Download PDF

Info

Publication number
JP2005315130A
JP2005315130A JP2004132312A JP2004132312A JP2005315130A JP 2005315130 A JP2005315130 A JP 2005315130A JP 2004132312 A JP2004132312 A JP 2004132312A JP 2004132312 A JP2004132312 A JP 2004132312A JP 2005315130 A JP2005315130 A JP 2005315130A
Authority
JP
Japan
Prior art keywords
target
negative pressure
variable valve
internal combustion
valve mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004132312A
Other languages
Japanese (ja)
Other versions
JP4412047B2 (en
Inventor
Yutaro Minami
南  雄太郎
Hiroshi Iwano
岩野  浩
Hiroshi Oba
大羽  拓
Hisanori Onoda
尚徳 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004132312A priority Critical patent/JP4412047B2/en
Publication of JP2005315130A publication Critical patent/JP2005315130A/en
Application granted granted Critical
Publication of JP4412047B2 publication Critical patent/JP4412047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve acceleration time torque responsiveness restricted by responsiveness of variable valve systems. <P>SOLUTION: A target load tQH0 is calculated from accelerator opening APO and an engine speed Ne. A target angle tVEL of a lift operating angle of the first variable valve system and a target angle tVTC of a central angle of the second variable valve system are determined in response to this target load. In acceleration when the engine speed Ne is a predetermined engine speed cNe or more and a deviation errVTC of the central angle is a reference deviation cerrVTC2 or more, a correction quantity hosQH0 is added to the target load tQH0, and is set as a transition time target load tQH0d. The target load tQH0 is used as it is at steady time. Since a negative pressure control valve target opening arithmetic operation part 43 calculates negative pressure control valve target opening tBCV by using the transition time target load tQH0d, opening becomes larger than the steady time, and suction negative pressure reduces. Thus, actual torque is highly provided, and the torque responsiveness is improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、内燃機関のシリンダ内に吸入される吸入空気量を制御する吸気制御装置に関し、特に、吸気弁のバルブリフト特性の可変制御によって吸入空気量の制御を達成するようにした内燃機関の吸気制御装置に関する。   The present invention relates to an intake air control device that controls an intake air amount sucked into a cylinder of an internal combustion engine, and more particularly to an internal combustion engine that achieves control of an intake air amount by variable control of valve lift characteristics of an intake valve. The present invention relates to an intake control device.

ガソリン機関においては、一般に吸気通路中に設けたスロットル弁の開度制御によって吸気量を制御しているが、良く知られているように、この種の方式では、特にスロットル弁開度の小さな中低負荷時におけるポンピングロスが大きい、という問題がある。これに対し、吸気弁の開閉時期やリフト量を変化させることで、スロットル弁に依存せずに吸気量を制御しようとする試みが以前からなされており、この技術を利用して、ディーゼル機関と同様に吸気系にスロットル弁を具備しないいわゆるスロットルレスの構成を実現することが提案されている。   In a gasoline engine, the intake air amount is generally controlled by controlling the opening of a throttle valve provided in the intake passage. As is well known, this type of system has a particularly small throttle valve opening. There is a problem that the pumping loss is large at low load. On the other hand, attempts have been made to control the intake air amount without depending on the throttle valve by changing the opening / closing timing of the intake valve and the lift amount. Similarly, it has been proposed to realize a so-called throttle-less configuration in which the intake system is not equipped with a throttle valve.

特許文献1には、本出願人が先に提案した吸気弁のリフト量および作動角さらにはそのリフトの中心角を連続的に可変制御し得る可変動弁機構が開示されている。この種の可変動弁機構によれば、上述のように、スロットル弁の開度制御に依存せずにシリンダ内に流入する空気量を可変制御することが可能であり、特に負荷の小さな領域において、いわゆるスロットルレス運転ないしはスロットル弁の開度を十分に大きく保った運転を実現でき、ポンピングロスの大幅な低減が図れる。   Patent Document 1 discloses a variable valve mechanism that can be continuously variably controlled by a lift amount and an operating angle of an intake valve and a central angle of the lift previously proposed by the present applicant. According to this type of variable valve mechanism, as described above, it is possible to variably control the amount of air flowing into the cylinder without depending on the opening degree control of the throttle valve, particularly in a region where the load is small. In other words, so-called throttleless operation or operation with a sufficiently large opening of the throttle valve can be realized, and the pumping loss can be greatly reduced.

ここで、特許文献1のように吸気弁のバルブリフト特性の可変制御により吸入空気量を制御するように構成した場合、スロットル弁を具備しない完全なスロットルレスの構成であると、吸気系に負圧が発生しないため、例えば、ブローバイガスやエバポレータからのパージガスなどを吸気系に還流させる既存のシステムが利用できなくなったり、種々のアクチュエータなどの駆動源としても利用されている負圧が容易に得られない、といった新たな課題が派生する。   Here, when the intake air amount is controlled by variable control of the valve lift characteristic of the intake valve as in Patent Document 1, the complete throttle-less configuration without the throttle valve has a negative effect on the intake system. Because no pressure is generated, for example, existing systems that recirculate blow-by gas or purge gas from an evaporator to the intake system cannot be used, or negative pressure that is also used as a drive source for various actuators can be easily obtained. New issues such as inability to derive.

そのため、いわゆる電子制御スロットル弁と同様の負圧制御弁を設け、その開度制御と組み合わせることで、略一定の負圧を確保しつつ吸気弁のバルブリフト特性による吸入空気量の制御を実現することを本出願人は検討している(特許文献2)。
特開2001−263105号公報 特開2002−256905号公報
For this reason, a negative pressure control valve similar to a so-called electronically controlled throttle valve is provided, and combined with its opening control, the intake air amount is controlled by the valve lift characteristic of the intake valve while ensuring a substantially constant negative pressure. The present applicant is examining this (Patent Document 2).
JP 2001-263105 A JP 2002-256905 A

しかしながら、上記のように機関運転状態に応じて、吸気弁の作動角およびその中心角を互いに独立して可変制御する構成においては、運転状態が急に変化する過渡時に、2つの可変動弁機構がそれぞれ目標値に対しある程度の遅れをもって作動し、かつそれぞれの作動遅れが同時に発生し得ることから、吸入空気量が目標値からずれてしまい、特に加速時におけるトルク応答性が悪化する可能性がある。   However, in the configuration in which the operating angle and the central angle of the intake valve are variably controlled independently of each other according to the engine operating state as described above, two variable valve mechanisms are used during a transient state in which the operating state changes suddenly. Each of which operates with a certain delay relative to the target value, and the respective operation delays can occur at the same time, the intake air amount may deviate from the target value, and the torque responsiveness particularly during acceleration may deteriorate. is there.

