JP2005314269A - Method for jointly producing dihydroxybenzene and diisopropenylbenzene - Google Patents

Method for jointly producing dihydroxybenzene and diisopropenylbenzene Download PDF

Info

Publication number
JP2005314269A
JP2005314269A JP2004133180A JP2004133180A JP2005314269A JP 2005314269 A JP2005314269 A JP 2005314269A JP 2004133180 A JP2004133180 A JP 2004133180A JP 2004133180 A JP2004133180 A JP 2004133180A JP 2005314269 A JP2005314269 A JP 2005314269A
Authority
JP
Japan
Prior art keywords
reaction
dhpo
chpo
dhb
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004133180A
Other languages
Japanese (ja)
Inventor
Masayuki Yoshii
政之 吉井
Naoki Morimura
直樹 森村
Shigefumi Tokumasu
重文 徳増
Masaru Ishino
勝 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004133180A priority Critical patent/JP2005314269A/en
Publication of JP2005314269A publication Critical patent/JP2005314269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently produce a dihydroxybenzene (DHB) and a diisopropenylbenzene (DST) simultaneously by using diisopropylbenzene (DIPB) as a starting material. <P>SOLUTION: The method for obtaining the DHB and the DST simultaneously comprises (1) an oxidation step for obtaining di(2-hydroperoxyisopropyl)benzene (DHPO) and 2-hydroxyisopropyl-2-hydroperoxyisopropylbenzene (CHPO) by subjecting the DIPB to an oxidation reaction, (2) a separation step for separating the DHPO and the CHPO into each compound, (3) an acidolysis step for obtaining dihydroxybenzene (DHB) by subjecting the DHPO to an acidolysis reaction, (4) a reduction step for obtaining di(2-hydroxyisopropyl)benzene (DCA) by subjecting the CHPO to a reduction reaction, and (5) a dehydration step for obtaining the DST by subjecting the DCA to a dehydration reaction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ジヒドロキシベンゼン(DHB)とジイソプロペニルベンゼン(DST)の併産方法に関するものである。更に詳しくは、本発明は、ジイソプロピルベンゼン(DIPB)を出発原料とし、ジヒドロキシベンゼン(DHB)とジイソプロペニルベンゼン(DST)を効率よく同時に製造することができるという優れた特徴を有するジヒドロキシベンゼン(DHB)とジイソプロペニルベンゼン(DST)の併産方法に関するものである。なお、ジヒドロキシベンゼン(DHB)は、接着剤、医農薬中間体又は染料中間体原料等として有用な化合物であり、またジイソプロペニルベンゼン(DST)は、耐加水分解性、耐候性及び低毒性に優れたウレタン原料等として有用な化合物である。   The present invention relates to a method for co-production of dihydroxybenzene (DHB) and diisopropenylbenzene (DST). More specifically, the present invention uses diisopropylbenzene (DHB) as a starting material, and dihydroxybenzene (DHB) having an excellent feature that dihydroxybenzene (DHB) and diisopropenylbenzene (DST) can be efficiently and simultaneously produced. ) And diisopropenylbenzene (DST). Dihydroxybenzene (DHB) is a compound useful as a raw material for adhesives, medical and agrochemical intermediates or dye intermediates, and diisopropenylbenzene (DST) is resistant to hydrolysis, weather resistance and low toxicity. It is a useful compound as an excellent urethane raw material.

ジヒドロキシベンゼン(DHB)の製造方法としては、ジイソプロピルベンゼン(DIPB)を空気酸化に付すことによりジ(2−ヒドロペルオキシイソプロピル)ベンゼン(DHPO)に変換し、更に該ジ(2−ヒドロペルオキシイソプロピル)ベンゼン(DHPO)を、酸触媒の存在下、分解する方法が知られている(特許文献1参照。)。また、ジイソプロペニルベンゼン(DST)の製造方法としては、脱水素触媒の存在下、ジイソプロピルベンゼン(DIPB)を脱水素する方法が知られている(特許文献2参照。)。
しかしながら、ジイソプロピルベンゼン(DIPB)を出発原料とし、ジヒドロキシベンゼン(DHB)とジイソプロペニルベンゼン(DST)を効率よく同時に製造することができるという優れた特徴を有するジヒドロキシベンゼン(DHB)とジイソプロペニルベンゼン(DST)の併産方法については開示がない。
特開昭49−72220号公報 特開2000−327596号公報
As a method for producing dihydroxybenzene (DHB), diisopropylbenzene (DIPB) is converted to di (2-hydroperoxyisopropyl) benzene (DHPO) by subjecting it to air oxidation, and further di (2-hydroperoxyisopropyl) benzene. A method of decomposing (DHPO) in the presence of an acid catalyst is known (see Patent Document 1). Further, as a method for producing diisopropenylbenzene (DST), a method of dehydrogenating diisopropylbenzene (DIPB) in the presence of a dehydrogenation catalyst is known (see Patent Document 2).
However, dihydroxybenzene (DHB) and diisopropenylbenzene having excellent characteristics that dihydroxybenzene (DHB) and diisopropenylbenzene (DST) can be efficiently and simultaneously produced using diisopropylbenzene (DIPB) as a starting material. There is no disclosure about the method of co-production of (DST).
JP 49-72220 A JP 2000-327596 A

かかる状況において、本発明が解決しようとする課題は、ジイソプロピルベンゼン(DIPB)を出発原料とし、ジヒドロキシベンゼン(DHB)とジイソプロペニルベンゼン(DST)を効率よく同時に製造することができるという優れた特徴を有するジヒドロキシベンゼン(DHB)とジイソプロペニルベンゼン(DST)の併産方法を提供する点にある。   In such a situation, the problem to be solved by the present invention is an excellent characteristic that dihydroxybenzene (DHB) and diisopropenylbenzene (DST) can be efficiently and simultaneously produced using diisopropylbenzene (DIPB) as a starting material. It is the point which provides the co-production method of dihydroxybenzene (DHB) and diisopropenylbenzene (DST) which have these.

すなわち、本発明は、下記の工程を有するジヒドロキシベンゼン(DHB)とジイソプロペニルベンゼン(DST)の併産方法に係るものである。
(1)酸化工程:ジイソプロピルベンゼン(DIPB)を酸化反応に付し、ジ(2−ヒドロペルオキシイソプロピル)ベンゼン(DHPO)と2−ヒドロキシイソプロピル−2−ヒドロペルオキシイソプロピルベンゼン(CHPO)を得る工程
(2)分離工程:酸化工程で得られたジ(2−ヒドロペルオキシイソプロピル)ベンゼン(DHPO)と2−ヒドロキシイソプロピル−2−ヒドロペルオキシイソプロピルベンゼン(CHPO)を、ジ(2−ヒドロペルオキシイソプロピル)ベンゼン(DHPO)を含む溶液と2−ヒドロキシイソプロピル−2−ヒドロペルオキシイソプロピルベンゼン(CHPO)を含む溶液の各々に分離する工程
(3)酸分解工程:分離工程で得られたジ(2−ヒドロペルオキシイソプロピル)ベンゼン(DHPO)を含む溶液を酸分解反応に付し、ジヒドロキシベンゼン(DHB)を得る工程
(4)還元工程:分離工程で得られた2−ヒドロキシイソプロピル−2−ヒドロペルオキシイソプロピルベンゼン(CHPO)を含む溶液を還元反応に付し、ジ(2−ヒドロキシイソプロピル)ベンゼン(DCA)を得る工程
(5)脱水工程:還元工程で得られたジ(2−ヒドロキシイソプロピル)ベンゼン(DCA)を脱水反応に付し、ジイソプロペニルベンゼン(DST)を得る工程
That is, the present invention relates to a method for co-production of dihydroxybenzene (DHB) and diisopropenylbenzene (DST) having the following steps.
(1) Oxidation step: Step of obtaining di (2-hydroperoxyisopropyl) benzene (DHPO) and 2-hydroxyisopropyl-2-hydroperoxyisopropylbenzene (CHPO) by subjecting diisopropylbenzene (DIPB) to an oxidation reaction. ) Separation step: Di (2-hydroperoxyisopropyl) benzene (DHPO) and 2-hydroxyisopropyl-2-hydroperoxyisopropylbenzene (CHPO) obtained in the oxidation step are converted into di (2-hydroperoxyisopropyl) benzene (DHPO). ) And a solution containing 2-hydroxyisopropyl-2-hydroperoxyisopropylbenzene (CHPO) (3) Acid decomposition step: di (2-hydroperoxyisopropyl) benzene obtained in the separation step (DH Step of subjecting solution containing O) to acid decomposition reaction to obtain dihydroxybenzene (DHB) (4) Reduction step: Solution containing 2-hydroxyisopropyl-2-hydroperoxyisopropylbenzene (CHPO) obtained in separation step (5) Dehydration step: Di (2-hydroxyisopropyl) benzene (DCA) obtained in the reduction step is subjected to a dehydration reaction. Obtaining diisopropenylbenzene (DST)

本発明により、ジイソプロピルベンゼン(DIPB)を出発原料とし、ジヒドロキシベンゼン(DHB)とジイソプロペニルベンゼン(DST)を効率よく同時に製造することができるという優れた特徴を有するジヒドロキシベンゼン(DHB)とジイソプロペニルベンゼン(DST)の併産方法を提供することができる。   According to the present invention, using diisopropylbenzene (DIPB) as a starting material, dihydroxybenzene (DHB) and diisobenzene having an excellent feature that dihydroxybenzene (DHB) and diisopropenylbenzene (DST) can be efficiently and simultaneously produced. A method of co-production of propenylbenzene (DST) can be provided.

以下、符号に対応する化合物名を示す。
DHB:ジヒドロキシベンゼン
DST:ジイソプロペニルベンゼン
DIPB:ジイソプロピルベンゼン
DHPO:ジ(2−ヒドロペルオキシイソプロピル)ベンゼン
CHPO:2−ヒドロキシイソプロピル−2−ヒドロペルオキシイソプロピルベンゼン
DCA:ジ(2−ヒドロキシイソプロピル)ベンゼン
MHPO:イソプロピル−2−ヒドロペルオキシイソプロピルベンゼン
MIBK:メチルイソブチルケトン
The compound names corresponding to the symbols are shown below.
DHB: dihydroxybenzene DST: diisopropenylbenzene DIPB: diisopropylbenzene DHPO: di (2-hydroperoxyisopropyl) benzene CHPO: 2-hydroxyisopropyl-2-hydroperoxyisopropylbenzene DCA: di (2-hydroxyisopropyl) benzene MHPO: Isopropyl-2-hydroperoxyisopropylbenzene MIBK: methyl isobutyl ketone

本発明の出発原料は、DIPBである。使用するDIPBに特に制限はない。DIPBは、工業的には、ベンゼンとプロピレンをアルキル化反応に付して製造できる。   The starting material of the present invention is DIPB. There is no particular limitation on the DIPB used. DIPB can be produced industrially by subjecting benzene and propylene to an alkylation reaction.

本発明の(1)酸化工程は、DIPBを酸化反応に付し、DHPOとCHPOを得る工程である。   The (1) oxidation step of the present invention is a step of subjecting DIPB to an oxidation reaction to obtain DHPO and CHPO.

酸化反応は、無水非アルカリ条件下又はアルカリ水溶液存在下にて実施できるが、反応速度及び反応選択率の観点から、アルカリ水溶液存在下に行うのが好ましい。この場合、アルカリ水溶液のpHは8〜11が好ましい。アルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムなどの水溶液があげられるが、工業的に安価な水酸化ナトリウム水溶液が製造コストの観点から好ましい。アルカリ濃度としては、20重量%以下が好ましい。また、アルカリ水溶液の使用量は、全反応液の0.01〜20重量%を占めるようにすることが好ましく、全反応液の0.1〜10重量%を占めるようにすることが更に好ましい。この割合が過小であると反応速度や反応選択率が低下することがあり、一方この割合が過大であると反応ゾーンの減少による生産性の低下を招き、また反応生成物中の有効成分の水層への損失が課題となることがある。酸化反応は、DIPBを含む酸化原料液中に空気を吹き込むことにより実施される。反応温度は通常70〜120℃であり、反応時間は0.1〜20時間の範囲である。反応形式としては回分法でも可能だが、連続法の方が好ましい。上記のアルカリ水溶液のpH及び量、反応温度、反応時間などの反応条件を制御することにより、DIPBの転化率を制御することができる。該転化率が低い方が有効成分であるDHPO、CHPO及びこれらの中間体であるMHPOへの選択性が上がるが、一方、該転化率が高い方が生産性は上がる。ここで、生産性とは、反応器単位容量及び単位時間当たりの有効成分の生成速度を意味する。かかる事情を考慮すると、連続法におけるDIPBの転化率は10〜60%が好ましく、15〜50%が更に好ましい。そして、酸化反応液中の未反応のDIPB及びMHPOの濃度は20〜50重量%の範囲に維持するのが好ましい。   The oxidation reaction can be carried out under anhydrous non-alkaline conditions or in the presence of an aqueous alkali solution, but it is preferably carried out in the presence of an aqueous alkali solution from the viewpoint of reaction rate and reaction selectivity. In this case, the pH of the alkaline aqueous solution is preferably 8-11. Examples of the alkaline aqueous solution include aqueous solutions of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate and the like, but an industrially inexpensive sodium hydroxide aqueous solution is preferable from the viewpoint of production cost. The alkali concentration is preferably 20% by weight or less. Moreover, it is preferable that the usage-amount of alkaline aqueous solution occupies 0.01-20 weight% of all the reaction liquids, and it is still more preferable to occupy 0.1-10 weight% of all the reaction liquids. If this ratio is too small, the reaction rate and the reaction selectivity may decrease. On the other hand, if this ratio is too large, the productivity will decrease due to the decrease in the reaction zone, and the active ingredient water in the reaction product will decrease. Loss to the layer can be an issue. The oxidation reaction is performed by blowing air into an oxidation raw material liquid containing DIPB. The reaction temperature is usually 70 to 120 ° C., and the reaction time is in the range of 0.1 to 20 hours. As a reaction mode, a batch method is possible, but a continuous method is preferred. The conversion rate of DIPB can be controlled by controlling the reaction conditions such as the pH and amount of the alkaline aqueous solution, the reaction temperature, and the reaction time. The lower the conversion rate, the higher the selectivity to the active ingredients DHPO, CHPO and their intermediate MHPO, while the higher the conversion rate, the higher the productivity. Here, productivity means the reactor unit capacity and the production rate of the active ingredient per unit time. Considering such circumstances, the conversion rate of DIPB in the continuous process is preferably 10 to 60%, more preferably 15 to 50%. And it is preferable to maintain the density | concentration of the unreacted DIPB and MHPO in an oxidation reaction liquid in the range of 20 to 50 weight%.

本発明の(2)分離工程は、酸化工程で得られたDHPOとCHPOを、DHPOを含む溶液とCHPOを含む溶液の各々に分離する工程である。   The (2) separation step of the present invention is a step of separating DHPO and CHPO obtained in the oxidation step into a solution containing DHPO and a solution containing CHPO.

該分離工程は、酸化工程で得られた酸化反応液を水酸化ナトリウム水溶液による抽出操作及び有機溶媒による抽出操作に付すことにより、DHPOとCHPOとを、各々分離する工程である。酸化工程で得られた酸化反応液は、未反応のDIPB、MHPO、DHPO、CHPO及びその他の副生物を含む。これらのうち、DHPO及びCHPOは水酸化ナトリウム水溶液中に抽出される。この際、油水の分液性及び抽出効率を高めるために、酸化反応液に水酸化ナトリウム水溶液及び/又はDIPBを、別途適当量添加しても良い。抽出温度は、通常0〜100℃の範囲である。水酸化ナトリウム水溶液中に抽出されなかったDIPB及びMHPOを含む有機溶媒層は、酸化工程へリサイクルされ得る。DHPO及びCHPOを抽出する際の水酸化ナトリウム水溶液の濃度としては、2〜20重量%が好ましく、4〜15重量%が更に好ましい。該濃度が低すぎると抽出効率が低下する場合があり、一方該濃度が高すぎるとアルカリ使用量の増加及びDHPOやCHPO等の有効成分の劣化を招く場合がある。水酸化ナトリウム水溶液による抽出操作により得られたDHPO及びCHPOを含む水酸化ナトリウム水溶液は、次に有機溶媒による抽出操作に付される。このことにより、DHPOとCHPOとを、各々分離することができる。有機溶媒としては、炭素数4〜10のケトン類、炭素数4〜10のエーテル類、炭素数4〜8のアルコール類が、抽出効率及び溶媒回収の観点から好ましい。なお、MIBKが最も好ましい。溶媒は、一種を単独で用いても良く、又は、二種以上を混合して用いても良い。有機溶媒による抽出は、0〜50℃程度の低温における抽出と、該抽出温度より5〜50℃高い温度にて行われる、高温における抽出を組み合わせて行うことが好ましい。すなわち、低温における抽出によりCHPOを選択的に有機溶媒層に移行させ、その後高温における抽出によりDHPOを有機溶媒層に移行させるのである。かくして、CHPOとDHPOが各々別々に分離して回収される。なお、低温における抽出により得られるCHPOを含む溶液中にも少量のDHPOが混在する。また、高温における抽出により得られるDHPOを含む溶液中にも少量のCHPOが混在する。低温における抽出により得られる溶液中のCHPO濃度は2〜20重量%とし、DHPOの濃度は1重量%以下とすることが好ましい。また、高温における抽出により得られる溶液中のDHPOの濃度は5〜30重量%とし、CHPOの濃度は1重量%以下とすることが好ましい。   The separation step is a step of separating DHPO and CHPO from each other by subjecting the oxidation reaction liquid obtained in the oxidation step to an extraction operation with an aqueous sodium hydroxide solution and an extraction operation with an organic solvent. The oxidation reaction solution obtained in the oxidation step contains unreacted DIPB, MHPO, DHPO, CHPO, and other by-products. Of these, DHPO and CHPO are extracted into aqueous sodium hydroxide. At this time, an appropriate amount of an aqueous sodium hydroxide solution and / or DIPB may be added to the oxidation reaction solution in order to improve the separation property and extraction efficiency of the oil water. The extraction temperature is usually in the range of 0 to 100 ° C. The organic solvent layer containing DIPB and MHPO that has not been extracted into the aqueous sodium hydroxide solution can be recycled to the oxidation step. The concentration of the aqueous sodium hydroxide solution when extracting DHPO and CHPO is preferably 2 to 20% by weight, and more preferably 4 to 15% by weight. If the concentration is too low, the extraction efficiency may decrease. On the other hand, if the concentration is too high, the amount of alkali used may increase and active ingredients such as DHPO and CHPO may deteriorate. The aqueous sodium hydroxide solution containing DHPO and CHPO obtained by the extraction operation with an aqueous sodium hydroxide solution is then subjected to an extraction operation with an organic solvent. Thereby, DHPO and CHPO can be separated from each other. As the organic solvent, ketones having 4 to 10 carbon atoms, ethers having 4 to 10 carbon atoms, and alcohols having 4 to 8 carbon atoms are preferable from the viewpoint of extraction efficiency and solvent recovery. MIBK is most preferable. A solvent may be used individually by 1 type, or may mix and use 2 or more types. The extraction with an organic solvent is preferably performed by combining extraction at a low temperature of about 0 to 50 ° C. and extraction at a high temperature that is performed at a temperature 5 to 50 ° C. higher than the extraction temperature. That is, CHPO is selectively transferred to the organic solvent layer by extraction at a low temperature, and then DHPO is transferred to the organic solvent layer by extraction at a high temperature. Thus, CHPO and DHPO are separately separated and recovered. A small amount of DHPO is also mixed in a solution containing CHPO obtained by extraction at a low temperature. A small amount of CHPO is also mixed in a solution containing DHPO obtained by extraction at a high temperature. The CHPO concentration in the solution obtained by extraction at a low temperature is preferably 2 to 20% by weight, and the DHPO concentration is preferably 1% by weight or less. The concentration of DHPO in the solution obtained by extraction at high temperature is preferably 5 to 30% by weight, and the concentration of CHPO is preferably 1% by weight or less.

本発明の(3)酸分解工程は、分離工程で得られたDHPOを含む溶液を酸分解反応に付し、DHBを得る工程である。   The (3) acid decomposition step of the present invention is a step of obtaining DHB by subjecting the solution containing DHPO obtained in the separation step to an acid decomposition reaction.

該酸分解工程は、分離工程で得られたDHPOを、酸触媒の存在下、分解反応に付すことにより、DHBを得る工程である。用いる酸触媒としては、塩化アルミニウム、三フッ化ホウ素、塩化第二鉄、塩化第二スズ等のルイス酸及び硫酸、リン酸、塩酸、過塩素酸、ベンゼンスルホン酸、p−トルエンスルホン酸、強酸性イオン交換樹脂等のプロトン酸等がある。収率や取り扱い易さの点で濃硫酸及び無水硫酸が好ましく、無水硫酸が更に好ましい。酸分解反応に供される液中には、通常1〜10重量%の水分が含まれるので、このままでは酸分解の触媒に悪影響を及ぼす。そのため、通常は酸分解の前に水の一部を蒸留で留去する操作が行われる。除かれる水分濃度は1重量%以下まで低減するのが好ましい。このようにして得られた液は酸分解反応に供される。酸分解反応は通常、常圧ないし減圧下、反応温度30〜150℃、反応時間1〜200分で行われる。得られた酸分解反応液にはDHB、アセトン、有機溶媒の他、酸触媒や重質物を含んでおり、ここからアルカリ中和・分液操作による酸触媒除去、蒸留によるアセトンや有機溶媒の除去、更に蒸留、抽出、晶析等の通常の操作によって、DHBを単離することができる。   The acid decomposition step is a step of obtaining DHB by subjecting DHPO obtained in the separation step to a decomposition reaction in the presence of an acid catalyst. Acid catalysts used include Lewis acids such as aluminum chloride, boron trifluoride, ferric chloride, stannic chloride, sulfuric acid, phosphoric acid, hydrochloric acid, perchloric acid, benzenesulfonic acid, p-toluenesulfonic acid, strong acid And protonic acids such as anionic ion exchange resin. Concentrated sulfuric acid and anhydrous sulfuric acid are preferable in terms of yield and ease of handling, and anhydrous sulfuric acid is more preferable. Since the liquid used for the acid decomposition reaction usually contains 1 to 10% by weight of water, the acid decomposition catalyst is adversely affected as it is. Therefore, usually, an operation of distilling off a part of water by distillation is performed before acid decomposition. It is preferable to reduce the water concentration removed to 1% by weight or less. The liquid thus obtained is subjected to an acid decomposition reaction. The acid decomposition reaction is usually carried out under normal pressure or reduced pressure at a reaction temperature of 30 to 150 ° C. and a reaction time of 1 to 200 minutes. The resulting acid decomposition reaction solution contains DHB, acetone, organic solvent, as well as acid catalyst and heavy substances. From this, acid catalyst removal by alkali neutralization / separation operation, removal of acetone and organic solvent by distillation Furthermore, DHB can be isolated by ordinary operations such as distillation, extraction, and crystallization.

本発明の(4)還元工程は、分離工程で得られたCHPOを含む溶液を還元反応に付し、DCAを得る工程である。   The (4) reduction step of the present invention is a step of obtaining DCA by subjecting the solution containing CHPO obtained in the separation step to a reduction reaction.

該還元工程は、分離工程で得られたCHPOを還元反応に付すことにより、DCAを得る工程である。還元工程に供される液中には、CHPOの他、DHPOやその他の不純物が含まれており、該液をそのままかあるいは有機溶媒の一部を蒸留で留去する濃縮操作を行った後に、還元反応に供される。該液または該液濃縮液中のCHPOの濃度は、2〜30重量%が好ましい。還元反応としては、亜硫酸ソーダ等の還元剤を用いる量論還元又は水添触媒を用いる触媒還元が適用できる。なお、水添触媒の存在下に水素による還元反応の方が操作性が良く安価であり、工業的に好ましい。水添触媒としては周期律表第8属、9属及び10属の貴金属を担体に担持した通常の水素化触媒が使用できるが、とりわけパラジウム担持触媒が、活性及び選択性の観点から好ましく使用できる。担体としては、例えば、アルミナ、シリカ、チタニア、マグネシア等があげられる。担体上のパラジウムの担持濃度は、パラジウム金属として、通常0.01〜10重量%である。還元反応に用いる水素は純粋である必要は無く、窒素、二酸化炭素、メタン等の不活性ガスを含んでいても良い。反応圧力は、通常0.1〜10MPa−Aであり、反応温度は、通常20〜150℃である。反応時間は通常1〜300分である。反応形式としては、液相での固定床流通反応や攪拌槽スラリー反応等で実施できる。触媒濃度は、例えば攪拌槽スラリー反応の場合、通常0.05〜10重量%の範囲である。   The reduction step is a step of obtaining DCA by subjecting CHPO obtained in the separation step to a reduction reaction. The liquid to be subjected to the reduction step contains CHPO, DHPO and other impurities, and after performing the concentration operation to leave the liquid as it is or distill off a part of the organic solvent, It is subjected to a reduction reaction. The concentration of CHPO in the liquid or the liquid concentrate is preferably 2 to 30% by weight. As the reduction reaction, stoichiometric reduction using a reducing agent such as sodium sulfite or catalytic reduction using a hydrogenation catalyst can be applied. Note that the reduction reaction with hydrogen in the presence of a hydrogenation catalyst is more operable and inexpensive, and is industrially preferable. As the hydrogenation catalyst, a normal hydrogenation catalyst in which noble metals of Groups 8, 9 and 10 of the periodic table are supported on a support can be used. In particular, a palladium-supported catalyst can be preferably used from the viewpoint of activity and selectivity. . Examples of the carrier include alumina, silica, titania, magnesia and the like. The supported concentration of palladium on the support is usually 0.01 to 10% by weight as palladium metal. The hydrogen used for the reduction reaction does not need to be pure, and may contain an inert gas such as nitrogen, carbon dioxide, or methane. The reaction pressure is usually 0.1 to 10 MPa-A, and the reaction temperature is usually 20 to 150 ° C. The reaction time is usually 1 to 300 minutes. As a reaction form, it can be carried out by a fixed bed flow reaction in a liquid phase or a stirring tank slurry reaction. For example, in the case of a stirred tank slurry reaction, the catalyst concentration is usually in the range of 0.05 to 10% by weight.

本発明の(5)脱水工程は、還元工程で得られたDCAを脱水反応に付し、DSTを得る工程である。   The (5) dehydration step of the present invention is a step for obtaining DST by subjecting the DCA obtained in the reduction step to a dehydration reaction.

脱水反応は酸触媒を用いることが好適である。用いる酸触媒はアルコール類の脱水反応を起こすものならいかなるものでも良く、硫酸及び塩酸等の無機酸類、蟻酸、酢酸及びp−トルエンスルホン酸等の有機酸類、またはアルミナ及び強酸性イオン交換樹脂等の固体酸類があげられる。脱水反応活性の観点から、硫酸、p−トルエンスルホン酸及び強酸性イオン交換樹脂等の強酸類が更に好ましい。反応圧力は、通常0.01〜1MPa−A程度であり、反応温度は、通常30〜200℃程度である。反応形式としては、回分法でも可能だが、連続法の方が好ましい。   It is preferable to use an acid catalyst for the dehydration reaction. Any acid catalyst may be used as long as it causes a dehydration reaction of alcohols, such as inorganic acids such as sulfuric acid and hydrochloric acid, organic acids such as formic acid, acetic acid and p-toluenesulfonic acid, or alumina and strongly acidic ion exchange resins. Examples include solid acids. From the viewpoint of dehydration reaction activity, strong acids such as sulfuric acid, p-toluenesulfonic acid, and strongly acidic ion exchange resins are more preferable. The reaction pressure is usually about 0.01 to 1 MPa-A, and the reaction temperature is usually about 30 to 200 ° C. As a reaction form, a batch method is possible, but a continuous method is preferred.

上記の一連の工程を用いることにより、DHBとDSTを併産することができる。
なお、本発明においては、本発明の効果を損ねない範囲において、上記工程以外の工程を付加してもよい。
By using the above series of steps, DHB and DST can be produced together.
In the present invention, steps other than the above steps may be added as long as the effects of the present invention are not impaired.

以下に実施例に基づいて本発明をより詳細に説明するが、本発明はこれら実施例より限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1
(1)酸化工程
酸化反応器へリサイクル成分を含む酸化原料油(DIPB(メタ置換体)37重量%、MHPO(メタ置換体)33重量%を含む)を毎時80容量部と0.5重量%の水酸化ナトリウム水溶液を毎時5容量部を連続的に供給し、空気を毎時20000標準容量部通じ、95℃、3気圧、滞留時間4時間にて酸化反応させた。定常状態において、DIPB(メタ置換体)18重量%、MHPO(メタ置換体)34重量%、DHPO(メタ置換体)19重量%の他、少量のCHPO(メタ置換体)などを含む反応液が得られた。
Example 1
(1) Oxidation process 80 parts by volume and 0.5% by weight of oxidizing raw material oil (including 37% by weight of DIPB (meta-substituted product) and 33% by weight of MHPO (meta-substituted product)) containing recycled components in the oxidation reactor The sodium hydroxide aqueous solution was continuously supplied at 5 parts by volume per hour, and air was passed through 20000 standard parts per hour at 95 ° C., 3 atm, and the residence time was 4 hours. In a steady state, a reaction solution containing 18% by weight of DIPB (meta-substituted product), 34% by weight of MHPO (meta-substituted product), 19% by weight of DHPO (meta-substituted product), and a small amount of CHPO (meta-substituted product) Obtained.

(2)分離工程
DIPB(メタ置換体)の酸化生成物を8重量%水酸化ナトリウム水溶液で抽出した液と後述のDHPO(メタ置換体)の回収液との混合液(DHPO(メタ置換体)15重量%、CHPO(メタ置換体)2重量%を含む)100部をMIBK50部を用いて、温度30℃、向流で洗浄した。こうして得た洗浄後の水層はDHPO(メタ置換体)12重量%、CHPO(メタ置換体)0.1重量%を含んでいた。また、MIBK洗液を8重量%水酸化ナトリウム水溶液30部を用いて温度30℃、向流で再抽出することにより、MIBK洗液中のDHPO(メタ置換体)の98%が再抽出液に回収された。これらのDHPO(メタ置換体)を含む水層を70℃で過剰のMIBKを用いて抽出することにより、DHPO(メタ置換体)12重量%、CHPO(メタ置換体)0.1重量%、水分3重量%を含むMIBK溶液(X)を得た。一方、上記のMIBK洗液からDHPO(メタ置換体)を回収した残りとして、CHPO(メタ置換体)6重量%、DHPO(メタ置換体)0.2重量%を含むMIBK溶液(Y)を得た。
(2) Separation step Liquid mixture obtained by extracting an oxidation product of DIPB (meta-substituted product) with an 8% by weight sodium hydroxide aqueous solution and a recovery solution of DHPO (meta-substituted product) described later (DHPO (meta-substituted product) 100 parts) (containing 15% by weight and 2% by weight of CHPO (meta-substituted product)) were washed with 50 parts of MIBK at a temperature of 30 ° C. in a countercurrent. The aqueous layer after washing thus obtained contained 12% by weight of DHPO (meta-substituted product) and 0.1% by weight of CHPO (meta-substituted product). Also, by re-extracting the MIBK washing solution using 30 parts of an 8 wt% aqueous sodium hydroxide solution at a temperature of 30 ° C. and countercurrent, 98% of DHPO (meta-substituted product) in the MIBK washing solution is converted into the re-extraction solution. It was recovered. By extracting an aqueous layer containing these DHPO (meta-substituted product) with an excess of MIBK at 70 ° C., 12% by weight of DHPO (meta-substituted product), 0.1% by weight of CHPO (meta-substituted product), moisture A MIBK solution (X) containing 3% by weight was obtained. On the other hand, a MIBK solution (Y) containing 6% by weight of CHPO (meta-substituted product) and 0.2% by weight of DHPO (meta-substituted product) is obtained as the remainder of the recovery of DHPO (meta-substituted product) from the MIBK washing solution. It was.

(3)酸分解工程
MIBK溶液(X)を減圧濃縮し、DHPO(メタ置換体)濃度20重量%、水分濃度0.2重量%とした濃縮液を酸分解反応に供した。反応は触媒としての無水硫酸0.1重量%存在下、常圧、反応温度60℃、反応時間10分で行った。DHPO(メタ置換体)からのDHB(メタ置換体)の収率は94%であった。反応液中の触媒を中和除去後、精留、抽出により、アセトン(純度99%以上)及びDHB(メタ置換体)(純度99%以上)を単離し、また溶媒MIBKを回収することができた。
(3) Acid decomposition step The MIBK solution (X) was concentrated under reduced pressure, and the concentrated solution having a DHPO (meta-substituted product) concentration of 20% by weight and a water concentration of 0.2% by weight was subjected to an acid decomposition reaction. The reaction was conducted in the presence of 0.1% by weight of anhydrous sulfuric acid as a catalyst at normal pressure, a reaction temperature of 60 ° C., and a reaction time of 10 minutes. The yield of DHB (meta-substituted product) from DHPO (meta-substituted product) was 94%. After neutralizing and removing the catalyst in the reaction solution, acetone (purity 99% or more) and DHB (meta-substituted product) (purity 99% or more) can be isolated by rectification and extraction, and the solvent MIBK can be recovered. It was.

(4)還元工程
撹拌機を備えたオートクレーブに原料のMIBK溶液(Y)とパラジウム・アルミナ触媒(パラジウム金属として1重量%担持したもの)を原料に対し0.5重量%存在させ、水素圧力6気圧、反応温度90℃、反応時間30分にて液相水素還元反応を行った。CHPO(メタ置換体)の転化率は実質上100%であり、反応液中のDCA(メタ置換体)濃度は6重量%であった。
(4) Reduction step In an autoclave equipped with a stirrer, a raw material MIBK solution (Y) and a palladium-alumina catalyst (supported by 1% by weight as palladium metal) are present in an amount of 0.5% by weight, and a hydrogen pressure of 6 Liquid phase hydrogen reduction reaction was performed at atmospheric pressure, reaction temperature 90 ° C., and reaction time 30 minutes. The conversion of CHPO (meta-substituted product) was substantially 100%, and the concentration of DCA (meta-substituted product) in the reaction solution was 6% by weight.

(5)脱水工程
強酸性イオン交換樹脂デュオライトSC200(住化ケムテックス社製)を318g充填したステンレス製円筒型反応器(充填部 内径5.9cm×充填長15cm)をシリコンオイルで満たされた油浴中で83℃に加温し、反応器内にCHPO(メタ置換体)をパラジウム・アルミナ触媒存在下、水素還元反応させ得られた反応液から水素を分離したDCA(メタ置換体)のMIBK溶液(MIBK88重量%、DCA(メタ置換体)7重量%)を毎時600gで供給し、脱水反応を開始した。脱水反応液の組成分析から、原料供給開始後、191h目ではDCA(メタ置換体)転化率99.6%、DST(メタ置換体)収率85%であった。
(5) Dehydration step Oil filled with silicon oil in a stainless steel cylindrical reactor (filling part inner diameter 5.9 cm × packing length 15 cm) filled with 318 g of strongly acidic ion exchange resin Duolite SC200 (manufactured by Sumika Chemtex Co., Ltd.) DCA (meta-substituted product) MIBK in which hydrogen is separated from the reaction solution obtained by hydrogen reduction reaction of CHPO (meta-substituted product) in the reactor in the presence of palladium / alumina catalyst. A solution (MIBK 88 wt%, DCA (meta-substituted product) 7 wt%) was supplied at 600 g / h to start dehydration reaction. From the compositional analysis of the dehydration reaction solution, after starting the feed of raw materials, the conversion rate of DCA (meta-substituted product) was 99.6% and the yield of DST (meta-substituted product) was 85% at 191h.

Claims (1)

下記の工程を有するジヒドロキシベンゼン(DHB)とジイソプロペニルベンゼン(DST)の併産方法。
(1)酸化工程:ジイソプロピルベンゼン(DIPB)を酸化反応に付し、ジ(2−ヒドロペルオキシイソプロピル)ベンゼン(DHPO)と2−ヒドロキシイソプロピル−2−ヒドロペルオキシイソプロピルベンゼン(CHPO)を得る工程
(2)分離工程:酸化工程で得られたジ(2−ヒドロペルオキシイソプロピル)ベンゼン(DHPO)と2−ヒドロキシイソプロピル−2−ヒドロペルオキシイソプロピルベンゼン(CHPO)を、ジ(2−ヒドロペルオキシイソプロピル)ベンゼン(DHPO)を含む溶液と2−ヒドロキシイソプロピル−2−ヒドロペルオキシイソプロピルベンゼン(CHPO)を含む溶液の各々に分離する工程
(3)酸分解工程:分離工程で得られたジ(2−ヒドロペルオキシイソプロピル)ベンゼン(DHPO)を含む溶液を酸分解反応に付し、ジヒドロキシベンゼン(DHB)を得る工程
(4)還元工程:分離工程で得られた2−ヒドロキシイソプロピル−2−ヒドロペルオキシイソプロピルベンゼン(CHPO)を含む溶液を還元反応に付し、ジ(2−ヒドロキシイソプロピル)ベンゼン(DCA)を得る工程
(5)脱水工程:還元工程で得られたジ(2−ヒドロキシイソプロピル)ベンゼン(DCA)を脱水反応に付し、ジイソプロペニルベンゼン(DST)を得る工程
A co-production method of dihydroxybenzene (DHB) and diisopropenylbenzene (DST) having the following steps.
(1) Oxidation step: Step of obtaining di (2-hydroperoxyisopropyl) benzene (DHPO) and 2-hydroxyisopropyl-2-hydroperoxyisopropylbenzene (CHPO) by subjecting diisopropylbenzene (DIPB) to an oxidation reaction. ) Separation step: Di (2-hydroperoxyisopropyl) benzene (DHPO) and 2-hydroxyisopropyl-2-hydroperoxyisopropylbenzene (CHPO) obtained in the oxidation step are converted into di (2-hydroperoxyisopropyl) benzene (DHPO). ) And a solution containing 2-hydroxyisopropyl-2-hydroperoxyisopropylbenzene (CHPO) (3) Acid decomposition step: di (2-hydroperoxyisopropyl) benzene obtained in the separation step (DH Step of subjecting solution containing O) to acid decomposition reaction to obtain dihydroxybenzene (DHB) (4) Reduction step: Solution containing 2-hydroxyisopropyl-2-hydroperoxyisopropylbenzene (CHPO) obtained in separation step (5) Dehydration step: Di (2-hydroxyisopropyl) benzene (DCA) obtained in the reduction step is subjected to a dehydration reaction. Obtaining diisopropenylbenzene (DST)
JP2004133180A 2004-04-28 2004-04-28 Method for jointly producing dihydroxybenzene and diisopropenylbenzene Pending JP2005314269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133180A JP2005314269A (en) 2004-04-28 2004-04-28 Method for jointly producing dihydroxybenzene and diisopropenylbenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133180A JP2005314269A (en) 2004-04-28 2004-04-28 Method for jointly producing dihydroxybenzene and diisopropenylbenzene

Publications (1)

Publication Number Publication Date
JP2005314269A true JP2005314269A (en) 2005-11-10

Family

ID=35442061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133180A Pending JP2005314269A (en) 2004-04-28 2004-04-28 Method for jointly producing dihydroxybenzene and diisopropenylbenzene

Country Status (1)

Country Link
JP (1) JP2005314269A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021661A1 (en) 2009-08-19 2011-02-24 住友化学株式会社 Method for handling an aqueous solution containing a water-soluble substance, method for manufacturing alkylbenzene hydroperoxides, and method for manufacturing hydroxybenzenes
CN115819308A (en) * 2022-12-08 2023-03-21 万华化学集团股份有限公司 Preparation method of cumene hydroperoxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021661A1 (en) 2009-08-19 2011-02-24 住友化学株式会社 Method for handling an aqueous solution containing a water-soluble substance, method for manufacturing alkylbenzene hydroperoxides, and method for manufacturing hydroxybenzenes
CN115819308A (en) * 2022-12-08 2023-03-21 万华化学集团股份有限公司 Preparation method of cumene hydroperoxide
CN115819308B (en) * 2022-12-08 2024-03-29 万华化学集团股份有限公司 Preparation method of poly-hydrogen peroxide cumene

Similar Documents

Publication Publication Date Title
AU2002217114B2 (en) Process for preparing oxirane compounds
AU2002217114A1 (en) Process for preparing oxirane compounds
US20030032823A1 (en) Process for producing propylene oxide
JP2774607B2 (en) Method for producing phenol and method for obtaining propylene from by-product acetone during production
JP4984940B2 (en) Method for producing dihydroxybenzene and diisopropylbenzene dicarbinol
JP3492052B2 (en) Process for producing dihydroxybenzene and diisopropylbenzene dicarbinol
JP6748205B2 (en) Propylene oxide production method
JP2005097206A (en) Method for producing propylene oxide
KR101050343B1 (en) Process for producing cumene and process for producing propylene oxide comprising the process described above
JP2005314269A (en) Method for jointly producing dihydroxybenzene and diisopropenylbenzene
JP4385700B2 (en) Propylene oxide production method
JP3089779B2 (en) Method for producing phenol and methyl ethyl ketone
JP2003081955A (en) Method for producing propylene oxide
WO2005030742A1 (en) Method for producing propyleneoxide
JP2003081953A (en) Method for producing propylene oxide
JP2009007294A (en) Method for producing propylene oxide
JP2005097175A (en) Method for producing propylene oxide
JP2001097902A (en) Method for producing phenol
JP2005097183A (en) Method for producing propylene oxide
JP2005097182A (en) Method for producing propylene oxide
JP2005089411A (en) Method for producing propylene oxide
JP2005097186A (en) Method for producing propylene oxide
JP2005097212A (en) Method for producing propylene oxide
WO2005028460A1 (en) Process for producing propylene oxide
JP2005097211A (en) Method for producing propylene oxide