JP2005313708A - Collision impact control device for vehicle - Google Patents

Collision impact control device for vehicle Download PDF

Info

Publication number
JP2005313708A
JP2005313708A JP2004131913A JP2004131913A JP2005313708A JP 2005313708 A JP2005313708 A JP 2005313708A JP 2004131913 A JP2004131913 A JP 2004131913A JP 2004131913 A JP2004131913 A JP 2004131913A JP 2005313708 A JP2005313708 A JP 2005313708A
Authority
JP
Japan
Prior art keywords
vehicle
impact
collision
speed
host
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004131913A
Other languages
Japanese (ja)
Other versions
JP4501521B2 (en
Inventor
Hiromichi Fujishima
広道 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004131913A priority Critical patent/JP4501521B2/en
Publication of JP2005313708A publication Critical patent/JP2005313708A/en
Application granted granted Critical
Publication of JP4501521B2 publication Critical patent/JP4501521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/42Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats
    • B60N2/427Seats or parts thereof displaced during a crash
    • B60N2/42772Seats or parts thereof displaced during a crash characterised by the triggering system
    • B60N2/4279Seats or parts thereof displaced during a crash characterised by the triggering system electric or electronic triggering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/42Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats
    • B60N2/4207Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats characterised by the direction of the g-forces
    • B60N2/4214Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats characterised by the direction of the g-forces longitudinal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/80Head-rests
    • B60N2/888Head-rests with arrangements for protecting against abnormal g-forces, e.g. by displacement of the head-rest

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Seats For Vehicles (AREA)
  • Automotive Seat Belt Assembly (AREA)
  • Steering Controls (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a collision impact control device for a vehicle whereby impact which an own vehicle receives from or applies to a preceding vehicle and a following vehicle respectively can be optimized as a whole when the own vehicle collides with the preceding vehicle and the following vehicle. <P>SOLUTION: When it is predicted that the own vehicle collides with both of the preceding vehicle and the following vehicle, a speed of the own vehicle is controlled in consideration of both of first impact by collision of the preceding vehicle and the own vehicle and second impact by collision of the own vehicle and the following vehicle before the collision. At this time, speed control of the own vehicle is executed so that the first impact and the second impact are almost equal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、車両用衝突衝撃制御装置に係り、特に、自車両が前方車両及び後続車両の双方に衝突すると予測される場合に、自車両が前方車両及び後続車両それぞれから受ける或いはそれぞれへ与える衝撃を制御する車両用衝突衝撃制御装置に関する。   The present invention relates to a collision impact control device for a vehicle, and in particular, when an own vehicle is predicted to collide with both a preceding vehicle and a following vehicle, the impact received by or on each of the preceding vehicle and the following vehicle. The present invention relates to a collision impact control device for a vehicle for controlling the vehicle.

従来より、自車両の前方に存在する前方車両との衝突可能性を判断すると共に、自車両に対して後続する後続車両との衝突可能性を判断する車両用衝突衝撃制御装置が知られている(例えば、特許文献1参照)。この装置においては、自車両が前方車両又は後続車両に衝突した後に他方の後続車両又は前方車両に衝突する可能性の有無に応じて、自車両の制動力が変更される。具体的には、自車両の制動力は、前方車両及び後続車両の双方との衝突の可能性がないと判断される場合には減少され、一方、前方車両及び後続車両の双方との衝突の可能性があると判断される場合には増加される。このため、上記した装置によれば、自車両の一次衝突後の後続車両又は前方車両との二次衝突による衝撃を軽減することが可能となっている。
特開2001−122094号公報
2. Description of the Related Art Conventionally, there is known a vehicle collision impact control device that determines the possibility of a collision with a preceding vehicle existing ahead of the host vehicle and determines the possibility of a collision with a subsequent vehicle that follows the host vehicle. (For example, refer to Patent Document 1). In this device, the braking force of the host vehicle is changed depending on whether or not the host vehicle collides with the preceding vehicle or the succeeding vehicle and then collides with the other succeeding vehicle or the preceding vehicle. Specifically, the braking force of the host vehicle is reduced when it is determined that there is no possibility of a collision with both the preceding vehicle and the following vehicle, while the collision force with both the preceding vehicle and the following vehicle is reduced. Increased if deemed possible. For this reason, according to the above-described apparatus, it is possible to reduce the impact caused by the secondary collision with the subsequent vehicle or the preceding vehicle after the primary collision of the host vehicle.
Japanese Patent Laid-Open No. 2001-122094

しかしながら、上記した特許文献1記載の装置においては、二次衝突による衝撃は有効に軽減される一方、一次衝突が生ずる際にこの一次衝突の対象である一方の車両とは異なる他方の車両と自車両との相対関係が考慮されないため、すなわち、他方の車両との衝突が考慮されないため、一次衝突時に自車両が前方車両又は後続車両から受ける或いは与える衝撃が過大となってしまうおそれがある。   However, in the device described in Patent Document 1 described above, the impact due to the secondary collision is effectively reduced, but when the primary collision occurs, the apparatus is automatically compared with the other vehicle different from the one vehicle that is the target of the primary collision. Since the relative relationship with the vehicle is not taken into consideration, that is, the collision with the other vehicle is not taken into consideration, there is a possibility that the impact received or given to the own vehicle from the preceding vehicle or the following vehicle at the time of the primary collision becomes excessive.

本発明は、上述の点に鑑みてなされたものであり、自車両と前方車両及び後続車両とが衝突する際に自車両が前方車両及び後続車両それぞれから受ける或いはそれぞれへ与える衝撃を全体として最適化することが可能な車両用衝突衝撃制御装置を提供することを目的とする。   The present invention has been made in view of the above points, and when the host vehicle collides with the preceding vehicle and the following vehicle, the entire vehicle receives the impact received from or applied to each of the preceding vehicle and the following vehicle as a whole. An object of the present invention is to provide a collision impact control device for a vehicle that can be realized.

上記の目的は、請求項1に記載する如く、自車両が、自車両の前方に存在する前方車両及び自車両に対して後続する後続車両の双方に衝突すると予測される場合に、前記前方車両と自車両との衝突による第1の衝撃及び自車両と前記後続車両との衝突による第2の衝撃を制御する車両用衝突衝撃制御装置であって、衝突が生ずる前に、前記第1の衝撃と前記第2の衝撃との双方を考慮して自車両の速度を制御する速度制御手段を備える車両用衝突衝撃制御装置により達成される。   According to the first aspect of the present invention, when the host vehicle is predicted to collide with both a front vehicle existing ahead of the host vehicle and a subsequent vehicle that follows the host vehicle, the front vehicle is A collision impact control device for a vehicle for controlling a first impact caused by a collision between the vehicle and the host vehicle and a second impact caused by a crash between the subject vehicle and the following vehicle, wherein the first impact is generated before the collision occurs. And the second impact are achieved by a vehicle impact impact control device including speed control means for controlling the speed of the host vehicle.

請求項1記載の発明において、自車両は、衝突が生ずる前、自車両が前方車両に衝突する際の第1の衝撃と自車両に後続車両が衝突する際の第2の衝撃との双方が考慮されて速度制御される。この場合には、自車両において衝突による衝撃が前後に適度に分散される。このため、本発明の構成においては、前方車両との衝突による第1の衝撃のみ又は後続車両との衝突による第2の衝撃のみが考慮される構成と異なり、第1の衝撃及び第2の衝撃の何れか一方が過大となることは回避される。   In the invention described in claim 1, before the collision occurs, the own vehicle has both a first impact when the own vehicle collides with the preceding vehicle and a second impact when the subsequent vehicle collides with the own vehicle. Speed control is taken into account. In this case, the impact caused by the collision is moderately dispersed in the front and rear in the host vehicle. For this reason, in the configuration of the present invention, unlike the configuration in which only the first impact due to the collision with the preceding vehicle or only the second impact due to the collision with the following vehicle is considered, the first impact and the second impact are considered. It is avoided that either one of them becomes excessive.

ところで、自車両が前方車両に衝突する際の第1の衝撃と自車両に後続車両が衝突する際の第2の衝撃とが等しい場合は、両者が等しくない場合と比較して、前方車両の速度が同一でありかつ後続車両の速度が同一である状況において、第1の衝撃と第2の衝撃との和が最も小さくなる。   By the way, when the first impact when the own vehicle collides with the preceding vehicle and the second impact when the subsequent vehicle collides with the own vehicle, compared to the case where the two are not equal, In the situation where the speed is the same and the speed of the following vehicle is the same, the sum of the first impact and the second impact is the smallest.

従って、請求項2に記載する如く、請求項1記載の車両用衝突衝撃制御装置において、前記速度制御手段は、前記第1の衝撃と前記第2の衝撃とがほぼ等しくなるように自車両の速度を制御することとすれば、自車両が前方車両に衝突する際の第1の衝撃と自車両に後続車両が衝突する際の第2の衝撃との和を最も小さくすることができる。   Therefore, according to a second aspect of the present invention, in the vehicle impact impact control apparatus according to the first aspect, the speed control means is configured so that the first impact and the second impact are substantially equal to each other. If the speed is controlled, the sum of the first impact when the host vehicle collides with the preceding vehicle and the second impact when the subsequent vehicle collides with the host vehicle can be minimized.

また、自車両と前方車両と後続車両とが互いにほぼ同じ質量を有するものとすると、衝突時における衝撃のエネルギは、2台の車両の相対速度の二乗に比例する。   If the host vehicle, the preceding vehicle, and the following vehicle have substantially the same mass, the impact energy at the time of collision is proportional to the square of the relative speed of the two vehicles.

従って、請求項3に記載する如く、請求項2記載の車両用衝突衝撃制御装置において、前記速度制御手段は、前記前方車両と自車両との相対速度と、自車両と前記後続車両との相対速度との二乗和が最小となるように自車両の速度を制御することとすれば、上記した第1の衝撃と第2の衝撃との和を最小にすることができる。   Therefore, according to a third aspect of the present invention, in the vehicle impact impact control apparatus according to the second aspect, the speed control means includes a relative speed between the preceding vehicle and the own vehicle, and a relative speed between the own vehicle and the subsequent vehicle. If the speed of the host vehicle is controlled so that the sum of squares with the speed is minimized, the sum of the first impact and the second impact described above can be minimized.

また、請求項4に記載する如く、請求項2記載の車両用衝突衝撃制御装置において、前記速度制御手段は、前記前方車両と自車両との相対速度と、自車両と前記後続車両との相対速度とがほぼ等しくなるように自車両の速度を制御することとすれば、上記した第1の衝撃と第2の衝撃とをほぼ等しくでき、両者の和を最小にすることができる。   According to a fourth aspect of the present invention, in the vehicle collision impact control device according to the second aspect, the speed control means includes a relative speed between the preceding vehicle and the own vehicle, and a relative speed between the own vehicle and the subsequent vehicle. If the speed of the host vehicle is controlled so that the speed is substantially equal, the first impact and the second impact described above can be made substantially equal, and the sum of the two can be minimized.

一方、自車両と前方車両と後続車両とが互いにほぼ同じ質量を有する状況において、第1の衝撃と第2の衝撃とをほぼ等しくすべく、前方車両と自車両との相対速度と、自車両と後続車両との相対速度とがほぼ等しくなるように自車両の速度制御が行われる構成では、前方車両との相対速度がゼロとなるように速度制御が行われる構成と比較して、自車両が前方車両に与える或いは前方車両から受ける衝撃が著しく過大になるおそれがある。   On the other hand, in a situation where the own vehicle, the preceding vehicle, and the following vehicle have substantially the same mass, the relative speed between the preceding vehicle and the own vehicle, and the own vehicle are set so that the first impact and the second impact are substantially equal. In the configuration in which the speed control of the host vehicle is performed so that the relative speed between the vehicle and the following vehicle is substantially equal, the speed control is performed so that the relative speed with respect to the preceding vehicle is zero. There is a risk that the impact applied to the front vehicle or received from the front vehicle will be excessively large.

従って、請求項5に記載する如く、請求項1記載の車両用衝突衝撃制御装置において、前記速度制御手段は、前記前方車両と自車両との相対速度が、自車両と前記後続車両との相対速度よりも小さくなるように自車両の速度を制御することとすれば、自車両において衝突による衝撃を前後に適度に分散しつつ、自車両から前方車両へ印加する或いは前方車両から自車両へ印加される衝撃を軽減することができる。   Therefore, as described in claim 5, in the collision impact control device for vehicle according to claim 1, the speed control means is configured such that the relative speed between the preceding vehicle and the own vehicle is a relative speed between the own vehicle and the following vehicle. If the speed of the host vehicle is controlled so as to be smaller than the speed, the impact caused by the collision in the host vehicle is appropriately distributed forward and backward, and applied from the host vehicle to the front vehicle or from the front vehicle to the host vehicle. Impact can be reduced.