この発明に係る内燃機関の吸気制御装置は、内燃機関の吸気弁の作動角を連続的に変更可能な第1可変動弁機構と、上記作動角の中心角を連続的に変更可能な第2可変動弁機構と、上記内燃機関の吸気通路に設けられて吸入負圧を制御する負圧制御弁と、を備えている。また、運転状態に応じて上記第1可変動弁機構と上記第2可変動弁機構とを制御する吸気弁制御手段を備えている。つまり、吸気弁の作動角および中心角は、所期の吸入負圧の下で目標の空気量が得られるように制御される。   An intake control apparatus for an internal combustion engine according to the present invention includes a first variable valve mechanism that can continuously change the operating angle of the intake valve of the internal combustion engine, and a second variable valve that can continuously change the central angle of the operating angle. A variable valve mechanism; and a negative pressure control valve provided in the intake passage of the internal combustion engine for controlling the intake negative pressure. In addition, an intake valve control means for controlling the first variable valve mechanism and the second variable valve mechanism according to the operating state is provided. That is, the operating angle and the central angle of the intake valve are controlled so that a target air amount can be obtained under a desired intake negative pressure.

そして、アクセル開度と内燃機関の回転数に応じて目標負荷を算出する目標負荷算出手段と、内燃機関の回転数と上記目標負荷に応じて負圧制御弁目標開度を設定する負圧制御弁目標開度設定手段と、現在の運転状態が所定の条件を満たす加速であるかを判定する加速判定手段と、上記加速判定手段により所定の加速と判定したときに、上記負圧制御弁目標開度を、現在の運転状態と回転数および負荷が等しい定常時の負圧制御弁目標開度よりも大きく補正する負圧制御弁目標開度補正手段と、を備えている。従って、所定の条件を満たす加速時には、負圧制御弁の開度が定常時よりも大きくなる方向に補正され、吸入負圧が低減(つまり大気圧に近付く)するため、トルク応答性が向上する。   And a target load calculating means for calculating a target load according to the accelerator opening and the engine speed, and a negative pressure control for setting a negative pressure control valve target opening according to the engine speed and the target load. A target valve opening setting unit; an acceleration determination unit that determines whether the current operating state is an acceleration that satisfies a predetermined condition; and when the acceleration determination unit determines a predetermined acceleration, the negative pressure control valve target Negative pressure control valve target opening correction means for correcting the opening larger than the negative pressure control valve target opening at the time of steady state in which the rotational speed and load are equal to the current operating state. Therefore, at the time of acceleration satisfying a predetermined condition, the opening degree of the negative pressure control valve is corrected so as to be larger than that at the normal time, and the suction negative pressure is reduced (that is, approaches the atmospheric pressure), so that the torque response is improved. .

上記負圧制御弁目標開度の補正としては、負圧制御弁目標開度設定手段により回転数と目標負荷に応じて設定された値を最終的に補正するようにしてもよいが、後述する実施例のように、上記負圧制御弁目標開度設定手段の入力となる上記目標負荷を補正することにより負圧制御弁目標開度の補正を実現することも可能である。   As the correction of the negative pressure control valve target opening, the negative pressure control valve target opening setting means may finally correct the value set according to the rotation speed and the target load, which will be described later. As in the embodiment, the correction of the target opening of the negative pressure control valve can be realized by correcting the target load that is input to the negative pressure control valve target opening setting means.

上記加速判定手段における判定の条件の一つとして、内燃機関の回転数が所定値以上であることを含むことができる。つまり、使用頻度の高い低回転時には補正を行わず、回転数が高いときのトルク応答性を改善することとなる。   One of the determination conditions in the acceleration determination means can include that the rotational speed of the internal combustion engine is equal to or greater than a predetermined value. That is, no correction is made at low rotations with high use frequency, and torque response at high rotations is improved.

上記加速判定手段における判定の条件の一つとして、上記第2可変動弁機構の目標作動角が所定値以下であることを含むことができる。作動角は基本的に高負荷側で大となるので、高負荷時のみ補正を行うこととなり、使用頻度の高い低負荷時には補正を行わず、高負荷時のみトルク応答性の向上が行われる。   One of the determination conditions in the acceleration determination means may include that the target operating angle of the second variable valve mechanism is a predetermined value or less. Since the operating angle is basically large on the high load side, correction is performed only when the load is high, and correction is not performed when the load is frequently used and the torque response is improved only when the load is high.

上記加速判定手段における判定の条件の一つとして、上記第2可変動弁機構の目標作動角と実作動角との差が所定値以上であることを含むことができる。上記の差は、加速が急加速であるか緩加速であるかを示す。従って、使用頻度の高い緩い加速要求のときには補正を行わず、急な加速要求のときのみトルク応答性を改善することとなる。   One of the determination conditions in the acceleration determination means may include that the difference between the target operating angle and the actual operating angle of the second variable valve mechanism is a predetermined value or more. The above difference indicates whether acceleration is rapid or slow. Therefore, the correction is not performed when the acceleration request is frequently used and the torque response is improved only when the acceleration request is abrupt.

また上記負圧制御弁目標開度補正手段における補正として、内燃機関の回転数に応じて補正量を変えるようにしてもよい。これにより負圧の発達の速度に応じて補正量を設定することができる。   Further, as the correction in the negative pressure control valve target opening correction means, the correction amount may be changed according to the rotational speed of the internal combustion engine. As a result, the correction amount can be set according to the speed of development of the negative pressure.

あるいは、上記第2可変動弁機構の目標作動角もしくは実作動角に応じて補正量を変えるようにしてもよい。つまり現在の要求負荷もしくは実負荷に応じて補正量を設定することができる。   Alternatively, the correction amount may be changed according to the target operating angle or the actual operating angle of the second variable valve mechanism. That is, the correction amount can be set according to the current required load or actual load.

さらに、上記第2可変動弁機構の目標作動角と実作動角との差に応じて補正量を変えるようにしてもよい。つまり現在の加速要求の緩急に応じて補正量を設定することができる。   Furthermore, the correction amount may be changed according to the difference between the target operating angle and the actual operating angle of the second variable valve mechanism. That is, the correction amount can be set according to the current acceleration request.

この発明によれば、所定の条件を満たす加速の際に、負圧制御弁の開度を定常時よりも大きくし、吸入負圧を低減することにより、トルク応答性を高めることができる。   According to the present invention, during acceleration that satisfies a predetermined condition, the opening degree of the negative pressure control valve is made larger than that in the steady state and the suction negative pressure is reduced, so that the torque response can be improved.

図1は、この発明に係る内燃機関の吸気制御装置のシステム構成を示す構成説明図であって、内燃機関1は、吸気弁3と排気弁4とを有し、かつ吸気弁3の動弁機構として、吸気弁3のリフト・作動角を連続的に拡大・縮小させることが可能な第1可変動弁機構(VEL)5および作動角の中心角を連続的に遅進させることが可能な第2可変動弁機構(VTC)6を備えている。また、吸気通路7には、モータ等のアクチュエータにより開度が制御される負圧制御弁2が設けられている。ここで、上記負圧制御弁2は、吸気通路7内に、ブローバイガスの処理などのために必要な僅かな負圧(例えば−50mmHg)を発生させるために用いられており、吸入吸気量の調整は、基本的に、上記第1、第2可変動弁機構5、6により吸気弁3のリフト特性を変更することで行われる。   FIG. 1 is a configuration explanatory view showing the system configuration of an intake control device for an internal combustion engine according to the present invention. The internal combustion engine 1 has an intake valve 3 and an exhaust valve 4, and the valve of the intake valve 3 is operated. As a mechanism, the first variable valve mechanism (VEL) 5 capable of continuously expanding / reducing the lift / operation angle of the intake valve 3 and the center angle of the operation angle can be continuously delayed. A second variable valve mechanism (VTC) 6 is provided. The intake passage 7 is provided with a negative pressure control valve 2 whose opening degree is controlled by an actuator such as a motor. Here, the negative pressure control valve 2 is used to generate a slight negative pressure (for example, −50 mmHg) necessary for blowby gas processing or the like in the intake passage 7. The adjustment is basically performed by changing the lift characteristics of the intake valve 3 by the first and second variable valve mechanisms 5 and 6.

より詳しくは、低負荷側の領域(第1の領域)では、吸入負圧が一定(例えば−50mmHg)となるように負圧制御弁2の開度(目標開度tBCV)が制御される。そして、この一定の負圧を発生させながらリフト特性の変更で実現できる最大負荷を要求負荷が超える高負荷側の領域(第2の領域)では、その限界となる点のリフト特性に固定され、負荷、例えばアクセル開度APOの増加に伴い、負圧制御弁2の開度がさらに増加する。つまり、ある負荷までは比較的弱い吸入負圧を維持しつつ吸気弁3のリフト特性を変更することで吸入空気量の調整が行われ、全開領域に近い高負荷側の領域では、吸入負圧を減少させることによって、吸入空気量の調整が行われる。   More specifically, in the low load side region (first region), the opening degree (target opening degree tBCV) of the negative pressure control valve 2 is controlled so that the suction negative pressure is constant (for example, −50 mmHg). And in the high load side region (second region) where the required load exceeds the maximum load that can be realized by changing the lift characteristic while generating this constant negative pressure, it is fixed to the lift characteristic at the point that becomes the limit, As the load, for example, the accelerator opening APO increases, the opening of the negative pressure control valve 2 further increases. That is, the intake air amount is adjusted by changing the lift characteristic of the intake valve 3 while maintaining a relatively weak intake negative pressure up to a certain load, and in the high load side region close to the fully open region, the intake negative pressure is adjusted. The amount of intake air is adjusted by reducing.

これらの第1、第2可変動弁機構5、6および負圧制御弁2は、コントロールユニット10によって制御されている。   The first and second variable valve mechanisms 5 and 6 and the negative pressure control valve 2 are controlled by the control unit 10.

また、燃料噴射弁8が吸気通路7に配置されており、上記のように吸気弁3もしくは負圧制御弁2により調整された吸入空気量に応じた量の燃料が、この燃料噴射弁8から噴射される。従って、内燃機関1の出力は、第1の領域では、第1、第2可変動弁機構5、6により吸入空気量を調整することによって制御され、第2の領域では、負圧制御弁2により吸入空気量を調整することによって制御される。   A fuel injection valve 8 is disposed in the intake passage 7, and an amount of fuel corresponding to the intake air amount adjusted by the intake valve 3 or the negative pressure control valve 2 as described above is supplied from the fuel injection valve 8. Be injected. Accordingly, the output of the internal combustion engine 1 is controlled by adjusting the intake air amount by the first and second variable valve mechanisms 5 and 6 in the first region, and the negative pressure control valve 2 in the second region. Is controlled by adjusting the intake air amount.

上記のコントロールユニット10は、運転者により操作されるアクセルペダルに設けられたアクセル角度センサ11からのアクセル開度信号APOと、エンジン回転数センサ12からのエンジン回転数信号Neと、吸入空気量センサ13からの吸入空気量信号と、を受け取り、これらの信号に基づいて、燃料噴射量、点火時期、負圧制御弁目標開度、第1可変動弁機構目標角度(作動角目標値)、第2可変動弁機構目標角度(中心角目標値)をそれぞれ演算する。そして、要求の燃料噴射量および点火時期を実現するように燃料噴射弁8および点火プラグ9を制御するとともに、負圧制御弁目標開度、第1可変動弁機構目標角度、第2可変動弁機構目標角度を実現するための制御信号を、負圧制御弁2のアクチュエータ、第1可変動弁機構5のアクチュエータおよび第2可変動弁機構6のアクチュエータへ、それぞれ出力する。なお、上記第1可変動弁機構5および第2可変動弁機構6は、その機械的な構成は公知であり、例えば上述した特許文献1に記載の装置と同様の構成を有している。従って、その詳細な説明は省略する。   The control unit 10 includes an accelerator opening signal APO from an accelerator angle sensor 11 provided on an accelerator pedal operated by a driver, an engine speed signal Ne from an engine speed sensor 12, and an intake air amount sensor. 13 is received, and based on these signals, the fuel injection amount, the ignition timing, the negative pressure control valve target opening, the first variable valve mechanism target angle (operating angle target value), the first 2 The variable valve mechanism target angle (center angle target value) is calculated. The fuel injection valve 8 and the spark plug 9 are controlled so as to realize the required fuel injection amount and ignition timing, and the negative pressure control valve target opening, the first variable valve mechanism target angle, and the second variable valve are controlled. Control signals for realizing the mechanism target angle are output to the actuator of the negative pressure control valve 2, the actuator of the first variable valve mechanism 5, and the actuator of the second variable valve mechanism 6, respectively. The first variable valve mechanism 5 and the second variable valve mechanism 6 have known mechanical configurations, and have, for example, the same configuration as the device described in Patent Document 1 described above. Therefore, the detailed description is abbreviate | omitted.

図2は、上記実施例の構成において、第1可変動弁機構目標角度tVEL、第2可変動弁機構目標角度tVTCおよび負圧制御弁目標開度tBCVを算出する処理の概略的なフローチャートである。まず、アクセル開度APOとエンジン回転数Neから目標負荷tQH0を算出し(ステップ01)、この目標負荷tQH0とエンジン回転数Neから、第2可変動弁機構目標角度tVTCおよび第1可変動弁機構目標角度tVELをそれぞれ算出する(ステップ02、03)。次に、過渡時目標負荷tQH0dを算出し(ステップ04)、この過渡時目標負荷tQH0dを用いて、加速時の補正を含む負圧制御弁目標開度tBCVを算出する(ステップ05)。   FIG. 2 is a schematic flowchart of processing for calculating the first variable valve mechanism target angle tVEL, the second variable valve mechanism target angle tVTC, and the negative pressure control valve target opening degree tBCV in the configuration of the above embodiment. . First, the target load tQH0 is calculated from the accelerator opening APO and the engine speed Ne (step 01), and the second variable valve mechanism target angle tVTC and the first variable valve mechanism are calculated from the target load tQH0 and the engine speed Ne. A target angle tVEL is calculated (steps 02 and 03). Next, a transient target load tQH0d is calculated (step 04), and a negative pressure control valve target opening tBCV including correction during acceleration is calculated using the transient target load tQH0d (step 05).

図3は、第2可変動弁機構6の目標角度tVTCの算出処理を示すフローチャートであって、上記ステップ02の詳細を示す。なお、この実施例では、過渡時に第2可変動弁機構6の目標角度tVTCを併せて補正するようにしている。まず、ステップ01で算出された目標負荷tQH0とエンジン回転数Neとに基づき、第2可変動弁機構定常目標角度tVTCsを所定のマップから検索する(ステップ11)。次に、そのときの実際の中心角つまり第2可変動弁機構実角度rVTCを読み込んで(ステップ12)、両者の差として、第2可変動弁機構偏差量errVTCを算出し(ステップ13)、これを基準偏差量cerrVTC1と比較する(ステップ14)。errVTC≧cerrVTC1であれば、急激な過渡状態であると判断して、第2可変動弁機構定常目標角度tVTCsに第2可変動弁機構補正量chosVTCを加えて、第2可変動弁機構目標角度tVTCを算出する(ステップ15)。一方、ステップ14でerrVTC<cerrVTC1の場合は、定常もしくは緩やかな過渡であるので、第2可変動弁機構定常目標角度tVTCsをそのまま第2可変動弁機構目標角度tVTCとする(ステップ16)。   FIG. 3 is a flowchart showing a calculation process of the target angle tVTC of the second variable valve mechanism 6 and shows the details of step 02 described above. In this embodiment, the target angle tVTC of the second variable valve mechanism 6 is also corrected at the time of transition. First, based on the target load tQH0 calculated in Step 01 and the engine speed Ne, the second variable valve mechanism steady target angle tVTCs is searched from a predetermined map (Step 11). Next, the actual center angle at that time, that is, the second variable valve mechanism actual angle rVTC is read (step 12), and the second variable valve mechanism deviation amount errVTC is calculated as the difference between the two (step 13). This is compared with the reference deviation amount cerrVTC1 (step 14). If errVTC ≧ cerrVTC1, it is determined that the state is a sudden transition state, and the second variable valve mechanism correction amount chosVTC is added to the second variable valve mechanism steady target angle tVTCs to obtain the second variable valve mechanism target angle. tVTC is calculated (step 15). On the other hand, if errVTC <cerrVTC1 in step 14, it is a steady or moderate transition, so the second variable valve mechanism steady target angle tVTCs is directly used as the second variable valve mechanism target angle tVTC (step 16).

図4は、第1可変動弁機構5の目標角度tVELの算出処理を示すフローチャートであって、上記ステップ03の詳細を示す。なお、この実施例では、過渡時に第1可変動弁機構5の目標角度tVELを併せて補正するようにしている。まず、ステップ01で算出された目標負荷tQH0とエンジン回転数Neとに基づき、第1可変動弁機構定常目標角度tVELsを所定のマップから検索する(ステップ21)。次に、ステップ14と同じく、そのときの第2可変動弁機構偏差量errVTCと基準偏差量cerrVTC1とを比較し(ステップ22)、errVTC≧cerrVTC1であれば、急激な過渡であると判断する。そして、上記第2可変動弁機構偏差量errVTCに第1可変動弁機構補正ゲインgaVELを乗じて第1可変動弁機構補正量hosVELを算出し(ステップ23)、第1可変動弁機構定常目標角度tVELsに、この第1可変動弁機構補正量hosVELを加えて、第1可変動弁機構目標角度tVELを算出する(ステップ24)。一方、ステップ23でerrVTC<cerrVTC1の場合は、定常もしくは緩やかな過渡であるので、第1可変動弁機構定常目標角度tVELsをそのまま第1可変動弁機構目標角度tVELとする(ステップ25)。   FIG. 4 is a flowchart showing a calculation process of the target angle tVEL of the first variable valve mechanism 5 and shows details of step 03 described above. In this embodiment, the target angle tVEL of the first variable valve mechanism 5 is also corrected at the time of transition. First, the first variable valve mechanism steady target angle tVELs is searched from a predetermined map based on the target load tQH0 calculated in step 01 and the engine speed Ne (step 21). Next, as in step 14, the second variable valve mechanism deviation amount errVTC at that time and the reference deviation amount cerrVTC1 are compared (step 22), and if errVTC ≧ cerrVTC1, it is determined that there is an abrupt transition. Then, the first variable valve mechanism correction amount hosVEL is calculated by multiplying the second variable valve mechanism deviation amount errVTC by the first variable valve mechanism correction gain gaVEL (step 23), and the first variable valve mechanism correction steady target. A first variable valve mechanism target angle tVEL is calculated by adding the first variable valve mechanism correction amount hosVEL to the angle tVELs (step 24). On the other hand, if errVTC <cerrVTC1 in step 23, it is a steady or moderate transition, so the first variable valve mechanism steady target angle tVELs is used as it is as the first variable valve mechanism target angle tVEL (step 25).

なお、上記のように過渡時に第2可変動弁機構目標開度tVTCおよび第1可変動弁機構目標開度tVELを補正することで、過渡時のトルク応答性が向上するが、これは、本発明においては、必ずしも必須のものではない。   As described above, by correcting the second variable valve mechanism target opening tVTC and the first variable valve mechanism target opening tVEL at the time of transition, the torque responsiveness at the time of transient is improved. In the invention, it is not necessarily essential.

図5は、図3の第2可変動弁機構目標角度算出処理の内容を機能ブロック図として示したものである。ここで、tQH0は目標負荷、Neはエンジン回転数、であり、これらに基づいて、第2可変動弁機構定常目標角度マップmpVTC21から検索することにより、第2可変動弁機構定常目標角度tVTCsが算出される。そして、第2可変動弁機構実角度rVTCと第2可変動弁機構定常目標角度tVTCsとの偏差が加算点22で求められる。急加速時に、ブロック23において、上記第2可変動弁機構偏差量errVTCが基準偏差量cerrVTC1以上になったと判定されると、点線で囲まれた第2可変動弁機構補正部24により第2可変動弁機構定常目標角度tVTCsを補正した値が、ブロック25を介して選択され、第2可変動弁機構目標角度tVTCとして出力される。   FIG. 5 is a functional block diagram showing the contents of the second variable valve mechanism target angle calculation process of FIG. Here, tQH0 is the target load, Ne is the engine speed, and based on these, the second variable valve mechanism steady target angle map mpVTC21 is used to retrieve the second variable valve mechanism steady target angle tVTCs. Calculated. Then, a deviation between the second variable valve mechanism actual angle rVTC and the second variable valve mechanism steady target angle tVTCs is obtained at the addition point 22. If the second variable valve mechanism deviation amount errVTC is determined to be greater than or equal to the reference deviation amount cerrVTC1 at the block 23 during sudden acceleration, the second variable valve mechanism correction unit 24 surrounded by a dotted line makes the second allowable value. A value obtained by correcting the variable valve mechanism steady target angle tVTCs is selected via the block 25 and is output as the second variable valve mechanism target angle tVTC.

第2可変動弁機構定常目標角度tVTCsの補正としては、該第2可変動弁機構定常目標開度tVTCsに、加算点26において、あらかじめ設定された第2可変動弁機構補正量chosVTCを加えることにより、第2可変動弁機構目標角度tVTCを求める。上記第2可変動弁機構偏差量errVTCが基準偏差量cerrVTC1未満であれば、第2可変動弁機構定常目標開度tVTCsが補正されることなく第2可変動弁機構目標角度tVTCとして出力される。   The second variable valve mechanism steady target angle tVTCs is corrected by adding a preset second variable valve mechanism correction amount chosVTC at the addition point 26 to the second variable valve mechanism steady target opening tVTCs. Thus, the second variable valve mechanism target angle tVTC is obtained. If the second variable valve mechanism deviation errVTC is less than the reference deviation cerrVTC1, the second variable valve mechanism steady target opening tVTCs is output as the second variable valve mechanism target angle tVTC without being corrected. .

同様に、図6は、図4の第1可変動弁機構目標角度算出処理の内容を機能ブロック図として示したものである。ここで、tQH0は目標負荷、Neはエンジン回転数、であり、これらに基づいて、第1可変動弁機構定常目標角度マップmpVEL31から検索することにより、第1可変動弁機構定常目標角度tVELsが算出される。そして、ブロック32において、前述した第2可変動弁機構偏差量errVTCが基準偏差量cerrVTC1以上になったと判定されると、点線で囲まれた第1可変動弁機構補正部33により第1可変動弁機構定常目標角度tVELsを補正した値が、ブロック34を介して選択され、第1可変動弁機構目標角度tVELとして出力される。   Similarly, FIG. 6 shows the contents of the first variable valve mechanism target angle calculation process of FIG. 4 as a functional block diagram. Here, tQH0 is the target load, Ne is the engine speed, and by searching from the first variable valve mechanism steady target angle map mpVEL31 based on these, the first variable valve mechanism steady target angle tVELs is obtained. Calculated. When it is determined in block 32 that the above-described second variable valve mechanism deviation amount errVTC is equal to or greater than the reference deviation amount cerrVTC1, the first variable valve mechanism correction unit 33 surrounded by a dotted line performs the first variable valve operation correction unit 33. A value obtained by correcting the valve mechanism steady target angle tVELs is selected via the block 34 and is output as the first variable valve mechanism target angle tVEL.

第1可変動弁機構定常目標角度tVELsの補正としては、ブロック35で第2可変動弁機構偏差量errVTCに第1可変動弁機構補正ゲインgaVELをかけて第1可変動弁機構補正量hosVELを算出し、加算点36において、第1可変動弁機構定常目標開度tVELsに上記第1可変動弁機構補正量hosVELを加えることにより、第1可変動弁機構目標角度tVELを求める。上記第2可変動弁機構偏差量errVTCが基準偏差量cerrVTC1未満であれば、第1可変動弁機構定常目標開度tVELsが補正されることなく第1可変動弁機構目標角度tVELとして出力される。   As the correction of the first variable valve mechanism steady target angle tVELs, the first variable valve mechanism correction amount hosVEL is obtained by multiplying the second variable valve mechanism deviation amount errVTC by the first variable valve mechanism correction gain gaVEL in block 35. At the addition point 36, the first variable valve mechanism target angle tVEL is obtained by adding the first variable valve mechanism correction amount hosVEL to the first variable valve mechanism steady target opening degree tVELs. If the second variable valve mechanism deviation errVTC is less than the reference deviation cerrVTC1, the first variable valve mechanism target target angle tVEL is output without correction of the first variable valve mechanism steady target opening tVELs. .

次に図7は、本発明の要部である補正制御の流れを示すフローチャートであって、上記ステップ04の詳細を示す。この実施例は、エンジン回転数が所定値以上であり、かつ第2可変動弁機構偏差量が所定値以上である加速時に、目標負荷を大きくなる方向に補正して過渡時目標負荷を求めるようにしたものであって、まず、エンジン回転数Neを基準エンジン回転数cNeと比較し(ステップ31)、Ne≧cNeであれば、ステップ32へ進んで、第2可変動弁機構偏差量errVTCを所定の基準偏差量errVTC2と比較する。このステップ32で、errVTC≧cerrVTC2であれば、ステップ33へ進み、第2可変動弁機構偏差量errVTCに目標負荷補正ゲインgaQH0を乗じて目標負荷補正量hosQH0を算出し、ステップ34で、目標負荷tQH0にこの目標負荷補正量hosQH0を加えて、補正後目標負荷tQH0d0を算出する。   Next, FIG. 7 is a flowchart showing the flow of correction control, which is the main part of the present invention, and shows details of step 04 described above. In this embodiment, during acceleration in which the engine speed is equal to or greater than a predetermined value and the second variable valve mechanism deviation amount is equal to or greater than a predetermined value, the target load is corrected in a direction to increase to obtain the transient target load. First, the engine speed Ne is compared with the reference engine speed cNe (step 31). If Ne ≧ cNe, the routine proceeds to step 32, where the second variable valve mechanism deviation errVTC is set. It is compared with a predetermined reference deviation amount errVTC2. If errVTC ≧ cerrVTC2 in step 32, the process proceeds to step 33, where the target load correction amount hosQH0 is calculated by multiplying the second variable valve mechanism deviation amount errVTC by the target load correction gain gaQH0. The corrected target load tQH0d0 is calculated by adding the target load correction amount hosQH0 to tQH0.

一方、ステップ31でNe<cNeの場合、およびステップ32でerrVTC<cerrVTC2の場合は、ステップ35へ進み、目標負荷tQH0をそのまま補正後目標負荷tQH0d0とする。最後に、ステップ34もしくはステップ35の補正後目標負荷tQH0d0を、所定の最大負荷maxQH0と比較し、いずれか小さい方を選択(Select Low)して、過渡時目標負荷tQH0dとして出力する(ステップ36)。   On the other hand, if Ne <cNe in step 31 and errVTC <cerrVTC2 in step 32, the process proceeds to step 35, and the target load tQH0 is set as the corrected target load tQH0d0 as it is. Finally, the corrected target load tQH0d0 after step 34 or 35 is compared with a predetermined maximum load maxQH0, whichever is smaller (Select Low), and is output as a transient target load tQH0d (step 36). .

なお、上記の基準偏差量cerrVTC2は、前述したcerrVTC1と同じ値であってもよい。本実施例では、cerrVTC2>cerrVTC1となっている。   The reference deviation amount cerrVTC2 may be the same value as the cerrVTC1 described above. In the present embodiment, cerrVTC2> cerrVTC1.

図8は、この実施例の補正制御の内容を機能ブロック図として示したものである。ここで、APOはアクセル開度、Neはエンジン回転数、であり、これらに基づいて、目標負荷演算部41において、目標負荷tQH0が算出される。そして、点線で囲まれた過渡時目標負荷演算部42により、過渡時目標負荷tQH0dが算出され、この過渡時目標負荷tQH0dとエンジン回転数Neとに基づいて、負圧制御弁目標開度演算部43において、負圧制御弁目標開度tBCVが算出される。また、目標負荷tQH0とエンジン回転数Neとに基づいて、第1可変動弁機構目標角度演算部44および第2可変動弁機構目標角度演算部45において、第1可変動弁機構目標角度tVELおよび第2可変動弁機構目標角度tVTCがそれぞれ算出される。第1可変動弁機構目標角度演算部44および第2可変動弁機構目標角度演算部45は、図6および図5でそれぞれ説明したものである。   FIG. 8 is a functional block diagram showing the contents of the correction control of this embodiment. Here, APO is the accelerator opening, and Ne is the engine speed. Based on these values, the target load calculation unit 41 calculates the target load tQH0. Then, the transient target load tQH0d is calculated by the transient target load calculator 42 surrounded by the dotted line, and the negative pressure control valve target opening calculator is calculated based on the transient target load tQH0d and the engine speed Ne. At 43, a negative pressure control valve target opening tBCV is calculated. Further, based on the target load tQH0 and the engine speed Ne, the first variable valve mechanism target angle calculation unit 44 and the second variable valve mechanism target angle calculation unit 45 use the first variable valve mechanism target angle tVEL and Second variable valve mechanism target angle tVTC is calculated. The first variable valve mechanism target angle calculator 44 and the second variable valve mechanism target angle calculator 45 have been described with reference to FIGS. 6 and 5, respectively.

過渡時目標負荷の補正としては、ブロック46のエンジン回転数Neが所定の基準エンジン回転数cNe以上であるという条件、および、ブロック47の第2可変動弁機構偏差量errVTCが所定の基準偏差量cerrVTC2以上であるという条件、のAND条件48が成立するときに、ブロック49を介して、目標負荷tQH0の補正後の値を選択する。具体的には、ブロック50で第2可変動弁機構偏差量errVTCに目標負荷補正ゲインgaQH0をかけて目標負荷補正量hosQH0を算出し、加算点51において、目標負荷tQH0にこの目標負荷補正量hosQH0を加えることにより、補正後目標負荷tQH0d0を算出する。そして、「Select Low」のブロック52において、この補正後目標負荷tQH0d0と最大負荷QH0とのいずれか小さい方を選択し、過渡時目標負荷tQH0dとして出力する。   The correction of the transient target load includes the condition that the engine speed Ne of the block 46 is equal to or higher than a predetermined reference engine speed cNe, and the second variable valve mechanism deviation amount errVTC of the block 47 is a predetermined reference deviation amount. When the AND condition 48 of the condition that it is greater than or equal to cerrVTC2 is satisfied, the corrected value of the target load tQH0 is selected via the block 49. Specifically, in block 50, the target load correction amount hosQH0 is calculated by multiplying the second variable valve mechanism deviation amount errVTC by the target load correction gain gaQH0, and the target load correction amount hosQH0 is added to the target load tQH0 at the addition point 51. Is added to calculate the corrected target load tQH0d0. Then, in the “Select Low” block 52, the smaller one of the corrected target load tQH0d0 and the maximum load QH0 is selected and output as the transient target load tQH0d.

図9は、上記実施例による過渡(加速)時の作用を示すタイムチャートである。これは、運転者がアクセルペダルの踏み込み量(アクセル開度APO)を増やしたことによりエンジン回転数Neが上昇していく加速走行を行った際の作用を示し、それぞれ、(a)目標負荷、(b)第1可変動弁機構角度、(c)第2可変動弁機構角度、(d)負圧制御弁開度、(e)吸入負圧、(f)エンジントルク、(g)エンジン回転数、の変化を対比して示している。なお、(e)の吸入負圧は、図の上方が大気圧側、下方が真空側となる方向で示してある。   FIG. 9 is a time chart showing the action at the time of transition (acceleration) according to the above embodiment. This shows the action when the driver performs acceleration traveling in which the engine speed Ne increases as the accelerator pedal depression amount (accelerator opening APO) is increased, and (a) the target load, (B) First variable valve mechanism angle, (c) Second variable valve mechanism angle, (d) Negative pressure control valve opening, (e) Suction negative pressure, (f) Engine torque, (g) Engine rotation It shows the change in number. In addition, the suction negative pressure of (e) is shown in a direction in which the upper side in the drawing is the atmospheric pressure side and the lower side is the vacuum side.

走行中に時間t1から時間t5までアクセル開度の踏み込み量を増やすと、アクセル開度APOに対応した目標負荷tQH0が(a)の符号A11で示す線のように得られる。   When the amount of depression of the accelerator opening is increased from time t1 to time t5 during traveling, the target load tQH0 corresponding to the accelerator opening APO is obtained as shown by the line A11 in (a).

ここで、仮に上記の目標負荷tQH0がそのまま最終的な目標値として与えられたとした場合の作用を先に説明する。   Here, the operation when the target load tQH0 is directly given as a final target value will be described first.

まず、過渡時に、第1可変動弁機構目標角度および第2可変動弁機構目標角度の補正を行わないものとした場合には、第1可変動弁機構目標角度tVELは、(b)の符号B11で示す線のように、第2可変動弁機構目標角度tVTCは、(c)の符号C11で示す線のように、負圧制御弁目標開度tBCVは、(d)の符号D11で示す線のように、それぞれ出力される。そして、それぞれの実際の角度,開度は、目標値よりも遅れて変化するので、(b)の符号B21、(c)の符号C21、(d)の符号D21、でそれぞれ示す線のような特性となる。この結果、実際の内燃機関のトルクは、(f)の符号F1で示す線のような特性となる。   First, when the first variable valve mechanism target angle and the second variable valve mechanism target angle are not corrected during the transition, the first variable valve mechanism target angle tVEL is expressed by the sign of (b). Like the line indicated by B11, the second variable valve mechanism target angle tVTC is indicated by the reference numeral D11 in (d), and the negative pressure control valve target opening degree tBCV is indicated by the reference numeral D11 in (d). Each is output like a line. Since the actual angle and opening change with a delay from the target value, the lines indicated by the reference numeral B21 in (b), the reference numeral C21 in (c), and the reference numeral D21 in (d), respectively. It becomes a characteristic. As a result, the actual torque of the internal combustion engine has a characteristic as indicated by a line indicated by reference numeral F1 in (f).

また、前述したように、過渡時に、第1可変動弁機構目標角度および第2可変動弁機構目標角度の補正を行う場合には、第2可変動弁機構偏差量errVTCが所定の基準偏差量errVTC1以上となる時間t2から時間t7までの間、各目標角度の補正がなされる結果、第1可変動弁機構目標角度tVELは、(b)の符号B12で示す線のように算出され、第2可変動弁機構目標角度tVTCは、(c)の符号C12で示す線のように算出される。負圧制御弁目標開度tBCVは、補正されないため、上記の例と同様に算出されて(d)の符号D11の特性となる。そして、それぞれの実際の角度,開度は、目標値よりも遅れて変化するので、(b)の符号B22、(c)の符号C22、(d)の符号D21、でそれぞれ示す線のような特性となる。この結果、実際の内燃機関のトルクは、(f)の符号F2で示す線のような特性となる。   Further, as described above, when the first variable valve mechanism target angle and the second variable valve mechanism target angle are corrected at the time of transition, the second variable valve mechanism deviation amount errVTC is a predetermined reference deviation amount. As a result of correction of each target angle from time t2 to time t7 that is equal to or greater than errVTC1, the first variable valve mechanism target angle tVEL is calculated as shown by the line B12 in FIG. The two variable valve mechanism target angle tVTC is calculated as shown by the line indicated by reference numeral C12 in (c). Since the negative pressure control valve target opening degree tBCV is not corrected, the negative pressure control valve target opening degree tBCV is calculated in the same manner as in the above example, and becomes the characteristic of the symbol D11 in (d). Since each actual angle and opening change with a delay from the target value, as shown by lines B22 in (b), C22 in (c), and D21 in (d), respectively. It becomes a characteristic. As a result, the actual torque of the internal combustion engine has a characteristic as indicated by a line indicated by a symbol F2 in (f).

なお、いずれの場合も、負圧制御弁目標開度tBCVは、定常時に沿った設定のままなので、(e)の符号E1で示す線のように、吸入負圧は所定の一定値付近で安定する。   In any case, since the negative pressure control valve target opening tBCV remains set along the steady state, the suction negative pressure is stable around a predetermined constant value as indicated by the line E1 in (e). To do.

一方、過渡時の応答性向上のために目標負荷tQH0が補正される本実施例においては、第2可変動弁機構偏差量errVTCが所定の基準偏差量errVTC2以上となる時間t3から時間t6までの期間と、(g)の符号G1に示されるエンジン回転数Neが所定の基準エンジン回転数cNe((g)の符号G0の線)以上となる時間t4以降の期間と、の重複する期間、つまり双方の条件が同時に成立する時間t4から時間t6までの間、目標負荷tQH0の補正が行われる。具体的には、第2可変動弁機構偏差量errVTCに応じて補正されて、(a)の符号A12で示す線のように過渡時目標負荷tQH0dが算出される。なお、このとき、(a)の符号A10で示す最大負荷を超えないように、過渡時目標負荷tQH0dが制限される。負圧制御弁目標開度tBCVは、この過渡時目標負荷tQH0dを用いて算出されるので、(d)の符号D12で示す線のような特性となる。つまり、定常時の負圧制御弁目標開度tBCVに比べて、大きな値として与えられる。これにより、吸入負圧は(e)の符号E2で示す線のように一時的に減少するので、内燃機関のトルクは、(f)の符号F3で示す線のような特性で得られる。つまり、前述した補正を行わない場合の符号F1、F2の特性よりも、トルク応答性が高いものとなる。   On the other hand, in the present embodiment in which the target load tQH0 is corrected to improve the response at the time of transition, from the time t3 to the time t6 when the second variable valve mechanism deviation amount errVTC is equal to or greater than the predetermined reference deviation amount errVTC2. The period overlapped with the period after time t4 when the engine speed Ne indicated by the sign G1 in (g) is equal to or greater than a predetermined reference engine speed cNe (line G0 in (g)), that is, The target load tQH0 is corrected from time t4 to time t6 when both conditions are satisfied simultaneously. Specifically, it is corrected according to the second variable valve mechanism deviation amount errVTC, and the transient target load tQH0d is calculated as indicated by a line indicated by reference numeral A12 in FIG. At this time, the transient target load tQH0d is limited so as not to exceed the maximum load indicated by the symbol A10 in FIG. Since the negative pressure control valve target opening degree tBCV is calculated using this transient target load tQH0d, the characteristic is as indicated by a line indicated by reference numeral D12 in (d). That is, it is given as a larger value than the negative pressure control valve target opening degree tBCV in the steady state. As a result, the suction negative pressure temporarily decreases as indicated by the line E2 in (e), so that the torque of the internal combustion engine can be obtained with the characteristic as indicated by the line indicated by F3 in (f). That is, the torque response is higher than the characteristics of the symbols F1 and F2 when the above-described correction is not performed.

本発明に係る内燃機関の吸気制御装置のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Configuration explanatory drawing which shows the system configuration | structure of the intake control device of the internal combustion engine which concerns on this invention. 吸気制御の全体を示すフローチャート。The flowchart which shows the whole intake control. 第2可変動弁機構目標開度算出処理のフローチャート。The flowchart of a 2nd variable valve mechanism target opening degree calculation process. 第1可変動弁機構目標開度算出処理のフローチャート。The flowchart of a 1st variable valve mechanism target opening degree calculation process. 第2可変動弁機構目標開度算出処理を示す機能ブロック図。The functional block diagram which shows a 2nd variable valve mechanism target opening calculation process. 第1可変動弁機構目標開度算出処理を示す機能ブロック図。The functional block diagram which shows a 1st variable valve mechanism target opening degree calculation process. 過渡時目標負荷算出処理のフローチャート。The flowchart of the target load calculation process at the time of a transition. 吸気制御の全体を示す機能ブロック図。The functional block diagram which shows the whole intake control. 実施例による加速時の補正を示すタイムチャート。The time chart which shows the correction | amendment at the time of the acceleration by an Example.

符号の説明Explanation of symbols

2…負圧制御弁
5…第1可変動弁機構
6…第2可変動弁機構
10…コントロールユニット
11…アクセル開度センサ
2 ... Negative pressure control valve 5 ... First variable valve mechanism 6 ... Second variable valve mechanism 10 ... Control unit 11 ... Accelerator opening sensor

Claims (8)

内燃機関の吸気弁の作動角を連続的に変更可能な第1可変動弁機構と、
上記作動角の中心角を連続的に変更可能な第2可変動弁機構と、
上記内燃機関の吸気通路に設けられて吸入負圧を制御する負圧制御弁と、
を備えた内燃機関の吸気制御装置において、
運転状態に応じて上記第1可変動弁機構と上記第2可変動弁機構とを制御する吸気弁制御手段と、
アクセル開度と内燃機関の回転数に応じて目標負荷を算出する目標負荷算出手段と、
内燃機関の回転数と上記目標負荷に応じて負圧制御弁目標開度を設定する負圧制御弁目標開度設定手段と、
現在の運転状態が所定の条件を満たす加速であるかを判定する加速判定手段と、
上記加速判定手段により所定の加速と判定したときに、上記負圧制御弁目標開度を、現在の運転状態と回転数および負荷が等しい定常時の負圧制御弁目標開度よりも大きく補正する負圧制御弁目標開度補正手段と、
を有することを特徴とする内燃機関の吸気制御装置。
A first variable valve mechanism capable of continuously changing the operating angle of the intake valve of the internal combustion engine;
A second variable valve mechanism capable of continuously changing the central angle of the operating angle;
A negative pressure control valve provided in the intake passage of the internal combustion engine for controlling the intake negative pressure;
An intake control device for an internal combustion engine comprising:
An intake valve control means for controlling the first variable valve mechanism and the second variable valve mechanism according to an operating state;
A target load calculating means for calculating a target load according to the accelerator opening and the rotational speed of the internal combustion engine;
Negative pressure control valve target opening setting means for setting a negative pressure control valve target opening according to the rotational speed of the internal combustion engine and the target load;
Acceleration determination means for determining whether the current driving state is acceleration satisfying a predetermined condition;
When the acceleration determining means determines that the acceleration is a predetermined acceleration, the negative pressure control valve target opening is corrected to be larger than the steady-state negative pressure control valve target opening at the time when the rotation speed and load are equal to the current operating state. Negative pressure control valve target opening correction means,
An intake control device for an internal combustion engine, comprising:
上記加速判定手段は、内燃機関の回転数が所定値以上であることを上記の条件に含むことを特徴とする請求項1に記載の内燃機関の吸気制御装置。   2. The intake control apparatus for an internal combustion engine according to claim 1, wherein the acceleration determination means includes that the rotational speed of the internal combustion engine is equal to or greater than a predetermined value. 上記加速判定手段は、上記第2可変動弁機構の目標作動角が所定値以下であることを上記の条件に含むことを特徴とする請求項1または2に記載の内燃機関の吸気制御装置。   The intake control apparatus for an internal combustion engine according to claim 1 or 2, wherein the acceleration determination means includes, in the above condition, that a target operating angle of the second variable valve mechanism is a predetermined value or less. 上記加速判定手段は、上記第2可変動弁機構の目標作動角と実作動角との差が所定値以上であることを上記の条件に含むことを特徴とする請求項1〜3のいずれかに記載の内燃機関の吸気制御装置。   The acceleration determination means includes the condition that a difference between a target operating angle and an actual operating angle of the second variable valve mechanism is a predetermined value or more. An intake control device for an internal combustion engine according to claim 1. 上記負圧制御弁目標開度補正手段は、内燃機関の回転数に応じて補正量を変えることを特徴とする請求項1〜4のいずれかに記載の内燃機関の吸気制御装置。   The intake control device for an internal combustion engine according to any one of claims 1 to 4, wherein the negative pressure control valve target opening degree correcting means changes a correction amount in accordance with the rotational speed of the internal combustion engine. 上記負圧制御弁目標開度補正手段は、上記第2可変動弁機構の目標作動角もしくは実作動角に応じて補正量を変えることを特徴とする請求項1〜5のいずれかに記載の内燃機関の吸気制御装置。   6. The negative pressure control valve target opening degree correction means changes a correction amount according to a target operating angle or an actual operating angle of the second variable valve mechanism. An intake control device for an internal combustion engine. 上記負圧制御弁目標開度補正手段は、上記第2可変動弁機構の目標作動角と実作動角との差に応じて補正量を変えることを特徴とする請求項1〜6のいずれかに記載の内燃機関の吸気制御装置。   7. The negative pressure control valve target opening correction means changes a correction amount according to a difference between a target operating angle and an actual operating angle of the second variable valve mechanism. An intake control device for an internal combustion engine according to claim 1. 上記負圧制御弁目標開度補正手段は、上記負圧制御弁目標開度設定手段の入力となる上記目標負荷を補正することにより負圧制御弁目標開度の補正を実現することを特徴とする請求項1〜7のいずれかに記載の内燃機関の吸気制御装置。
The negative pressure control valve target opening correction means realizes correction of the negative pressure control valve target opening by correcting the target load that is input to the negative pressure control valve target opening setting means. An intake control device for an internal combustion engine according to any one of claims 1 to 7.
JP2004132312A 2004-04-28 2004-04-28 Intake control device for internal combustion engine Expired - Fee Related JP4412047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132312A JP4412047B2 (en) 2004-04-28 2004-04-28 Intake control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132312A JP4412047B2 (en) 2004-04-28 2004-04-28 Intake control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005315130A true JP2005315130A (en) 2005-11-10
JP4412047B2 JP4412047B2 (en) 2010-02-10

Family

ID=35442826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132312A Expired - Fee Related JP4412047B2 (en) 2004-04-28 2004-04-28 Intake control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4412047B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281327A (en) * 2008-05-23 2009-12-03 Honda Motor Co Ltd Capacitor-discharge ignition device of general-purpose engine
JP2014092146A (en) * 2012-11-07 2014-05-19 Nissan Motor Co Ltd Control device for internal combustion engine
CN113357024A (en) * 2021-06-29 2021-09-07 重庆长安汽车股份有限公司 Control method and device for variable valve timing of engine and automobile
CN114776450A (en) * 2022-03-09 2022-07-22 重庆长安汽车股份有限公司 Variable valve timing control method and system for engine, engine and automobile

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281327A (en) * 2008-05-23 2009-12-03 Honda Motor Co Ltd Capacitor-discharge ignition device of general-purpose engine
JP2014092146A (en) * 2012-11-07 2014-05-19 Nissan Motor Co Ltd Control device for internal combustion engine
CN113357024A (en) * 2021-06-29 2021-09-07 重庆长安汽车股份有限公司 Control method and device for variable valve timing of engine and automobile
CN113357024B (en) * 2021-06-29 2022-09-06 重庆长安汽车股份有限公司 Control method and device for variable valve timing of engine and automobile
CN114776450A (en) * 2022-03-09 2022-07-22 重庆长安汽车股份有限公司 Variable valve timing control method and system for engine, engine and automobile
CN114776450B (en) * 2022-03-09 2023-08-08 重庆长安汽车股份有限公司 Variable valve timing control method and system of engine, engine and automobile

Also Published As

Publication number Publication date
JP4412047B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP4449429B2 (en) Intake valve drive control device for internal combustion engine
JP4412047B2 (en) Intake control device for internal combustion engine
JP4415790B2 (en) Intake control device for internal combustion engine
JP4127075B2 (en) Intake valve drive control device for internal combustion engine
JP4379098B2 (en) Control device for internal combustion engine
JP5999180B2 (en) Vehicle integrated control device
JP4556816B2 (en) Control device for internal combustion engine
JP4300359B2 (en) Control device for internal combustion engine
JP4273950B2 (en) Intake control device for internal combustion engine
JP2006118373A (en) Control device for internal combustion engine
JP4506449B2 (en) Intake control device for internal combustion engine
JP4661530B2 (en) Intake control device for internal combustion engine
JP4534705B2 (en) Intake control device for internal combustion engine
JP2006144724A (en) Air intake control device for internal combustion engine
JP2014163317A (en) Control device of vehicle drive system
JP4134863B2 (en) Intake control device for internal combustion engine
JP2001073823A (en) Driving force control device for vehicle equipped with diesel engine
JP2005090331A (en) Intake control device of internal combustion engine
JP4760793B2 (en) Control device for internal combustion engine
JP2006169975A (en) Control device of internal combustion engine
JP4254261B2 (en) Intake valve drive control device for internal combustion engine
JP2005061283A (en) Control device of internal combustion engine
JP2006144723A (en) Air intake control device for internal combustion engine
JP4379300B2 (en) Control device for internal combustion engine
JP2004232467A (en) Inlet valve drive control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees