JP2005314724A - Chromium nitrate aqueous solution and method for manufacturing the same - Google Patents

Chromium nitrate aqueous solution and method for manufacturing the same Download PDF

Info

Publication number
JP2005314724A
JP2005314724A JP2004132079A JP2004132079A JP2005314724A JP 2005314724 A JP2005314724 A JP 2005314724A JP 2004132079 A JP2004132079 A JP 2004132079A JP 2004132079 A JP2004132079 A JP 2004132079A JP 2005314724 A JP2005314724 A JP 2005314724A
Authority
JP
Japan
Prior art keywords
aqueous solution
chromium
chromium nitrate
aqueous
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004132079A
Other languages
Japanese (ja)
Other versions
JP3942604B2 (en
Inventor
Tomohiro Banda
知宏 番田
Nobuo Takagi
伸夫 高木
Takashi Hara
孝志 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004132079A priority Critical patent/JP3942604B2/en
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to CA002545320A priority patent/CA2545320A1/en
Priority to KR1020127017977A priority patent/KR101265801B1/en
Priority to PCT/JP2004/017353 priority patent/WO2005056478A1/en
Priority to KR1020067011319A priority patent/KR101190369B1/en
Priority to US10/578,626 priority patent/US7641721B2/en
Priority to EP04820113A priority patent/EP1712524A4/en
Priority to BRPI0416838-0A priority patent/BRPI0416838A/en
Priority to TW093136279A priority patent/TWI285224B/en
Publication of JP2005314724A publication Critical patent/JP2005314724A/en
Application granted granted Critical
Publication of JP3942604B2 publication Critical patent/JP3942604B2/en
Priority to US12/646,048 priority patent/US8083842B2/en
Priority to US13/338,012 priority patent/US20120199787A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium

Abstract

<P>PROBLEM TO BE SOLVED: To provide chromium nitrate aqueous solution with a very small content of residual organic carbon, and a method for manufacturing the same. <P>SOLUTION: In the chromium nitrate aqueous solution, the content of oxalic acid is ≤0.5 wt.%. In addition, the content of the total organic carbon is preferably ≤2.5 wt.% to chromium. Free nitric ions not bonded to Cr are preferably not substantially contained. The chromium nitrate aqueous solution is preferably manufactured by separately and simultaneously adding nitric acid and organic reducing agent to chromic acid aqueous solution. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、硝酸クロム水溶液及びその製造方法に関する。   The present invention relates to an aqueous chromium nitrate solution and a method for producing the same.

従来、硝酸クロムの製造方法としては、鉱石をアルカリ酸化焙焼して得た重クロム酸ソーダ溶液に硫酸を加え、有機物で還元して硫酸クロム溶液とし、これに苛性ソーダまたはソーダ灰を加えて水酸化クロムまたは炭酸クロムの沈澱を造り、濾過、水洗した後、硝酸を加えて溶解する方法が知られている。あるいは、炭素還元剤を用いてクロム鉱石を電気炉で還元して得た高炭素フェロクロムを硫酸で抽出処理し、この溶液を電気分解して金属クロムとし、金属クロムに硝酸を加えて硝酸クロムを製造する方法も知られている。 Conventionally, chromium nitrate is produced by adding sulfuric acid to a sodium dichromate solution obtained by alkaline oxidation roasting of ore, reducing it with an organic substance to obtain a chromium sulfate solution, and adding caustic soda or soda ash to water A method is known in which a precipitate of chromium oxide or chromium carbonate is formed, filtered, washed with water, and then dissolved by adding nitric acid. Alternatively, high-carbon ferrochrome obtained by reducing chromium ore with an electric furnace using a carbon reducing agent is extracted with sulfuric acid, and this solution is electrolyzed to form metallic chromium, and nitric acid is added to metallic chromium to form chromium nitrate. Manufacturing methods are also known.

また、三酸化クロムに硝酸を硝酸クロムの生成当量以上に配合して三酸化クロム−硝酸混合溶液を準備する段階、前記段階によって得られた三酸化クロム−硝酸混合溶液に単糖類、二糖類あるいはでんぷん類から選ばれる炭水化物から誘導されるアルコール、アルデヒド、カルボン酸又はこれらの混合物からなる有機還元剤を過剰に混じて三酸化クロムを還元して硝酸クロムを生成させる段階を順次行う方法も知られている(例えば、特許文献1参照)。   In addition, a step of preparing a chromium trioxide-nitric acid mixed solution by mixing nitric acid with chromium trioxide at a production equivalent of chromium nitrate or more, a chromium trioxide-nitric acid mixed solution obtained by the above step, a monosaccharide, a disaccharide or Also known is a method in which an organic reducing agent composed of an alcohol, aldehyde, carboxylic acid or a mixture thereof derived from a carbohydrate selected from starches is excessively mixed to reduce chromium trioxide to form chromium nitrate. (For example, refer to Patent Document 1).

特開2002−339082号公報JP 2002-339082 A

従来法のうち、水酸化クロムを硝酸で溶解する方法は、硫酸クロムに苛性ソーダまたはソーダ灰を加えて得た水酸化クロム沈殿の水洗が大変難しく、水酸化クロム中のナトリウムまたは硫酸塩等の不純物を除くことができない問題を有している。   Among the conventional methods, the method of dissolving chromium hydroxide with nitric acid is very difficult to wash the chromium hydroxide precipitate obtained by adding caustic soda or soda ash to chromium sulfate, and impurities such as sodium or sulfate in chromium hydroxide Have problems that cannot be removed.

特許文献1記載の方法では、例えば三酸化クロムに硝酸を硝酸クロム当量以上に混合することは、六価のクロムを減らすのに有効である。しかし条件によっては、添加した還元剤が三酸化クロムではなく硝酸と反応してしまい、その結果NOxが発生することがある。そのため、脱NOxの装置が必要なばかりでなく、急激な反応によって危険な状態になることもある。   In the method described in Patent Document 1, for example, mixing nitric acid with chromium trioxide to a chromium nitrate equivalent or more is effective in reducing hexavalent chromium. However, depending on conditions, the added reducing agent may react with nitric acid instead of chromium trioxide, and as a result, NOx may be generated. For this reason, not only a deNOx device is required, but a sudden reaction may result in a dangerous state.

従って本発明の目的は、前述した従来技術が有する種々の欠点を解消し得る硝酸クロム及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide chromium nitrate and a method for producing the same, which can eliminate the various disadvantages of the prior art described above.

本発明は、シュウ酸の含有量が0.5重量%以下であることを特徴とする硝酸クロム水溶液を提供することにより前記目的を達成したものである。   This invention achieves the said objective by providing the chromium nitrate aqueous solution characterized by content of oxalic acid being 0.5 weight% or less.

また本発明は、クロム酸水溶液に、硝酸と有機還元剤とを別々に且つ同時に添加することを特徴とする硝酸クロム水溶液の製造方法を提供するものである。   Moreover, this invention provides the manufacturing method of the chromium nitrate aqueous solution characterized by adding nitric acid and an organic reducing agent separately and simultaneously to chromic acid aqueous solution.

更に本発明は、シュウ酸含有量がクロムに対して2重量%以下であることを特徴とする硝酸クロム結晶を提供するものである。   Furthermore, the present invention provides a chromium nitrate crystal characterized in that the oxalic acid content is 2% by weight or less based on chromium.

更に本発明は、クロム酸水溶液に、硝酸と有機還元剤とを別々に且つ同時に添加して硝酸クロム水溶液を生成させ、次いで該硝酸クロム水溶液を加熱濃縮し、更に冷却させることにより硝酸クロム結晶を析出させることを特徴とする硝酸クロム結晶の製造方法を提供するものである。   Furthermore, the present invention adds a nitric acid and an organic reducing agent separately and simultaneously to a chromic acid aqueous solution to form a chromic nitrate aqueous solution, then heat-concentrates the chromic nitrate aqueous solution, and further cools the chromic nitrate crystals. The present invention provides a method for producing a chromium nitrate crystal characterized by being precipitated.

本発明の硝酸クロム水溶液及び硝酸クロム結晶は、シュウ酸の含有量が微量であり、これを用いて金属の表面処理を行うと、優れた光沢の製品が得られる。また本発明の製造方法によれば、シュウ酸の含有量が極めて少ない硝酸クロムが工業的に有利に製造できる。   The chromium nitrate aqueous solution and the chromium nitrate crystal of the present invention have a small amount of oxalic acid, and when this is used to perform metal surface treatment, an excellent gloss product can be obtained. Further, according to the production method of the present invention, chromium nitrate having a very low content of oxalic acid can be produced industrially advantageously.

以下、本発明をその好ましい実施形態に基づき説明する。本発明の硝酸クロム水溶液は、有機物の一種であるシュウ酸の含有量が低レベルであることによって特徴付けられる。詳細には、本発明の硝酸クロム水溶液は、シュウ酸の含有量が0.5重量%以下、好ましくは実質的に含まないという低レベルのものである。またシュウ酸の含有量はクロムに対して好ましくは6重量%以下、更に好ましくは2重量%以下、一層好ましくは実質的に含まないという低レベルのものである。本発明者らの検討の結果、シュウ酸の含有量が低レベルである本発明の硝酸クロム水溶液は、該水溶液を金属の表面処理に用いた場合に、優れた光沢の製品が得られることが判明した。先に説明した特許文献1に記載の技術では六価のクロムを還元させるために、でんぷんやブドウ糖など炭素数の多い有機還元剤を用いていることに起因して、水溶液中に存在しているシュウ酸の量が本発明よりも高いレベルになっている。本発明の硝酸クロム水溶液におけるシュウ酸の含有量の下限値に特に制限はないが、後述する製造方法を用いるとシュウ酸の含有量を実質的に含まないという極めて低いレベルにすることができる。   Hereinafter, the present invention will be described based on preferred embodiments thereof. The aqueous chromium nitrate solution of the present invention is characterized by a low level of oxalic acid, which is a kind of organic matter. Specifically, the chromium nitrate aqueous solution of the present invention has a low level in which the content of oxalic acid is 0.5% by weight or less, preferably substantially free. The content of oxalic acid is preferably at a low level, preferably 6% by weight or less, more preferably 2% by weight or less, and still more preferably substantially free from chromium. As a result of the study by the inventors, the chromium nitrate aqueous solution of the present invention having a low oxalic acid content can be used to obtain an excellent gloss product when the aqueous solution is used for metal surface treatment. found. In the technique described in Patent Document 1 described above, it exists in an aqueous solution due to the use of an organic reducing agent having a large number of carbon atoms such as starch and glucose in order to reduce hexavalent chromium. The amount of oxalic acid is higher than that of the present invention. Although there is no restriction | limiting in particular in the lower limit of the content of oxalic acid in the chromium nitrate aqueous solution of this invention, If the manufacturing method mentioned later is used, it can be made into the very low level which does not contain content of oxalic acid substantially.

本発明の硝酸クロム水溶液中におけるシュウ酸の量は、例えばイオンクロマトグラフィーによって測定することができる。   The amount of oxalic acid in the aqueous chromium nitrate solution of the present invention can be measured, for example, by ion chromatography.

本発明の硝酸クロム水溶液は、全有機炭素(以下TOCともいう)が低レベルであることによっても特徴付けられる。本発明者らの検討の結果、シュウ酸の含有量が低レベルであることに加え、TOCが低レベルであると、本発明の硝酸クロム水溶液を金属の表面処理に用いた場合に、一層優れた光沢の製品が得られることが判明した。詳細には、本発明の硝酸クロム水溶液は、TOCがクロムに対して好ましくは2.5重量%以下、更に好ましくは0.3重量%未満という低レベルのものである。   The aqueous chromium nitrate solution of the present invention is also characterized by a low level of total organic carbon (hereinafter also referred to as TOC). As a result of the study by the present inventors, in addition to the low level of oxalic acid content, when the TOC is low level, the chromium nitrate aqueous solution of the present invention is more excellent when used for metal surface treatment. It was found that a glossy product was obtained. Specifically, the chromium nitrate aqueous solution of the present invention has a low level of TOC of preferably 2.5% by weight or less, more preferably less than 0.3% by weight, based on chromium.

TOCとは、有機物として溶液中に残留しているCの総量である。先に述べた特許文献1では、六価のクロムを確実に三価のクロムに還元させるために、硝酸クロム水溶液中に0.3重量%以上のTOCが必要であることが記載されている。しかし本発明者らがTOCに関して詳細に検討を行ったところ、TOCが少なければ少ないほど、硝酸クロム水溶液を金属の表面処理剤として用いた場合に光沢が極めて優れたものになることが判明した。しかも後述する製造方法によれば、TOCが少なくても、六価のクロムを確実に消滅させることができる。TOCの下限値に特に制限はないが、後述する製造方法を用いると0.01重量%という極めて低レベルとすることができる。   TOC is the total amount of C remaining in the solution as an organic substance. In Patent Document 1 described above, it is described that 0.3% by weight or more of TOC is required in an aqueous chromium nitrate solution in order to reliably reduce hexavalent chromium to trivalent chromium. However, as a result of detailed studies on the TOC by the present inventors, it has been found that the smaller the TOC, the more excellent the gloss when an aqueous chromium nitrate solution is used as the metal surface treatment agent. And according to the manufacturing method mentioned later, even if there is little TOC, hexavalent chromium can be extinguished reliably. Although there is no restriction | limiting in particular in the lower limit of TOC, if it uses the manufacturing method mentioned later, it can be made into the very low level of 0.01 weight%.

本発明の硝酸クロム水溶液中のTOCは、例えば島津製作所製のTOC500型全有機炭素計によって測定することができる。   The TOC in the chromium nitrate aqueous solution of the present invention can be measured by, for example, a TOC500 type total organic carbon meter manufactured by Shimadzu Corporation.

本発明の硝酸クロム水溶液は、シュウ酸含有量が少なく、また好ましくはTOCが低レベルであるにもかかわらず、水溶液中に六価のクロムが実質的に存在していない。従って本発明の硝酸クロム水溶液には、環境負荷が小さいという利点がある。かかる水溶液は、後述する製造方法によって好適に製造される。   The aqueous chromium nitrate solution of the present invention has a low oxalic acid content and preferably is substantially free of hexavalent chromium in the aqueous solution despite the low level of TOC. Therefore, the chromium nitrate aqueous solution of the present invention has an advantage that the environmental load is small. Such an aqueous solution is suitably produced by a production method described later.

本発明の硝酸クロム水溶液は、組成式Cr(OH)x(NO3)y(式中、0≦x≦2、1≦y≦3、x+y=3で表される)化合物を含むものである。本発明の硝酸クロム水溶液は、多くの場合Cr(NO33換算で25重量%以上の水溶液であり、好ましくは35重量%以上の水溶液である。41重量%を超えると、条件によっては結晶が析出してしまう。前記組成式で表される化合物には、Cr(NO33で表される硝酸クロムの他に、この硝酸根の一部を水酸基で置換した化合物である塩基性硝酸クロム、例えばCr(OH)0.5(NO32.5、Cr(OH)(NO32、Cr(OH)2(NO3)等が含まれる。 The chromium nitrate aqueous solution of the present invention contains a compound of the composition formula Cr (OH) x (NO 3 ) y (wherein 0 ≦ x ≦ 2, 1 ≦ y ≦ 3, x + y = 3). In many cases, the aqueous chromium nitrate solution of the present invention is an aqueous solution of 25% by weight or more, preferably 35% by weight or more in terms of Cr (NO 3 ) 3 . If it exceeds 41% by weight, crystals will precipitate depending on the conditions. In addition to chromium nitrate represented by Cr (NO 3 ) 3 , the compound represented by the above composition formula includes basic chromium nitrate which is a compound obtained by substituting a part of this nitrate group with a hydroxyl group, such as Cr (OH ) 0.5 (NO 3 ) 2.5 , Cr (OH) (NO 3 ) 2 , Cr (OH) 2 (NO 3 ) and the like.

前記組成式で表される化合物は、本発明の硝酸クロム水溶液中にそれぞれ単独で存在していてもよく、或いは2種以上の任意の組み合わせで存在していてもよい。2種以上を組み合わせることで、具体的な用途にふさわしい溶液を調製することができる。   The compound represented by the composition formula may be present alone in the chromium nitrate aqueous solution of the present invention, or may be present in any combination of two or more. By combining two or more kinds, a solution suitable for a specific application can be prepared.

六価のクロム化合物は侵食性や酸化性を有するので、これを原料として得られる硝酸クロム水溶液には不純物金属イオン、特にNa及びFeが不可避的に多量に混入する。これに対して、本発明の硝酸クロム水溶液はこれらのイオンの含有量が極めて少ないことによっても特徴付けられる。具体的には、硝酸クロム水溶液中の不純物金属イオンがCr(NO33として40重量%換算あたり、Naが好ましくは30ppm以下、更に好ましくは20ppm以下という低いレベルになっている。Feに関しては、好ましくは20ppm以下、更に好ましくは10ppm以下となっている。このような高純度の硝酸クロム水溶液は、特にこれをクロム触媒の原料として使用される水酸化クロムの製造に用いると、高純度の水酸化クロムが得られるという有利な効果が奏されるので好ましい。不純物金属イオンの濃度測定には、例えばICP−AESが用いられる。 Since hexavalent chromium compounds have erosion and oxidation properties, impurity metal ions, especially Na and Fe, are inevitably mixed in a large amount in the chromium nitrate aqueous solution obtained from the hexavalent chromium compound. In contrast, the aqueous chromium nitrate solution of the present invention is also characterized by the extremely low content of these ions. Specifically, the impurity metal ions in the aqueous chromium nitrate solution are at a low level of preferably not more than 30 ppm, more preferably not more than 20 ppm per 40% by weight as Cr (NO 3 ) 3 . Regarding Fe, it is preferably 20 ppm or less, more preferably 10 ppm or less. Such a high-purity chromium nitrate aqueous solution is preferable because it has an advantageous effect that high-purity chromium hydroxide is obtained, particularly when it is used for producing chromium hydroxide used as a raw material for a chromium catalyst. . For example, ICP-AES is used for measuring the concentration of impurity metal ions.

本発明の硝酸クロム水溶液は、Crと結合していないフリーの硝酸イオンを実質的に含まないことによっても特徴付けられる。シュウ酸含有量が前述の値以下であり且つフリーの硝酸イオンを実質的に含まないことは、本発明の硝酸クロム水溶液を例えば Cr(NO33 40%の高濃度で長期保管する場合に結晶の析出を抑えることができるという有利な効果が奏されるので好ましい。 The aqueous chromium nitrate solution of the present invention is also characterized by being substantially free of free nitrate ions not bound to Cr. The fact that the oxalic acid content is not more than the above-mentioned value and does not substantially contain free nitrate ions means that the chromium nitrate aqueous solution of the present invention is stored for a long time at a high concentration of, for example, 40% Cr (NO 3 ) 3. This is preferable because the advantageous effect that the precipitation of crystals can be suppressed is exhibited.

本発明の硝酸クロム水溶液は、例えば金属の表面処理用、クロメート用、触媒用として好ましく使用することができる。特に金属の表面処理に用いた場合には、光沢に優れた製品が得られるという利点がある。   The aqueous chromium nitrate solution of the present invention can be preferably used for, for example, metal surface treatment, chromate, and catalyst. In particular, when used for metal surface treatment, there is an advantage that a product with excellent gloss can be obtained.

次に本発明の硝酸クロム水溶液の好適な製造方法について説明する。該製造方法は、クロム酸水溶液に、硝酸と有機還元剤とを別々に且つ同時に添加する点に特徴を有する。   Next, the suitable manufacturing method of the chromium nitrate aqueous solution of this invention is demonstrated. The production method is characterized in that nitric acid and an organic reducing agent are separately and simultaneously added to the chromic acid aqueous solution.

まず、原料であるクロム酸水溶液は、例えばクロム鉱石をアルカリ酸化焙焼して得たクロム酸ソーダを出発原料とし、種々の精製処理を施して得た三酸化クロム酸を水に溶解して得られる。このようにして得られたクロム酸水溶液は、硫酸クロムに苛性ソーダ又はソーダ灰を加えて得られた水酸化クロムや炭酸クロムを原料として調製されたクロム酸水溶液や、高炭素フェロクロムを硫酸又は塩酸で溶解して得られたクロム酸水溶液に比べてFe、Na、Mg、Al、Ca、Ni、Mo、W等の不純物が極めて少ないものである。   First, the chromic acid aqueous solution, which is a raw material, is obtained by dissolving chromic trioxide obtained by performing various purification treatments using, for example, sodium chromate obtained by alkaline oxidation roasting of chrome ore in water. It is done. The chromic acid aqueous solution thus obtained is a chromic acid aqueous solution prepared by adding chromium hydroxide or chromium carbonate obtained by adding caustic soda or soda ash to chromium sulfate, or high carbon ferrochromium with sulfuric acid or hydrochloric acid. Impurities such as Fe, Na, Mg, Al, Ca, Ni, Mo, and W are extremely small compared to the chromic acid aqueous solution obtained by dissolution.

なお、クロム酸水溶液は反応系において溶液であればよく、当初の反応時に三酸化クロムを使用することも可能である。しかし、多くの場合はこれに水を加え、溶解して調製された水溶液を使用する。クロム酸水溶液の濃度に特に制限はないが、一般的な範囲として20〜60重量%であることが好ましい。   The aqueous chromic acid solution may be a solution in the reaction system, and chromium trioxide can be used in the initial reaction. However, in many cases, an aqueous solution prepared by adding and dissolving water is used. Although there is no restriction | limiting in particular in the density | concentration of chromic acid aqueous solution, It is preferable that it is 20 to 60 weight% as a general range.

クロム酸水溶液に添加される有機還元剤としては、後述の還元反応において炭酸ガスと水とに殆ど分解し、実質的に有機分解物が残らないものであれば特に限定されない。例えばメチルアルコール、プロピルアルコール等の一価アルコール、エチレングリコール、プロピレングリコール等の二価アルコールが好適に使用される。他の有機還元剤としては、グルコースなどの単糖類、マルトースなどの二糖類、でんぷんなどの多糖類を用いることができる。炭素数の多い糖類を用いると有機分解物が残りやすく、シュウ酸の含有量を低レベルにすることが容易でない。またシュウ酸を含むTOCを低レベルにすることが容易でない。従って本製造方法においては、シュウ酸が生成しにくく且つTOCを低レベルにすることが容易な還元剤である一価又は二価アルコールを用いることが好ましい。また、一価又は二価アルコールを用いると、化学量論量に近い還元反応を得やすいという利点もある。これらの観点から特にメチルアルコール又はエチレングリコールを用いることが好ましく、とりわけメチルアルコールを用いることが好ましい。   The organic reducing agent added to the chromic acid aqueous solution is not particularly limited as long as it is substantially decomposed into carbon dioxide gas and water in the reduction reaction described later and substantially no organic decomposition product remains. For example, monohydric alcohols such as methyl alcohol and propyl alcohol, and dihydric alcohols such as ethylene glycol and propylene glycol are preferably used. As other organic reducing agents, monosaccharides such as glucose, disaccharides such as maltose, and polysaccharides such as starch can be used. When a saccharide having a large number of carbon atoms is used, an organic decomposition product tends to remain, and it is not easy to reduce the content of oxalic acid. Moreover, it is not easy to make TOC containing oxalic acid low. Therefore, in this production method, it is preferable to use a monohydric or dihydric alcohol that is a reducing agent that is difficult to produce oxalic acid and that can easily reduce the TOC. Moreover, when monohydric or dihydric alcohol is used, there also exists an advantage that the reductive reaction near a stoichiometric amount is easy to be obtained. From these viewpoints, it is particularly preferable to use methyl alcohol or ethylene glycol, and it is particularly preferable to use methyl alcohol.

有機還元剤は、そのまま希釈せずにクロム酸水溶液に添加してもよく、或いは水に希釈した状態で添加してもよい。水に希釈する場合は、有機還元剤の濃度を10〜30重量%程度にすることが、操作性および反応の管理の点から好ましい。   The organic reducing agent may be added to the chromic acid aqueous solution without being diluted as it is, or may be added in a state diluted with water. When diluting in water, the concentration of the organic reducing agent is preferably about 10 to 30% by weight from the viewpoint of operability and reaction management.

有機還元剤と共にクロム酸水溶液に添加される硝酸としては、工業用のものを用いることができ、合成硝酸又は副生硝酸のいずれでも良い。通常は濃度が67.5重量%、比重1.4のものが用いられる。しかしこれに限定されない。これらの諸原料は本発明の目的上可及的に高濃度のものを用いることが望ましい。   As nitric acid added to the chromic acid aqueous solution together with the organic reducing agent, industrial ones can be used, and either synthetic nitric acid or by-product nitric acid may be used. Usually, those having a concentration of 67.5% by weight and a specific gravity of 1.4 are used. However, it is not limited to this. These raw materials are desirably used at as high a concentration as possible for the purposes of the present invention.

硝酸及び有機還元剤は、同時にかつ別々にクロム酸水溶液に添加される。硝酸及び有機還元剤の添加速度に特に制限はない。「別々に」とは、硝酸と有機還元剤とを混合した状態で添加しないことを意味する。有機還元剤と硝酸とを混合すると、両者が反応してNOxが発生するので危険である。また、特許文献1記載の方法のように、硝酸とクロム酸の混合液に還元剤を添加する方法を用いると、条件によっては添加した還元剤がクロム酸ではなく硝酸と反応してしまい、NOxが発生することがある。そのため、 脱NOxの装置が必要なばかりでなく、急激な反応によって危険な状態になることもある。   Nitric acid and organic reducing agent are added simultaneously and separately to the aqueous chromic acid solution. There is no restriction | limiting in particular in the addition rate of nitric acid and an organic reducing agent. “Separately” means that nitric acid and an organic reducing agent are not added in a mixed state. Mixing an organic reducing agent and nitric acid is dangerous because they react to generate NOx. Further, when a method of adding a reducing agent to a mixed solution of nitric acid and chromic acid as in the method described in Patent Document 1, depending on conditions, the added reducing agent reacts with nitric acid instead of chromic acid, and NOx. May occur. Therefore, not only a device for deNOxing is necessary, but a sudden reaction may cause a dangerous state.

有機還元剤として例えばメチルアルコールを用いた場合における本製造方法の反応式は以下の通りである(式中xは0以上3以下の数を表す)。
2H2CrO4+(6-2x)HNO3+CH3OH → 2Cr(OH)x(NO3)3-x+CO2+7H2O
The reaction formula of this production method when, for example, methyl alcohol is used as the organic reducing agent is as follows (wherein x represents a number of 0 or more and 3 or less).
2H 2 CrO 4 + (6-2x) HNO 3 + CH 3 OH → 2Cr (OH) x (NO 3 ) 3-x + CO 2 + 7H 2 O

前記の反応式に示すように、クロム酸を硝酸クロムに転換するのに要する硝酸の理論量(化学量論量)をa、クロム酸を還元するのに要する有機還元剤の理論量(化学量論量)をbとしたとき、硝酸及び有機還元剤を同時にかつ別々に添加している間は、常にa<bの関係となるように両者を添加することが好ましい。これによって、三価のクロムと結合していない硝酸と還元剤が反応し、NOxを発生するのを抑制するという有利な効果が奏される。aとbとの関係は、a/bが1未満、特に0.9以下であると一層好ましい。   As shown in the above reaction formula, the theoretical amount (stoichiometric amount) of nitric acid required to convert chromic acid to chromium nitrate is a, and the theoretical amount (stoichiometric amount) of the organic reducing agent required to reduce chromic acid. When the theoretical amount) is b, it is preferable to add both so that the relationship of a <b is always satisfied while nitric acid and the organic reducing agent are added simultaneously and separately. This produces an advantageous effect of suppressing generation of NOx by reacting nitric acid that is not bonded to trivalent chromium and the reducing agent. The relationship between a and b is more preferable when a / b is less than 1, particularly 0.9 or less.

硝酸及び有機還元剤をクロム酸水溶液に添加することで酸化還元反応が開始する。反応はかなりの発熱を伴って速やかに進行する。反応温度は、通常90〜110℃である。発生した水蒸気は、コンデンサーによって冷却して反応系内に還流させる。   Addition of nitric acid and an organic reducing agent to the chromic acid aqueous solution starts a redox reaction. The reaction proceeds rapidly with a considerable exotherm. The reaction temperature is usually 90 to 110 ° C. The generated water vapor is cooled by a condenser and refluxed into the reaction system.

本製造方法においては、硝酸及び有機還元剤を同時に且つ別々に添加するに先立ち、有機還元剤のみをクロム酸水溶液に添加することが好ましい。この理由は、有機還元剤を先行させ、有機還元剤の添加終了後に硝酸を添加し終わることで、反応系内のa/bが常に上記の値以下とすることができるためである。   In this production method, it is preferable to add only the organic reducing agent to the chromic acid aqueous solution prior to adding nitric acid and the organic reducing agent simultaneously and separately. This is because the a / b in the reaction system can always be less than or equal to the above value by preceding the organic reducing agent and finishing adding nitric acid after the addition of the organic reducing agent.

先に有機還元剤をクロム酸水溶液に添加している状態下に、併せて硝酸を添加する。これによって両者が同時に且つ別々に添加される。   Nitric acid is added together with the organic reducing agent being added to the chromic acid aqueous solution. Thereby, both are added simultaneously and separately.

反応終了後、暫時熟成させ、そのまま製品とすることができる。熟成は、30分以上、90〜110℃で行うことが好ましい。かかる熟成は、溶液中に存在するCr6+を実質的に0にすることと、シュウ酸の含有量を0.5十りゅ%以下(クロムに対して6重量%以下)にすることが主な目的である。必要に応じて更に有機還元剤を加えて残存しているCr6+を完全に還元する。また、必要に応じ硝酸を加え、クロムイオンと硝酸イオンとのモル比を微調整してもよい。 After completion of the reaction, it can be aged for a while and used as it is. The aging is preferably performed at 90 to 110 ° C. for 30 minutes or more. Such ripening can reduce the Cr 6+ present in the solution to substantially zero and the oxalic acid content to 0.5% or less (less than 6% by weight with respect to chromium). The main purpose. If necessary, an organic reducing agent is further added to completely reduce the remaining Cr 6+ . Further, if necessary, nitric acid may be added to finely adjust the molar ratio of chromium ions to nitrate ions.

本製造方法で得られた硝酸クロム水溶液は、シュウ酸の含有量が低レベルであり、しかも六価のクロムが実質的に存在していない。得られた硝酸クロム水溶液は、必要であればこれを加熱濃縮し、冷却させることにより硝酸クロムの結晶を得ることができる。得られた硝酸クロム結晶はシュウ酸の含有量がクロムに対して2重量%以下、好ましくは0.5重量%以下、さらに好ましくは、実質的に含まないという低レベルのものとなる。また六価のクロムを実質的に含有していない。   The aqueous chromium nitrate solution obtained by this production method has a low level of oxalic acid and is substantially free of hexavalent chromium. The obtained chromium nitrate aqueous solution can be heated and concentrated if necessary, and cooled to obtain crystals of chromium nitrate. The resulting chromium nitrate crystals have a low level of oxalic acid content of 2% by weight or less, preferably 0.5% by weight or less, and more preferably substantially free of chromium. Moreover, hexavalent chromium is not substantially contained.

前記の加熱濃縮では、硝酸クロム水溶液中の水分を除去すれば良い。加熱濃縮は反応が完結した後でも、反応中に行っても良い。反応中に加熱濃縮する場合には、発生した水蒸気をコンデンサーによって凝縮させ、その水を反応系外へ抜き取ることで濃縮を行うと効率が良く、工業的に有利である。   In the heating concentration, moisture in the chromium nitrate aqueous solution may be removed. The heat concentration may be performed during the reaction even after the reaction is completed. In the case of concentrating by heating during the reaction, it is efficient and industrially advantageous to concentrate by condensing the generated water vapor with a condenser and extracting the water out of the reaction system.

以下に実施例を挙げて本発明を具体的に説明する。特に断らない限り「%」は「重量%」を意味する。   The present invention will be specifically described below with reference to examples. Unless otherwise specified, “%” means “% by weight”.

〔実施例1〕
コンデンサー付ガラス製反応容器に、水を251.6g入れ、更に三酸化クロム酸168.6gを投入し、充分撹拌して溶解し、40%のクロム酸水溶液とした。還元剤としては99.5%メチルアルコール27.0gに水を119.2g加えた18%のメチルアルコール水溶液を用いた。このメチルアルコール水溶液を1.22g/minの速度で定量ポンプを用いてクロム酸水溶液に添加した。この添加速度は、18%メチルアルコール水溶液146.2gを2時間で添加する速度である。
[Example 1]
251.6 g of water was added to a glass reaction vessel with a condenser, and further 168.6 g of chromic trioxide was added and dissolved with sufficient stirring to obtain a 40% chromic acid aqueous solution. As the reducing agent, an 18% aqueous solution of methyl alcohol obtained by adding 119.2 g of water to 27.0 g of 99.5% methyl alcohol was used. This aqueous methyl alcohol solution was added to the aqueous chromic acid solution at a rate of 1.22 g / min using a metering pump. This addition rate is a rate at which 146.2 g of 18% methyl alcohol aqueous solution is added in 2 hours.

メチルアルコール水溶液の添加開始から12分後に、67.5%の硝酸水溶液470.6gを3.92g/minの速度でメチルアルコール水溶液とは別に添加した。この添加速度は、メチルアルコール水溶液の添加時間と同様に、2時間で硝酸水溶液を添加する速度である。メチルアルコール水溶液添加終了時の、硝酸の理論量a及びメチルアルコールの理論量bの比、a/bは0.9であった。メチルアルコール水溶液の添加終了後、12分後に硝酸水溶液の添加も終了した。その後熟成を30分継続した。このときの温度は105℃であった。熟成後、残存のCr6+をチェックし、メチルアルコール水溶液を追加してさらに熟成を継続した。ジフェニルカルバジット法にてCr6+の発色がなくなったことを確認して反応終了とした。反応中に亜硝酸ガスの発生はみられなかった。得られた硝酸クロム水溶液の組成は以下の通りであった。 12 minutes after the start of the addition of the aqueous methyl alcohol solution, 470.6 g of a 67.5% nitric acid aqueous solution was added separately from the aqueous methyl alcohol solution at a rate of 3.92 g / min. This addition rate is a rate at which the aqueous nitric acid solution is added in 2 hours, similar to the addition time of the aqueous methyl alcohol solution. The ratio a / b of the theoretical amount a of nitric acid and the theoretical amount b of methyl alcohol at the end of the addition of the aqueous methyl alcohol solution was 0.9. The addition of the aqueous nitric acid solution was completed 12 minutes after the completion of the addition of the aqueous methyl alcohol solution. Thereafter, aging was continued for 30 minutes. The temperature at this time was 105 ° C. After aging, the remaining Cr 6+ was checked, and an aqueous methyl alcohol solution was added to continue aging. The reaction was terminated after confirming that the color development of Cr 6+ was lost by the diphenylcarbazite method. Nitrous acid gas was not generated during the reaction. The composition of the obtained chromium nitrate aqueous solution was as follows.

Figure 2005314724
Figure 2005314724

〔実施例2〕
コンデンサー付ガラス製反応容器に、60%クロム酸水溶液280.2g及び水140.0gを入れ、充分撹拌して、40%のクロム酸水溶液とした。還元剤としては98.5%エチレングリコール31.7gに水を121.9g加えた20%のエチレングリコール水溶液を用いた。このエチレングリコール水溶液を1.28g/minの速度で定量ポンプを用いてクロム酸水溶液に添加した。この添加速度は、20%エチレングリコール水溶液153.6gを2時間で添加する速度である。
[Example 2]
In a glass reaction vessel with a condenser, 280.2 g of a 60% chromic acid aqueous solution and 140.0 g of water were placed and stirred sufficiently to obtain a 40% chromic acid aqueous solution. As a reducing agent, a 20% ethylene glycol aqueous solution in which 121.9 g of water was added to 91.7% ethylene glycol 31.7 g was used. This ethylene glycol aqueous solution was added to the chromic acid aqueous solution at a rate of 1.28 g / min using a metering pump. This addition rate is a rate at which 153.6 g of 20% ethylene glycol aqueous solution is added in 2 hours.

エチレングリコール水溶液の添加開始から12分後に67.5%硝酸水溶液470.6gを3.92g/minの速度でエチレングリコール水溶液とは別に添加した。この添加速度は、エチレングリコール水溶液の添加時間と同様に、2時間で硝酸水溶液を添加する速度である。エチレングリコール水溶液添加終了時の、硝酸の理論量a及びエチレングリコールの理論量bの比、a/bは0.9であった。エチレングリコール水溶液の添加終了後、12分後に硝酸水溶液の添加も終了した。その後熟成を30分継続した。このときの温度は105℃であった。熟成後、残存のCr6+をチェックし、エチレングリコール水溶液を追加してさらに熟成を継続した。ジフェニルカルバジット法にてCr6+の発色がなくなったことを確認して反応終了とした。反応中に亜硝酸ガスの発生はみられなかった。得られた硝酸クロム水溶液の組成は以下の通りであった。 Twelve minutes after the start of the addition of the ethylene glycol aqueous solution, 470.6 g of a 67.5% nitric acid aqueous solution was added separately from the ethylene glycol aqueous solution at a rate of 3.92 g / min. This addition rate is a rate at which the nitric acid aqueous solution is added in 2 hours, similar to the addition time of the ethylene glycol aqueous solution. At the end of the addition of the ethylene glycol aqueous solution, the ratio of the theoretical amount a of nitric acid to the theoretical amount b of ethylene glycol, a / b, was 0.9. The addition of the nitric acid aqueous solution was completed 12 minutes after the end of the addition of the ethylene glycol aqueous solution. Thereafter, aging was continued for 30 minutes. The temperature at this time was 105 ° C. After aging, the remaining Cr 6+ was checked, and further aging was continued by adding an ethylene glycol aqueous solution. The reaction was terminated after confirming that the color development of Cr 6+ was lost by the diphenylcarbazite method. Nitrous acid gas was not generated during the reaction. The composition of the obtained chromium nitrate aqueous solution was as follows.

Figure 2005314724
Figure 2005314724

〔実施例3〕
コンデンサー付ガラス製反応槽に、60%クロム酸水溶液70.0kg及び水35.0kgを入れ、充分撹拌して、40%のクロム酸水溶液とした。還元剤としては99.5%メチルアルコール6.8kgに水を29.9kg加えた18%のメチルアルコール水溶液を用いた。このメチルアルコール水溶液を306g/minの速度で定量ポンプを用いてクロム酸水溶液に添加した。この添加速度は、18%メチルアルコール水溶液36.7kgを2時間で添加する速度である。
Example 3
A 60% chromic acid aqueous solution (70.0 kg) and water (35.0 kg) were placed in a glass reactor with a condenser, and the mixture was sufficiently stirred to obtain a 40% chromic acid aqueous solution. As a reducing agent, an 18% aqueous solution of methyl alcohol obtained by adding 29.9 kg of water to 6.8 kg of 99.5% methyl alcohol was used. This aqueous methyl alcohol solution was added to the aqueous chromic acid solution at a rate of 306 g / min using a metering pump. This addition rate is a rate at which 36.7 kg of 18% aqueous methyl alcohol solution is added in 2 hours.

メチルアルコール水溶液の添加開始から12分後に、67.5%硝酸水溶液117.6kgを980g/minの速度でメチルアルコール水溶液とは別に添加した。この添加速度は、メチルアルコール水溶液の添加時間と同様に、2時間で硝酸水溶液を添加する速度である。メチルアルコール水溶液添加終了時の、硝酸の理論量a及びメチルアルコールの理論量bの比、a/bは0.9であった。メチルアルコール水溶液の添加終了後、12分後に硝酸水溶液の添加も終了した。その後熟成を30分継続した。このときの温度は105℃であった。熟成後、残存のCr6+をチェックし、メチルアルコール水溶液を追加してさらに熟成を継続した。ジフェニルカルバジット法にてCr6+の発色がなくなったを確認して反応終了とした。反応中、コンデンサー下部から凝縮水を50kg抜きとり濃縮を行った。反応終了後、常温まで冷却し、種結晶を投入して一昼夜撹拌を継続した。析出した結晶を遠心分離機で分離し、硝酸クロムの結晶25kgを回収した。得られた結晶はX線回折にてCr(NO33・9H2Oであることが確認された。得られた硝酸クロム結晶の組成は以下の通りであった。 12 minutes after the start of the addition of the aqueous methyl alcohol solution, 117.6 kg of a 67.5% aqueous nitric acid solution was added separately from the aqueous methyl alcohol solution at a rate of 980 g / min. This addition rate is a rate at which the aqueous nitric acid solution is added in 2 hours, similar to the addition time of the aqueous methyl alcohol solution. The ratio a / b of the theoretical amount a of nitric acid and the theoretical amount b of methyl alcohol at the end of the addition of the aqueous methyl alcohol solution was 0.9. The addition of the aqueous nitric acid solution was completed 12 minutes after the completion of the addition of the aqueous methyl alcohol solution. Thereafter, aging was continued for 30 minutes. The temperature at this time was 105 ° C. After aging, the remaining Cr 6+ was checked, and an aqueous methyl alcohol solution was added to continue aging. The reaction was terminated after confirming that the color development of Cr 6+ disappeared by the diphenylcarbazite method. During the reaction, 50 kg of condensed water was extracted from the bottom of the condenser and concentrated. After completion of the reaction, the reaction mixture was cooled to room temperature, seed crystals were added, and stirring was continued for a whole day and night. The precipitated crystals were separated by a centrifugal separator, and 25 kg of chromium nitrate crystals were recovered. The obtained crystal was confirmed to be Cr (NO 3 ) 3 .9H 2 O by X-ray diffraction. The composition of the obtained chromium nitrate crystals was as follows.

Figure 2005314724
Figure 2005314724

〔実施例4〕
コンデンサー付ガラス製反応容器に、60%液体クロム酸280.2g,水280.2gをいれ、充分撹拌して、30%のクロム酸水溶液とした。還元剤としては98.5%エチレングリコール31.7gに水を60.2g加えた34%のエチレングリコール水溶液を用いた。このエチレングリコールを0.77g/minの速度で定量ポンプを用いてクロム酸水溶液に添加した。この添加速度は、34%エチレングリコール91.9gを2時間で添加する速度である。
Example 4
A glass reaction vessel with a condenser was charged with 280.2 g of 60% liquid chromic acid and 280.2 g of water, and sufficiently stirred to obtain a 30% chromic acid aqueous solution. As a reducing agent, a 34% ethylene glycol aqueous solution in which 60.2 g of water was added to 91.7% ethylene glycol 31.7 g was used. This ethylene glycol was added to the chromic acid aqueous solution using a metering pump at a rate of 0.77 g / min. This addition rate is a rate at which 91.9 g of 34% ethylene glycol is added in 2 hours.

エチレングリコール水溶液の添加開始から12分後に67.5%硝酸392.2gを3.27g/minの速度でエチレングリコール水溶液とは別に添加した。この添加速度は、エチレングリコール水溶液の添加時間と同様に、2時間で硝酸を添加する速度である。エチレングリコール水溶液添加終了時の硝酸の理論量a及びエチレングリコールの理論量bの比、a/bは0.9であった。エチレングリコール水溶液の添加終了後、12分後に硝酸の添加も終了した。その後熟成を30分継続した。このときの温度は105℃であった。熟成後、残存のCr6+をチェックし、エチレングリコール水溶液を追加してさらに熟成を継続した。ジフェニルカルバジット法にてCr6+の発色がなくなったことを確認して反応終了とした。反応中に亜硝酸ガスの発生はみられなかった。得られた硝酸クロム水溶液の組成は、以下の通りであった。 Twelve minutes after the start of the addition of the aqueous ethylene glycol solution, 392.2 g of 67.5% nitric acid was added separately from the aqueous ethylene glycol solution at a rate of 3.27 g / min. This addition rate is a rate at which nitric acid is added in 2 hours, similar to the addition time of the aqueous ethylene glycol solution. The ratio, a / b, of the theoretical amount a of nitric acid a and the theoretical amount b of ethylene glycol at the end of the addition of the ethylene glycol aqueous solution was 0.9. The addition of nitric acid was completed 12 minutes after the end of the addition of the ethylene glycol aqueous solution. Thereafter, aging was continued for 30 minutes. The temperature at this time was 105 ° C. After aging, the remaining Cr 6+ was checked, and further aging was continued by adding an ethylene glycol aqueous solution. The reaction was terminated after confirming that the color development of Cr 6+ was lost by the diphenylcarbazite method. Nitrous acid gas was not generated during the reaction. The composition of the obtained chromium nitrate aqueous solution was as follows.

Figure 2005314724
Figure 2005314724

〔比較例1〕
コンデンサー付ガラス製反応容器に、水を251.6g入れ、更に三酸化クロム酸168.6gを投入し、充分撹拌して溶解し、40%のクロム酸水溶液とした。還元剤としては97%グルコース39.0gに水を107.2g加えた26%のグルコース水溶液を用いた。このグルコース水溶液を1.22g/minの速度で定量ポンプを用いてクロム酸水溶液に添加した。この添加速度は、26%グルコース水溶液146.2gを2時間で添加する速度である。
[Comparative Example 1]
251.6 g of water was added to a glass reaction vessel with a condenser, and further 168.6 g of chromic trioxide was added and dissolved with sufficient stirring to obtain a 40% chromic acid aqueous solution. As the reducing agent, a 26% glucose aqueous solution in which 107.2 g of water was added to 39.0 g of 97% glucose was used. This aqueous glucose solution was added to the aqueous chromic acid solution using a metering pump at a rate of 1.22 g / min. This addition rate is a rate at which 146.2 g of a 26% glucose aqueous solution is added in 2 hours.

グルコース水溶液の添加開始から12分後に、67.5%の硝酸水溶液470.6gを3.92g/minの速度でグルコース水溶液とは別に添加した。この添加速度は、グルコース水溶液の添加時間と同様に、2時間で硝酸水溶液を添加する速度である。グルコース水溶液添加終了時の、硝酸の理論量a及びグルコースの理論量bの比、a/bは0.9であった。グルコース水溶液の終了後、12分後に硝酸水溶液の添加も終了した。その後熟成を30分継続した。このときの温度は105℃であった。熟成後、残存のCr6+をチェックし、グルコース水溶液を追加してさらに熟成を継続した。ジフェニルカルバジット法にてCr6+の発色がなくなったを確認して反応終了とした。反応中に亜硝酸ガスの発生はみられなかった。得られた硝酸クロム水溶液の組成は以下の通りであった。 12 minutes after the start of the addition of the aqueous glucose solution, 470.6 g of a 67.5% aqueous nitric acid solution was added separately from the aqueous glucose solution at a rate of 3.92 g / min. This addition rate is the rate at which the aqueous nitric acid solution is added in 2 hours, similar to the addition time of the aqueous glucose solution. At the end of addition of the aqueous glucose solution, the ratio of the theoretical amount a of nitric acid to the theoretical amount b of glucose, a / b, was 0.9. The addition of the aqueous nitric acid solution was also completed 12 minutes after the completion of the aqueous glucose solution. Thereafter, aging was continued for 30 minutes. The temperature at this time was 105 ° C. After aging, the remaining Cr 6+ was checked, and an aqueous glucose solution was added to continue aging. The reaction was terminated after confirming that the color development of Cr 6+ disappeared by the diphenylcarbazite method. Nitrous acid gas was not generated during the reaction. The composition of the obtained chromium nitrate aqueous solution was as follows.

Figure 2005314724
Figure 2005314724

〔性能評価〕
実施例1、2及び4並びに比較例1で得られた硝酸クロム水溶液を用いてクロメート処理液を建浴し、亜鉛めっき鋼板のテストピースを浸漬、乾燥してクロメート処理を行った。処理後の光沢の程度を評価した。その結果を以下に示す。
[Performance evaluation]
The chromate treatment solution was erected using the chromium nitrate aqueous solutions obtained in Examples 1, 2, and 4 and Comparative Example 1, and the chromate treatment was performed by immersing and drying test pieces of galvanized steel sheets. The degree of gloss after the treatment was evaluated. The results are shown below.

Figure 2005314724
Figure 2005314724

前記の結果から明らかなように、実施例の硝酸クロム水溶液(本発明品)を用いると、クロメート処理による光沢が優れたものになることが判る。

As is clear from the above results, it can be seen that when the chromium nitrate aqueous solution of the example (product of the present invention) is used, the gloss by the chromate treatment is excellent.

Claims (9)

シュウ酸の含有量が0.5重量%以下であることを特徴とする硝酸クロム水溶液。   A chromium nitrate aqueous solution, wherein the content of oxalic acid is 0.5% by weight or less. 全有機炭素がクロムに対して2.5重量%以下である請求項1記載の硝酸クロム水溶液。   The aqueous chromium nitrate solution according to claim 1, wherein the total organic carbon is 2.5% by weight or less based on chromium. 水溶液中の不純物金属イオンがCr(NO33として40重量%換算あたりNa≦30ppm、Fe≦20ppmである請求項1又は2記載の硝酸クロム水溶液。 3. The aqueous chromium nitrate solution according to claim 1, wherein impurity metal ions in the aqueous solution are Na ≦ 30 ppm and Fe ≦ 20 ppm per 40 wt% as Cr (NO 3 ) 3 . Crと結合していないフリーの硝酸イオンを実質的に含まない請求項1ないし3の何れかに記載の硝酸クロム水溶液。   The chromium nitrate aqueous solution according to any one of claims 1 to 3, which is substantially free of free nitrate ions not bonded to Cr. クロム酸水溶液に、硝酸と有機還元剤とを別々に且つ同時に添加することを特徴とする硝酸クロム水溶液の製造方法。   A method for producing a chromium nitrate aqueous solution, wherein nitric acid and an organic reducing agent are separately and simultaneously added to the chromic acid aqueous solution. クロム酸を硝酸クロムに転換するのに要する硝酸の理論量をa、クロム酸を還元するのに要する有機還元剤の理論量をbとしたとき、a<bの関係となるように硝酸と有機還元剤と添加する請求項5記載の硝酸クロム水溶液の製造方法。   When the theoretical amount of nitric acid required to convert chromic acid to chromium nitrate is a, and the theoretical amount of organic reducing agent required to reduce chromic acid is b, nitric acid and organic so that a <b is satisfied. The method for producing an aqueous chromium nitrate solution according to claim 5, which is added with a reducing agent. 有機還元剤が、一価アルコール又は二価アルコールである請求項5又は6記載の硝酸クロム水溶液の製造方法。   The method for producing an aqueous chromium nitrate solution according to claim 5 or 6, wherein the organic reducing agent is a monohydric alcohol or a dihydric alcohol. シュウ酸含有量がクロムに対して2重量%以下であることを特徴とする硝酸クロム結晶。   A chromium nitrate crystal having an oxalic acid content of 2% by weight or less based on chromium. クロム酸水溶液に、硝酸と有機還元剤とを別々に且つ同時に添加して硝酸クロム水溶液を生成させ、次いで該硝酸クロム水溶液を加熱濃縮し、更に冷却させることにより硝酸クロム結晶を析出させることを特徴とする硝酸クロム結晶の製造方法。
A feature is that a nitric acid and an organic reducing agent are separately and simultaneously added to a chromic acid aqueous solution to form a chromic nitrate aqueous solution, and then the chromic nitrate aqueous solution is heated and concentrated, and further cooled to precipitate chromium nitrate crystals. A method for producing chromium nitrate crystals.
JP2004132079A 2003-12-10 2004-04-27 Chromium nitrate aqueous solution and method for producing the same Expired - Lifetime JP3942604B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2004132079A JP3942604B2 (en) 2004-04-27 2004-04-27 Chromium nitrate aqueous solution and method for producing the same
BRPI0416838-0A BRPI0416838A (en) 2003-12-10 2004-11-22 aqueous solution of chromium salt and method for producing it
PCT/JP2004/017353 WO2005056478A1 (en) 2003-12-10 2004-11-22 Aqueous solution of chromium salt and method for producing same
KR1020067011319A KR101190369B1 (en) 2003-12-10 2004-11-22 Aqueous solution of chromium salt and method for producing same
US10/578,626 US7641721B2 (en) 2003-12-10 2004-11-22 Aqueous solution of chromium salt and method for producing same
EP04820113A EP1712524A4 (en) 2003-12-10 2004-11-22 Aqueous solution of chromium salt and method for producing same
CA002545320A CA2545320A1 (en) 2003-12-10 2004-11-22 Aqueous solution of chromium salt and method for producing same
KR1020127017977A KR101265801B1 (en) 2003-12-10 2004-11-22 Aqueous solution of chromium salt and method for producing same
TW093136279A TWI285224B (en) 2003-12-10 2004-11-25 Aqueous solution of chromium salt and method for producing same
US12/646,048 US8083842B2 (en) 2003-12-10 2009-12-23 Aqueous solution of chromium salt and method for producing same
US13/338,012 US20120199787A1 (en) 2003-12-10 2011-12-27 Aqueous solution of chromium salt and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132079A JP3942604B2 (en) 2004-04-27 2004-04-27 Chromium nitrate aqueous solution and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005314724A true JP2005314724A (en) 2005-11-10
JP3942604B2 JP3942604B2 (en) 2007-07-11

Family

ID=35442454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132079A Expired - Lifetime JP3942604B2 (en) 2003-12-10 2004-04-27 Chromium nitrate aqueous solution and method for producing the same

Country Status (1)

Country Link
JP (1) JP3942604B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041092A (en) * 2007-08-10 2009-02-26 Daiwa Fine Chemicals Co Ltd (Laboratory) Chemical treatment liquid for galvanizing or galvannealing film, and method for forming corrosion protection coating using the same
JP2011131183A (en) * 2009-12-25 2011-07-07 Ihi Corp Method and apparatus for treating metal residue

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041092A (en) * 2007-08-10 2009-02-26 Daiwa Fine Chemicals Co Ltd (Laboratory) Chemical treatment liquid for galvanizing or galvannealing film, and method for forming corrosion protection coating using the same
JP2011131183A (en) * 2009-12-25 2011-07-07 Ihi Corp Method and apparatus for treating metal residue

Also Published As

Publication number Publication date
JP3942604B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
US8083842B2 (en) Aqueous solution of chromium salt and method for producing same
JP4993959B2 (en) Chromium (III) organic acid aqueous solution and method for producing the same
CN101668881B (en) Agent for the production of anticorrosive layers on metal surfaces
US7491377B2 (en) Method of making basic aluminum halides
JP5518718B2 (en) Method for producing aqueous solution containing chromium (III)
JP3942604B2 (en) Chromium nitrate aqueous solution and method for producing the same
JPH01176227A (en) High-purity chromium chloride water solution and production therefof
JP5009493B2 (en) Chromium chloride aqueous solution and method for producing the same
KR20110052732A (en) Method for producing aqueous solution containing chromium (iii) source
JP4156559B2 (en) Method for producing aqueous chromium phosphate solution
JP4659855B2 (en) Chromium phosphate aqueous solution
JP4677011B2 (en) Method for producing aqueous chromium phosphate solution
TWI518041B (en) A method of recycling sodium hexafluoroaluminate from hydrofluoric acid waste liquid
JP5362292B2 (en) Production method of Schwertmannite
JP5008028B2 (en) Method for synthesizing low ammonium type titanium peroxo compounds
CA1158018A (en) Process for production of coc1.sub.2 solution from cobaltic oxide-hydrate
JP4785631B2 (en) Method for producing chromium chloride solution and chromium chloride solution for surface treatment
WO2015029495A1 (en) Method for reducing strontium ion concentration
TWI417249B (en) Method for manufacturing particle of ferric ferrous oxide powder
CN117105194A (en) Preparation and impurity removal method of high-purity ferric phosphate dihydrate
JPS61117116A (en) Purification of rare earth compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050927

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

R150 Certificate of patent or registration of utility model

Ref document number: 3942604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250