尚、自車両の走行が制御される際に、前方車両との車間距離および後続車両との車間距離が考慮されることなく、前方車両との衝突による第1の衝撃および後続車両との衝突による第2の衝撃が考慮されるだけであると、前方車両との衝突タイミングと後続車両との衝突タイミングとが大きくずれる可能性があり、このため、自車両が前方車両に時間的に離れたタイミングで2回衝突するなどの不測の事態が生ずるおそれがある。   When the travel of the host vehicle is controlled, the distance between the preceding vehicle and the distance between the following vehicle is not taken into consideration, and the first impact caused by the collision with the preceding vehicle and the collision with the following vehicle are not taken into consideration. If only the second impact is taken into consideration, there is a possibility that the collision timing with the preceding vehicle and the collision timing with the following vehicle may greatly deviate. For this reason, the timing at which the host vehicle is separated from the preceding vehicle in time. There is a risk of unexpected situations such as two collisions.

従って、請求項6に記載する如く、請求項1乃至5の何れか一項記載の車両用衝突衝撃制御装置において、前記前方車両と自車両との車間距離と、自車両と前記後続車両との車間距離とがほぼ等しくなるように自車両の走行を制御する車間距離制御手段を更に備えることとすれば、自車両の、前方車両との衝突タイミングと後続車両との衝突タイミングとをほぼ一致させることができる。   Therefore, as described in claim 6, in the collision impact control device for a vehicle according to any one of claims 1 to 5, an inter-vehicle distance between the preceding vehicle and the own vehicle, and between the own vehicle and the following vehicle. If further provided with an inter-vehicle distance control means for controlling the travel of the host vehicle so that the inter-vehicle distance is substantially equal, the collision timing of the host vehicle with the preceding vehicle and the collision timing of the following vehicle are substantially matched. be able to.

これらの場合、請求項7に記載する如く、請求項1乃至6の何れか一項記載の車両用衝突衝撃制御装置において、自車両が前記前方車両及び前記後続車両の少なくとも何れか一方に衝突すると予測される場合に、自車両の乗員を保護する乗員保護装置を起動させる乗員保護起動制御手段を備えることとすれば、衝突時に自車両の乗員を保護することができる。   In these cases, as described in claim 7, in the vehicular collision impact control device according to any one of claims 1 to 6, when the own vehicle collides with at least one of the preceding vehicle and the following vehicle. If it is predicted, the vehicle occupant protection activation control means for activating an occupant protection device that protects the vehicle occupant can be protected in the event of a collision.

尚、特に、請求項8に記載する如く、請求項7記載の車両用衝突衝撃制御装置において、前記乗員保護装置は、乗員の頭部を拘束する頭部拘束装置であることとすれば、衝突時に自車両の乗員の頭部を保護することができる。   In particular, as described in claim 8, in the impact impact control device for a vehicle according to claim 7, if the occupant protection device is a head restraint device that restrains the head of the occupant, Sometimes it is possible to protect the head of the passenger of the vehicle.

また、請求項9に記載する如く、請求項1乃至8の何れか一項記載の車両用衝突衝撃制御装置において、自車両が前記前方車両及び前記後続車両の少なくとも何れか一方に衝突すると予測される場合に、前記第1の衝撃又は前記第2の衝撃を吸収する衝撃吸収装置を起動させる衝撃吸収起動制御手段を備えることとすれば、自車両が前方車両又は後続車両から受ける衝撃或いは自車両が前方車両又は後続車両へ与える衝撃を軽減することができる。   Further, as described in claim 9, in the vehicle impact impact control apparatus according to any one of claims 1 to 8, the own vehicle is predicted to collide with at least one of the preceding vehicle and the following vehicle. If the vehicle is provided with shock absorption start control means for starting the shock absorbing device that absorbs the first shock or the second shock, the shock received by the host vehicle from the preceding vehicle or the following vehicle or the host vehicle Can reduce the impact of the vehicle on the preceding vehicle or the following vehicle.

請求項1記載の発明によれば、自車両と前方車両及び後続車両とが衝突する際に自車両が前方車両及び後続車両それぞれから受ける或いはそれぞれへ与える衝撃を全体として最適化することができる。   According to the first aspect of the present invention, when the host vehicle collides with the preceding vehicle and the following vehicle, the impact received by the host vehicle from each of the preceding vehicle and the following vehicle can be optimized as a whole.

請求項2乃至4記載の発明によれば、自車両が前方車両に衝突する際の衝撃と自車両が後続車両に衝突する際の衝撃との和を最小にすることで、自車両の受ける或いは与える衝撃を全体として最適化することができる。   According to the second to fourth aspects of the present invention, the sum of the impact when the host vehicle collides with the preceding vehicle and the impact when the host vehicle collides with the succeeding vehicle is minimized. The applied impact can be optimized as a whole.

請求項5記載の発明によれば、自車両において衝突による衝撃を前後に適度に分散しつつ、自車両と前方車両との衝撃を軽減することで、自車両の受ける或いは与える衝撃を全体として最適化することができる。   According to the fifth aspect of the present invention, the impact received or applied by the host vehicle is optimized as a whole by reducing the impact between the host vehicle and the preceding vehicle while appropriately dispersing the impact caused by the collision in the host vehicle. Can be

請求項6記載の発明によれば、自車両の、前方車両との衝突タイミングと後続車両との衝突タイミングとをほぼ一致させることで、自車両の受ける或いは与える衝撃を全体として最適化することができる。   According to the sixth aspect of the present invention, the impact received or applied to the own vehicle can be optimized as a whole by making the collision timing of the own vehicle substantially coincide with the collision timing of the following vehicle. it can.

請求項7及び8記載の発明によれば、衝突時に自車両の乗員を保護することができる。   According to invention of Claim 7 and 8, the passenger | crew of the own vehicle can be protected at the time of a collision.

また、請求項9記載の発明によれば、自車両が前方車両又は後続車両から受ける衝撃或いは自車両が前方車両又は後続車両へ与える衝撃を軽減することができる。   According to the ninth aspect of the present invention, it is possible to reduce the impact that the host vehicle receives from the preceding vehicle or the following vehicle or the impact that the host vehicle gives to the preceding vehicle or the following vehicle.

図1は、本発明の一実施例である車両に搭載される車両用衝突衝撃制御装置10のシステム構成図を示す。図1に示す如く、車両用衝突衝撃制御装置10は、電子制御ユニット(以下、ECUと称す)12を備えており、ECU12により、自車両が前方に存在する前方車両及び後続する後続車両に衝突する際に生ずる衝撃を制御する。   FIG. 1 is a system configuration diagram of a vehicle collision impact control apparatus 10 mounted on a vehicle according to an embodiment of the present invention. As shown in FIG. 1, the vehicle collision impact control apparatus 10 includes an electronic control unit (hereinafter referred to as an ECU) 12, and the ECU 12 collides with a preceding vehicle in front of the vehicle and a succeeding succeeding vehicle. Control the impact that occurs when you do.

ECU12には、車体前部に配設された前方障害物センサ14、及び、車体後部に配設された後続車センサ16が接続されている。前方障害物センサ14は、例えばレーザレーダやミリ波レーダ或いはカメラなどにより構成されており、自車両前方の所定領域に存在する障害物(主に、前方車両)に応じた信号をECU12に向けて出力する。また、後続車センサ16は、例えばレーザレーダやミリ波レーダ或いはカメラなどにより構成されており、自車両後方の所定領域に存在する障害物(具体的には、後続車両)に応じた信号をECU12に向けて出力する。   The ECU 12 is connected to a front obstacle sensor 14 disposed at the front of the vehicle body and a subsequent vehicle sensor 16 disposed at the rear of the vehicle body. The front obstacle sensor 14 is configured by, for example, a laser radar, a millimeter wave radar, a camera, or the like, and directs a signal corresponding to an obstacle (mainly the front vehicle) present in a predetermined area in front of the host vehicle to the ECU 12. Output. The following vehicle sensor 16 is configured by, for example, a laser radar, a millimeter wave radar, a camera, or the like, and sends a signal corresponding to an obstacle (specifically, the following vehicle) present in a predetermined area behind the host vehicle to the ECU 12. Output to.

ECU12は、前方障害物センサ14の出力に基づいて、自車両前方に存在する前方車両の有無を検出すると共に、前方車両が存在する場合にはその相対距離Lfを検出しかつ相対速度Vfを検出する。また、ECU12は、後続車センサ16の出力に基づいて、自車両後方に存在する後続車両の有無を検出すると共に、後続車両が存在する場合にはその相対距離Lbを検出しかつ相対速度Vbを検出する。尚、以下では、相対速度Vfは、自車両と前方車両とが接近する方向を正値としかつその反対方向を負値とし、また、相対速度Vbは、自車両と後続車両とが接近する方向を正値としかつその反対方向を負値とする。更に、ECU12は、相対速度Vf,Vbの単位時間当たりの変化に基づいて、前方車両との相対加速度Gf及び後続車両との相対加速度Gbを検出する。   Based on the output of the front obstacle sensor 14, the ECU 12 detects the presence or absence of a forward vehicle existing ahead of the host vehicle, and detects the relative distance Lf and the relative speed Vf when the forward vehicle exists. To do. Further, the ECU 12 detects the presence or absence of a subsequent vehicle existing behind the host vehicle based on the output of the subsequent vehicle sensor 16, and detects the relative distance Lb and the relative speed Vb when the subsequent vehicle exists. To detect. In the following, the relative speed Vf is a positive value in the direction in which the host vehicle approaches the preceding vehicle and a negative value in the opposite direction, and the relative speed Vb is a direction in which the host vehicle and the following vehicle approach. Is a positive value and the opposite direction is a negative value. Furthermore, the ECU 12 detects the relative acceleration Gf with respect to the preceding vehicle and the relative acceleration Gb with respect to the following vehicle based on changes per unit time of the relative speeds Vf and Vb.

ECU12には、また、車輪などに配設された自車速センサ18が接続されている。自車速センサ18は、自車両に生じている速度に応じた信号をECU12に向けて出力する。ECU12は、自車速センサ18の出力に基づいて自車速V1を検出する。また、ECU12は、自車速センサ18を用いて検出した自車速V1と共に、前方障害物センサ14を用いて検出した前方車両との相対速度Vf及び後続車センサ16を用いて検出した後続車両との相対速度Vbに基づいて、前方車両の車速V2及び後続車両の車速V3を検出する。   The ECU 12 is also connected with a host vehicle speed sensor 18 disposed on a wheel or the like. The own vehicle speed sensor 18 outputs a signal corresponding to the speed generated in the own vehicle to the ECU 12. The ECU 12 detects the host vehicle speed V <b> 1 based on the output of the host vehicle speed sensor 18. Further, the ECU 12 compares the vehicle speed V1 detected using the vehicle speed sensor 18 with the relative speed Vf detected with the front obstacle sensor 14 and the following vehicle detected using the following vehicle sensor 16. Based on the relative speed Vb, the vehicle speed V2 of the preceding vehicle and the vehicle speed V3 of the following vehicle are detected.

ECU12には、また、シートベルトスイッチ20が接続されている。シートベルトスイッチ20は、少なくとも運転席を含む車両シートに設けられたシートベルトが装着されていない場合にオフ状態となり、シートベルトが装着されている場合にオン状態となるスイッチである。シートベルトスイッチ20の出力は、ECU12に供給される。ECU12は、シートベルトスイッチ20の状態に基づいて、少なくとも運転者がシートベルトを装着して着座しているか否かを判別する。   A seat belt switch 20 is also connected to the ECU 12. The seat belt switch 20 is a switch that is turned off when a seat belt provided on a vehicle seat including at least a driver's seat is not worn, and turned on when a seat belt is worn. The output of the seat belt switch 20 is supplied to the ECU 12. Based on the state of the seat belt switch 20, the ECU 12 determines whether or not at least the driver is seated while wearing the seat belt.

ECU12には、また、ブレーキアクチュエータ22、変速機24、及び、スロットルアクチュエータ26が接続されている。ECU12は、後述の演算結果に基づいて車両の走行を制御すべく各アクチュエータ22〜26を駆動する。ブレーキアクチュエータ22は、例えば電気モードなどにより構成されており、車輪の回転を抑制することにより車両を制動させる制動力を発生させることができる。ブレーキアクチュエータ22は、ECU12から供給される指令信号に従って車両に制動力を発生させる。変速機24は、その入力から出力への変速比を切り替えることができる。変速機24は、ECU12から供給される指令信号に従って車両にエンジンブレーキを発生させる。また、スロットルアクチュエータ26は、車両動力であるエンジンに空気を供給するためのスロットルバルブを開弁させることにより車両を加速させる駆動力を発生させることができる。スロットルアクチュエータ26は、ECU12から供給される指令信号に従って車両に駆動力を発生させる。   A brake actuator 22, a transmission 24, and a throttle actuator 26 are also connected to the ECU 12. The ECU 12 drives the actuators 22 to 26 so as to control the traveling of the vehicle based on the calculation result described later. The brake actuator 22 is configured by, for example, an electric mode, and can generate a braking force for braking the vehicle by suppressing the rotation of the wheels. The brake actuator 22 generates a braking force on the vehicle in accordance with a command signal supplied from the ECU 12. The transmission 24 can switch the gear ratio from the input to the output. The transmission 24 generates an engine brake in the vehicle in accordance with a command signal supplied from the ECU 12. Further, the throttle actuator 26 can generate a driving force for accelerating the vehicle by opening a throttle valve for supplying air to the engine that is the vehicle power. The throttle actuator 26 generates a driving force for the vehicle in accordance with a command signal supplied from the ECU 12.

