JP2005313175A - Method for producing steel - Google Patents

Method for producing steel Download PDF

Info

Publication number
JP2005313175A
JP2005313175A JP2004130235A JP2004130235A JP2005313175A JP 2005313175 A JP2005313175 A JP 2005313175A JP 2004130235 A JP2004130235 A JP 2004130235A JP 2004130235 A JP2004130235 A JP 2004130235A JP 2005313175 A JP2005313175 A JP 2005313175A
Authority
JP
Japan
Prior art keywords
slab
rolling
reduction
steel
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004130235A
Other languages
Japanese (ja)
Other versions
JP4280195B2 (en
Inventor
Hitoshi Nakada
等 中田
Kazuyuki Tsutsumi
一之 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004130235A priority Critical patent/JP4280195B2/en
Publication of JP2005313175A publication Critical patent/JP2005313175A/en
Application granted granted Critical
Publication of JP4280195B2 publication Critical patent/JP4280195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing steel where the generation in the defect of microcavities can be effectively reduced even in the case of a thick plate product, further, the generation in central segregation is prevented, and the generation of the defect in a UT (Ultrasonic Test) can be eliminated as much as possible. <P>SOLUTION: When steel satisfying the relation in the inequality (1); 0.2≤(W/W<SB>0</SB>)≤0.5, wherein W<SB>0</SB>(mm) is the thickness of the cast slab before the rolling-down and W(mm) is the product thickness of the steel after the hot rolling, is produced by a method where a cast slab in which a nonsolidified part is present at the inside is continuously cast as being rolled-down by rollers, and is further hot-rolled, on the rolling-down at the time of the continuous casting, it is started from a position at which the solid phase ratio at the central part of the cast slab reaches 0.4 to 0.6, and further, the rolling-down gradient is controlled, so as to be 0.7 to <4.0 mm/min on the rolling-down. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、連続鋳造および熱間圧延して鋼材を製造するに際して、鋼材における中心偏析や微少空洞の形成を極力低減するための方法に関するものである。   The present invention relates to a method for reducing the center segregation and the formation of minute cavities in a steel material as much as possible when producing the steel material by continuous casting and hot rolling.

鋼を連続鋳造した場合に、炭素、硫黄、麟、マンガンなどの成分が鋳片中心部に偏析して濃化するという問題がある。こうした中心偏析は、鋳片の凝固末期に凝固収縮による容鋼流動に伴って引き起こされることが知られている。   When steel is continuously cast, there is a problem that components such as carbon, sulfur, soot and manganese are segregated and concentrated in the center of the slab. It is known that such central segregation is caused by the steel flow due to solidification shrinkage at the end of solidification of the slab.

こうした問題を解決する技術として、内部に未凝固部が存在する凝固末期のスラブ鋳片を、ロールによって圧下しつつ連続鋳造する方法が各種提案されている(例えば、特許文献1〜3)。これらの技術では、鋳片の中心固溶率が0.1〜0.3の位置から流動限界固相率までを圧下すると共に、その圧下量(圧下速度や圧下量)を適切に規定することによって、中心偏析の発生を防止するものである。   As a technique for solving such a problem, various methods have been proposed for continuously casting a slab slab at the end of solidification in which an unsolidified portion is present while being rolled by a roll (for example, Patent Documents 1 to 3). In these technologies, the center solid solution ratio of the slab is reduced from the position of 0.1 to 0.3 to the flow limit solid phase ratio, and the reduction amount (reduction speed and reduction amount) is appropriately specified. Prevents the center segregation.

上記のような技術は、中心偏析の低減に関しては極めて有効な技術であるといえるものである。しかしながら、こうした圧下技術では、鋳片中心部における微少な空洞欠陥(以下、これを「ザク欠陥」と呼ぶ)の発生防止については十分であるとはいえない。   The technique as described above can be said to be an extremely effective technique for reducing the center segregation. However, such a reduction technique is not sufficient for preventing the occurrence of minute cavity defects (hereinafter referred to as “zaku defects”) in the center of the slab.

こうしたザク欠陥は、その後の熱間圧延工程での圧下によってある程度は低減できるとされている。しかしながら、特に最終鋼板製品の厚みが厚い(例えば、60〜140mm)スラブ鋳片の場合には十分な圧下比が得られないために、圧延工程で強圧下を適用しても、製品中心部におけるザク欠陥が残存してしまい、超音波探傷試験したときの製品不良(以下、「UT不良」と略記することがある)として表れ、製品化を大きく妨げる原因となっている。こうしたことから、UT不良のない製品を得るためには、連続鋳造の段階でザク欠陥を極力低減することが必要となる。
特開平05−212517号公報 特許請求の範囲等 特開平06−126405号公報 特許請求の範囲等 特開平07−60424号公報 特許請求の範囲等
Such Zaku defects can be reduced to some extent by reduction in the subsequent hot rolling process. However, in the case of a slab cast slab where the thickness of the final steel plate product is particularly large (for example, 60 to 140 mm), a sufficient reduction ratio cannot be obtained. Zaku defects remain and appear as product defects (hereinafter sometimes abbreviated as “UT defects”) when an ultrasonic flaw detection test is performed, which is a cause that greatly hinders commercialization. For this reason, in order to obtain a product free from UT defects, it is necessary to reduce the zack defects as much as possible at the stage of continuous casting.
JP, 05-212517, A Claims etc. JP, 06-126405, A Claims etc. JP, 07-60424, A Claims etc.

本発明はこうした従来技術における課題を解決する為になされたものであって、その目的は、厚物の厚板製品であってもザク欠陥の発生を効果的に低減すると共に、中心偏析の発生も防止し、UT不良の発生を極力なくすことができる鋼材の製造方法を提供することにある。   The present invention has been made in order to solve such problems in the prior art, and its purpose is to effectively reduce the occurrence of zaku defects even in thick plate products, and to generate center segregation. It is another object of the present invention to provide a method for manufacturing a steel material that can prevent occurrence of UT defects as much as possible.

上記課題を解決することのできた本発明方法とは、内部に未凝固部が存在するスラブ鋳片を、ロールによって圧下しつつ連続鋳造し、更に熱間圧延する方法によって下記(1)式の関係を満足する鋼材を製造するに当たり、連続鋳造時の圧下に際して、鋳片中心部の固相率が0.4〜0.6となる位置から圧下を開始すると共に、圧下時における圧下勾配が0.7mm/min以上4.0mm/min未満となるように制御する点に要旨を有するものである。
0.2≦(W/W0)≦0.5 …(1)
但し、W0(mm):圧下前のスラブ鋳片厚さ
W(mm):熱間圧延後の鋼材製品厚さ
The method of the present invention that has been able to solve the above-mentioned problems is the relationship of the following formula (1) by a method of continuously casting a slab slab having an unsolidified portion therein while being reduced by a roll, and further hot rolling. In the production of a steel material that satisfies the above requirements, when rolling down during continuous casting, the rolling starts at a position where the solid phase ratio at the center of the slab becomes 0.4 to 0.6, and the rolling gradient during rolling is 0. It has a gist in that it is controlled to be 7 mm / min or more and less than 4.0 mm / min.
0.2 ≦ (W / W 0 ) ≦ 0.5 (1)
However, W 0 (mm): Thickness of slab slab before rolling W (mm): Steel product thickness after hot rolling

本発明方法においては、鋳片中心部の固相率が1.0となる位置で圧下を終了すればよく、より好ましくは鋳片中心部の固相率が1.0となる位置から更に鋳片長さ2〜3mに相当する位置で圧下を終了することが好ましい。   In the method of the present invention, the reduction may be completed at a position where the solid phase ratio at the center of the slab is 1.0, and more preferably, the casting is further performed from the position where the solid phase ratio at the center of the slab is 1.0. It is preferable to complete the reduction at a position corresponding to a length of 2 to 3 m.

また圧下勾配をY(mm/min)としたときに、このYが(W/W0)の関係で前記下記(2)式の関係を満足するようにして操業することが好ましい。
Y≧1.8×(W/W0)+0.17 …(2)
Further, when the rolling gradient is Y (mm / min), it is preferable to operate such that Y satisfies the relationship of the following formula (2) in the relationship of (W / W 0 ).
Y ≧ 1.8 × (W / W 0 ) +0.17 (2)

本発明で対象とするスラブ鋳片は、Cを0.08〜0.2質量%含有する中炭素鋼であることが好ましく、こうした鋳片を対象としたときに本発明の効果が最大限に発揮される。   The slab slab targeted in the present invention is preferably a medium carbon steel containing 0.08 to 0.2% by mass of C. When such a slab is targeted, the effect of the present invention is maximized. Demonstrated.

本発明では、上記(1)式の関係を満足する鋼材を製造するに際して、連続鋳造時の圧下の開始時期、圧下勾配を適切に制御することによって、UT不良の発生を極力少なくしたスラブ鋳片が得られるようになった。   In the present invention, when producing a steel material satisfying the relationship of the above expression (1), a slab slab in which the occurrence of UT defects is minimized by appropriately controlling the rolling start time and rolling gradient during continuous casting. Can now be obtained.

本発明者らは、上記目的を達成する為に様々な角度から検討した。その結果、
熱間圧延後の鋼材製品厚さWと圧下前のスラブ鋳片厚さW0の比(W/W0)が0.2〜0.5となるような関係にあるスラブを鋳造するに際して、スラブ鋳片中心部の固相率(以下、「中心固相率fs」と略記する)が所定の値となった位置から所定の圧下勾配で強圧下を行うようにすれば上記のようなザク欠陥の発生が防止できることを見出し、本発明を完成した。即ち、ザク欠陥をなくすためには、従来行われているような凝固収縮を補償する圧下勾配程度では不十分であり、これよりも更に大きい圧下勾配で圧下を施せば、ザク欠陥が低減できたのである。
The present inventors have studied from various angles in order to achieve the above object. as a result,
When casting a slab in which the ratio (W / W 0 ) of the steel product thickness W after hot rolling and the slab slab thickness W 0 before reduction is 0.2 to 0.5, If a strong reduction is performed with a predetermined reduction gradient from the position where the solid phase ratio (hereinafter abbreviated as “central solid ratio fs”) at the center of the slab slab becomes a predetermined value, The inventors have found that the occurrence of defects can be prevented and completed the present invention. That is, in order to eliminate zaku defects, the conventional reduction gradient that compensates for the solidification shrinkage is not sufficient, and if the reduction is performed with a larger reduction gradient, the zaku defects can be reduced. It is.

ザク欠陥を低減するためには、凝固が完了してから(中心固相率fsで1.0以降)圧下(即ち、熱間圧延)しても効果があることが予想されるが、ザク欠陥生成段階で圧下を加えるのが最も効果的である。また、こうした段階で圧下を加えることによって、少量の圧下量であって十分にその効果を発揮できるものとなる。例えば、圧延形状比が同一の場合には、鋳造段階でその形状を実現するときと圧延段階でその形状を実現するときとを比較すると、鋳造時においては鋳片の表面部の温度が低くなっており、剛性があるので、外部からの圧下が内部まで浸透しやすくなっている。これに対して、圧延段階においては表面温度が高くならざるを得ないので、圧下の浸透が十分ではない。また、ザク生成段階である凝固末期に圧下を施し、ザクの生成を防止する方が一旦生成したザクを圧下、圧着させるための必要圧下量より遥かに少なくて済み、こうしたことから、鋳造段階で圧下をかける方が効率的であると考えられる。   In order to reduce the zaku defects, it is expected that there is an effect even if the rolling (that is, hot rolling) is performed after the solidification is completed (after the central solid phase ratio fs is 1.0). It is most effective to apply the reduction in the production stage. Moreover, by applying the reduction at such a stage, the effect can be sufficiently exhibited with a small amount of reduction. For example, when the rolling shape ratio is the same, when the shape is realized at the casting stage and when the shape is realized at the rolling stage, the temperature of the surface portion of the slab becomes lower at the time of casting. Because of its rigidity, it is easy for penetration from outside to penetrate inside. On the other hand, since the surface temperature has to be high in the rolling stage, the reduction permeation is not sufficient. In addition, it is much less than the necessary reduction amount to reduce and press the zaku once generated by applying the reduction to the end of the solidification phase, which is the zack generation stage. It is considered more efficient to apply the reduction.

本発明方法を実施するに当たっては、中心固相率fsが0.4〜0.6となる位置から圧下を開始するのが最も有効である。従来、中心偏析を改善するためには、中心固相率fsが0.1〜0.3の段階から圧下を開始するのが一般的であるが、ザク欠陥が形成される時期は、中心固相率fsがより高い側(即ち、固相が自由に移動できなくなるfs=0.4の段階)以降であるので、圧下の開始の時期は少なくとも中心固相率fsが0.4となる位置とすれば効果的である(鋳片幅中央部および凝固遅れ部とも)。但し、中心固相率fsが0.6となる位置以降で圧下を開始すると、形成されてしまったザクも存在し、これを圧着させるには大きな圧下量が必要となるため圧下開始位置は中心固相率fsが0.6となる位置までとするのが良い。   In carrying out the method of the present invention, it is most effective to start the reduction from a position where the central solid fraction fs is 0.4 to 0.6. Conventionally, in order to improve the center segregation, it is common to start the reduction from the stage where the center solid phase ratio fs is 0.1 to 0.3. Since the phase ratio fs is on the higher side (that is, the stage where fs = 0.4 at which the solid phase cannot freely move) and thereafter, at the start of the reduction, at least the position where the central solid phase ratio fs is 0.4. This is effective (both the slab width central portion and the solidification delay portion). However, if the reduction starts after the position where the central solid fraction fs becomes 0.6, there is a zaku that has been formed, and a large reduction amount is required to crimp this, so the reduction start position is the center. It is preferable that the solid phase ratio fs be set to a position where the solid phase ratio fs becomes 0.6.

中心偏析だけを考慮すれば、中心固相率fsが0.1〜0.3の段階から圧下(軽圧下)を開始することが好ましいのであるが、こうした固相率fsの範囲内では固相も自由に動くので、この部位で圧下してもミクロポロシティの生成にはあまり寄与しないものとなる。   Considering only the center segregation, it is preferable to start the reduction (light reduction) from the stage where the central solid fraction fs is from 0.1 to 0.3. Since it moves freely, it does not contribute much to the generation of microporosity even if it is reduced at this site.

本発明では、ザク欠陥の原因となるミクロポロシティの形成に影響を及ぼす固相率fsから強圧下を加えるものであるので、ミクロポロシティ形成に関係のない中心固相率(fs=0.1〜0.3)までは圧下しない方が偏析形成の観点から見て濃化溶鋼の搾り出しがないので望ましいものとなる。   In the present invention, since the solid phase ratio fs that affects the formation of microporosity that causes zaku defects is added under high pressure, the central solid ratio (fs = 0.1 to 0.1) that is not related to microporosity formation. From the viewpoint of segregation formation, it is preferable not to reduce the material until 0.3) because there is no squeezing of the concentrated molten steel.

本発明では、ザク欠陥の低減を図るために凝固収縮を補償する以上の圧下勾配で鋳造する必要があり、こうした観点から圧下時の圧下勾配は0.7mm/mim以上とする必要がある。また、圧下勾配をあまり高くすると、濃化溶鋼の搾り出しが生じて圧下時に逆V偏析が生じ易い状態になるので、偏析が生じにくい鋼種を用いることを考慮しても(後述する)、圧下勾配は4.0mm/min未満とする必要がある。   In the present invention, it is necessary to cast with a rolling gradient that compensates for solidification shrinkage in order to reduce the zaku defects. From this viewpoint, the rolling gradient during rolling needs to be 0.7 mm / mim or more. Further, if the rolling gradient is made too high, the concentrated molten steel is squeezed out and reverse V segregation is likely to occur during rolling, so even if it is considered to use a steel type that does not easily segregate (described later), the rolling gradient Needs to be less than 4.0 mm / min.

本発明方法は、圧下前のスラブ鋳片厚さをW0(mm)、熱間圧延後の鋼材製品厚さをW(mm)としたときに、これらが下記(1)式の関係を満足するような鋼材を製造することを前提とし、こうした鋼材のミクロポロシティの低減効果を達成するものである。
0.2≦(W/W0)≦0.5 …(1)
In the method of the present invention, when the thickness of the slab slab before rolling is W 0 (mm) and the thickness of the steel product after hot rolling is W (mm), these satisfy the relationship of the following formula (1). Therefore, the effect of reducing the microporosity of such a steel material is achieved on the premise of manufacturing such a steel material.
0.2 ≦ (W / W 0 ) ≦ 0.5 (1)

(W/W0)の値が0.5よりも大きくなるような鋼材であると、強圧下によるザク欠陥低減効果が達成されず、また0.2よりも小さくなると、熱間圧延段階でザク欠陥を圧着させることが可能となる。 If the steel material is such that the value of (W / W 0 ) is greater than 0.5, the effect of reducing sack defects due to high pressure will not be achieved, and if it is less than 0.2, sag will be present in the hot rolling stage. It becomes possible to crimp the defect.

尚上記(W/W0)の値は、最終的(熱間圧延後)に上記(1)式の関係を満足すればよく、この比の値は熱間圧延後の圧延率をも考慮に入れたものである。従って、連続鋳造の圧下だけで上記(1)式の関係を満足する必要はないが、本発明の目的を達成するためには、連続鋳造の圧下の際に上記の条件で強圧下する必要がある。 The value of (W / W 0 ) should satisfy the relationship of the above formula (1) finally (after hot rolling), and the value of this ratio also takes into account the rolling rate after hot rolling. It is what I put in. Therefore, it is not necessary to satisfy the relationship of the above formula (1) only by the continuous casting reduction, but in order to achieve the object of the present invention, it is necessary to strongly reduce the above conditions under the continuous casting reduction. is there.

上記のような要件が満足できれば、本発明の目的は基本的に達成されることになり、圧下を終了する時期については限定するものではないが、鋳片中心部の固相率が1.0となる位置で圧下を終了すれば十分である。こうした時期に圧下を終了することによってUT欠陥のない鋳片が得られるのであるが、より好ましくは鋳片中心部の固相率が1.0となる位置から更に鋳片長さ2〜3mに相当する位置で圧下を終了することが好ましい。但し、この位置より後まで圧下を継続しても構わないが、鋳片軸心部の温度が低下するため、ザクの圧着効果が低下する懸念がある。   If the above-mentioned requirements can be satisfied, the object of the present invention will be basically achieved, and the timing for terminating the reduction is not limited, but the solid phase ratio at the center of the slab is 1.0. It is sufficient to finish the reduction at the position where A slab having no UT defect can be obtained by finishing the reduction at such a time, but more preferably from the position where the solid phase ratio at the center of the slab becomes 1.0, the slab length corresponds to 2-3 m. It is preferable to end the reduction at the position where the movement is performed. However, although the reduction may continue until after this position, the temperature of the slab shaft center portion is lowered, and there is a concern that the pressure-bonding effect of the zaku will be lowered.

本発明方法では、中心固相率fsが0.4〜0.6となる位置から圧下を開始するものであるので、中心偏析の生じやすい鋼種ではザク欠陥が低減できても、中心偏析が悪化する恐れがある。こうした観点から、本発明で対象とする鋼種としては、鋼中のC,P,Sの含有量が少ない低炭素鋼、極低炭清浄鋼、ステンレス鋼などが好ましい鋼種として挙げられる。また、凝固収縮の大きい鋼種(δ→γ変態を伴う鋼種)や、不純物元素(PやS)がある程度含有していても、偏析度としてあまり大きくならない鋼種も好ましく適用でき、こうした鋼種としてはC含有量が0.08〜0.2質量%の中炭素鋼が挙げられる。尚、これらの鋼種には、合金元素としてCu,Cr,Mo,Ni,Ti,Nb,V等を、1.0〜3.0質量%程度(Cu,Cr,Mo,Niで各々1.0質量%程度、Ti,Nb,Vで各々2.0〜3.0質量%程度)含むものであっても良い(残部は実質的にFe)。   In the method of the present invention, since the reduction starts from a position where the central solid fraction fs becomes 0.4 to 0.6, the center segregation is deteriorated even if the Zaku defects can be reduced in the steel type in which the center segregation is likely to occur. There is a fear. From such a viewpoint, examples of the steel types that are the subject of the present invention include low carbon steel, ultra-low carbon clean steel, stainless steel, and the like that have a low C, P, and S content in the steel. In addition, steel grades with large solidification shrinkage (steel grades with δ → γ transformation) and steel grades that do not become so large as segregation even if they contain impurity elements (P and S) to some extent can be preferably applied. Examples include medium carbon steel having a content of 0.08 to 0.2 mass%. In these steel types, alloy elements such as Cu, Cr, Mo, Ni, Ti, Nb, V and the like are about 1.0 to 3.0% by mass (1.0% each for Cu, Cr, Mo, Ni). (About 2.0% by mass of Ti, Nb, and V, respectively) (the balance is substantially Fe).

尚、圧下勾配が0.7mm/min以上4.0mm/min未満の範囲内にあっても(W/W0)の値が大きくなるにつれてザク欠陥が発生し易くなる傾向を示すことになる(後記実施例参照)。こうした点を考慮すれば、(W/W0)の値に応じて前記(2)式を満足するように、圧下勾配を制御することが好ましい。 Note that even if the rolling gradient is in the range of 0.7 mm / min or more and less than 4.0 mm / min, a tendency to easily generate zaku defects as the value of (W / W 0 ) increases (shows). See Examples below). Considering these points, it is preferable to control the rolling gradient so as to satisfy the expression (2) according to the value of (W / W 0 ).

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.

実施例1
下記の化学成分組成の鋼種からなるスラブ鋳片を、下記表1〜3に示す各種条件[鋼材製品厚さ/スラブ厚さ(W/W0)、圧下開始中心固相率fs、圧下終了中心固相率fs]にて連続鋳造した。尚、このときのスラブ鋳片厚さは280mmである(幅:2100mm)。
Example 1
The slab slab made of steel of the following chemical composition is subjected to various conditions shown in Tables 1 to 3 below [steel product thickness / slab thickness (W / W 0 ), rolling start center solid fraction fs, rolling end center. Continuous casting was performed at a solid phase ratio fs]. In addition, the slab slab thickness at this time is 280 mm (width: 2100 mm).

(スラブ鋳片の化学成分組成)
C:0.08〜0.2質量%、Si:0.1質量%、Mn:1.45質量%、P:0.01質量%、S:0.004質量%、Al:0.017質量%
得られた各スラブ鋳片について、ザク発生状況、中心偏析発生状況およびUT不良発生状況について調査を行い、そのスラブ鋳片品質について評価した。これらの評価方法および評価基準は下記の通りである。その結果を、鋳造条件と共に、下記表1〜3に併記する。
(Chemical composition of slab slab)
C: 0.08 to 0.2 mass%, Si: 0.1 mass%, Mn: 1.45 mass%, P: 0.01 mass%, S: 0.004 mass%, Al: 0.017 mass% %
About each obtained slab slab, it investigated about the zack generation | occurrence | production situation, the center segregation generation | occurrence | production situation, and the UT defect occurrence situation, and evaluated the slab slab quality. These evaluation methods and evaluation criteria are as follows. The results are shown in Tables 1 to 3 below together with the casting conditions.

[ザク欠陥発生状況]
スラブ鋳片の軸心部断面内[840cm2(4mm×210mm)内]に存在する直径3mm以上のザクの個数をX線透過法によって観察し、1cm2当たりの個数に換算して評価した。このときの評価基準は下記の通りである。
○:直径3mm以上のザクの個数が0.1個/cm2未満
△:直径3mm以上のザクの個数が0.1個/cm2以上0.15個未満
×:直径3mm以上のザクの個数が0.15個/cm2以上
[Zaku defect occurrence status]
The number of zaku having a diameter of 3 mm or more present in the cross section of the axial center portion of the slab slab [within 840 cm 2 (4 mm × 210 mm)] was observed by the X-ray transmission method, and converted into the number per 1 cm 2 for evaluation. The evaluation criteria at this time are as follows.
○: The number of zaku with a diameter of 3 mm or more is less than 0.1 / cm 2 Δ: The number of zaku with a diameter of 3 mm or more is 0.1 / cm 2 or more and less than 0.15 ×: The number of zaku with a diameter of 3 mm or more Is 0.15 / cm 2 or more

[中心偏析発生状況]
スラブ鋳片の軸心部断面におけるC含有量の最大値(Cmax)を測定し、これと平均C含有量(C0)との比(Cmax/C0)によって中心偏析の発生状況を評価した。このときの評価基準は下記の通りである。
○:(Cmax/C0)が1.3未満
△:(Cmax/C0)が1.3以上1.35未満
×:(Cmax/C0)が1.35以上
[Center segregation occurrence]
The maximum value (Cmax) of the C content in the axial center section of the slab slab was measured, and the occurrence of center segregation was evaluated based on the ratio (Cmax / C 0 ) between this and the average C content (C 0 ). . The evaluation criteria at this time are as follows.
○: (Cmax / C 0 ) is less than 1.3 Δ: (Cmax / C 0 ) is 1.3 or more and less than 1.35 ×: (Cmax / C 0 ) is 1.35 or more

[UT試験]
JISの超音波探傷基準(JIS B0901)の4倍の判定基準(欠陥エコー<25%)で超音波探傷試験を行い、測定される欠陥エコー高さの大小によってUT欠陥の発生状況について評価した。このときの評価基準か下記の通りである。尚、「欠陥エコー高さ」とは、底面エコー高さに対する欠陥エコー高さの割合(%)を示すものであり、この値が小さいほどザク欠陥が発生していないことを意味する。
○:欠陥エコー高さが10%未満
△:欠陥エコー高さが10%以上20%未満
×:欠陥エコー高さが20%以上
[UT test]
An ultrasonic flaw detection test was performed according to a criterion (defect echo <25%) four times that of the JIS ultrasonic flaw detection standard (JIS B0901), and the occurrence of UT defects was evaluated based on the size of the measured defect echo height. The evaluation criteria at this time are as follows. The “defect echo height” indicates the ratio (%) of the defect echo height to the bottom surface echo height, and the smaller this value is, the more the Zaku defect is not generated.
○: Defect echo height is less than 10% Δ: Defect echo height is 10% or more and less than 20% ×: Defect echo height is 20% or more

Figure 2005313175
Figure 2005313175

Figure 2005313175
Figure 2005313175

Figure 2005313175
Figure 2005313175

これらの結果から次のように考察できる。まず本発明で規定する要件を満足する条件で鋳造したもの(No.4〜10、13〜18、23〜30、34、41〜44、47〜52)では、ザク欠陥および中心偏析が極めて少なくなって、UT試験結果も良好であることが分かる。特に、圧下終了時点を凝固完了点(中心固相率fs=1.0)から2.5mまで圧下したもの(No.34)では小サイズのザク欠陥が更に減少しており(0.07個/cm2未満)、またUT試験においても欠陥エコー高さが更に少なくなっており(5%以下)、いずれも良好な結果が得られていた(表2中、「◎印」で示す)。 These results can be considered as follows. First, the ones cast under conditions satisfying the requirements defined in the present invention (Nos. 4 to 10, 13 to 18, 23 to 30, 34, 41 to 44, 47 to 52) have very few zaku defects and center segregation. It turns out that the UT test result is also good. In particular, in the case where the end point of the reduction was reduced from the solidification completion point (central solid fraction fs = 1.0) to 2.5 m (No. 34), the small size zaku defects were further reduced (0.07 pieces). / cm less than 2), also it has also become more small defect echo height in UT test (5% or less), both had good results (in Table 2, indicated by "◎ mark").

これに対して本発明で規定する要件を外れる条件で鋳造したもの(No.1〜3、11、12、19〜22、31〜33、35〜37、45、46)では、ザク欠陥または中心偏析の少なくともいずれかの欠陥が発生していることが分かる。   On the other hand, in what (No.1-3,11,12,19-22,31-33,35-37,45,46) cast on the conditions which deviate from the requirements prescribed | regulated by this invention, it is a Zaku defect or center. It can be seen that at least one defect of segregation occurs.

尚、最も良好な結果が得られたNo.34のものは、凝固完了点(中心固相率fs=1.0)の位置から更に2.5m下流側まで圧下を加えたものであるが、このときの軸心部の温度は凝固完了点の温度から25℃程度低下した位置であることが確認できた。即ち、この程度の温度低下で抑えた状態であれば、その時期に圧下を加えても微少なザクの圧着は可能であることを示している。このときの鋳造速度は1.0m/minであるので、完全凝固点(fs=1.0)の位置から軸心部温度が25℃低下する位置は、鋳造速度をVc(m/mm)としたときに、2.5Vc(m)となる。即ち、完全凝固点(中心固相率fsで1.0)以降で2.5Vcの位置まで更に圧下することによって更に良好なザク欠陥低減効果が得られることになる。   In addition, No. which obtained the best result was obtained. In the case of No. 34, a reduction was further applied from the position of the solidification completion point (central solid phase ratio fs = 1.0) to the downstream side of 2.5 m. It was confirmed that the position was lowered by about 25 ° C. from the temperature. That is, if the temperature is suppressed by this level of temperature decrease, even if a reduction is applied at that time, it is possible to press the zaku minutely. Since the casting speed at this time is 1.0 m / min, the casting speed is set to Vc (m / mm) at the position where the temperature of the axial center portion decreases by 25 ° C. from the position of the complete solidification point (fs = 1.0). Sometimes it becomes 2.5 Vc (m). That is, by further reducing to a position of 2.5 Vc after the complete solidification point (1.0 at the central solid phase ratio fs), a more favorable zaku defect reduction effect can be obtained.

上記結果に基づいて、(W/W0)と圧下勾配がザク欠陥残存や中心偏析発生に与える影響を図1に示す。この結果から、基本的に圧下勾配が0.7mm/min以上4.0m/min未満の範囲を外れると、鋳片における欠陥が発生していることが分かる。即ち、圧下勾配が0.7mm/min未満となると、ザク欠陥が発生するし、4.0mm/min以上となると中心偏析が悪化することになる。 Based on the above results, FIG. 1 shows the influence of (W / W 0 ) and the rolling gradient on the remaining zaku defects and the occurrence of center segregation. From this result, it can be seen that a defect in the slab is generated when the rolling gradient is basically out of the range of 0.7 mm / min or more and less than 4.0 m / min. That is, when the rolling gradient is less than 0.7 mm / min, a zaku defect is generated, and when it is 4.0 mm / min or more, the center segregation is deteriorated.

但し、圧下勾配が0.7mm/min以上4.0mm/min未満の範囲内にあっても(W/W0)の値が大きくなるにつれてザク欠陥が発生し易くなる傾向を示すことになる(前記表3のNo.38〜40)。その領域は、図1に示すように、圧下勾配をYとしたときにY=1.8×(W/W0)+0.17のラインよりも下の領域(図1に示したザク残存領域)。こうしたことから、(W/W0)の値に応じて前記(2)式を満足するように圧下勾配を制御することが好ましいことが分かる。 However, even if the rolling gradient is in the range of 0.7 mm / min or more and less than 4.0 mm / min, it tends to be more likely to cause zaku defects as the value of (W / W 0 ) increases ( No. 38 to 40 in Table 3). As shown in FIG. 1, the region is a region below the line of Y = 1.8 × (W / W 0 ) +0.17 (Zaku residual region shown in FIG. 1). ). From these facts, it can be seen that it is preferable to control the rolling-down gradient so as to satisfy the expression (2) according to the value of (W / W 0 ).

(W/W0)と圧下勾配がザク欠陥や中心偏析の発生与える影響を示すグラフである。(W / W 0) and reduction gradient is a graph showing the occurrence Influence of zag defects and center segregation.

Claims (5)

内部に未凝固部が存在するスラブ鋳片を、ロールによって圧下しつつ連続鋳造し、更に熱間圧延する方法によって下記(1)式の関係を満足する鋼材を製造するに当たり、連続鋳造時の圧下に際して、鋳片中心部の固相率が0.4〜0.6となる位置から圧下を開始すると共に、圧下時における圧下勾配が0.7mm/min以上4.0mm/min未満となるように制御することを特徴とする鋼材の製造方法。
0.2≦(W/W0)≦0.5 …(1)
但し、W0(mm):圧下前のスラブ鋳片厚さ
W(mm):熱間圧延後の鋼材製品厚さ
When producing a steel material that satisfies the relationship of the following formula (1) by continuously casting a slab slab having an unsolidified portion inside while being reduced by a roll, and further hot rolling, it is reduced during continuous casting. At the time, the reduction starts from the position where the solid phase ratio at the center of the slab becomes 0.4 to 0.6, and the reduction gradient during the reduction is 0.7 mm / min or more and less than 4.0 mm / min. A method of manufacturing a steel material characterized by controlling.
0.2 ≦ (W / W 0 ) ≦ 0.5 (1)
However, W 0 (mm): Thickness of slab slab before rolling W (mm): Steel product thickness after hot rolling
鋳片中心部の固相率が1.0となる位置で圧下を終了する請求項1に記載の鋼材の製造方法。   The method for producing a steel material according to claim 1, wherein the reduction is finished at a position where the solid phase ratio at the center portion of the slab becomes 1.0. 鋳片中心部の固相率が1.0となる位置から更に鋳片長さ2〜3mに相当する位置で圧下を終了する請求項1に記載の鋼材の製造方法。   2. The method for producing a steel material according to claim 1, wherein the reduction is finished at a position corresponding to a slab length of 2 to 3 m from a position where the solid phase ratio of the slab center is 1.0. 圧下勾配をY(mm/min)としたときに、このYが(W/W0)の関係で前記下記(2)式の関係を満足するようにして操業する請求項1〜3のいずれかに記載の鋼材の製造方法。
Y≧1.8×(W/W0)+0.17 …(2)
The operation according to any one of claims 1 to 3, wherein when the rolling gradient is Y (mm / min), the operation is performed so that Y satisfies the relationship of the following expression (2) in the relationship of (W / W 0 ). The manufacturing method of steel materials as described in 2.
Y ≧ 1.8 × (W / W 0 ) +0.17 (2)
スラブ鋳片はCを0.08〜0.2質量%含有する中炭素鋼である請求項1〜3のいずれかに記載の鋼材の製造方法。
The method for producing a steel material according to any one of claims 1 to 3, wherein the slab slab is a medium carbon steel containing 0.08 to 0.2 mass% of C.
JP2004130235A 2004-04-26 2004-04-26 Steel manufacturing method Expired - Fee Related JP4280195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130235A JP4280195B2 (en) 2004-04-26 2004-04-26 Steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130235A JP4280195B2 (en) 2004-04-26 2004-04-26 Steel manufacturing method

Publications (2)

Publication Number Publication Date
JP2005313175A true JP2005313175A (en) 2005-11-10
JP4280195B2 JP4280195B2 (en) 2009-06-17

Family

ID=35441150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130235A Expired - Fee Related JP4280195B2 (en) 2004-04-26 2004-04-26 Steel manufacturing method

Country Status (1)

Country Link
JP (1) JP4280195B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289438A (en) * 2005-04-11 2006-10-26 Kobe Steel Ltd Method for producing steel material
JP2007237197A (en) * 2006-03-06 2007-09-20 Kobe Steel Ltd Continuous casting method
JP2007268546A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Method for producing steel material
JP2007290035A (en) * 2006-03-28 2007-11-08 Kobe Steel Ltd Method for producing steel material
JP2008018439A (en) * 2006-07-11 2008-01-31 Kobe Steel Ltd Continuous casting method for slab steel with less center segregation
JP2008093720A (en) * 2006-10-13 2008-04-24 Sumitomo Metal Ind Ltd Continuous casting method for metal
JP2015226918A (en) * 2014-05-30 2015-12-17 新日鐵住金株式会社 Steel continuous casting method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289438A (en) * 2005-04-11 2006-10-26 Kobe Steel Ltd Method for producing steel material
JP2007237197A (en) * 2006-03-06 2007-09-20 Kobe Steel Ltd Continuous casting method
JP2007290035A (en) * 2006-03-28 2007-11-08 Kobe Steel Ltd Method for producing steel material
JP2007268546A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Method for producing steel material
JP2008018439A (en) * 2006-07-11 2008-01-31 Kobe Steel Ltd Continuous casting method for slab steel with less center segregation
JP4515419B2 (en) * 2006-07-11 2010-07-28 株式会社神戸製鋼所 Continuous casting method of slab steel with little center segregation
JP2008093720A (en) * 2006-10-13 2008-04-24 Sumitomo Metal Ind Ltd Continuous casting method for metal
JP4687629B2 (en) * 2006-10-13 2011-05-25 住友金属工業株式会社 Metal continuous casting method
JP2015226918A (en) * 2014-05-30 2015-12-17 新日鐵住金株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP4280195B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
EP2166116A2 (en) Method for production of steel material having excellent scale detachment and steel wire material having excellent scale detachment
WO2010008019A1 (en) Continuously cast slab and process for production of same
JP4280195B2 (en) Steel manufacturing method
JP4813817B2 (en) Steel manufacturing method
JP2017159367A (en) Hot-rolled thin cast strip product and manufacturing method thereof
JP7256383B2 (en) Method for manufacturing hot-rolled steel sheet
JP2007291451A (en) HIGH-Si-CONTAINING STEEL PLATE SUPERIOR IN SURFACE PROPERTIES, MANUFACTURING METHOD THEREFOR, AND HIGH-Si-CONTAINING STEEL MATERIAL FOR MANUFACTURING THE SAME
JP4762725B2 (en) Continuous cast slab for thin steel sheet and method for producing the same, thin steel plate and method for producing the same, and rolling method
JP4582916B2 (en) Method for twin-roll continuous casting of ferritic stainless steel without microcracks
US20110100970A1 (en) Manufacture of cored welding electrodes
JP3878024B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP4868895B2 (en) Continuous casting method
JP4259406B2 (en) Hot rolling roll
JP2004307931A (en) Continuously cast piece, and casting method therefor
JP3487234B2 (en) Manufacturing method of high carbon steel slab for seamless steel pipe
JP2019072750A (en) Seamless steel pipe manufacturing method
JP4112785B2 (en) Method for preventing surface cracking of continuous cast slabs under large hot width reduction
JP4305207B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
JP5195636B2 (en) Manufacturing method of continuous cast slab
JP4144567B2 (en) Manufacturing method of hot-rolled steel sheet
KR102034448B1 (en) Steel and method for the same
KR20010047965A (en) Method for plate rolling dual phase stainless steel
JP7273307B2 (en) Steel continuous casting method
JP2000301306A (en) Cast slab excellent in quality and working characteristic and steel material worked from this slab
BE856070A (en) LAMINATOR CYLINDER MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4280195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees