JP2006144723A - Air intake control device for internal combustion engine - Google Patents

Air intake control device for internal combustion engine Download PDF

Info

Publication number
JP2006144723A
JP2006144723A JP2004338287A JP2004338287A JP2006144723A JP 2006144723 A JP2006144723 A JP 2006144723A JP 2004338287 A JP2004338287 A JP 2004338287A JP 2004338287 A JP2004338287 A JP 2004338287A JP 2006144723 A JP2006144723 A JP 2006144723A
Authority
JP
Japan
Prior art keywords
target
angle
variable valve
operating angle
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004338287A
Other languages
Japanese (ja)
Other versions
JP4466342B2 (en
Inventor
Hiroshi Oba
大羽  拓
Hiroshi Iwano
岩野  浩
Yutaro Minami
南  雄太郎
Hisanori Onoda
尚徳 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004338287A priority Critical patent/JP4466342B2/en
Publication of JP2006144723A publication Critical patent/JP2006144723A/en
Application granted granted Critical
Publication of JP4466342B2 publication Critical patent/JP4466342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To compatibly materialize characteristics attaching importance on fuel economy and characteristics attaching importance to torque response as setting of valve lift characteristics and to prevent torque variation at a time of change over of the characteristics. <P>SOLUTION: This device is provided with a first variable valve system capable of continuously varying operation angle VEL of an intake valve and a second variable valve system capable of continuously varying center angle VTC, and controls intake air quantity by lift characteristics of the intake valve materialized by that. The device includes a mode attaching importance to fuel economy and a mode attaching response as setting of target operating angle and target center angle in relation to target torque, and changes the mode over according to an operation condition. The target operating angle gradually changes with change speed limited during change over and the target center angle is calculated based on actual operating angle, demand torque and engine speed. Consequently, torque variation accompanying change over is reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、内燃機関のシリンダ内に吸入される吸入空気量を制御する吸気制御装置に関し、特に、吸気弁のバルブリフト特性の可変制御によって吸入空気量の制御を達成するようにした内燃機関の吸気制御装置に関する。   The present invention relates to an intake air control device that controls an intake air amount sucked into a cylinder of an internal combustion engine, and more particularly to an internal combustion engine that achieves control of an intake air amount by variable control of valve lift characteristics of an intake valve. The present invention relates to an intake control device.

ガソリン機関においては、一般に吸気通路中に設けたスロットル弁の開度制御によって吸気量を制御しているが、良く知られているように、この種の方式では、特にスロットル弁開度の小さな中低負荷時におけるポンピングロスが大きい、という問題がある。これに対し、吸気弁の開閉時期やリフト量を変化させることで、スロットル弁に依存せずに吸気量を制御しようとする試みが以前からなされており、この技術を利用して、ディーゼル機関と同様に吸気系にスロットル弁を具備しないいわゆるスロットルレスの構成を実現することが提案されている。   In a gasoline engine, the intake air amount is generally controlled by controlling the opening of a throttle valve provided in the intake passage. As is well known, this type of system has a particularly small throttle valve opening. There is a problem that the pumping loss is large at low load. On the other hand, attempts have been made to control the intake air amount without depending on the throttle valve by changing the opening / closing timing of the intake valve and the lift amount. Similarly, it has been proposed to realize a so-called throttle-less configuration in which the intake system is not equipped with a throttle valve.

特許文献1には、本出願人が先に提案した吸気弁のリフト量および作動角さらにはそのリフトの中心角を連続的に可変制御し得る可変動弁機構が開示されている。この種の可変動弁機構によれば、上述のように、スロットル弁の開度制御に依存せずにシリンダ内に流入する空気量を可変制御することが可能であり、特に負荷の小さな領域において、いわゆるスロットルレス運転ないしはスロットル弁の開度を十分に大きく保った運転を実現でき、ポンピングロスの大幅な低減が図れる。
特開2001−263105号公報
Patent Document 1 discloses a variable valve mechanism that can be continuously variably controlled by a lift amount and an operating angle of an intake valve and a central angle of the lift previously proposed by the present applicant. According to this type of variable valve mechanism, as described above, it is possible to variably control the amount of air flowing into the cylinder without depending on the opening degree control of the throttle valve, particularly in a region where the load is small. In other words, so-called throttleless operation or operation with a sufficiently large opening of the throttle valve can be realized, and the pumping loss can be greatly reduced.
JP 2001-263105 A

ところで、上記のように、2つの可変動弁機構を備え、機関運転状態に応じて吸気弁の作動角およびその中心角を互いに独立して可変制御する場合、要求トルクを実現し得る作動角と中心角との組み合わせは無数にあるが、通常は、その中で、燃費が最良となるように、各目標トルクに対し、目標作動角および目標中心角が設定されている。一般に、バルブリフトの中心角を上死点寄りの進角側に設定することで、内部排気還流が増大してポンプロスが低減する。つまり、燃費を向上させるためには、中心角をなるべく進角側に設定することが望ましい。   By the way, as described above, when two variable valve mechanisms are provided and the operating angle of the intake valve and the central angle thereof are variably controlled independently of each other according to the engine operating state, the operating angle capable of realizing the required torque There are an infinite number of combinations with the central angle, but usually the target operating angle and the target central angle are set for each target torque so that the fuel efficiency is the best. Generally, by setting the central angle of the valve lift to the advance side closer to the top dead center, the internal exhaust gas recirculation is increased and the pump loss is reduced. That is, in order to improve fuel efficiency, it is desirable to set the center angle as far as possible.

しかしながら、各目標トルクに対し、中心角がなるべく進角側となるように、目標作動角および目標中心角を設定したとすると、例えば、低負荷域から高負荷域まで加速したときに、概略の傾向として、中心角を進角側に保ちつつ作動角が優先的に増加し、作動角がある大きさとなった後に、中心角が遅角するような挙動を示すことになる。   However, if the target operating angle and the target central angle are set so that the central angle is as advanced as possible for each target torque, for example, when accelerating from a low load range to a high load range, As a tendency, the operation angle increases preferentially while keeping the central angle on the advance side, and after the operation angle becomes a certain size, the behavior is such that the center angle is retarded.

従って、極端に言えば、2つの可変動弁機構が1つずつ順番に動くような形となり、しかも、実際には、運転状態が急に変化する過渡時に、2つの可変動弁機構がそれぞれ目標値に対しある程度の遅れをもって作動することから、トルク応答性が低くなる問題がある。   Therefore, in an extreme case, the two variable valve mechanisms move in order one by one, and in reality, the two variable valve mechanisms are each set at the time of a transient when the operating state changes suddenly. There is a problem that the torque response becomes low because it operates with a certain delay with respect to the value.

この発明に係る内燃機関の吸気制御装置は、内燃機関の吸気弁の作動角を連続的に変更可能な第1可変動弁機構と、上記作動角の中心角を連続的に変更可能な第2可変動弁機構と、目標トルクに応じて上記第1可変動弁機構および上記第2可変動弁機構を制御する可変動弁制御手段と、を備えており、これら2つの可変動弁機構により実現される吸気弁のリフト特性によって吸気量の制御が行われる。   An intake control apparatus for an internal combustion engine according to the present invention includes a first variable valve mechanism that can continuously change the operating angle of the intake valve of the internal combustion engine, and a second variable valve that can continuously change the central angle of the operating angle. A variable valve mechanism, and variable valve control means for controlling the first variable valve mechanism and the second variable valve mechanism in accordance with a target torque, which are realized by these two variable valve mechanisms. The intake air amount is controlled by the lift characteristics of the intake valve.

そして、本発明では、上記可変動弁制御手段は、目標トルクに対し、少なくとも2種類の異なる特性の目標作動角および目標中心角の設定を備えており、切換手段により選択された特性の設定に沿って第1,第2可変動弁機構を制御するようになっている。例えば、燃費を重視した特性の目標作動角および目標中心角の設定と、トルク応答性を重視した特性の目標作動角および目標中心角の設定と、の2つの設定を備えており、例えば、運転者のアクセル操作の変化から、適した運転モードが判別され、2つの設定が切り換えられる。   In the present invention, the variable valve control means has at least two types of setting of the target operating angle and the target center angle with respect to the target torque, and sets the characteristic selected by the switching means. Along with this, the first and second variable valve mechanisms are controlled. For example, it has two settings: setting of the target operating angle and target center angle with characteristics focusing on fuel efficiency, and setting of the target operating angle and target center angle with characteristics focusing on torque responsiveness. A suitable operation mode is discriminated from the change in the accelerator operation of the person, and two settings are switched.

さらに、本発明では、この切換手段による特性の切換時に、第1可変動弁機構の実作動角と目標トルクとから第2可変動弁機構の目標値が与えられる。なお、特性の切換時には、第1可変動弁機構に与えられる目標作動角の変化速度を制限することが望ましい。   Furthermore, in the present invention, when the characteristic is switched by the switching means, the target value of the second variable valve mechanism is given from the actual operating angle and the target torque of the first variable valve mechanism. It should be noted that it is desirable to limit the changing speed of the target operating angle given to the first variable valve mechanism when switching the characteristics.

例えば、燃費を重視した特性では、トルク応答性を重視した特性よりも、中心角が進角側に設定される。従って、燃費重視の設定とトルク応答性重視の設定との間では、同じ目標トルクに対し、各々の目標作動角および目標中心角が比較的大きく異なる場合がある。ここで、仮に、特性の切換時に、各々の目標値がステップ的に変化したとすると、各可変動弁機構は個々に遅れを伴って動作するので、実際に得られるトルクは必ずしも一定値とならず、大きく変化することがあり得る。本発明では、特性の切換時には、第1可変動弁機構の実作動角と目標トルクとから第2可変動弁機構の目標値を与えることで、この切換時のトルク変化がより小さくなる。   For example, in the characteristic that emphasizes fuel efficiency, the center angle is set to the advance side than the characteristic that emphasizes torque response. Therefore, the target operating angle and the target center angle may be relatively different for the same target torque between the setting for emphasizing fuel efficiency and the setting for emphasizing torque response. Here, if each target value changes stepwise at the time of switching characteristics, each variable valve mechanism operates individually with a delay, so the actually obtained torque is not necessarily a constant value. However, it can change greatly. In the present invention, at the time of switching characteristics, the target value of the second variable valve mechanism is given from the actual operating angle of the first variable valve mechanism and the target torque, so that the torque change at the time of switching becomes smaller.

本発明の一つの態様では、目標トルクがある範囲で増加する加速時に、燃費を重視した特性では、中心角を進角側に保ちつつ作動角が優先的に増加し、その後、中心角が遅角するように、それぞれの目標値が設定されている。   In one aspect of the present invention, when the target torque is increased within a certain range, the operating angle is preferentially increased while maintaining the center angle at the advanced angle side, and the center angle is then delayed in the characteristics that emphasize fuel efficiency. Each target value is set so as to make an angle.

また、本発明の一つの態様では、目標トルクがある範囲で増加する加速時に、トルク応答性を重視した特性では、中心角の遅角と作動角の増加とが、各可変動弁機構の応答速度に沿って同時に生じるように、それぞれの目標値が設定されている。   Further, in one aspect of the present invention, at the time of acceleration in which the target torque increases within a certain range, in the characteristic that emphasizes torque response, the delay of the central angle and the increase of the operating angle are the responses of each variable valve mechanism. Each target value is set so as to occur simultaneously along the speed.

この発明によれば、吸気弁の作動角および中心角の制御を、燃費を重視した特性とトルク応答性を重視した特性とのように複数種の特性に選択的に切り換えて行うことができ、状況に応じて、適した特性とすることができる。そして、この特性の切換に起因するトルク変化を、より小さく抑制することができる。   According to the present invention, the control of the operating angle and the central angle of the intake valve can be performed by selectively switching to a plurality of characteristics such as a characteristic that emphasizes fuel consumption and a characteristic that emphasizes torque response. Depending on the situation, suitable characteristics can be obtained. And the torque change resulting from the switching of this characteristic can be suppressed smaller.

図1は、この発明に係る内燃機関の吸気制御装置のシステム構成を示す構成説明図であって、内燃機関1は、吸気弁3と排気弁4とを有し、かつ吸気弁3の動弁機構として、吸気弁3のリフト・作動角を連続的に拡大・縮小させることが可能な第1可変動弁機構(VEL)5および作動角の中心角を連続的に遅進させることが可能な第2可変動弁機構(VTC)6を備えている。また、吸気通路7には、モータ等のアクチュエータにより開度が制御される負圧制御弁2が設けられている。ここで、上記負圧制御弁2は、吸気通路7内に、ブローバイガスの処理などのために必要な僅かな負圧(例えば−50mmHg)を発生させるために用いられており、吸入吸気量の調整は、基本的に、上記第1、第2可変動弁機構5、6により吸気弁3のリフト特性を変更することで行われる。   FIG. 1 is a configuration explanatory view showing the system configuration of an intake control device for an internal combustion engine according to the present invention. The internal combustion engine 1 has an intake valve 3 and an exhaust valve 4, and the valve of the intake valve 3 is operated. As a mechanism, the first variable valve mechanism (VEL) 5 capable of continuously expanding / reducing the lift / operation angle of the intake valve 3 and the center angle of the operation angle can be continuously delayed. A second variable valve mechanism (VTC) 6 is provided. The intake passage 7 is provided with a negative pressure control valve 2 whose opening degree is controlled by an actuator such as a motor. Here, the negative pressure control valve 2 is used to generate a slight negative pressure (for example, −50 mmHg) necessary for blowby gas processing or the like in the intake passage 7. The adjustment is basically performed by changing the lift characteristics of the intake valve 3 by the first and second variable valve mechanisms 5 and 6.

より詳しくは、低負荷側の領域(第1の領域)では、吸入負圧が一定(例えば−50mmHg)となるように負圧制御弁2の開度(目標開度tTVO)が制御される。そして、この一定の負圧を発生させながらリフト特性の変更で実現できる最大負荷を要求負荷が超える高負荷側の領域(第2の領域)では、その限界となる点のリフト特性に固定され、負荷、例えばアクセル開度APOの増加に伴い、負圧制御弁2の開度がさらに増加する。つまり、ある負荷までは比較的弱い吸入負圧を維持しつつ吸気弁3のリフト特性を変更することで吸入空気量の調整が行われ、全開領域に近い高負荷側の領域では、吸入負圧を減少させることによって、吸入空気量の調整が行われる。   More specifically, in the low load side region (first region), the opening degree (target opening degree tTVO) of the negative pressure control valve 2 is controlled so that the suction negative pressure is constant (for example, −50 mmHg). And in the high load side region (second region) where the required load exceeds the maximum load that can be realized by changing the lift characteristic while generating this constant negative pressure, it is fixed to the lift characteristic at the point that becomes the limit, As the load, for example, the accelerator opening APO increases, the opening of the negative pressure control valve 2 further increases. That is, the intake air amount is adjusted by changing the lift characteristic of the intake valve 3 while maintaining a relatively weak intake negative pressure up to a certain load, and in the high load side region close to the fully open region, the intake negative pressure is adjusted. The amount of intake air is adjusted by reducing.

これらの第1、第2可変動弁機構5、6および負圧制御弁2は、コントロールユニット10によって制御されている。   The first and second variable valve mechanisms 5 and 6 and the negative pressure control valve 2 are controlled by the control unit 10.

また、燃料噴射弁8が吸気通路7に配置されており、上記のように吸気弁3もしくは負圧制御弁2により調整された吸入空気量に応じた量の燃料が、この燃料噴射弁8から噴射される。従って、内燃機関1の出力は、第1の領域では、第1、第2可変動弁機構5、6により吸入空気量を調整することによって制御され、第2の領域では、負圧制御弁2により吸入空気量を調整することによって制御される。   A fuel injection valve 8 is disposed in the intake passage 7, and an amount of fuel corresponding to the intake air amount adjusted by the intake valve 3 or the negative pressure control valve 2 as described above is supplied from the fuel injection valve 8. Be injected. Accordingly, the output of the internal combustion engine 1 is controlled by adjusting the intake air amount by the first and second variable valve mechanisms 5 and 6 in the first region, and the negative pressure control valve 2 in the second region. Is controlled by adjusting the intake air amount.

上記のコントロールユニット10は、運転者により操作されるアクセルペダルに設けられたアクセル角度センサ11からのアクセル開度信号APOと、エンジン回転数センサ12からのエンジン回転数信号Neと、吸入空気量センサ13からの吸入空気量信号と、を受け取り、これらの信号に基づいて、燃料噴射量、点火時期、負圧制御弁目標開度(開度目標値)、第1可変動弁機構目標角度(目標作動角)、第2可変動弁機構目標角度(目標中心角)をそれぞれ演算する。そして、要求の燃料噴射量および点火時期を実現するように燃料噴射弁8および点火プラグ9を制御するとともに、負圧制御弁目標開度、第1可変動弁機構目標角度、第2可変動弁機構目標角度を実現するための制御信号を、負圧制御弁2のアクチュエータ、第1可変動弁機構5のアクチュエータおよび第2可変動弁機構6のアクチュエータへ、それぞれ出力する。なお、上記第1可変動弁機構5および第2可変動弁機構6は、その機械的な構成は公知であり、例えば上述した特許文献1に記載の装置と同様の構成を有している。従って、その詳細な説明は省略する。   The control unit 10 includes an accelerator opening signal APO from an accelerator angle sensor 11 provided on an accelerator pedal operated by a driver, an engine speed signal Ne from an engine speed sensor 12, and an intake air amount sensor. 13 is received, and based on these signals, the fuel injection amount, ignition timing, negative pressure control valve target opening (opening target value), first variable valve mechanism target angle (target) Operating angle) and second variable valve mechanism target angle (target center angle) are calculated. The fuel injection valve 8 and the spark plug 9 are controlled so as to realize the required fuel injection amount and ignition timing, and the negative pressure control valve target opening, the first variable valve mechanism target angle, and the second variable valve are controlled. Control signals for realizing the mechanism target angle are output to the actuator of the negative pressure control valve 2, the actuator of the first variable valve mechanism 5, and the actuator of the second variable valve mechanism 6, respectively. The first variable valve mechanism 5 and the second variable valve mechanism 6 have known mechanical configurations, and have, for example, the same configuration as the device described in Patent Document 1 described above. Therefore, the detailed description is abbreviate | omitted.

図2は、上記実施例の構成において、第1可変動弁機構5の目標作動角tVEL、第2可変動弁機構6の目標中心角tVTCおよび負圧制御弁目標開度tTVOを算出する処理の概略的なフローチャートである。まず、アクセル開度APOとエンジン回転数Neを読み込み(ステップ11)、これらから定まる要求トルクに応じて、負圧制御弁目標開度tTVO、目標作動角tVEL、目標中心角tVTC、を、ステップ12〜14でそれぞれ算出する。   FIG. 2 shows a process of calculating the target operating angle tVEL of the first variable valve mechanism 5, the target center angle tVTC of the second variable valve mechanism 6, and the negative pressure control valve target opening tTVO in the configuration of the above embodiment. It is a schematic flowchart. First, the accelerator opening APO and the engine speed Ne are read (step 11), and the negative pressure control valve target opening tTVO, the target operating angle tVEL, and the target center angle tVTC are determined in accordance with the required torque determined from them. It calculates with ~ 14, respectively.

ここで、本実施例では、吸気弁リフト特性の制御モードとして、燃費を重視した特性の燃費重視モードと、トルク応答性を重視した特性の応答性重視モードと、を備えている。   In this embodiment, the control mode of the intake valve lift characteristic includes a fuel efficiency priority mode with a focus on fuel efficiency and a response sensitivity priority mode with a focus on torque response.

図3は、燃費重視モードの特性を概略的に示したものであり、低〜中負荷領域においては、燃費向上のために、中心角を上死点寄り(VTC設定値:大)とし、内部排気還流を促進するとともに、作動角はトルク要求に応じて徐々に大作動角(VEL設定値:大)側にする。上述した第1の領域内では、吸気負圧(Boost)を所定値に保つように、負圧制御弁開度TVOは、通常エンジン(可変動弁機構ではなくスロットル弁開度で吸入空気量を制御するもの:図中にStd-Engとして示す)の特性に比較して、開き気味の特性となる。また中〜高負荷領域においては、トルク確保のために、中心角を下死点寄り(VTC設定値:小)とし、内部排気還流を減少させるとともに、作動角は大作動角(VEL設定値:大)側で一定とする。上述した第2の領域つまりバルブリフト特性の操作によって空気量が増加しない高負荷領域に達したら、バルブリフト特性はその状態で固定され、吸気負圧(Boost)を減少させてトルクを発生させるように、負圧制御弁開度TVOが通常エンジンと同様に開いていくことになる。   FIG. 3 schematically shows the characteristics of the fuel efficiency mode. In the low to medium load region, the center angle is set close to top dead center (VTC setting value: large) to improve fuel efficiency, and the internal While promoting exhaust gas recirculation, the operating angle is gradually set to the large operating angle (VEL set value: large) side according to the torque demand. In the first region described above, the negative pressure control valve opening TVO is set to a normal engine (not a variable valve mechanism, but a throttle valve opening to control the intake air amount so as to keep the intake negative pressure (Boost) at a predetermined value. Compared to the characteristics of the item to be controlled (shown as Std-Eng in the figure), the characteristics are slightly open. In the middle to high load range, in order to ensure torque, the center angle is set to be close to the bottom dead center (VTC set value: small), the internal exhaust gas recirculation is reduced, and the operating angle is set to a large operating angle (VEL set value: Constant on the large side. When reaching the second region, that is, the high load region where the air amount does not increase by the operation of the valve lift characteristic, the valve lift characteristic is fixed in that state, and the negative intake pressure (Boost) is decreased to generate torque. In addition, the negative pressure control valve opening TVO opens in the same manner as the normal engine.

これにより、アクセル開度APOの増加に対して、バルブリフト特性は、概略、図4に矢印で示すように変化する。つまり、初期に作動角(リフト・作動角)が増加し、作動角が十分に大きくなった後に、そのまま徐々に遅角する。   As a result, the valve lift characteristic changes roughly as shown by the arrow in FIG. 4 as the accelerator opening APO increases. That is, the operating angle (lift / operating angle) increases in the initial stage, and after the operating angle has become sufficiently large, the angle is gradually retarded.

図5は、応答性重視モードの特性の一例を概略的に示したものであり、この場合、低負荷側からアクセル開度APOが増加すると、中心角を遅角側つまり下死点寄り(VTC設定値:小)へ徐々に変化させると同時に、作動角を徐々に大作動角(VEL設定値:大)とする。   FIG. 5 schematically shows an example of characteristics of the responsiveness emphasis mode. In this case, when the accelerator opening APO is increased from the low load side, the center angle is set to the retarded side, that is, near the bottom dead center (VTC). At the same time, the operating angle is gradually changed to a large operating angle (VEL setting value: large).

これにより、アクセル開度APOの増加に対して、バルブリフト特性は、概略、図6に矢印で示すように変化する。つまり、中心角が遅角しつつ作動角(リフト・作動角)が増加する。   Thereby, the valve lift characteristic changes roughly as shown by the arrow in FIG. 6 with respect to the increase in the accelerator opening APO. That is, the operating angle (lift / operating angle) increases while the central angle is retarded.

図7,図8は、上記の各モードにおける過渡時(加速時)における吸気弁の最大リフト点(換言すれば中心角におけるリフト)の推移(変化の軌跡)を、発生トルクとともに示した説明図であって、図の横軸が中心角VTC、縦軸が作動角(換言すればリフト)VELを示し、両者の組み合わせとして最大リフト点が定まる。そして、この最大リフト点は、体積効率ひいてはトルクに相関する。なお、発生トルクは等高線状に示されているが、図示した範囲では、図の右上側が高負荷側つまりトルクが大となる。   7 and 8 are explanatory diagrams showing the transition (change trajectory) of the maximum lift point of the intake valve (in other words, the lift at the central angle) during transition (acceleration) in each mode, together with the generated torque. In the drawing, the horizontal axis indicates the center angle VTC, the vertical axis indicates the operating angle (in other words, lift) VEL, and the maximum lift point is determined as a combination of both. This maximum lift point correlates with volumetric efficiency and thus torque. The generated torque is shown as contour lines, but in the illustrated range, the upper right side of the figure is the high load side, that is, the torque is large.

図3,4で説明した燃費重視モードの設定では、加速走行時に、最大リフト点は、図7,図8の符号M1で示すL字形の折れ線のように推移する。つまり、最大リフト点をなるべく進角側に保ちつつ先ずリフト・作動角が主に増加し、次いで、遅角側へ徐々に移動する。これにより、内部排気還流が大となり、ポンピングロス低減による燃費向上が図れる。これに対し、図5,6で説明した応答性重視モードの設定では、加速走行時に、最大リフト点は、図7,8の符号M2で示す直線のように変化する。つまり、この場合、第1可変動弁機構5と第2可変動弁機構6とが同時に駆動され、作動角と中心角とが同時に変化するが、目標中心角の遅角側への変化と目標作動角の増加とが、各可変動弁機構5,6の応答速度を考慮して設定されている。図7の特性M2は、第1可変動弁機構5の応答速度が比較的速く、かつ第2可変動弁機構6の応答速度が比較的遅い場合に好適な例であり、図示するように第2可変動弁機構6の目標値はあまり変化しないので、高いトルク応答性が得られる。図8の特性M2は、逆に、第1可変動弁機構5の応答速度が比較的遅く、かつ第2可変動弁機構6の応答速度が比較的速い場合に好適な例であり、図示するように第2可変動弁機構6の目標値は図7よりも大きく変化するが、実際の中心角の変化が実際の作動角の変化に対応したものとなるので、高いトルク応答性が得られる。   In the setting of the fuel efficiency emphasis mode described with reference to FIGS. 3 and 4, the maximum lift point changes like an L-shaped broken line indicated by reference numeral M1 in FIGS. That is, while the maximum lift point is kept as close to the advance side as possible, the lift / operation angle first increases mainly, and then gradually moves toward the retard side. As a result, the internal exhaust gas recirculation becomes large, and the fuel efficiency can be improved by reducing the pumping loss. On the other hand, in the response-oriented mode described with reference to FIGS. 5 and 6, the maximum lift point changes like a straight line indicated by reference numeral M2 in FIGS. That is, in this case, the first variable valve mechanism 5 and the second variable valve mechanism 6 are driven at the same time, and the operating angle and the central angle change at the same time. The increase in the operating angle is set in consideration of the response speeds of the variable valve mechanisms 5 and 6. The characteristic M2 in FIG. 7 is an example suitable when the response speed of the first variable valve mechanism 5 is relatively fast and the response speed of the second variable valve mechanism 6 is relatively slow. Since the target value of the two variable valve mechanism 6 does not change much, high torque responsiveness can be obtained. On the contrary, the characteristic M2 in FIG. 8 is a suitable example when the response speed of the first variable valve mechanism 5 is relatively slow and the response speed of the second variable valve mechanism 6 is relatively fast. As described above, the target value of the second variable valve mechanism 6 changes more greatly than in FIG. 7, but since the actual change in the center angle corresponds to the change in the actual operating angle, a high torque response is obtained. .

次に、図9は、上記コントロールユニット10による吸入空気量制御の内容を機能ブロック図として示したものであり、燃費重視モード目標値演算部B2では、上述したような燃費を重視した特性でもって、要求負荷とエンジン回転数Neとに基づいて、負圧制御弁2の目標値である負圧制御弁目標開度tTVOと、第1可変動弁機構5の目標値である目標作動角tVELと、第2可変動弁機構6の目標値である目標中心角tVTCと、を算出する。これは、具体的には、図10に示すように、それぞれ、要求負荷と回転速度Neとをパラメータとして対応する値を割り付けたマップからなる、目標開度算出部B11、目標作動角算出部B12、目標中心角算出部B13、から構成される。なお、負荷ないしはトルクを示すパラメータとしては、「吸入空気量を、その吸入空気量を得たときの機関回転速度における最大吸入空気量で除した値」として定義される「体積流量比QH0」を用いることができ、あるいは、これに代えて、アクセル開度APOや吸入空気量など、負荷ないしはトルクを示す公知のパラメータを用いることができる。図11は、目標開度算出部B11のTVOマップの一例を示し、図12は、目標作動角算出部B12の作動角マップの一例を示し、図13は、目標中心角算出部B13の中心角マップの一例を示す。   Next, FIG. 9 shows the contents of intake air amount control by the control unit 10 as a functional block diagram, and the fuel efficiency emphasis mode target value calculation unit B2 has the above-described characteristics emphasizing fuel efficiency. Based on the required load and the engine speed Ne, the negative pressure control valve target opening tTVO that is the target value of the negative pressure control valve 2 and the target operating angle tVEL that is the target value of the first variable valve mechanism 5 Then, a target center angle tVTC that is a target value of the second variable valve mechanism 6 is calculated. Specifically, as shown in FIG. 10, the target opening calculation unit B11 and the target operating angle calculation unit B12 are made up of maps in which corresponding values are assigned with the required load and the rotational speed Ne as parameters. The target center angle calculation unit B13. As a parameter indicating the load or torque, “volume flow rate ratio QH0” defined as “a value obtained by dividing the intake air amount by the maximum intake air amount at the engine rotation speed when the intake air amount is obtained” is used. Alternatively, publicly known parameters indicating the load or torque such as the accelerator opening APO and the intake air amount can be used instead. FIG. 11 shows an example of the TVO map of the target opening degree calculation unit B11, FIG. 12 shows an example of the operation angle map of the target operation angle calculation unit B12, and FIG. 13 shows the center angle of the target center angle calculation unit B13. An example of a map is shown.

また、応答性重視モード目標値演算部B3では、上述したようなトルク応答性を重視した特性でもって、要求負荷とエンジン回転数Neとに基づいて、負圧制御弁目標開度tTVOと、目標作動角tVELと、目標中心角tVTCと、を算出する。これは、図10で説明したものと同様の3つのマップからなる、目標開度算出部、目標作動角算出部、目標中心角算出部、から構成される。そして、目標値選択部B4において、運転状態判定部B1からのモード選択指令に基づき、燃費重視モード目標値演算部B2もしくは応答性重視モード目標値演算部B3のいずれかの目標値が選択され、かつ、負圧制御弁2および第1,第2可変動弁機構5,6のアクチュエータへそれぞれ出力される。上記運転状態判定部B1は、運転者によって操作されるアクセル開度APOの変化の態様(絶対値、変化速度、変化量、等)に基づき、燃費重視モードが適しているか応答性重視モードが適しているかの判定を行い、この判定に従って、モード選択指令を出力する。なお、上記の2つのモードが頻繁に切り換わることは運転性の上で好ましくないので、適宜なヒステリシスを付与することが望ましい。また、本発明は、このような自動的な運転モードの切換に限定されず、例えば運転者により切換操作されるモード選択スイッチを備えた構成とすることも可能である。   Further, the responsiveness-oriented mode target value calculation unit B3 has a characteristic that emphasizes torque responsiveness as described above, and based on the required load and the engine speed Ne, the negative pressure control valve target opening tTVO, the target An operating angle tVEL and a target center angle tVTC are calculated. This is composed of a target opening degree calculation unit, a target operating angle calculation unit, and a target center angle calculation unit, which are composed of three maps similar to those described in FIG. Then, in the target value selection unit B4, based on the mode selection command from the driving state determination unit B1, one of the target values of the fuel efficiency-oriented mode target value calculation unit B2 or the responsiveness-oriented mode target value calculation unit B3 is selected. And it outputs to the actuators of the negative pressure control valve 2 and the first and second variable valve mechanisms 5 and 6, respectively. The driving state determination unit B1 is suitable for the fuel efficiency mode or the responsiveness mode based on the mode of change of the accelerator opening APO operated by the driver (absolute value, speed of change, amount of change, etc.). A mode selection command is output according to this determination. Note that frequent switching between the above two modes is not preferable in terms of drivability, so it is desirable to provide appropriate hysteresis. Further, the present invention is not limited to such automatic switching of the operation mode, and may be configured to include a mode selection switch that is switched by the driver, for example.

応答性重視モード目標値演算部B3に含まれる3つのマップは、当然のことながら、トルク応答性を重視した特性に設定されている。図14は、目標開度算出部のTVOマップの一例を示し、図15は、目標作動角算出部の作動角マップの一例を示し、図16は、目標中心角算出部の中心角マップの一例を示す。これらは、図5,6で説明した応答性重視モードの設定に対応する。   As a matter of course, the three maps included in the responsiveness emphasis mode target value calculation unit B3 are set to characteristics emphasizing torque responsiveness. FIG. 14 shows an example of the TVO map of the target opening degree calculation unit, FIG. 15 shows an example of the operation angle map of the target operation angle calculation unit, and FIG. 16 shows an example of the center angle map of the target center angle calculation unit. Indicates. These correspond to the setting of the responsiveness importance mode described with reference to FIGS.

一方、図9の切換時VEL目標値演算部B5では、運転モード切換の過渡期間つまり切換中の期間における目標作動角tVELを算出する。これは、図17に示すように、運転状態判定部B1からのモード選択指令に基づいて燃費重視モードの目標作動角と応答性重視モードの目標作動角とのいずれかを選択する切換部B21と、この切換部B21を通して入力された目標作動角tVELの変化速度を制限する作動角変化率制限部B22と、からなる。上記作動角変化率制限部B22は、切換時の目標作動角tVELの変化を、第2可変動弁機構6の応答性を考慮した緩やかな変化となるように制限するものであって、この例では、変化率リミッタとしているが、これに代えて、応答速度を考慮した1次遅れ処理等を加えるようにしてもよい。このように変化速度を制限することにより、運転モードの切換時に、図18に例示するように、目標作動角tVELは、ステップ的には急変せず、徐々に変化することになる。   On the other hand, the VEL target value calculation unit B5 at the time of switching in FIG. 9 calculates the target operating angle tVEL in the transient period of operation mode, that is, the period during switching. As shown in FIG. 17, the switching unit B21 selects either the target operating angle in the fuel intensive mode or the target operating angle in the responsiveness mode based on the mode selection command from the driving state determination unit B1. And an operating angle change rate limiting unit B22 that limits the changing speed of the target operating angle tVEL input through the switching unit B21. The operating angle change rate limiting unit B22 limits the change of the target operating angle tVEL at the time of switching so as to be a gradual change taking into account the responsiveness of the second variable valve mechanism 6, and in this example In this case, the change rate limiter is used, but instead of this, a first-order lag process or the like considering the response speed may be added. By limiting the change speed in this way, the target operating angle tVEL does not change suddenly step by step, but gradually changes as illustrated in FIG. 18 when the operation mode is switched.

また、図9の切換時VTC目標値演算部B6は、上記の切換時VEL目標値演算部B5による目標作動角tVELに沿って徐々に変化する第1可変動弁機構5の実作動角rVELと、そのときの要求負荷と、エンジン回転数Neと、に基づいて、切換中の期間における目標中心角tVTCを算出する。すなわち、作動角VELと中心角VTCとエンジン回転数Neとによって発生トルクが定まるので、これら四者の関係を割り付けた多次元マップを参照して、実作動角rVELと要求負荷とエンジン回転数Neとに対応する目標中心角tVTCを求めることができる。実作動角rVELは、例えば、第1可変動弁機構5のアクチュエータの位置から求めることが可能である。図19は、図7,8と同様の説明図であって、あるエンジン回転数Neの下で要求負荷に対応する等トルク線と作動角(実作動角rVEL)とを定めると、図示するように、必要な中心角(目標中心角tVTC)が一義的に定まる。なお、マップからの検索による場合は、多次元マップとなるので、各々のパラメータを用いた演算によって求めるようにしてもよい。   Further, the switching time VTC target value calculation unit B6 in FIG. 9 includes the actual operating angle rVEL of the first variable valve mechanism 5 that gradually changes along the target operating angle tVEL by the switching time VEL target value calculation unit B5. Based on the required load at that time and the engine speed Ne, the target center angle tVTC during the switching period is calculated. That is, since the generated torque is determined by the operating angle VEL, the central angle VTC, and the engine speed Ne, the actual operating angle rVEL, the required load, and the engine speed Ne are referenced with reference to a multidimensional map in which these four relationships are assigned. The target center angle tVTC corresponding to can be obtained. The actual operating angle rVEL can be obtained from the position of the actuator of the first variable valve mechanism 5, for example. FIG. 19 is an explanatory view similar to FIGS. 7 and 8 and shows an isotorque line and an operating angle (actual operating angle rVEL) corresponding to a required load under a certain engine speed Ne as illustrated. In addition, a necessary center angle (target center angle tVTC) is uniquely determined. In addition, since the search from the map is a multidimensional map, it may be obtained by calculation using each parameter.

図9の状態切換判定部B7は、運転状態判定部B1からのモード選択指令を受けて、運転モードの切換中つまり過渡期間であることを示す信号を、第2の目標値選択部B8へ出力する。例えば、切換中であることを示すフラグのON・OFFの切換を行う。第2の目標値選択部B8では、この切換中を示すフラグがONである間、上記の切換時VEL目標値演算部B5および切換時VTC目標値演算部B6から出力される切換期間用の目標値を、最終的な目標作動角tVELおよび目標中心角tVTCとして出力する。上記の状態切換判定部B7は、運転モードの切換から一定時間の間、上記フラグをONとする。但し、その期間の間に、所定レベル以上のアクセル開度変化があった場合には、要求負荷の変化に直ちに応答するために、上記フラグをOFFとする。   9 receives a mode selection command from the operation state determination unit B1, and outputs a signal indicating that the operation mode is being switched, that is, a transition period, to the second target value selection unit B8. To do. For example, ON / OFF switching of a flag indicating that switching is in progress is performed. In the second target value selection unit B8, while the flag indicating that the switching is in progress is ON, the switching period target output from the switching time VEL target value calculation unit B5 and the switching time VTC target value calculation unit B6. The values are output as the final target operating angle tVEL and target center angle tVTC. The state switching determination unit B7 turns on the flag for a certain time after the operation mode is switched. However, if there is a change in the accelerator opening that exceeds a predetermined level during that period, the flag is turned OFF in order to immediately respond to the change in the required load.

次に、図20および図21は、上記実施例の吸気制御装置の加速時の動作(但しエンジン回転数は一定とする)を示した説明図であって、アクセル開度APOがステップ的に増加した場合の作動角VELおよび中心角VTCの変化をエンジントルクTeの変化とともに示している。図20は、燃費重視モードの場合の例を示し、図21は、応答性重視モードの場合の例、特に作動角VELと中心角VTCとが同時に変化する例を示す。いずれの場合も、作動角VELや中心角VTCの目標値が実線で示すように変化するのに対し、実際の値は、それぞれの機構の応答速度により、破線で示すように遅れて変化する。なお、図21には、燃費重視モードの場合の実値の特性を比較のために一点鎖線でもって記載してある。この図21から明らかなように、応答性重視モードの場合には、初期の中心角VTCが遅角側にあるので、同じ作動角VELの変化量に対するトルクの感度が高くなり、しかも、中心角VTCの変化量が燃費重視モードのときよりも小さいことから、トルクの収束が早くなり、従って、燃費重視モードよりもトルク応答性が高く得られる。   Next, FIG. 20 and FIG. 21 are explanatory diagrams showing the operation at the time of acceleration of the intake control device of the above embodiment (however, the engine speed is constant), and the accelerator opening APO increases stepwise. The change of the operating angle VEL and the center angle VTC in the case of having performed is shown with the change of the engine torque Te. FIG. 20 shows an example in the case of the fuel efficiency emphasis mode, and FIG. 21 shows an example in the case of the responsiveness emphasis mode, in particular, an example in which the operating angle VEL and the center angle VTC change simultaneously. In either case, the target values of the operating angle VEL and the central angle VTC change as shown by solid lines, whereas the actual values change with a delay as shown by broken lines depending on the response speed of each mechanism. In FIG. 21, the actual value characteristic in the fuel efficiency mode is shown by a one-dot chain line for comparison. As is apparent from FIG. 21, in the response-oriented mode, the initial center angle VTC is on the retard side, so that the torque sensitivity to the amount of change in the same operating angle VEL increases, and the center angle Since the amount of change in VTC is smaller than that in the fuel economy priority mode, the torque converges faster, and therefore torque response is higher than in the fuel efficiency priority mode.

次に、図22は、上記吸気制御装置の運転モードの切換の際の動作(但しエンジン回転数は一定で、要求負荷も変化しないものとする)を示した説明図であって、例えば、応答性重視モードから燃費重視モードへ切り換えられると、切換中であることを示すフラグが一定時間ONとなる。運転モードの切換に伴い、作動角VELの目標値は、相対的に小さい応答性重視モードの目標値から相対的に大きな燃費重視モードの目標値へと変化するが、上記のフラグがONである切換中は、その変化率が制限されるので、最終的な目標作動角tVELは、点線のように、徐々に変化する。そして、この目標作動角tVELに対し、実作動角rVELは、太実線のように、多少の応答遅れを伴って変化していく。一方、中心角VTCの目標値は、相対的に小さい応答性重視モードの目標値から相対的に大きな燃費重視モードの目標値へと変化するが、上記のフラグがONである切換中は、実作動角rVELに基づき要求トルクが生じる目標中心角tVTCが、点線で示すように求められる。そして、この目標中心角tVTCに対し、実際の中心角VTCは、太実線のように、多少の応答遅れを伴って追従する。従って、実際に発生するトルクは、第2可変動弁機構6の多少の応答遅れの影響を受けるものの、概ね一定に得られ、つまり、運転モードの切換に伴うトルク変化を生じることなく、要求に沿ったトルク特性となる。   Next, FIG. 22 is an explanatory diagram showing an operation (when the engine speed is constant and the required load does not change) at the time of switching the operation mode of the intake control device. When the performance priority mode is switched to the fuel efficiency priority mode, a flag indicating that switching is in progress is ON for a certain time. As the operation mode is switched, the target value of the operating angle VEL changes from the target value of the relatively small responsiveness priority mode to the target value of the relatively large fuel consumption priority mode, but the above flag is ON. Since the rate of change is limited during switching, the final target operating angle tVEL gradually changes as shown by the dotted line. And with respect to this target operating angle tVEL, the actual operating angle rVEL changes with a slight response delay as shown by a thick solid line. On the other hand, the target value of the center angle VTC changes from the target value of the relatively small responsiveness priority mode to the target value of the relatively large fuel consumption priority mode, but during the switching in which the above flag is ON, A target center angle tVTC at which the required torque is generated based on the operating angle rVEL is determined as indicated by a dotted line. The actual center angle VTC follows the target center angle tVTC with a slight response delay as shown by a thick solid line. Therefore, the actually generated torque is almost constant, although it is affected by a slight response delay of the second variable valve mechanism 6, that is, the torque is not changed due to the switching of the operation mode. Torque characteristics along.

この発明に係る吸気制御装置のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 基本的な制御のフローチャート。The flowchart of basic control. アクセル開度を増加させていったときの燃費重視モードによる各パラメータの変化を概略的に示した特性図。The characteristic view which showed roughly the change of each parameter by the fuel consumption priority mode when the accelerator opening was increased. 図3の場合のバルブリフト特性の変化を示す説明図。Explanatory drawing which shows the change of the valve lift characteristic in the case of FIG. アクセル開度を増加させていったときの応答性重視モードによる各パラメータの変化を概略的に示した特性図。The characteristic view which showed schematically the change of each parameter by the response priority mode when the accelerator opening was increased. 図5の場合のバルブリフト特性の変化を示す説明図。Explanatory drawing which shows the change of the valve lift characteristic in the case of FIG. 過渡時の最大リフト点の推移を燃費重視モードと応答性重視モードとで対比して示す説明図。Explanatory drawing which shows the transition of the maximum lift point at the time of a transition in the fuel consumption priority mode and the response priority mode. 可変動弁機構の応答速度が異なる場合の例を示す図7と同様の説明図。Explanatory drawing similar to FIG. 7 which shows the example in case the response speed of a variable valve mechanism is different. モード切換の制御の内容を示す機能ブロック図。The functional block diagram which shows the content of the control of mode switching. 燃費重視モード目標値演算部B2の詳細を示す機能ブロック図。The functional block diagram which shows the detail of fuel consumption priority mode target value calculating part B2. ブロックB11のTVOマップの特性図。The characteristic view of the TVO map of block B11. ブロックB12の作動角マップの特性図。The characteristic view of the operating angle map of block B12. ブロックB13の中心角マップの特性図。The characteristic view of the center angle map of block B13. 応答性重視モード目標値演算部B3におけるTVOマップの特性図。The characteristic figure of the TVO map in the responsiveness importance mode target value calculating part B3. 応答性重視モード目標値演算部B3における作動角マップの特性図。The characteristic diagram of the operating angle map in the responsiveness importance mode target value calculating part B3. 応答性重視モード目標値演算部B3における中心角マップの特性図。The characteristic figure of the center angle map in the responsiveness importance mode target value calculating part B3. 切換時VEL目標値演算部B5の詳細を示す機能ブロック図。The functional block diagram which shows the detail of the VEL target value calculating part B5 at the time of switching. モード切換時の目標作動角tVELの変化を示すタイムチャート。The time chart which shows the change of the target operating angle tVEL at the time of mode switching. 切換時VTC目標値演算部B6の目標値算出方法を示す図7と同様の説明図。FIG. 9 is an explanatory view similar to FIG. 7 showing a target value calculation method of the switching VTC target value calculation unit B6. 燃費重視モードにおける過渡時の動作を示すタイムチャート。The time chart which shows the operation | movement at the time of the transition in fuel consumption priority mode. 応答性重視モードにおける過渡時の動作を示すタイムチャート。The time chart which shows the operation | movement at the time of the transition in responsiveness importance mode. モード切換時の動作を示すタイムチャート。The time chart which shows the operation | movement at the time of mode switching.

符号の説明Explanation of symbols

2…負圧制御弁
5…第1可変動弁機構
6…第2可変動弁機構
10…コントロールユニット
11…アクセル開度センサ
2 ... Negative pressure control valve 5 ... First variable valve mechanism 6 ... Second variable valve mechanism 10 ... Control unit 11 ... Accelerator opening sensor

Claims (7)

内燃機関の吸気弁の作動角を連続的に変更可能な第1可変動弁機構と、
上記作動角の中心角を連続的に変更可能な第2可変動弁機構と、
目標トルクに応じて上記第1可変動弁機構および上記第2可変動弁機構を制御する可変動弁制御手段と、
を備えた内燃機関の吸気制御装置において、
上記可変動弁制御手段は、目標トルクに対し、少なくとも2種類の異なる特性の目標作動角および目標中心角の設定を備えており、切換手段により選択された特性の設定に沿って第1,第2可変動弁機構を制御するとともに、
この切換手段による特性の切換時には、第1可変動弁機構の実作動角と目標トルクとから第2可変動弁機構の目標値を与えることを特徴とする内燃機関の吸気制御装置。
A first variable valve mechanism capable of continuously changing the operating angle of the intake valve of the internal combustion engine;
A second variable valve mechanism capable of continuously changing the central angle of the operating angle;
Variable valve control means for controlling the first variable valve mechanism and the second variable valve mechanism according to a target torque;
An intake control device for an internal combustion engine comprising:
The variable valve control means has at least two types of target operating angle and target center angle settings for the target torque, and the first and first characteristics are set in accordance with the characteristic settings selected by the switching means. 2 Controlling the variable valve mechanism,
An intake air control apparatus for an internal combustion engine, wherein a target value of a second variable valve mechanism is given from an actual operating angle of the first variable valve mechanism and a target torque when the characteristic is switched by the switching means.
上記の特性の切換時に、第1可変動弁機構に与えられる目標作動角の変化速度を制限することを特徴とする請求項1に記載の内燃機関の吸気制御装置。   2. The intake control apparatus for an internal combustion engine according to claim 1, wherein a change speed of a target operating angle given to the first variable valve mechanism is limited when the characteristic is switched. 目標トルクに対する目標作動角および目標中心角の設定として、燃費を重視した特性の目標作動角および目標中心角の設定と、トルク応答性を重視した特性の目標作動角および目標中心角の設定と、の2つの設定を備えていることを特徴とする請求項1または2に記載の内燃機関の吸気制御装置。   As the setting of the target operating angle and target center angle for the target torque, the setting of the target operating angle and target center angle with characteristics that emphasize fuel efficiency, the setting of the target operating angle and target center angle with characteristics that emphasize torque response, and The intake control device for an internal combustion engine according to claim 1 or 2, wherein the two settings are provided. 燃費を重視した特性では、トルク応答性を重視した特性よりも、中心角が進角側に設定されることを特徴とする請求項3に記載の内燃機関の吸気制御装置。   4. The intake control device for an internal combustion engine according to claim 3, wherein the center angle is set to an advance side in the characteristic that emphasizes fuel consumption, compared to the characteristic that emphasizes torque response. 目標トルクがある範囲で増加する加速時に、トルク応答性を重視した特性では、中心角の遅角と作動角の増加とが、各可変動弁機構の応答速度に沿って同時に生じるように、それぞれの目標値が設定されていることを特徴とする請求項3または4に記載の内燃機関の吸気制御装置。   In acceleration characteristics where the target torque increases within a certain range, the characteristics that place importance on torque response are such that the delay of the central angle and the increase of the operating angle occur simultaneously along the response speed of each variable valve mechanism. The intake air control apparatus for an internal combustion engine according to claim 3 or 4, wherein the target value is set. 目標トルクがある範囲で増加する加速時に、燃費を重視した特性では、中心角を進角側に保ちつつ作動角が優先的に増加し、その後、中心角が遅角するように、それぞれの目標値が設定されていることを特徴とする請求項3〜5のいずれかに記載の内燃機関の吸気制御装置。   In acceleration characteristics where the target torque increases within a certain range, with the characteristics that emphasize fuel efficiency, each target is set so that the operating angle preferentially increases while the central angle is kept on the advanced side, and then the central angle is retarded. The intake control device for an internal combustion engine according to any one of claims 3 to 5, wherein a value is set. 上記切換手段は、運転者のアクセル操作の変化から、適した運転モードを判別することを特徴とする請求項1〜6のいずれかに記載の内燃機関の吸気制御装置。
The intake control device for an internal combustion engine according to any one of claims 1 to 6, wherein the switching means discriminates a suitable operation mode from a change in a driver's accelerator operation.
JP2004338287A 2004-11-24 2004-11-24 Intake control device for internal combustion engine Active JP4466342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004338287A JP4466342B2 (en) 2004-11-24 2004-11-24 Intake control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004338287A JP4466342B2 (en) 2004-11-24 2004-11-24 Intake control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006144723A true JP2006144723A (en) 2006-06-08
JP4466342B2 JP4466342B2 (en) 2010-05-26

Family

ID=36624691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004338287A Active JP4466342B2 (en) 2004-11-24 2004-11-24 Intake control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4466342B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281356A (en) * 2008-05-26 2009-12-03 Hitachi Automotive Systems Ltd Operating angle varying mechanism
US8265857B2 (en) 2008-05-26 2012-09-11 Hitachi, Ltd. Apparatus for and method of controlling engine
KR101428425B1 (en) * 2013-12-12 2014-08-07 현대자동차주식회사 Variable valve apparatus control method for engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281356A (en) * 2008-05-26 2009-12-03 Hitachi Automotive Systems Ltd Operating angle varying mechanism
US8265857B2 (en) 2008-05-26 2012-09-11 Hitachi, Ltd. Apparatus for and method of controlling engine
US8301357B2 (en) 2008-05-26 2012-10-30 Hitachi, Ltd. Variable operation angle mechanism and apparatus for and method of controlling engine
KR101428425B1 (en) * 2013-12-12 2014-08-07 현대자동차주식회사 Variable valve apparatus control method for engine

Also Published As

Publication number Publication date
JP4466342B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP2008121683A (en) Control method for engine according to driver input and control system for vehicle
JP2009215890A (en) Intake control device for vehicular internal combustion engine
JP4449429B2 (en) Intake valve drive control device for internal combustion engine
JP6380678B2 (en) Control method and control apparatus for internal combustion engine
JP4415790B2 (en) Intake control device for internal combustion engine
JP4466342B2 (en) Intake control device for internal combustion engine
JP4534705B2 (en) Intake control device for internal combustion engine
JP2006112278A (en) Intake volume control device of internal combustion engine
JP6463121B2 (en) Engine control device
JP4556816B2 (en) Control device for internal combustion engine
JP4412047B2 (en) Intake control device for internal combustion engine
JP2005171871A (en) Control device for vehicular internal combustion engine
JP4300359B2 (en) Control device for internal combustion engine
JP2005171793A (en) Control device of internal combustion engine
JP2004100575A (en) Control unit of internal combustion engine
JP2014163317A (en) Control device of vehicle drive system
JP2005090328A (en) Intake valve drive control device for internal combustion engine
JP4033115B2 (en) Intake control device for internal combustion engine
JP2006144724A (en) Air intake control device for internal combustion engine
JP4760793B2 (en) Control device for internal combustion engine
JP2005090331A (en) Intake control device of internal combustion engine
JP4506449B2 (en) Intake control device for internal combustion engine
JP4273950B2 (en) Intake control device for internal combustion engine
JP4254261B2 (en) Intake valve drive control device for internal combustion engine
JP4165235B2 (en) Intake valve drive control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4466342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3