ECU12には、更に、乗員保護装置30、バンパーエアバッグ32、アクティブバンパー34、及び、アクティブシート36が接続されている。ECU12は、後述の演算結果に従って、自車両が前方車両または後続車両に衝突する際の衝撃が軽減されるように乗員保護装置30、バンパーエアバッグ32、アクティブバンパー34、及びアクティブシート36をそれぞれ駆動する。乗員保護装置30は、自車両の乗員を保護するために設けられた装置であり、車体に取り付けられた衝撃センサなどにより車両の衝突が実際に検知された場合に、ステアリングホイールパッド内又はインストルメントパネル内上部から展開することにより主に乗員の頭部を拘束するエアバッグ、及び、モータなどを用いてシートベルトを巻き取ることにより主に乗員の頭部や胴体を拘束するアクティブシートベルトなどを含む。尚、乗員保護装置30のエアバッグは、多段階に展開することが可能となっており、展開時におけるバッグ内圧を変更することが可能となっている。乗員保護装置30は、ECU12から供給される指令信号に従って、衝突時に乗員を保護するように作動する。   Further, an occupant protection device 30, a bumper airbag 32, an active bumper 34, and an active seat 36 are connected to the ECU 12. The ECU 12 drives the occupant protection device 30, the bumper airbag 32, the active bumper 34, and the active seat 36 so that the impact when the host vehicle collides with the preceding vehicle or the following vehicle is reduced according to the calculation result described later. To do. The occupant protection device 30 is a device provided to protect the occupant of the host vehicle. When a vehicle collision is actually detected by an impact sensor or the like attached to the vehicle body, the occupant protection device 30 is installed in the steering wheel pad or in the instrument. An airbag that mainly restrains the occupant's head by deploying from the upper part of the panel, and an active seat belt that mainly restrains the occupant's head and torso by winding the seat belt using a motor, etc. Including. The airbag of the occupant protection device 30 can be deployed in multiple stages, and the bag internal pressure during deployment can be changed. The occupant protection device 30 operates according to a command signal supplied from the ECU 12 so as to protect the occupant during a collision.

図2は、本実施例のバンパーエアバッグ32、アクティブバンパー34、及びアクティブシート36の各動作を説明するための図を示す。尚、図2(A)にはバンパーエアバッグ32の作動状態を、図2(B)にはアクティブバンパー34の作動状態を、また、図2(C)にはアクティブシート36の作動状態を、それぞれ示す。   FIG. 2 is a diagram for explaining each operation of the bumper airbag 32, the active bumper 34, and the active seat 36 of the present embodiment. 2 (A) shows the operating state of the bumper airbag 32, FIG. 2 (B) shows the operating state of the active bumper 34, FIG. 2 (C) shows the operating state of the active seat 36, Each is shown.

バンパーエアバッグ32は、図2(A)に示す如く、車体前部のバンパーなどから車両前方へ向けて展開する前方エアバッグ、及び、車体後部のバンパーなどから車両後方へ向けて展開する後方エアバッグからなる。バンパーエアバッグ32は、前方車両又は後続車両から自車両へ加わる衝撃を吸収し、また、自車両から前方車両又は後続車両へ与える衝撃を吸収する機能を有する。また、バンパーエアバッグ32は、多段階に展開することが可能となっており、展開時におけるバッグ内圧を変更することが可能となっている。バンパーエアバッグ32は、ECU12から供給される指令信号に従って、衝突時における衝撃を適切に吸収するように作動する。   As shown in FIG. 2 (A), the bumper airbag 32 includes a front airbag that is deployed toward the front of the vehicle from a bumper at the front of the vehicle body, and a rear airbag that is deployed toward the rear of the vehicle from a bumper at the rear of the vehicle body. It consists of a bag. The bumper airbag 32 has a function of absorbing an impact applied to the host vehicle from the preceding vehicle or the following vehicle, and a function of absorbing an impact applied from the host vehicle to the preceding vehicle or the following vehicle. The bumper airbag 32 can be deployed in multiple stages, and the bag internal pressure during deployment can be changed. The bumper airbag 32 operates according to a command signal supplied from the ECU 12 so as to appropriately absorb an impact at the time of a collision.

また、アクティブバンパー34は、図2(B)に示す如く、車体前部のバンパーを車両前方へ押し出す機構、及び、車体後部のバンパーを車両後方へ押し出す機構からなる。このアクティブバンパー34は、バンパーが車体から押し出されて離れることにより早期に自車両と前方車両又は後続車両との衝突による衝撃を吸収させる機能を有する。また、アクティブバンパー34は、バンパーが押し出される動作量を変更することが可能となっている。アクティブバンパー34は、ECU12から供給される指令信号に従って、衝突時における衝撃を吸収するように作動する。   As shown in FIG. 2B, the active bumper 34 includes a mechanism that pushes the bumper at the front of the vehicle body forward and a mechanism that pushes the bumper at the rear of the vehicle body backward. The active bumper 34 has a function of absorbing an impact caused by a collision between the host vehicle and a preceding vehicle or a succeeding vehicle at an early stage when the bumper is pushed away from the vehicle body and separated. Further, the active bumper 34 can change the operation amount by which the bumper is pushed out. The active bumper 34 operates according to a command signal supplied from the ECU 12 so as to absorb an impact at the time of a collision.

更に、アクティブシート36は、図2(C)に示す如く、車両シートのシートバックの傾きを変更するアクティブヘッドレスト機構36aと、車両シートを車内前後に移動させる機構36bと、ステアリングシャフトすなわちステアリングホイールの操作面の傾きを変更する機構36cと、ステアリングホイールの操作面を車内前後に移動させる機構36dと、からなる。アクティブシート36は、衝突時に車両シートやステアリングの位置,角度を変更することにより、上記した乗員保護装置30の機能をより有効に発揮させる機能を有する。アクティブシート36は、ECU12から供給される指令信号に従って、衝突時に車両シートやステアリングの位置,角度を切り替える。   Further, as shown in FIG. 2C, the active seat 36 includes an active headrest mechanism 36a for changing the inclination of the seat back of the vehicle seat, a mechanism 36b for moving the vehicle seat back and forth in the vehicle, a steering shaft, that is, a steering wheel. It comprises a mechanism 36c for changing the inclination of the operation surface and a mechanism 36d for moving the operation surface of the steering wheel forward and backward in the vehicle. The active seat 36 has a function of more effectively exerting the function of the occupant protection device 30 described above by changing the position and angle of the vehicle seat and steering at the time of a collision. The active seat 36 switches the position and angle of the vehicle seat and steering at the time of a collision in accordance with a command signal supplied from the ECU 12.

以下、本実施例の車両用衝突衝撃制御装置10の動作について説明する。   Hereinafter, the operation of the vehicle collision impact control apparatus 10 according to the present embodiment will be described.

図3は、前方車両と後続車両とに挟まれた自車両が、前方車両との衝突を回避すべく大きな制動力で減速された際に実現され得る状況を説明するための図を示す。ところで、自車両と前方に存在する前方車両とが、その相対位置や相対速度,相対加速度などに基づいて近い将来に衝突すると予測される場合(図3において時刻t0)においては、両車両同士の衝突のみを考えれば、その衝突による衝撃を最小限に軽減し或いはその衝突を回避させるうえでは、自車両を許容される最大の制動力で減速させることが最も有効である。しかしながら、このように自車両が最大制動力で減速される(図3において時刻t1)と、自車両に後続する後続車両が存在する場合には、自車両がその後続車両から追突され易くなり(図3において時刻t2)、自車両が後続車両から受ける衝撃が過大となってその二次的な被害が拡大するおそれがある。また、自車両は、後続車両と衝突した後、その後続車両から受けた衝撃に起因して加速されて前方車両に追突(二次衝突)するおそれもある(図3において時刻t3)。   FIG. 3 is a diagram for explaining a situation that can be realized when the host vehicle sandwiched between the preceding vehicle and the following vehicle is decelerated with a large braking force so as to avoid a collision with the preceding vehicle. By the way, when it is predicted that the own vehicle and the preceding vehicle existing ahead will collide in the near future based on the relative position, relative speed, relative acceleration, and the like (time t0 in FIG. 3), Considering only the collision, it is most effective to decelerate the host vehicle with the maximum allowable braking force in order to reduce the impact caused by the collision to the minimum or avoid the collision. However, when the own vehicle is decelerated with the maximum braking force in this way (time t1 in FIG. 3), if there is a subsequent vehicle that follows the own vehicle, the own vehicle is likely to collide from the subsequent vehicle ( In FIG. 3, at time t2), the impact received by the host vehicle from the following vehicle becomes excessive, and the secondary damage may be increased. Further, after the host vehicle collides with the following vehicle, the host vehicle may be accelerated due to an impact received from the succeeding vehicle and may collide with the preceding vehicle (secondary collision) (time t3 in FIG. 3).

同様に、自車両と後続車両とが、その相対位置や相対速度,相対加速度などに基づいて近い将来に衝突すると予測される場合においては、両車両同士の衝突のみを考えれば、その衝突による衝撃を最小限に軽減し或いはその衝突を回避させるうえでは、自車両を許容される最大の駆動力で加速させることが最も有効である。しかしながら、このように自車両が最大駆動力で加速されると、自車両に先行する前方車両が存在する場合には、自車両がその前方車両に追突し易くなり、自車両が前方車両に与える衝撃が過大となってその二次的な被害が拡大するおそれがある。   Similarly, when it is predicted that the host vehicle and the following vehicle will collide in the near future based on their relative position, relative speed, relative acceleration, etc., considering only the collision between the two vehicles, It is most effective to accelerate the host vehicle with the maximum allowable driving force in order to reduce the minimum or avoid the collision. However, when the host vehicle is accelerated with the maximum driving force in this way, if there is a front vehicle preceding the host vehicle, the host vehicle easily collides with the front vehicle, and the host vehicle gives the front vehicle. The impact may be excessive and the secondary damage may be expanded.

この点、自車両が前方車両に衝突すると予測される場合には、その前方衝突と共に、後続車両との後方衝突を考慮して自車両の走行を制御し、一方、自車両が後続車両に衝突すると予測される場合には、その後方衝突と共に、前方車両との前方衝突を考慮して自車両の走行を制御することが適切である。そこで、本実施例のシステムにおいては、自車両が前方車両及び後続車両に衝突すると予想される場合に、将来生ずるであろう前方衝突及び後方衝突の双方を考慮してそれらの衝突時に自車両が前方車両及び後続車両それぞれから受ける衝撃が全体として最適化されるように自車両の走行を制御する点に特徴を有している。以下、本実施例の特徴部について説明する。   In this regard, when it is predicted that the own vehicle will collide with the preceding vehicle, the traveling of the own vehicle is controlled in consideration of the rear collision with the following vehicle along with the preceding collision, while the own vehicle collides with the following vehicle. If predicted, it is appropriate to control the traveling of the host vehicle in consideration of the forward collision with the preceding vehicle as well as the backward collision. Therefore, in the system of the present embodiment, when the host vehicle is expected to collide with the preceding vehicle and the following vehicle, the host vehicle is considered at the time of the collision in consideration of both the forward collision and the rear collision that will occur in the future. The present invention is characterized in that the traveling of the host vehicle is controlled so that the impact received from each of the preceding vehicle and the following vehicle is optimized as a whole. Hereinafter, the characteristic part of a present Example is demonstrated.

図4は、自車両が前方車両と後続車両とに挟まれる状況において、自車両が前方車両に衝突する際の衝撃エネルギ(以下、第1の衝撃と称す)Ef、及び、後続車両に衝突する際の衝撃エネルギ(以下、第2の衝撃と称す)Ebと、その際の自車速V1との関係を表した図を示す。   FIG. 4 shows impact energy (hereinafter referred to as a first impact) Ef when the host vehicle collides with the preceding vehicle and a subsequent vehicle when the host vehicle is sandwiched between the preceding vehicle and the following vehicle. The figure showing the relationship between the impact energy (henceforth a 2nd impact) Eb in that case, and the own vehicle speed V1 in that case is shown.

車両同士が衝突する際に生ずる衝撃のエネルギは、主に両車両それぞれの質量及び速度に応じた値となり、速度の二次関数となる。従って、自車両が前方車両及び後続車両の双方に衝突する場合には、前方車両との前方衝突による第1の衝撃Ef、及び、後続車両との後方衝突による第2の衝撃Ebがそれぞれ、自車両の速度に応じたものとなる。この際、前方車両の速度及び後続車両の速度が共に不変であるものとして、第1の衝撃Efと第2の衝撃Ebとを加算した全体としての衝撃エネルギEtotalが最小となる自車速V1が存在する。   The energy of impact generated when vehicles collide with each other is a value corresponding to the mass and speed of both vehicles, and is a quadratic function of speed. Therefore, when the host vehicle collides with both the preceding vehicle and the following vehicle, the first impact Ef due to the front collision with the preceding vehicle and the second impact Eb due to the rear collision with the following vehicle are respectively determined. It depends on the speed of the vehicle. At this time, it is assumed that both the speed of the preceding vehicle and the speed of the following vehicle are invariable, and there is a host vehicle speed V1 at which the overall impact energy Etotal obtained by adding the first impact Ef and the second impact Eb is minimized. To do.

自車両が前方車両及び後続車両の双方に衝突した際に生ずる全体としての衝撃エネルギEtotalが最小になれば、自車両が前方車両及び後続車両から受ける或いは与える衝撃のトータルが最も軽減され、被害が最小限に抑制される。また、この場合には、自車速V1が全体としての衝撃エネルギEtotalが最小となる自車速から大きくずれている場合と比べて、自車両が前方車両に衝突した際の第1の衝撃Ef及び後続車両に衝突した際の第2の衝撃Ebの何れか一方のみが過大となることは回避され、自車両が前方車両及び後続車両から受ける或いは与える衝撃は車体前後に適度に分散される。従って、前方車両との前方衝突による第1の衝撃Ef及び後続車両との後方衝突による第2の衝撃Ebの何れか一方のみが過大となるのを回避し、衝突による被害を最小限に抑制するうえでは、前方衝突による衝撃と後方衝突による衝撃との和を最小にすることが重要である。尚、車両が前方車両及び後続車両に衝突する際の全体としての衝撃エネルギEtotalが最小になることは、前方衝突による第1の衝撃Efと後方衝突による第2の衝撃Ebとが等しく均等になることと等価である。   If the overall impact energy Etotal generated when the host vehicle collides with both the preceding vehicle and the following vehicle is minimized, the total impact received from or applied to the host vehicle from the preceding vehicle and the following vehicle is reduced most, and damage is caused. Minimized. Further, in this case, the first impact Ef and the subsequent time when the host vehicle collides with the preceding vehicle, compared to the case where the host vehicle speed V1 is greatly deviated from the host vehicle speed at which the overall impact energy Etotal is minimum. It is avoided that only one of the second impacts Eb at the time of collision with the vehicle is excessive, and the impact received by or applied to the host vehicle from the preceding vehicle and the following vehicle is moderately distributed in the longitudinal direction of the vehicle body. Therefore, it is possible to prevent only one of the first impact Ef due to the front collision with the preceding vehicle and the second impact Eb due to the rear collision with the following vehicle from being excessive, and to minimize damage due to the collision. In addition, it is important to minimize the sum of the impact caused by the forward collision and the impact caused by the backward collision. It should be noted that when the vehicle collides with the preceding vehicle and the following vehicle, the overall impact energy Etotal is minimized so that the first impact Ef due to the front collision and the second impact Eb due to the rear collision become equal. Is equivalent to

また、車両同士が衝突する際に生ずる衝撃のエネルギは、上記の如く、主に両車両それぞれの質量及び速度に応じた値となり、速度の二次関数となるが、衝突車両の質量が互いに一致するものとした場合は、両車両の相対速度に応じた値となり、相対速度の二乗に比例する。この場合、自車両が前方車両及び後続車両に衝突する際の全体としての衝撃エネルギEtotalは、次式(1)に示す如きになる。従って、自車両が前方車両及び後続車両に衝突する際の全体としての衝撃エネルギEtotalが最小になるのは、前方車両の速度V2と自車両の速度V1との差である相対速度Vfの二乗と、自車両の速度V1と後続車両の速度V3との差である相対速度Vbの二乗との和(すなわち、相対速度Vfと相対速度Vbとの二乗和)が最小になるときである。   In addition, as described above, the energy of impact generated when vehicles collide with each other is a value corresponding to the mass and speed of both vehicles, and is a quadratic function of the speed, but the masses of the collision vehicles match each other. In the case where the vehicle is to be used, the value corresponds to the relative speed of both vehicles, and is proportional to the square of the relative speed. In this case, the impact energy Etotal as a whole when the host vehicle collides with the preceding vehicle and the following vehicle is expressed by the following equation (1). Therefore, the impact energy Etotal as a whole when the own vehicle collides with the preceding vehicle and the following vehicle is minimized because the square of the relative speed Vf, which is the difference between the speed V2 of the preceding vehicle and the speed V1 of the own vehicle. This is when the sum of the square of the relative speed Vb that is the difference between the speed V1 of the host vehicle and the speed V3 of the following vehicle (that is, the sum of squares of the relative speed Vf and the relative speed Vb) is minimized.

Etotal∝(V1−V2)+(V3−V1) ・・・(1)
=2((V1−(V2+V3)/2)+(V3−V2)/4)・・・(2)
ここで、上記(1)式は(2)式のように変形することができるので、全体としての衝撃エネルギEtotalが最小になる、すなわち、相対速度Vfと相対速度Vbとの二乗和が最小になるのは、上記(2)式の第1項がゼロとなるとき、すなわち、V1=(V2+V3)/2が成立してV1−V2=V3−V1(すなわち、Vf=Vb)が成立するときである。
Etotal∝ (V1-V2) 2 + (V3-V1) 2 (1)
= 2 ((V1- (V2 + V3) / 2) 2 + (V3-V2) 2/4) ··· (2)
Here, since the equation (1) can be transformed as the equation (2), the impact energy Etotal as a whole is minimized, that is, the sum of squares of the relative velocity Vf and the relative velocity Vb is minimized. When the first term of the above equation (2) becomes zero, that is, when V1 = (V2 + V3) / 2 is satisfied and V1-V2 = V3-V1 (that is, Vf = Vb) is satisfied. It is.

本実施例において、ECU12は、前方障害物センサ14及び後続車センサ16を用いて前方車両及び後続車両双方の存在を検出し、その前方車両との相対速度Vf及び後続車両との相対速度Vbと、自車速センサ18を用いて検出される自車速V1との関係から、自車両が近い将来に前方車両及び後続車両の双方に衝突するか否かを判定する。そして、前方車両及び後続車両双方との衝突が発生すると予測し、その衝突が避けられないと判断した場合、以後、所定時間ごとに実際に検出される相対速度Vfと相対速度Vbとの関係から、自車両の速度を変更することによって前方車両との前方衝突時における相対速度Vfと後続車両との後方衝突時における相対速度Vbとがほぼ等しくなるように、自車両の速度制御を実行する。   In the present embodiment, the ECU 12 detects the presence of both the preceding vehicle and the following vehicle using the front obstacle sensor 14 and the following vehicle sensor 16, and determines the relative speed Vf with the preceding vehicle and the relative speed Vb with the following vehicle. From the relationship with the host vehicle speed V1 detected using the host vehicle speed sensor 18, it is determined whether or not the host vehicle will collide with both the preceding vehicle and the following vehicle in the near future. Then, when it is predicted that a collision with both the preceding vehicle and the following vehicle will occur, and it is determined that the collision is unavoidable, the relationship between the relative speed Vf and the relative speed Vb that are actually detected every predetermined time is determined. Then, by changing the speed of the host vehicle, the speed control of the host vehicle is executed so that the relative speed Vf at the time of the frontal collision with the preceding vehicle and the relative speed Vb at the time of the rearward collision with the following vehicle become substantially equal.

例えば、前方車両との実相対速度Vfが後続車両との実相対速度Vbよりも大きい場合には、両相対速度VfとVbとをほぼ等しくすべく、自車両を前方車両に対して相対的に減速させ、自車両の前方車両に対する速度を小さくする。また、前方車両との実相対速度Vfが後続車両との実相対速度Vbよりも小さい場合には、両相対速度VfとVbとをほぼ等しくすべく、自車両を後続車両に対して相対的に加速させ、自車速の後続車両に対する速度を大きくする。尚、自車両の前方車両に対する速度減少は、ブレーキアクチュエータ22による制動力の増加、変速機24によるエンジンブレーキの増加、及び、スロットルアクチュエータ26による駆動力の減少により実現される。また、自車両の後続車両に対する速度増加は、ブレーキアクチュエータ22による制動力の減少、変速機24によるエンジンブレーキの減少、及び、スロットルアクチュエータ26による駆動力の増加により実現される。   For example, when the actual relative speed Vf with the preceding vehicle is larger than the actual relative speed Vb with the following vehicle, the host vehicle is relatively set with respect to the preceding vehicle so that the relative speeds Vf and Vb are substantially equal. Decelerate to reduce the speed of the vehicle relative to the vehicle ahead. When the actual relative speed Vf with the preceding vehicle is smaller than the actual relative speed Vb with the following vehicle, the host vehicle is relatively set with respect to the following vehicle so that the relative speeds Vf and Vb are substantially equal. Accelerate and increase the speed of the vehicle following the vehicle. The speed reduction of the host vehicle relative to the preceding vehicle is realized by an increase in braking force by the brake actuator 22, an increase in engine brake by the transmission 24, and a decrease in driving force by the throttle actuator 26. Further, the speed increase of the host vehicle with respect to the following vehicle is realized by a decrease in braking force by the brake actuator 22, a decrease in engine brake by the transmission 24, and an increase in driving force by the throttle actuator 26.

かかる速度制御によれば、自車両が前方車両に衝突する際における自車両と前方車両との相対速度Vfと、自車両が後続車両に衝突する際における自車両と後続車両との相対速度Vbとを、ほぼ等しくすることができる。両相対速度VfとVbとが等しい場合には、自車両と前方車両と後続車両とが互いにほぼ同じ質量を有するものとすると、自車両が前方車両に衝突する際の第1の衝撃Efと自車両が後続車両に衝突する際の第2の衝撃Ebとがほぼ等しくなる。このため、本実施例の構成によれば、衝突時における両相対速度Vf,Vbが大きく異なっている場合と比較して、上記第1の衝撃Efおよび第2の衝撃Ebの何れか一方のみが過大となるのを回避することができ、自車両が前方車両および後続車両から受ける或いはそれらの車両に与える衝撃を前後に等しく分散させることができる。   According to this speed control, the relative speed Vf between the host vehicle and the preceding vehicle when the host vehicle collides with the preceding vehicle, and the relative speed Vb between the host vehicle and the following vehicle when the host vehicle collides with the following vehicle. Can be made approximately equal. If both the relative speeds Vf and Vb are equal, assuming that the host vehicle, the preceding vehicle, and the following vehicle have substantially the same mass, the first impact Ef and the own vehicle when the host vehicle collides with the preceding vehicle. The second impact Eb when the vehicle collides with the following vehicle becomes substantially equal. For this reason, according to the configuration of this embodiment, only one of the first impact Ef and the second impact Eb is compared with the case where the relative speeds Vf and Vb at the time of collision are greatly different. It is possible to avoid becoming excessive, and the impact received by the own vehicle from the preceding vehicle and the following vehicle or applied to these vehicles can be equally distributed in the front-rear direction.

また、両相対速度VfとVbとが等しくなれば、両相対速度VfとVbとの二乗和が最小になるので、第1の衝撃Efと第2の衝撃Ebとの和は最小となる。このため、本実施例の構成によれば、自車両が前方車両及び後続車両の双方に衝突した際にそれらの車両から受ける衝撃エネルギのトータル、逆に、自車両が前方車両および後続車両に与える衝撃エネルギのトータルを最も軽減することができ、これにより、衝突による被害を最小限に抑制することができる。   Further, if both the relative speeds Vf and Vb are equal, the sum of squares of both the relative speeds Vf and Vb is minimized, so that the sum of the first impact Ef and the second impact Eb is minimized. For this reason, according to the configuration of the present embodiment, when the own vehicle collides with both the preceding vehicle and the following vehicle, the total impact energy received from those vehicles, conversely, the own vehicle gives to the preceding vehicle and the following vehicle. The total impact energy can be reduced most, and the damage caused by the collision can be minimized.

尚、例えば自車両と前方車両との車間距離が極めて小さいときに自車両との車間距離が大きい後続車両の検出が開始されるなど、前方障害物センサ14による前方車両の検出開始タイミングと後続車センサ16による後続車両の検出開始タイミングとが大きく異なっている状況において、上記の如く前方車両との相対速度Vfと後続車両との相対速度Vbとがほぼ等しくなるような自車両の速度制御が実行されると、自車両が前方車両に衝突するタイミングと自車両が後続車両に衝突するタイミングとが大きくずれることがある。この際、自車両がまず前方車両に衝突した後に後続車両に衝突するものとすると、自車両がその後続車両から受けた衝撃に起因して加速されて前方車両に再び追突する可能性がある。   It should be noted that detection of the preceding vehicle by the front obstacle sensor 14 and the following vehicle are started, for example, detection of the following vehicle having a large inter-vehicle distance from the own vehicle when the distance between the own vehicle and the preceding vehicle is extremely small. In a situation where the detection start timing of the following vehicle by the sensor 16 is greatly different, the speed control of the host vehicle is executed such that the relative speed Vf with the preceding vehicle and the relative speed Vb with the following vehicle are substantially equal as described above. Then, the timing at which the host vehicle collides with the preceding vehicle and the timing at which the host vehicle collides with the following vehicle may be greatly deviated. At this time, if the own vehicle first collides with the following vehicle and then collides with the following vehicle, the own vehicle may be accelerated due to the impact received from the following vehicle and collide with the preceding vehicle again.

この点、自車両が前方車両に時間的にずれて2度にわたって衝突するのを回避するうえでは、前方車両との衝突タイミングが少なくとも後続車両との衝突タイミングよりも早い時期であることは好ましくない。そこで、本実施例のシステムにおいては、前方車両との衝突による第1の衝撃Efと後続車両との衝突による第2の衝撃Ebとがほぼ等しくなるようにすなわち前方車両との相対速度Vfと後続車両との相対速度Vbとがほぼ等しくなるように自車両の速度制御を実行しつつ、その速度制御によって実相対速度Vfが目標の相対速度Vfに一致しかつ実相対速度Vbが目標の相対速度Vbに一致するまでの過程で或いは各実相対速度Vf,Vbがそれぞれ目標値に一致した後に、前方車両との衝突タイミングと後続車両との衝突タイミングとがほぼ一致するように自車両の走行を制御することとしている。   In this respect, it is not preferable that the collision timing with the preceding vehicle is at least earlier than the collision timing with the following vehicle in order to avoid the host vehicle from colliding twice with the preceding vehicle in time. . Therefore, in the system of the present embodiment, the first impact Ef caused by the collision with the preceding vehicle and the second impact Eb caused by the collision with the following vehicle are substantially equal, that is, the relative speed Vf with the preceding vehicle and the subsequent vehicle. While executing the speed control of the host vehicle so that the relative speed Vb with the vehicle becomes substantially equal, the actual relative speed Vf matches the target relative speed Vf by the speed control, and the actual relative speed Vb becomes the target relative speed. The host vehicle travels so that the collision timing with the preceding vehicle and the collision timing with the following vehicle substantially coincide with each other in the process until it coincides with Vb or after the actual relative speeds Vf and Vb respectively coincide with the target values. Trying to control.

本実施例において、ECU12は、前方車両及び後続車両双方との衝突が発生すると予測した場合、上記した速度制御と共に、前方車両と自車両との車間距離と、自車両と後続車両との車間距離とがほぼ等しくなるような車間距離制御を実行する。例えば、上記の如く前方車両との前方衝突時における相対速度Vfと後続車両との後方衝突時におけるVbとがほぼ等しくなるように自車両の速度を変更する際に、その単位時間当たりの変更量(速度変化率)を、その速度変更が加速側であるのか減速側であるのか、並びに、前方障害物センサ14を用いて検出される前方車両との実車間距離Lfと後続車センサ16を用いて検出される後続車両との実車間距離Lbとの関係に基づいて変化させる。   In this embodiment, when the ECU 12 predicts that a collision with both the preceding vehicle and the following vehicle will occur, along with the speed control described above, the inter-vehicle distance between the preceding vehicle and the own vehicle, and the inter-vehicle distance between the own vehicle and the following vehicle. The inter-vehicle distance control is executed so that is substantially equal. For example, when the speed of the host vehicle is changed so that the relative speed Vf at the time of the forward collision with the preceding vehicle and the Vb at the time of the rearward collision with the following vehicle are substantially equal as described above, the change amount per unit time (Speed change rate), whether the speed change is on the acceleration side or the deceleration side, and the actual inter-vehicle distance Lf with the preceding vehicle detected using the front obstacle sensor 14 and the following vehicle sensor 16 It changes based on the relationship with the distance Lb between actual vehicles with the following vehicle detected.

具体的には、例えば、自車両が比較的低い相対速度Vfで前方車両に接近している状態で後方から後続車両がその自車両と前方車両との相対速度Vfよりも高い相対速度Vbで自車両に近づいてきた状況においては、実際の相対速度から目標の相対速度までの速度変化率を比較的小さくする。一方、自車両が比較的高い相対速度Vfで前方車両に接近している状態で後方から後続車両がその自車両と前方車両との相対速度Vfよりも低い相対速度Vbで自車両に近づいてきた状況においては、実際の相対速度から目標の相対速度までの速度変化率を比較的大きくする。また、自車両に比較的低い相対速度Vbで後続車両が接近している状態で自車両が後続車両との相対速度Vbよりも高い相対速度Vfで前方車両に近づいている状況においては、実際の相対速度から目標の相対速度までの速度変化率を小さくする。一方、自車両に比較的高い相対速度Vbで後続車両が接近している状態で自車両が後続車両との相対速度Vbよりも低い相対速度Vfで前方車両に近づいている状況においては、実際の相対速度から目標の相対速度までの速度変化率を大きくする。   Specifically, for example, in the state where the host vehicle is approaching the preceding vehicle at a relatively low relative speed Vf, the succeeding vehicle from the rear is at its own relative speed Vb higher than the relative speed Vf between the host vehicle and the preceding vehicle. In a situation where the vehicle is approaching, the speed change rate from the actual relative speed to the target relative speed is made relatively small. On the other hand, when the host vehicle is approaching the preceding vehicle at a relatively high relative speed Vf, the following vehicle approaches the host vehicle from the rear at a relative speed Vb lower than the relative speed Vf between the host vehicle and the preceding vehicle. In the situation, the speed change rate from the actual relative speed to the target relative speed is made relatively large. In the situation where the host vehicle is approaching the preceding vehicle at a relative speed Vf higher than the relative speed Vb with the succeeding vehicle while the following vehicle is approaching the host vehicle at a relatively low relative speed Vb, Decrease the speed change rate from the relative speed to the target relative speed. On the other hand, in a situation where the host vehicle is approaching the preceding vehicle at a relative speed Vf that is lower than the relative speed Vb with respect to the succeeding vehicle while the succeeding vehicle is approaching the host vehicle at a relatively high relative speed Vb, Increase the speed change rate from the relative speed to the target relative speed.

かかる車間距離制御によれば、自車両の衝突が実際に生ずる前、その衝突が予想された後に速やかに、前方車両と自車両との車間距離Lfと、自車両と後続車両との車間距離Lbとをほぼ等しくすることができる。上記した速度制御は衝突時に相対速度VfとVbとを等しくし、また、車間距離制御は衝突前に車間距離LfとLbとを等しくするので、自車両が前方車両に衝突するタイミングと自車両が後続車両に衝突するタイミングとが一致する。このため、本実施例によれば、自車両が前方車両に時間的に離れたタイミングで2回衝突するなどの不測の事態が生ずるのを回避することが可能となっている。   According to such inter-vehicle distance control, before the collision of the own vehicle actually occurs, immediately after the collision is predicted, the inter-vehicle distance Lf between the preceding vehicle and the own vehicle, and the inter-vehicle distance Lb between the own vehicle and the following vehicle. Can be made approximately equal. The speed control described above makes the relative speeds Vf and Vb equal at the time of a collision, and the inter-vehicle distance control makes the inter-vehicle distances Lf and Lb equal before the collision. The timing of collision with the following vehicle coincides. For this reason, according to the present Example, it is possible to avoid the occurrence of an unexpected situation such as the host vehicle colliding twice with the vehicle ahead in time.

このように、本実施例の車両用衝突衝撃制御装置10によれば、自車両が前方車両および後続車両の双方に衝突する際にその衝撃を前後に適度に分散させつつその前後の衝撃の和を最小にすることで、自車両が前方車両および後続車両それぞれから受ける或いはそれぞれへ与える衝撃全体としての最適化を図ることができ、また、前後衝突のタイミングを一致させることで、自車両が前方車両および後続車両に衝突する際における衝撃全体としての最適化を図ることができる。   Thus, according to the vehicle collision impact control apparatus 10 of the present embodiment, when the host vehicle collides with both the preceding vehicle and the following vehicle, the impact is moderately distributed forward and backward, and the sum of the impacts before and after the vehicle is collided. By minimizing the vehicle speed, it is possible to optimize the overall impact received by the vehicle from each of the preceding vehicle and the following vehicle, and by matching the timing of the front-rear collision, the vehicle can move forward. It is possible to optimize the impact as a whole when colliding with the vehicle and the following vehicle.

ところで、本実施例において、衝突時に自車両が前方車両又は後続車両から受ける衝撃或いは自車両が前方車両又は後続車両へ与える衝撃は、上述の如くトータルとして最小限に軽減されるが、この場合においても、車両に衝突による衝撃はある程度は作用する。そこで、この衝撃を適切に吸収すべく、バンパーエアバッグ32及びアクティブバンパー34を作動させることが考えられる。しかしながら、衝突時における自車両と前方車両又は後続車両との相対速度Vf,Vbはその衝突状態によって異なるので、この際、バンパーエアバッグ32のバッグ内圧やスクイブの点火個数やアクティブバンパー34の動作量を相対速度に関係なく一律なものとすると、衝撃吸収を適切に行うことができないおそれがある。   By the way, in this embodiment, the impact that the own vehicle receives from the preceding vehicle or the following vehicle or the impact that the own vehicle gives to the preceding vehicle or the following vehicle is reduced to the minimum as described above. However, the impact of the collision on the vehicle acts to some extent. Therefore, it is conceivable to operate the bumper airbag 32 and the active bumper 34 in order to appropriately absorb this impact. However, the relative speeds Vf and Vb between the host vehicle and the preceding vehicle or the following vehicle at the time of the collision vary depending on the collision state. At this time, the bag internal pressure of the bumper airbag 32, the number of squib ignitions, and the operation amount of the active bumper 34 If it is uniform regardless of the relative speed, there is a possibility that shock absorption cannot be performed properly.

また、衝突時に車両シートのシートバックが過度に水平側に傾いていたり、車両シートとエアバッグの展開するステアリングホイールとが過度に接近していたりすると、衝突時に乗員がステアリングホイールの下方に潜り込んでしまったり、エアバッグの展開が完了する前に乗員がステアリングホイールやインパネに接触する事態が生じ得る。この点、車両衝突時に車両シートの位置などの状態が初期設定のままに維持されるものとすると、乗員保護装置30による乗員保護効果を最大限発揮させることができないおそれがある。   In addition, if the seat back of the vehicle seat is excessively tilted to the horizontal side at the time of a collision or if the vehicle seat and the steering wheel that the airbag is deployed are excessively close, the occupant will sink under the steering wheel at the time of the collision. A situation may occur in which the occupant contacts the steering wheel or the instrument panel before the airbag is completely deployed. In this regard, if the state of the vehicle seat and the like is maintained at the initial setting in the event of a vehicle collision, the occupant protection effect by the occupant protection device 30 may not be exhibited to the maximum extent.

そこで、本実施例のシステムにおいては、衝突時における自車両と前方車両との相対速度Vf及び自車両と後続車両との相対速度Vbに応じて、バンパーエアバッグ32のバッグ内圧やスクイブの点火個数又はアクティブバンパー34の動作量を変更すると共に、自車両が前方車両及び後続車両に衝突すると予想された場合に、アクティブシート36を作動させることにより、乗員保護装置30の機能が最大限発揮されるように車両シートやステアリングホイールを位置変更・角度変更することとしている。以下、この本実施例の特徴部について説明する。   Therefore, in the system of the present embodiment, the bag internal pressure of the bumper airbag 32 and the number of squib ignitions are determined according to the relative speed Vf between the host vehicle and the preceding vehicle at the time of the collision and the relative speed Vb between the host vehicle and the following vehicle. Alternatively, when the operation amount of the active bumper 34 is changed and the host vehicle is expected to collide with the preceding vehicle and the following vehicle, the active seat 36 is operated to maximize the function of the occupant protection device 30. In this way, the vehicle seat and steering wheel are changed in position and angle. Hereinafter, the characteristic part of this embodiment will be described.

図5は、本実施例の車両用衝突衝撃制御装置10において、自車両が前方車両又は後続車両に衝突する際における相対速度Vf,Vbと、バンパーエアバッグ32のバッグ内圧及び作動個数並びにアクティブバンパー34の動作量との関係を表したマップを示す。また、図6は、本実施例の車両用衝突衝撃制御装置10において、アクティブシート36の制御手法を説明するための図を示す。更に、図7は、本実施例の車両用衝突衝撃制御装置10においてECU12が実行する制御ルーチンの一例のフローチャートを示す。図7に示すルーチンは、所定時間ごとに繰り返し起動されるルーチンである。   FIG. 5 shows the relative impact speeds Vf and Vb when the host vehicle collides with the preceding vehicle or the succeeding vehicle, the bag internal pressure and the number of the bumper airbags 32, and the active bumper. The map showing the relationship with the operation amount of 34 is shown. FIG. 6 is a diagram for explaining a control method of the active seat 36 in the vehicle impact impact control apparatus 10 of the present embodiment. Furthermore, FIG. 7 shows a flowchart of an example of a control routine executed by the ECU 12 in the vehicle collision impact control apparatus 10 of the present embodiment. The routine shown in FIG. 7 is a routine that is repeatedly activated every predetermined time.

本実施例において、ECU12は、バンパーエアバッグ32の作動によって前方エアバッグ及び後方エアバッグが展開開始してから所望の状態に展開完了するまでの作動遅れ時間を含む動作時間T10(例えば、40ms)、及び、アクティブバンパー34の作動によって車体バンパーが常態位置から所望の状態に押し出されるまでの作動遅れ時間を含む動作時間T11(例えば、500ms)をそれぞれ記憶部に記憶している。尚、この動作時間T10,T11は、エアバッグに実現させるバッグ内圧や点火個数に応じて又はバンパーに実現させる動作量に応じて異ならせることとしてもよい。   In the present embodiment, the ECU 12 operates an operation time T10 (for example, 40 ms) including an operation delay time from the start of deployment of the front airbag and the rear airbag by the operation of the bumper airbag 32 to the completion of deployment to a desired state. The operation time T11 (for example, 500 ms) including the operation delay time until the vehicle body bumper is pushed from the normal position to the desired state by the operation of the active bumper 34 is stored in the storage unit. The operation times T10 and T11 may be varied according to the bag internal pressure and the number of ignitions realized in the airbag, or according to the operation amount realized in the bumper.

ECU12は、前方障害物センサ14及び後続車センサ16を用いて検出される前方車両との相対速度Vf及び後続車両との相対速度Vbと、自車速センサ18を用いて検出される自車速V1との関係から、自車両が前方車両及び後続車両の双方との衝突を回避できず、近い将来に衝突すると予測された場合(ステップ100で肯定判定された場合)、まず、図6(a)及び(b)に示す如く、アクティブシート36を作動させる(ステップ102)。   The ECU 12 uses the front obstacle sensor 14 and the following vehicle sensor 16 to detect the relative speed Vf to the front vehicle and the relative speed Vb to the following vehicle, and the own vehicle speed V1 to be detected using the own vehicle speed sensor 18. From this relationship, when it is predicted that the host vehicle cannot avoid a collision with both the preceding vehicle and the following vehicle and collides in the near future (when an affirmative determination is made in step 100), first, FIG. As shown in (b), the active seat 36 is operated (step 102).

具体的には、アクティブヘッドレスト機構36aにより車両シートのシートバックをより垂直側に立てすなわちシートバック傾き角θSEを初期設定値(現角度θSE0)から所定量αだけ増加させ、機構36bにより車両シートを車内後方へ移動させすなわち車両シートの、車室前端からの距離LSEを初期設定値(現距離LSE0)から所定量βだけ長くし、機構36cによりステアリングシャフトをより水平にしステアリングホイールの操作面をより垂直にしすなわちステアリングシャフトの傾き角θSTを初期設定値(現角度θST0)から所定量γだけ減少させ、更に、機構36dによりステアリングホイールの操作面を車内前方へ移動させすなわちステアリングホイールの操作面の、車室前端からの距離LSTを初期設定値(現距離LST0)から所定量δだけ短くする。   Specifically, the active headrest mechanism 36a raises the seat back of the vehicle seat more vertically, that is, the seat back inclination angle θSE is increased by a predetermined amount α from the initial setting value (current angle θSE0), and the vehicle seat is moved by the mechanism 36b. The vehicle seat is moved rearward, that is, the distance LSE from the front end of the vehicle seat is increased by a predetermined amount β from the initial set value (current distance LSE0), the steering shaft is made more horizontal by the mechanism 36c, and the operation surface of the steering wheel is further increased. In other words, the steering shaft inclination angle θST is decreased by a predetermined amount γ from the initial setting value (current angle θST0), and the operation surface of the steering wheel is moved forward in the vehicle by the mechanism 36d. The distance LST from the front end of the passenger compartment is shortened by a predetermined amount δ from the initial set value (current distance LST0). To.

車両シートが車室前端から車内後方へ移動され、或いは、ステアリングホイールの操作面が車室前端から車内前方へ移動されると、車両乗員の身体(胴体)からステアリングホイールやインパネ表面までの距離が初期状態よりも大きくなる。また、車両シートのシートバックがより垂直側に立ち、或いは、ステアリングシャフトがより水平側に近づきステアリングホイールの操作面がより垂直に移行されると、車両乗員の身体(胴体)がステアリングホイールやインパネ表面に初期状態よりも正対する傾向になる。   When the vehicle seat is moved from the front end of the passenger compartment to the rear of the interior of the vehicle, or when the operation surface of the steering wheel is moved from the front end of the passenger compartment to the front of the interior of the vehicle, the distance from the body (body) of the vehicle occupant to the steering wheel and instrument panel surface is increased. It becomes larger than the initial state. In addition, when the seat back of the vehicle seat stands more vertically or when the steering shaft approaches the horizontal side and the operation surface of the steering wheel is shifted to a more vertical position, the body (body) of the vehicle occupant is moved to the steering wheel or instrument panel. It tends to face the surface rather than the initial state.

車両乗員の身体がステアリングホイール等から離間すれば、車両衝突が生じた際に乗員がそのステアリングホイール等に接触するまでの時間が比較的長くなるので、主に乗員の頭部を保護する乗員保護装置30の機能が確保され易くなる。また、車両乗員の身体がステアリングホイール等に正対すれば、車両衝突が生じた際に乗員の身体がステアリングホイール下方に潜り込むなどの事態が生じ難くなるので、乗員保護装置30の機能が確保され易くなる。このため、アクティブシート36が上記の如く作動すれば、車両衝突時における乗員保護装置30の機能を最大限発揮させることができるので、従って、本実施例によれば、衝突時における自車両の乗員保護の機能向上を図ることが可能となっている。   If the vehicle occupant's body is separated from the steering wheel or the like, it takes a relatively long time for the occupant to contact the steering wheel or the like when a vehicle collision occurs. Therefore, the occupant protection mainly protects the occupant's head. The function of the device 30 is easily secured. Further, when the vehicle occupant's body faces the steering wheel or the like, it is difficult for the occupant's body to sink under the steering wheel when a vehicle collision occurs, so the function of the occupant protection device 30 is ensured. It becomes easy. Therefore, if the active seat 36 operates as described above, the function of the occupant protection device 30 at the time of the vehicle collision can be exhibited to the maximum. Therefore, according to this embodiment, the occupant of the own vehicle at the time of the collision. It is possible to improve the protection function.

また、ECU12は、自車両が近い将来に前方車両及び後続車両の双方に衝突すると予測された場合、以後、自車両の衝突対象である前方車両及び後方車両それぞれに対して、以下に示す式(3)〜(6)に従って、上記したバンパーエアバッグ32の動作時間T10が経過した時点での自車両と前方車両又は後方車両との車間距離Lf(t+T10),Lb(t+T10)を推定すると共に、上記したアクティブバンパー34の動作時間T11が経過した時点での自車両と前方車両又は後方車両との車間距離Lf(t+T11),Lb(t+T11)を推定する(ステップ104)。尚、L*(t)は、現時点tでの車間距離Lf,Lbである。   Further, when it is predicted that the host vehicle will collide with both the preceding vehicle and the following vehicle in the near future, the ECU 12 thereafter expresses the following formula ( According to 3) to (6), the inter-vehicle distances Lf (t + T10) and Lb (t + T10) between the host vehicle and the preceding vehicle or the following vehicle at the time when the operation time T10 of the bumper airbag 32 has elapsed. At the same time, the inter-vehicle distances Lf (t + T11) and Lb (t + T11) between the host vehicle and the preceding vehicle or the rear vehicle when the operation time T11 of the active bumper 34 has elapsed are estimated (step 104). ). L * (t) is the inter-vehicle distances Lf and Lb at the current time t.

Lf(t+T10)=Lf(t)+(Vf(t)・T10+1/2・Gf(t)・T10)・・・(3)
Lf(t+T11)=Lf(t)+(Vf(t)・T11+1/2・Gf(t)・T11)・・・(4)
Lb(t+T10)=Lb(t)+(Vb(t)・T10+1/2・Gb(t)・T10)・・・(5)
Lb(t+T11)=Lb(t)+(Vb(t)・T11+1/2・Gb(t)・T11)・・・(6)
そして、ECU12は、各推定車間距離毎に、時間T10又はT11後の推定車間距離がそれぞれゼロ又はゼロよりも僅かに大きな値以下になるか否かを判別する(ステップ106)。これら何れかの推定車間距離がゼロ又はゼロよりも僅かに大きな値以下となる場合は、その時点で適当にバンパーエアバッグ32又はアクティブバンパー34の作動が開始されないと、そのバンパーエアバッグ32やアクティブバンパー34によって衝突時における衝撃を有効に吸収することができなくなる。ECU12は、各推定車間距離がゼロ又はゼロよりも僅かに大きな値以下になると判別した場合、直ちにその状況に合わせてバンパーエアバッグ32又はアクティブバンパー34を作動させる(ステップ110)。
Lf (t + T10) = Lf (t) + (Vf (t) · T10 + 1/2 · Gf (t) · T10 2 ) (3)
Lf (t + T11) = Lf (t) + (Vf (t) · T11 + 1/2 · Gf (t) · T11 2 ) (4)
Lb (t + T10) = Lb (t) + (Vb (t) · T10 + 1/2 · Gb (t) · T10 2 ) (5)
Lb (t + T11) = Lb (t) + (Vb (t) · T11 + 1/2 · Gb (t) · T11 2 ) (6)
Then, the ECU 12 determines, for each estimated inter-vehicle distance, whether the estimated inter-vehicle distance after the time T10 or T11 is zero or a value slightly larger than zero, respectively (step 106). If any of these estimated inter-vehicle distances is zero or slightly less than zero, the operation of the bumper airbag 32 or the active bumper 34 is not appropriately started at that time. The bumper 34 cannot effectively absorb the impact at the time of collision. When the ECU 12 determines that each estimated inter-vehicle distance is zero or slightly less than zero, the ECU 12 immediately activates the bumper airbag 32 or the active bumper 34 in accordance with the situation (step 110).

例えば、現時点からアクティブバンパー34の動作時間T11の経過後に自車両と前方車両との車間距離がゼロ近傍以下になる場合は、車体前部のバンパーをアクティブバンパー34の作動により車両前方へ押し出す。また、現時点からバンパーエアバッグ32の動作時間T10の経過後に自車両と後続車両との車間距離がゼロ近傍以下になる場合は、車体後部のバンパーから後方エアバッグをバンパーエアバッグ32の作動により車両後方へ展開する。   For example, if the inter-vehicle distance between the host vehicle and the preceding vehicle becomes near zero or less after the operation time T11 of the active bumper 34 has elapsed from the present time, the bumper at the front of the vehicle body is pushed forward by the operation of the active bumper 34. In addition, when the distance between the host vehicle and the succeeding vehicle becomes near zero or less after the operation time T10 of the bumper airbag 32 has elapsed from the present time, the rear airbag is moved from the bumper at the rear of the vehicle body by the operation of the bumper airbag 32. Expand backwards.

ここで、衝突時における相対速度Vf,Vbが大きいほど、車両に作用する衝撃が大きくなるため、衝突による衝撃を適切に吸収するうえではバッグ内圧や作動個数,動作量を大きくすることが必要である。ECU12は、展開するバンパーエアバッグ32のバッグ内圧及び作動個数、並びに、バンパーを押し出すアクティブバンパー34の動作量を、次式(7)〜(10)に示す衝突時における相対速度Vf(t+T10),Vf(t+T11),Vb(t+T10),Vb(t+T11)に基づいて、図5に示すマップを参照して決定する(ステップ108)と共に、そのバンパーエアバッグ32のバッグ内圧及び作動個数が実現され或いはアクティブバンパー34の動作量が実現されるように指令する。かかる指令がなされると、その指令に従ってバンパーエアバッグ32又はアクティブバンパー34が作動する(ステップ110)。尚、図5に示すマップは、相対速度Vf,Vbが大きいほどバッグ内圧及び作動個数並びに動作量がそれぞれ大きくなるように設定されている。   Here, as the relative speeds Vf and Vb at the time of the collision increase, the impact acting on the vehicle increases. Therefore, in order to appropriately absorb the impact due to the collision, it is necessary to increase the bag internal pressure, the number of operations, and the operation amount. is there. The ECU 12 determines the relative pressure Vf (t + T10 at the time of a collision represented by the following equations (7) to (10) based on the bag internal pressure and the number of the bumper airbags 32 to be deployed and the operation amount of the active bumper 34 that pushes out the bumpers. ), Vf (t + T11), Vb (t + T10), and Vb (t + T11), with reference to the map shown in FIG. 5 (step 108), and the bumper airbag 32 It is commanded that the internal pressure and the number of operations are realized or the operation amount of the active bumper 34 is realized. When such a command is issued, the bumper airbag 32 or the active bumper 34 operates according to the command (step 110). The map shown in FIG. 5 is set so that the bag internal pressure, the number of operations, and the amount of operation increase as the relative speeds Vf and Vb increase.

Vf(t+T10)=Vf(t)+Gf(t)・T10 ・・・(7)
Vf(t+T11)=Vf(t)+Gf(t)・T11 ・・・(8)
Vb(t+T10)=Vb(t)+Gb(t)・T10 ・・・(9)
Vb(t+T11)=Vb(t)+Gb(t)・T11 ・・・(10)
従って、バンパーエアバッグ32及びアクティブバンパー34の作動が衝突直前の上記の如きタイミングで開始されれば、車両衝突時にバンパーエアバッグ32及びアクティブバンパー34がその衝突による衝撃を吸収する機能を十分に発揮させることが可能となる。この点、本実施例によれば、バンパーエアバッグ32及びアクティブバンパー34の機能により自車両が前方車両又は後続車両から受ける衝撃或いは逆に自車両が前方車両又は後続車両へ与える衝撃を軽減することが可能となっている。
Vf (t + T10) = Vf (t) + Gf (t) · T10 (7)
Vf (t + T11) = Vf (t) + Gf (t) · T11 (8)
Vb (t + T10) = Vb (t) + Gb (t) · T10 (9)
Vb (t + T11) = Vb (t) + Gb (t) · T11 (10)
Therefore, if the operation of the bumper airbag 32 and the active bumper 34 is started at the timing just before the collision, the bumper airbag 32 and the active bumper 34 sufficiently function to absorb the impact caused by the collision at the time of the vehicle collision. It becomes possible to make it. In this regard, according to the present embodiment, the function of the bumper airbag 32 and the active bumper 34 reduces the impact that the host vehicle receives from the preceding vehicle or the following vehicle or, conversely, the impact that the host vehicle gives to the preceding vehicle or the following vehicle. Is possible.

また、バンパーエアバッグ32及びアクティブバンパー34が、上記の如く設定されたバッグ内圧及び作動個数並びに動作量に従って作動すれば、衝突による衝撃を適切に吸収することが可能となる。この点、本実施例によれば、自車両と前方車両又は後続車両との衝突の程度に合わせてバンパーエアバッグ32及びアクティブバンパー34を作動させるので、衝撃吸収を行うのに不必要に過大な又は不十分な作動を抑制することが可能となっている。   Further, if the bumper airbag 32 and the active bumper 34 operate according to the bag internal pressure, the number of operations, and the operation amount set as described above, it is possible to appropriately absorb the impact caused by the collision. In this respect, according to the present embodiment, the bumper airbag 32 and the active bumper 34 are operated in accordance with the degree of collision between the host vehicle and the preceding vehicle or the following vehicle, so that it is unnecessarily excessive for shock absorption. Alternatively, it is possible to suppress insufficient operation.

尚、上記の実施例においては、ECU12が、自車両が前方車両に衝突する際の第1の衝撃Efと自車両が後続車両に衝突する際の第2の衝撃Ebとがほぼ等しくなるように自車両の速度を制御することにより特許請求の範囲に記載した「速度制御手段」が、前方車両と自車両との車間距離と、自車両と後続車両との車間距離とがほぼ等しくなるように自車両の走行を制御することにより特許請求の範囲に記載した「車間距離制御手段」が、自車両が前方車両及び後続車両の双方に衝突すると予測された場合にアクティブシート36を作動させることにより特許請求の範囲に記載した「乗員保護起動制御手段」が、自車両が前方車両及び後続車両の双方に衝突すると予測された場合にバンパーエアバッグ32及びアクティブバンパー34を作動させることにより特許請求の範囲に記載した「衝撃吸収起動制御手段」が、それぞれ実現されている。また、乗員保護装置30が特許請求の範囲に記載した「頭部拘束装置」に、乗員保護装置30及びアクティブシート36が特許請求の範囲に記載した「乗員保護装置」に、バンパーエアバッグ32及びアクティブバンパー34が特許請求の範囲に記載した「衝撃吸収装置」に、それぞれ相当している。   In the above embodiment, the ECU 12 causes the first impact Ef when the host vehicle collides with the preceding vehicle and the second impact Eb when the host vehicle collides with the following vehicle to be substantially equal. By controlling the speed of the host vehicle, the "speed control means" described in the claims makes the inter-vehicle distance between the preceding vehicle and the host vehicle and the inter-vehicle distance between the host vehicle and the following vehicle substantially equal. By controlling the travel of the host vehicle, the “inter-vehicle distance control means” described in the claims activates the active seat 36 when the host vehicle is predicted to collide with both the preceding vehicle and the following vehicle. The “occupant protection activation control means” described in the claims creates the bumper airbag 32 and the active bumper 34 when the host vehicle is predicted to collide with both the preceding vehicle and the following vehicle. Set forth in the appended claims by "shock absorbing boot control means" is realized, respectively. Further, the occupant protection device 30 is included in the “head restraint device” described in the claims, the occupant protection device 30 and the active seat 36 are included in the “occupant protection device” described in the claims, the bumper airbag 32 and The active bumpers 34 correspond to the “impact absorbers” recited in the claims.

ところで、上記の実施例においては、自車両の衝突する前方車両及び後続車両が共に自車両とほぼ同じ質量を有するものとし、第1の衝撃Efと第2の衝撃Ebとをほぼ均等にすべく前方車両との相対速度Vfと後続車両との相対速度Vbとがほぼ等しくなるように自車両の速度を制御することとしたが、前方車両及び後続車両の質量を自車両が測定し検出することができる状況下において、前方車両又は後続車両が自車両に対して大きく異なる質量を有する場合には、第1の衝撃Efと第2の衝撃Ebとをほぼ均等にすべく自車両の速度を制御することとしてもよい。この場合には、前方車両との相対速度Vfと後続車両との相対速度Vbとが大きく異なることとなる。   By the way, in the above-described embodiment, both the preceding vehicle and the following vehicle with which the own vehicle collides have substantially the same mass as the own vehicle, and the first impact Ef and the second impact Eb should be made substantially equal. Although the speed of the host vehicle is controlled so that the relative speed Vf with the preceding vehicle and the relative speed Vb with the following vehicle are substantially equal, the own vehicle measures and detects the mass of the preceding vehicle and the following vehicle. If the vehicle ahead and the following vehicle have masses that are significantly different from those of the subject vehicle, the speed of the subject vehicle is controlled so that the first impact Ef and the second impact Eb are substantially equal. It is good to do. In this case, the relative speed Vf with the preceding vehicle and the relative speed Vb with the following vehicle are greatly different.

また、上記の実施例においては、自車両が前方車両に衝突する際の第1の衝撃Efと自車両が後続車両に衝突する際の第2の衝撃Ebとがほぼ等しくなるように自車両の速度を制御するが、本発明はこれに限定されるものではなく、第1の衝撃Efが第2の衝撃Ebよりも小さくなるように自車両の速度を制御することとしてもよい。この構成は、自車両と前方車両と後続車両とが互いにほぼ同じ質量を有するものとすると、衝突時における前方車両と自車両との相対速度Vfが自車両と後続車両との相対速度Vbよりも小さくなるように自車両の速度制御を実行する構成と等価である。かかる構成によれば、自車両が前方車両及び後続車両に衝突する際の衝撃を前後にある程度分散させつつ、第1の衝撃Efと第2の衝撃Ebとが均等である構成と比較して、自車両が前方車両に与える衝撃が小さく抑えられるので、自車両の前方車両への加害性を低減することができると共に、同時に自車両が前方車両から受ける衝撃が小さく抑えられるので、前方車両との衝突による衝撃に対して乗員保護機能が発揮されない事態を抑制することができる。   Further, in the above embodiment, the first impact Ef when the host vehicle collides with the preceding vehicle and the second impact Eb when the host vehicle collides with the following vehicle are substantially equal. Although the speed is controlled, the present invention is not limited to this, and the speed of the host vehicle may be controlled so that the first impact Ef is smaller than the second impact Eb. In this configuration, if the own vehicle, the preceding vehicle, and the following vehicle have substantially the same mass, the relative speed Vf between the preceding vehicle and the own vehicle at the time of the collision is higher than the relative speed Vb between the own vehicle and the following vehicle. This is equivalent to a configuration in which the speed control of the host vehicle is executed so as to decrease. According to such a configuration, compared with a configuration in which the first impact Ef and the second impact Eb are equal while the impact when the host vehicle collides with the preceding vehicle and the following vehicle is dispersed to some extent, Since the impact of the host vehicle on the preceding vehicle is suppressed to a low level, it is possible to reduce the harmfulness of the host vehicle to the preceding vehicle, and at the same time, the impact received by the host vehicle from the preceding vehicle is suppressed to a small level. It is possible to suppress a situation in which the occupant protection function is not exhibited against an impact caused by a collision.

また、上記の実施例においては、自車両に乗車する乗員構成、すなわち、運転者以外の乗員が何れの車両シートに着座しているかに関係なく、自車両が前方車両に衝突する際の第1の衝撃Efと自車両が後続車両に衝突する際の第2の衝撃Ebとの双方を考慮して自車両の速度制御を行うこととしているが、自車両の乗員構成を考慮して衝撃を制御すること、例えば、後部シートに乗員が着座している場合には後続車両との衝突による第2の衝撃Ebが、後部シートに乗員が着座していない場合に比べて小さくなるように自車両の速度制御を行うこととしてもよい。   In the above-described embodiment, the occupant configuration that rides on the host vehicle, that is, the first when the host vehicle collides with the preceding vehicle regardless of which vehicle seat an occupant other than the driver is seated on. The speed of the host vehicle is controlled in consideration of both the impact Ef of the host vehicle and the second impact Eb when the host vehicle collides with the following vehicle, but the impact is controlled in consideration of the occupant configuration of the host vehicle. For example, when the occupant is seated on the rear seat, the second impact Eb caused by the collision with the following vehicle is smaller than that when the occupant is not seated on the rear seat. Speed control may be performed.

更に、上記の実施例においては、自車両が前方車両に衝突する際の第1の衝撃Efと自車両が後続車両に衝突する際の第2の衝撃Ebとの双方を考慮して自車両の速度制御を行うこととしているが、この制御を、シートベルトスイッチ20を用いて車両乗員がシートベルトを装着していると判別される場合にのみ行い、車両乗員がシートベルトを装着していないと判別される場合には行わないことが重要である。シートベルトが装着されていないと、自車両が特に前方車両に衝突した際に乗員の身体がシートベルトにより拘束されないため、乗員に大きな衝撃が加わることとなる。従って、この場合は、前方車両との衝突による第1の衝撃Efを最大限軽減することにより乗員に大きなダメージが加わるのを回避すべく、自車両を最大限の制動力で減速させることが適切となる。   Furthermore, in the above-described embodiment, the first vehicle's own vehicle E1 is impacted in consideration of both the first impact Ef when the own vehicle collides with the preceding vehicle and the second impact Eb when the own vehicle collides with the following vehicle. Although the speed control is to be performed, this control is performed only when it is determined that the vehicle occupant is wearing the seat belt using the seat belt switch 20, and the vehicle occupant is not wearing the seat belt. It is important not to do this if it is determined. If the seat belt is not attached, the occupant's body is not restrained by the seat belt particularly when the host vehicle collides with the preceding vehicle, so that a large impact is applied to the occupant. Therefore, in this case, it is appropriate to decelerate the host vehicle with the maximum braking force in order to prevent the passenger from being greatly damaged by maximizing the first impact Ef caused by the collision with the preceding vehicle. It becomes.

本発明の一実施例である車両用衝突衝撃制御装置のシステム構成図である。1 is a system configuration diagram of a vehicle collision impact control apparatus according to an embodiment of the present invention. 本実施例のバンパーエアバッグ、アクティブバンパー、及びアクティブシートの各動作を説明するための図である。It is a figure for demonstrating each operation | movement of the bumper airbag of this example, an active bumper, and an active seat. 前方車両と後続車両とに挟まれた自車両が、前方車両との衝突を回避すべく大きな制動力で減速された際に実現され得る状況を説明するための図である。It is a figure for demonstrating the condition which can be implement | achieved when the own vehicle pinched | interposed between the preceding vehicle and the following vehicle is decelerated with a big braking force so as to avoid a collision with the preceding vehicle. 自車両が前方車両と後続車両とに挟まれる状況において、自車両が前方車両に衝突する際の衝撃エネルギEf、及び、後続車両に衝突する際の衝撃エネルギEbと、その際の自車速V1との関係を表した図である。In a situation where the host vehicle is sandwiched between the preceding vehicle and the following vehicle, impact energy Ef when the host vehicle collides with the preceding vehicle, impact energy Eb when the host vehicle collides with the following vehicle, and the host vehicle speed V1 at that time FIG. 本実施例の車両用衝突衝撃制御装置において、自車両が前方車両又は後続車両に衝突する際における相対速度Vf,Vbと、バンパーエアバッグのバッグ内圧及び作動個数並びにアクティブバンパーの動作量との関係を表したマップである。In the vehicle impact impact control apparatus of this embodiment, the relationship between the relative speeds Vf and Vb when the host vehicle collides with the preceding vehicle or the following vehicle, the bag internal pressure of the bumper airbag, the number of actuations, and the operation amount of the active bumper. It is a map showing. 本実施例の車両用衝突衝撃制御装置におけるアクティブシートの制御手法を説明するための図である。It is a figure for demonstrating the control method of the active seat in the collision impact control apparatus for vehicles of a present Example. 本実施例の車両用衝突衝撃制御装置において実行される制御ルーチンのフローチャートである。It is a flowchart of the control routine performed in the collision impact control apparatus for vehicles of a present Example.

符号の説明Explanation of symbols

10 車両用衝突衝撃制御装置
12 電子制御ユニット(ECU)
14 前方障害物センサ
16 後続車センサ
18 自車速センサ
22 ブレーキアクチュエータ
24 変速機
26 スロットルアクチュエータ
30 乗員保護装置
32 バンパーエアバッグ
34 アクティブバンパー
36 アクティブシート
10 Vehicle Impact Impact Control Device 12 Electronic Control Unit (ECU)
DESCRIPTION OF SYMBOLS 14 Front obstacle sensor 16 Subsequent vehicle sensor 18 Own vehicle speed sensor 22 Brake actuator 24 Transmission 26 Throttle actuator 30 Crew protection device 32 Bumper airbag 34 Active bumper 36 Active seat

Claims (9)

自車両が、自車両の前方に存在する前方車両及び自車両に対して後続する後続車両の双方に衝突すると予測される場合に、前記前方車両と自車両との衝突による第1の衝撃及び自車両と前記後続車両との衝突による第2の衝撃を制御する車両用衝突衝撃制御装置であって、
衝突が生ずる前に、前記第1の衝撃と前記第2の衝撃との双方を考慮して自車両の速度を制御する速度制御手段を備えることを特徴とする車両用衝突衝撃制御装置。
When the host vehicle is predicted to collide with both the forward vehicle existing ahead of the host vehicle and the subsequent vehicle that follows the host vehicle, the first impact and the host vehicle due to the collision between the front vehicle and the host vehicle are detected. A vehicle collision impact control device for controlling a second impact caused by a collision between a vehicle and the following vehicle,
A collision impact control device for a vehicle, comprising speed control means for controlling the speed of the host vehicle in consideration of both the first impact and the second impact before a collision occurs.
前記速度制御手段は、前記第1の衝撃と前記第2の衝撃とがほぼ等しくなるように自車両の速度を制御することを特徴とする請求項1記載の車両用衝突衝撃制御装置。   2. The collision impact control apparatus for a vehicle according to claim 1, wherein the speed control means controls the speed of the host vehicle so that the first impact and the second impact are substantially equal. 前記速度制御手段は、前記前方車両と自車両との相対速度と、自車両と前記後続車両との相対速度との二乗和が最小となるように自車両の速度を制御することを特徴とする請求項2記載の車両用衝突衝撃制御装置。   The speed control means controls the speed of the host vehicle so that a sum of squares of a relative speed between the preceding vehicle and the host vehicle and a relative speed between the host vehicle and the following vehicle is minimized. The collision impact control device for a vehicle according to claim 2. 前記速度制御手段は、前記前方車両と自車両との相対速度と、自車両と前記後続車両との相対速度とがほぼ等しくなるように自車両の速度を制御することを特徴とする請求項2記載の車両用衝突衝撃制御装置。   3. The speed control means controls the speed of the host vehicle so that a relative speed between the preceding vehicle and the host vehicle is substantially equal to a relative speed between the host vehicle and the succeeding vehicle. The collision impact control apparatus for vehicles as described. 前記速度制御手段は、前記前方車両と自車両との相対速度が、自車両と前記後続車両との相対速度よりも小さくなるように自車両の速度を制御することを特徴とする請求項1記載の車両用衝突衝撃制御装置。   The speed control means controls the speed of the host vehicle so that a relative speed between the preceding vehicle and the host vehicle is smaller than a relative speed between the host vehicle and the following vehicle. Vehicle collision impact control device. 前記前方車両と自車両との車間距離と、自車両と前記後続車両との車間距離とがほぼ等しくなるように自車両の走行を制御する車間距離制御手段を更に備えることを特徴とする請求項1乃至5の何れか一項記載の車両用衝突衝撃制御装置。   The inter-vehicle distance control means for controlling the travel of the own vehicle so that the inter-vehicle distance between the preceding vehicle and the own vehicle and the inter-vehicle distance between the own vehicle and the following vehicle are substantially equal. The collision impact control device for a vehicle according to any one of 1 to 5. 自車両が前記前方車両及び前記後続車両の少なくとも何れか一方に衝突すると予測される場合に、自車両の乗員を保護する乗員保護装置を起動させる乗員保護起動制御手段を備えることを特徴とする請求項1乃至6の何れか一項記載の車両用衝突衝撃制御装置。   An occupant protection activation control unit that activates an occupant protection device that protects an occupant of the own vehicle when the own vehicle is predicted to collide with at least one of the preceding vehicle and the following vehicle. Item 7. The impact impact control device for a vehicle according to any one of Items 1 to 6. 前記乗員保護装置は、乗員の頭部を拘束する頭部拘束装置であることを特徴とする請求項7記載の車両用衝突衝撃制御装置。   The collision impact control device for a vehicle according to claim 7, wherein the occupant protection device is a head restraint device that restrains an occupant's head. 自車両が前記前方車両及び前記後続車両の少なくとも何れか一方に衝突すると予測される場合に、前記第1の衝撃又は前記第2の衝撃を吸収する衝撃吸収装置を起動させる衝撃吸収起動制御手段を備えることを特徴とする請求項1乃至8の何れか一項記載の車両用衝突衝撃制御装置。   Shock absorption activation control means for activating an impact absorbing device that absorbs the first impact or the second impact when the host vehicle is predicted to collide with at least one of the preceding vehicle and the following vehicle; The collision impact control device for a vehicle according to any one of claims 1 to 8, further comprising:
JP2004131913A 2004-04-27 2004-04-27 Vehicle collision impact control device Expired - Fee Related JP4501521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004131913A JP4501521B2 (en) 2004-04-27 2004-04-27 Vehicle collision impact control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004131913A JP4501521B2 (en) 2004-04-27 2004-04-27 Vehicle collision impact control device

Publications (2)

Publication Number Publication Date
JP2005313708A true JP2005313708A (en) 2005-11-10
JP4501521B2 JP4501521B2 (en) 2010-07-14

Family

ID=35441587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131913A Expired - Fee Related JP4501521B2 (en) 2004-04-27 2004-04-27 Vehicle collision impact control device

Country Status (1)

Country Link
JP (1) JP4501521B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1783007A1 (en) * 2005-11-02 2007-05-09 Robert Bosch Gmbh Method and device for activating occupant protection systems
JPWO2006070865A1 (en) * 2004-12-28 2008-06-12 株式会社豊田中央研究所 Vehicle motion control device
JP2009179125A (en) * 2008-01-30 2009-08-13 Denso Corp System and apparatus for avoiding vehicle collision
JP2009545790A (en) * 2006-08-02 2009-12-24 オートリブ ディベロップメント エービー Control device and function control method
GB2537204A (en) * 2015-01-16 2016-10-12 Ford Global Tech Llc Rear collision avoidance and mitigation system
EP3503071A4 (en) * 2016-08-22 2019-07-24 Sony Corporation Driving support device, method, mobile body, and program
CN110281924A (en) * 2018-03-19 2019-09-27 现代自动车株式会社 Vehicle and the method for controlling the vehicle
CN111845732A (en) * 2019-04-11 2020-10-30 现代摩比斯株式会社 Collision avoidance control method and device for vehicle
CN112644441A (en) * 2020-12-28 2021-04-13 联创汽车电子有限公司 Automatic emergency collision avoidance method and automatic emergency collision avoidance system based on forward and backward environment perception
CN112810605A (en) * 2019-11-15 2021-05-18 北汽福田汽车股份有限公司 Vehicle active collision avoidance method and device, readable storage medium and vehicle
US11167752B2 (en) 2016-08-22 2021-11-09 Sony Corporation Driving assistant apparatus, driving assistant method, moving object, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109421641A (en) * 2017-08-28 2019-03-05 长城汽车股份有限公司 Vehicle airbag control system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231449A (en) * 2002-02-07 2003-08-19 Denso Corp Driving support device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231449A (en) * 2002-02-07 2003-08-19 Denso Corp Driving support device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006070865A1 (en) * 2004-12-28 2008-06-12 株式会社豊田中央研究所 Vehicle motion control device
JP4760715B2 (en) * 2004-12-28 2011-08-31 株式会社豊田中央研究所 Vehicle motion control device
EP1783007A1 (en) * 2005-11-02 2007-05-09 Robert Bosch Gmbh Method and device for activating occupant protection systems
JP2009545790A (en) * 2006-08-02 2009-12-24 オートリブ ディベロップメント エービー Control device and function control method
JP2009179125A (en) * 2008-01-30 2009-08-13 Denso Corp System and apparatus for avoiding vehicle collision
US9505405B2 (en) 2015-01-16 2016-11-29 Ford Global Technologies, Llc Rear collision avoidance and mitigation system
GB2537204A (en) * 2015-01-16 2016-10-12 Ford Global Tech Llc Rear collision avoidance and mitigation system
EP3503071A4 (en) * 2016-08-22 2019-07-24 Sony Corporation Driving support device, method, mobile body, and program
US11167752B2 (en) 2016-08-22 2021-11-09 Sony Corporation Driving assistant apparatus, driving assistant method, moving object, and program
CN110281924A (en) * 2018-03-19 2019-09-27 现代自动车株式会社 Vehicle and the method for controlling the vehicle
CN111845732A (en) * 2019-04-11 2020-10-30 现代摩比斯株式会社 Collision avoidance control method and device for vehicle
CN111845732B (en) * 2019-04-11 2024-03-01 现代摩比斯株式会社 Collision avoidance control method and device for vehicle
CN112810605A (en) * 2019-11-15 2021-05-18 北汽福田汽车股份有限公司 Vehicle active collision avoidance method and device, readable storage medium and vehicle
CN112644441A (en) * 2020-12-28 2021-04-13 联创汽车电子有限公司 Automatic emergency collision avoidance method and automatic emergency collision avoidance system based on forward and backward environment perception

Also Published As

Publication number Publication date
JP4501521B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
KR101724944B1 (en) Airbag system of vehicle
EP3354525B1 (en) Arrangement and method for mitigating a forward collision between road vehicles
JP6493354B2 (en) Vehicle occupant restraint system
CN107521448A (en) Method and control device for the operation of the safety device that controls vehicle
US20060091653A1 (en) System for sensing impending collision and adjusting deployment of safety device
JP2011037308A (en) Vehicular occupant protection system
JPH08169297A (en) Vehicular collision state control system
JP4501521B2 (en) Vehicle collision impact control device
JP2006008108A (en) Vehicle body strength control apparatus
US20190143964A1 (en) Systems and methods for performing an injury-mitigating autonomous maneuver in face of an imminent collision
EP2262667B1 (en) Vision system for deploying safety systems
CN111098762A (en) Pre-active safety regulation control method and device
JP2013220743A (en) Vehicle control device
JP2010018230A (en) Occupant crash protection device and method for changing operating condition
JP6409038B2 (en) Vehicle occupant protection device
JP2003137062A (en) Method of constraining occupant of vehicle
US8442726B2 (en) Method and device for lessening the consequences of an accident on a vehicle occupant
JP6201928B2 (en) Vehicle control device
JPH06144154A (en) Shock relaxing device
JP2006044409A (en) Occupant protecting device
JP2008105560A (en) Head rest device
JP2021014203A (en) Occupant protection device
JP7037901B2 (en) Vehicle occupant protection device
US20240166092A1 (en) Method and system for occupant protection in a vehicle
JP7168306B2 (en) vehicle occupant protection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees