JP2005312397A - NEW CONJUGATED TYPE siRNA - Google Patents

NEW CONJUGATED TYPE siRNA Download PDF

Info

Publication number
JP2005312397A
JP2005312397A JP2004136228A JP2004136228A JP2005312397A JP 2005312397 A JP2005312397 A JP 2005312397A JP 2004136228 A JP2004136228 A JP 2004136228A JP 2004136228 A JP2004136228 A JP 2004136228A JP 2005312397 A JP2005312397 A JP 2005312397A
Authority
JP
Japan
Prior art keywords
chemically modified
sirna
rna
modified base
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004136228A
Other languages
Japanese (ja)
Inventor
Hideki Oba
英樹 大庭
Masayuki Fujii
政幸 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Kinki University
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Kinki University
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Kinki University, Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004136228A priority Critical patent/JP2005312397A/en
Priority to EP05719362A priority patent/EP1731615A1/en
Priority to US10/589,955 priority patent/US20080071068A1/en
Priority to PCT/JP2005/002743 priority patent/WO2005080582A1/en
Publication of JP2005312397A publication Critical patent/JP2005312397A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Saccharide Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new siRNA having an improved enzyme resistance, without being decomposed by enzymes in cells, also localized in cytoplasm, exhibiting a high activity and capable of being suitably utilized as a genetic medicine. <P>SOLUTION: This new conjugated type siRNA has a feature that a chemically modified base is introduced at a 5'-terminal of at least one of a sense chain and an antisense chain constituting a double strand, at a dangling end of the antisense chain or at both of them, the chemically modified base is contained at a non-terminal position of at least one of the sense chain and antisense chain, an extracellular transporting signal peptide or a membrane fusion peptide is introduced at the 5'-terminal of at least one of the sense chain and antisense chain constituting the double strand, at the dangling end of the antisense chain or at both of them through a bifunctional linker, or the extracellular transporting signal peptide or the membrane fusion peptide is introduced to at least one of the sense chain and antisense chain at its non-terminal position through the bifunctional linker. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酵素耐性が強化され、細胞中で酵素により分解されにくい新規siRNA及び細胞への導入が可能で細胞質に局在化し得る高活性の新規siRNAに関するものである。   The present invention relates to a novel siRNA with enhanced enzyme resistance, which is difficult to be degraded by an enzyme in a cell, and a highly active novel siRNA that can be introduced into a cell and can be localized in the cytoplasm.

RNA干渉はアンチセンスRNAやリボザイムに比べて遥かに強い遺伝子発現制御力を示すことから、遺伝子医薬や遺伝子機能解明のツールとしての期待が高まっている。
しかしながら、siRNAは細胞への導入が困難な上に、細胞中での分解酵素耐性が低く安定した効果が得られないため、実用化することができない。
Since RNA interference has a much stronger ability to control gene expression than antisense RNA and ribozymes, there is an increasing expectation as a tool for elucidating gene drugs and gene functions.
However, siRNA cannot be put into practical use because it is difficult to introduce into cells and has a low resistance to degrading enzymes in cells and a stable effect cannot be obtained.

一方、遺伝子医薬については、細胞内の細胞核よりも細胞質において、より高い効力を発揮することが知られているので、その細胞質における遺伝子医薬の局在化を実現することが可能であれば、優れた遺伝子医薬が得られることになるが、これまでこのような遺伝子医薬は知られていない。   On the other hand, gene drugs are known to exhibit higher potency in the cytoplasm than intracellular nuclei. Therefore, if it is possible to achieve localization of the gene drug in the cytoplasm, it is excellent. However, no such gene drug has been known so far.

本発明は、このような事情のもとで、酵素耐性を高め、細胞中において酵素により分解されず、また細胞質内に局在化して高い活性を示し、遺伝子医薬として好適に利用し得る新規なsiRNAを提供することを目的としてなされたものである。   Under such circumstances, the present invention provides a novel enzyme that increases enzyme resistance, is not degraded by the enzyme in the cell, is localized in the cytoplasm, exhibits high activity, and can be suitably used as a gene drug. It was made for the purpose of providing siRNA.

本発明者らはsiRNAについて、その細胞中への導入を可能にし、かつ細胞中での酵素耐性を高め、あるいは細胞質への局在化を可能にするために種々研究を重ねた結果、siRNAに陽イオン性又は脂溶性を付与しうる化学修飾塩基を導入することにより、細胞中への導入を可能にし、かつ細胞中での酵素耐性を高め得ること、及びこの化学修飾塩基を介して核外移行シグナルペプチド(以下NESペプチドと略記する)を結合すれば、細胞質に局在化させうることを見出し、この知見に基づいて本発明をなすに至った。   The present inventors have conducted various studies on siRNA to enable its introduction into cells and to increase enzyme resistance in the cells or to enable localization to the cytoplasm. By introducing a chemically modified base capable of imparting cationic or lipophilic properties, it is possible to introduce into the cell and to increase enzyme resistance in the cell, and through this chemically modified base, It was found that if a transition signal peptide (hereinafter abbreviated as NES peptide) was bound, it could be localized in the cytoplasm, and the present invention was made based on this finding.

すなわち、本発明は、2本鎖を構成するセンス鎖及びアンチセンス鎖の少なくとも一方における5´末端又はアンチセンス鎖のダングリングエンド或はその両方に化学修飾塩基が導入されていることを特徴とするコンジュゲート型siRNA、及び2本鎖を構成するセンス鎖及びアンチセンス鎖の少なくとも一方における5´末端又はアンチセンス鎖のダングリングエンド或はその両方に、二官能性リンカーを介して、核外移行シグナルペプチド又は膜融合ペプチドを導入したものであることを特徴とするコンジュゲート型siRNAを提供するものである。
ここで、ダングリングエンドとは、2本鎖を構成するアンチセンス鎖のアンチ鎖と非相補的部分、すなわち1本鎖部分を意味する。
That is, the present invention is characterized in that a chemically modified base is introduced into the 5 ′ end of at least one of the sense strand and the antisense strand constituting the double strand or the dangling end of the antisense strand or both. Conjugated siRNA, and the 5 'end of at least one of the sense strand and the antisense strand constituting the double strand and / or the dangling end of the antisense strand, or both, via a bifunctional linker The present invention provides a conjugated siRNA characterized by introducing a transition signal peptide or a membrane fusion peptide.
Here, the dangling end means a portion that is non-complementary to the anti-strand of the antisense strand constituting the double strand, that is, a single-stranded portion.

本発明のコンジュゲート型siRNAは、それを構成するセンス鎖及びアンチセンス鎖の少なくとも一方における5´末端又はアンチセンス鎖のダングリングエンド或はその両方に化学修飾塩基が導入されている。   In the conjugated siRNA of the present invention, a chemically modified base is introduced at the 5 ′ end of at least one of the sense strand and the antisense strand constituting it or the dangling end of the antisense strand or both.

このようなものとしては、例えば、式
5´‐配列表配列番号1‐3´
で表わされるセンス鎖と、式
5´‐配列表配列番号2‐3´
で表わされるアンチセンス鎖とから構成されるコンジュゲート型siRNAにおいて、センス鎖の5´末端のみに化学修飾塩基が導入されたもの、アンチセンス鎖の5´末端のみに化学修飾塩基が導入されたもの、センス鎖の5´末端とアンチセンス鎖の5´末端の両方に化学修飾塩基が導入されたもの、式
5´‐配列表配列番号1‐3´
で表わされるセンス鎖と、式
5´‐配列表配列番号2‐3´
で表わされるアンチセンス鎖とから構成されるコンジュゲート型siRNAにおいて、センス鎖の5´末端とアンチセンス鎖のダングリングエンドの両方に化学修飾塩基が導入されたもの、及びアンチセンス鎖のダングリングエンドのみに化学修飾塩基が導入されたものを挙げることができる。
As such, for example, the formula 5′-sequence listing SEQ ID NO: 1-3 ′
A sense strand represented by the formula 5′-sequence listing SEQ ID NO: 2-3 ′
In the conjugated siRNA composed of the antisense strand represented by the formula, a chemically modified base is introduced only at the 5 ′ end of the sense strand, and a chemically modified base is introduced only at the 5 ′ end of the antisense strand. In which a chemically modified base is introduced into both the 5 ′ end of the sense strand and the 5 ′ end of the antisense strand, the formula 5′-sequence listing SEQ ID NO: 1-3 ′
A sense strand represented by the formula 5′-sequence listing SEQ ID NO: 2-3 ′
In which a chemically modified base is introduced into both the 5 ′ end of the sense strand and the dangling end of the antisense strand, and the antisense strand dangling Examples thereof include those in which a chemically modified base is introduced only at the end.

この際に導入される化学修飾塩基としては、例えば一般式
−(O−A)n−NH2 (I)
(式中のAはアルキレン基、nは1以上の整数である)
で表わされるアルキレングリコール又はポリアルキレングリコールとヒドロキシアルキルアミンとのエーテル残基や、一般式

Figure 2005312397
(式中のA及びnは前記と同じ)
で表わされる環状有機塩基をもつカルボン酸アミドのアルキレンジアミン付加物残基などの水溶性を付加し得る基を挙げることができる。
これらの中で特に好ましいのは、Aがエチレン基でnが1又は2の化合物である。 As the chemically modified base introduced at this time, for example, the general formula — (OA) n —NH 2 (I)
(In the formula, A is an alkylene group, and n is an integer of 1 or more)
An ether residue of alkylene glycol or polyalkylene glycol and hydroxyalkylamine represented by the general formula
Figure 2005312397
(A and n in the formula are the same as above)
The group which can add water solubility, such as the alkylenediamine adduct residue of the carboxylic acid amide which has the cyclic organic base represented by these can be mentioned.
Particularly preferred among these are compounds in which A is an ethylene group and n is 1 or 2.

次に、センス鎖及びアンチセンス鎖の少なくとも一方が非末端位置において化学修飾塩基を含むコンジュゲート型siRNAとしては、例えば式
5´‐配列表配列番号1‐3´
で表わされるセンス鎖と、式
5´‐配列表配列番号2‐3´
で表わされるアンチセンス鎖とから構成されるコンジュゲート型siRNAにおいて、センス鎖の3´末端から2番目のtのみが化学修飾塩基に置き換ったもの、アンチセンス鎖のダングリングエンドすなわち3´末端から2番目のtのみが化学修飾塩基に置き換ったもの、センス鎖の3´末端から2番目のtとアンチセンス鎖のダングリングエンドすなわち3´末端から2番目のtがそれぞれ化学修飾塩基に置き換ったもの、センス鎖の5´末端から6番目と15番目のuとが化学修飾塩基に置き換ったもの、アンチセンス鎖の3´末端から5番目、7番目、10番目及び15番目のuが化学修飾塩基に置き換ったもの、センス鎖の5´末端から6番目と15番目のuとアンチセンス鎖の3´末端から5番目、7番目、10番目及び15番目のuが化学修飾塩基に置き換ったものなどが挙げられる。
Next, as a conjugated siRNA in which at least one of the sense strand and the antisense strand contains a chemically modified base at a non-terminal position, for example, the formula 5′-sequence listing SEQ ID NO: 1-3 ′
A sense strand represented by the formula 5′-sequence listing SEQ ID NO: 2-3 ′
In which a second t from the 3 ′ end of the sense strand is replaced with a chemically modified base, a dangling end of the antisense strand, ie 3 ′ Only the second t from the end is replaced with a chemically modified base, the second t from the 3 ′ end of the sense strand and the dangling end of the antisense strand, ie the second t from the 3 ′ end, are respectively chemically modified. Replaced with a base, 6th and 15th u from the 5 'end of the sense strand replaced with a chemically modified base, 5th, 7th, 10th from the 3' end of the antisense strand And the 15th u is replaced with a chemically modified base, the 6th and 15th u from the 5 'end of the sense strand and the 5th, 7th, 10th and 15th from the 3' end of the antisense strand U In which is replaced with a chemically modified base.

これらのセンス鎖やアンチセンス鎖の塩基数やその結合順序には特に制限はなく、これまで知られているsiRNA構造の中から任意に選ぶことができる。また、化学修飾塩基の構造についても特に制限はなく、その大きさ、官能基の種類など任意に選ぶことができる。   There are no particular limitations on the number of bases of these sense strands and antisense strands and their binding order, and any of the known siRNA structures can be selected. Also, the structure of the chemically modified base is not particularly limited, and the size, type of functional group, etc. can be arbitrarily selected.

このようにして、化学修飾塩基が導入されたsiRNAは、細胞中での酵素耐性が強化され、しかも細胞毒性は認められない。   Thus, siRNA into which a chemically modified base is introduced has enhanced enzyme resistance in cells and no cytotoxicity is observed.

一方、本発明においては、オリゴヌクレオチドにNESペプチドや膜融合ペプチドをコンジュゲートさせることにより、細胞への導入が可能で、細胞中で酵素に分解されず、かつ細胞質に局在化させることができる高活性siRNAを得ることができる。
このNESペプチドや膜融合ペプチドの導入は、二官能性リンカーを介して行われるが、この二官能性リンカーとしては、活性水素含有基と反応して安定な結合を形成し得る官能基2個を有する化合物が用いられる。
On the other hand, in the present invention, by conjugating an NES peptide or a membrane fusion peptide to an oligonucleotide, it can be introduced into a cell, is not degraded into an enzyme in the cell, and can be localized in the cytoplasm. Highly active siRNA can be obtained.
This NES peptide or membrane fusion peptide is introduced through a bifunctional linker, and as this bifunctional linker, two functional groups that can react with an active hydrogen-containing group to form a stable bond are used. The compound which has is used.

このような化合物としては、例えば以下の(イ)ないし(チ)に示す化合物が挙げられる。
(イ)S‐(2‐ピリジルジチオ)システアミン

Figure 2005312397
(ロ)N‐スクシンイミジル=3‐(2‐ピリジルジチオ)プロピナート
Figure 2005312397
(ハ)ヨードアセトキシスクシンイミド
Figure 2005312397
(ニ)ジチオイソシアナトアルカン
SNC−(CH2n−NCS
(ホ)ジイソシアナトアルカン
ONC−(CH2n−NCO
(ただしnは1〜10の整数)
(ヘ)2‐(2‐ピリジルジチオ)エチルイソシアネート
Figure 2005312397
(ト)N‐(4‐マレイミドブチリルオキシ)スクシンイミド
Figure 2005312397
(チ)N‐4‐マレイミド酪酸
Figure 2005312397
Examples of such compounds include the compounds shown in the following (a) to (h).
(I) S- (2-pyridyldithio) cysteamine
Figure 2005312397
(B) N-succinimidyl = 3- (2-pyridyldithio) propinate
Figure 2005312397
(C) Iodoacetoxysuccinimide
Figure 2005312397
(D) Dithioisocyanatoalkane SNC- (CH 2 ) n -NCS
(E) diisocyanato alkane ONC- (CH 2) n -NCO
(Where n is an integer from 1 to 10)
(F) 2- (2-Pyridyldithio) ethyl isocyanate
Figure 2005312397
(G) N- (4-maleimidobutyryloxy) succinimide
Figure 2005312397
(H) N-4-maleimidobutyric acid
Figure 2005312397

この二官能性リンカーを介してsiRNAに導入されるNESペプチドとしては、例えばHIV−1 Rev(配列表配列番号3)、PKIα(配列表配列番号4)、MAPKK(配列表配列番号5)、Dsk−1(配列表配列番号6)、TFIIIA(配列表配列番号7)などが挙げられるが、それ以外のNESペプチドも用いることができる。   Examples of NES peptides introduced into siRNA via this bifunctional linker include HIV-1 Rev (SEQ ID NO: 3), PKIα (SEQ ID NO: 4), MAPKK (SEQ ID NO: 5), Dsk -1 (SEQ ID NO: 6), TFIIIA (SEQ ID NO: 7) and the like, but other NES peptides can also be used.

また、NESペプチド以外のペプチドとしては、HIV−1 tat C−テルミナス(terminus)膜融合ペプチド(配列表配列番号8)、gp−41膜融合ペプチド(配列表配列番号9)、SV40 T アンティゲン(antigen)核局在化シグナル(配列表配列番号10)、HIV−1 タート(tat)核局在化シグナル(配列表配列番号11)、両親媒性人工デザインペプチドα‐ヘリックス(配列表配列番号12)、両親媒性人工デザインペプチドβ‐シート(配列表配列番号13)、両親媒性人工デザインペプチドβ‐シート(配列表配列番号14)、両親媒性人工デザインペプチドβ‐シート(配列表配列番号15)などがある。   Examples of peptides other than the NES peptide include HIV-1 tat C-terminus membrane fusion peptide (SEQ ID NO: 8), gp-41 membrane fusion peptide (SEQ ID NO: 9), SV40 T antigen ( antigen) nuclear localization signal (SEQ ID NO: 10), HIV-1 tat nuclear localization signal (SEQ ID NO: 11), amphipathic artificial design peptide α-helix (SEQ ID NO: 12) ), Amphipathic artificial design peptide β-sheet (SEQ ID NO: 13), amphipathic artificial design peptide β-sheet (SEQ ID NO: 14), amphiphilic artificial design peptide β-sheet (SEQ ID NO: 13) 15).

さらに、スペルミン、スペルミジン、グルコサミン、ガラクトサミンのようなポリアミンを導入することもできる。このようなポリアミンを導入すると、細胞中における酵素耐性が向上する。   Furthermore, polyamines such as spermine, spermidine, glucosamine, and galactosamine can be introduced. When such a polyamine is introduced, enzyme resistance in cells is improved.

二官能性リンカーを介してsiRNAに上記のペプチド又はポリアミンを導入するには、先ずsiRNAのセンス鎖又はアンチセンス鎖に二官能性リンカーを反応させる。これは、固相フラグメント縮合法に従い、先ず多孔性ガラス、制御多孔性ガラス(CPG)、ポリエチレングリコール/ポリスチレンのような固相担体上にセンス鎖又はアンチセンス鎖を縮合し、その活性水素含有基、例えばアミノ基、カルボキシル基、チオール基、ヒドロキシル基と二官能性リンカーとを反応させる。   In order to introduce the above-described peptide or polyamine into siRNA via a bifunctional linker, first, the bifunctional linker is reacted with the sense strand or antisense strand of siRNA. This is based on the solid phase fragment condensation method, in which the sense strand or the antisense strand is first condensed on a solid phase carrier such as porous glass, controlled porous glass (CPG), polyethylene glycol / polystyrene, and the active hydrogen-containing group. For example, an amino group, a carboxyl group, a thiol group, or a hydroxyl group is reacted with a bifunctional linker.

この際の溶媒としては、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドのような極性溶媒が好ましい。この際の反応温度は10〜40℃、反応時間は反応させる二官能性リンカーの種類、ペプチド又はポリアミンの種類、反応温度などにより変わるが、だいたい2〜10時間である。また、溶媒中の二官能性リンカーの濃度としては、0.1〜1モル/リットルが適当である。反応終了後、同じ溶媒でよく洗浄し、不純物を除去する。   As the solvent in this case, polar solvents such as acetonitrile, dimethylformamide, dimethylacetamide, and dimethylsulfoxide are preferable. The reaction temperature at this time is 10 to 40 ° C., and the reaction time varies depending on the kind of the bifunctional linker to be reacted, the kind of peptide or polyamine, the reaction temperature, etc., but is generally 2 to 10 hours. The concentration of the bifunctional linker in the solvent is suitably from 0.1 to 1 mol / liter. After completion of the reaction, it is thoroughly washed with the same solvent to remove impurities.

次に、このようにして得たsiRNAのセンス鎖又はアンチセンス鎖と二官能性リンカーとの縮合生成物を固相担体上に担持したまま、これにペプチド又はポリアミンを有機溶剤、例えばアセトニトリルやジメチルホルムアミドなどに溶解して加え、10〜40℃において2〜10時間かきまぜることによって反応させる。反応終了後、同じ溶剤で洗浄し、不純物を除くと固相担体に結合したsiRNAが得られる。
次いで、アルカリで処理し固相担体から脱離させ、クロマトグラフなどにより精製すれば、所望のコンジュゲート型siRNAが2〜50%の収率で得られる。
この際用いるアルカリとしては、濃アンモニア水又は0.5M炭酸ナトリウム水溶液が好ましい。
Next, while the condensation product of the sense strand or antisense strand of the siRNA thus obtained and the bifunctional linker is supported on the solid phase carrier, the peptide or polyamine is added to the organic solvent such as acetonitrile or dimethyl. It is dissolved in formamide and added, and reacted by stirring at 10 to 40 ° C. for 2 to 10 hours. After completion of the reaction, washing with the same solvent and removal of impurities yields siRNA bound to the solid support.
Next, if it is treated with an alkali and desorbed from the solid phase carrier and purified by chromatography or the like, the desired conjugate-type siRNA can be obtained in a yield of 2 to 50%.
As the alkali used at this time, concentrated aqueous ammonia or 0.5M sodium carbonate aqueous solution is preferable.

また、二官能性リンカーとしては、特に前記した一般式(I)又は(II)で表わされる化学修飾塩基を導入し得る化合物を用いるのが好ましい。このような化合物としては、例えば式
HO−CH2−CH2−O−CH2−CH2−NH2
で表わされるアミン及び

Figure 2005312397
で表わされるアミンがある。 Further, as the bifunctional linker, it is particularly preferable to use a compound capable of introducing a chemically modified base represented by the above general formula (I) or (II). Such compounds include, for example, the formula HO—CH 2 —CH 2 —O—CH 2 —CH 2 —NH 2
An amine represented by
Figure 2005312397
There is an amine represented by

このような二官能性リンカーをセンス鎖又はアンチセンス鎖と反応させたのち、各種ペプチド、ポリアミンと反応させると、一般式

Figure 2005312397
(ただし、R1はNESペプチド、膜融合ペプチド、核局在化シグナルペプチドなどのペプチド又はスペルミン、スペルミジン、グルコサミン、ガラクトサミン、トリス(2‐アミノエチル)アミン、トリエチレンテトラミンなどのポリアミンである)
又は一般式
Figure 2005312397
(ただし、R2はスペルミン、スペルミジン、グルコサミン、ガラクトサミンなどのポリアミンである)
で表わされる化学修飾塩基が導入される。 After reacting such a bifunctional linker with a sense strand or an antisense strand and then reacting with various peptides or polyamines, the general formula
Figure 2005312397
(However, R 1 is a peptide such as NES peptide, membrane fusion peptide, nuclear localization signal peptide or polyamine such as spermine, spermidine, glucosamine, galactosamine, tris (2-aminoethyl) amine, triethylenetetramine)
Or general formula
Figure 2005312397
(However, R 2 is a polyamine such as spermine, spermidine, glucosamine, galactosamine)
A chemically modified base represented by is introduced.

本発明のコンジュゲート型siRNAは、以上のようにして製造した化学修飾塩基が導入されたセンス鎖又はアンチセンス鎖あるいはその両方を用いて、常法に従って2本鎖を形成させることによって得ることができる。   The conjugated siRNA of the present invention can be obtained by forming a double strand according to a conventional method using the sense strand and / or antisense strand into which the chemically modified base produced as described above is introduced. it can.

この2本鎖の形成は、未修飾のセンス鎖と化学修飾塩基が導入されたアンチセンス鎖、化学修飾塩基が導入されたアンチセンス鎖と未修飾のアンチセンス鎖、あるいは化学修飾塩基が導入されたセンス鎖と化学修飾塩基が導入されたアンチセンス鎖とを、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドなどの極性有機溶媒中に溶解し、1〜10時間かきまぜることによって行うことができる。この際、所望ならば反応を促進するために高めた温度、例えば30〜60℃に加熱することもできる。
このようにして得られるコンジュゲート型siRNAは、常法に従い、逆相高速液体クロマトグラフィーなどを用いて精製する。
This double strand is formed by introducing an unmodified sense strand and an antisense strand into which a chemically modified base is introduced, an antisense strand into which a chemically modified base is introduced and an unmodified antisense strand, or a chemically modified base. The sense strand and the antisense strand into which the chemically modified base is introduced can be dissolved in a polar organic solvent such as acetonitrile, dimethylformamide, dimethylacetamide, dimethylsulfoxide, and stirred for 1 to 10 hours. At this time, if desired, it can be heated to an elevated temperature, for example, 30 to 60 ° C. in order to promote the reaction.
The conjugated siRNA thus obtained is purified using reverse phase high performance liquid chromatography or the like according to a conventional method.

本発明によると、容易に細胞導入することができ、細胞中で酵素により分解されることがなく、また細胞質に局在化する新規な高活性siRNAが提供される。   According to the present invention, a novel highly active siRNA that can be easily introduced into a cell, is not degraded by an enzyme in the cell, and is localized in the cytoplasm is provided.

次に、実施例により本発明を実施するための最良の形態を説明するが、本発明はこれによってなんら限定されるものではない。   Next, the best mode for carrying out the present invention will be described by way of examples, but the present invention is not limited to these.

製造例1
DNA/RNA自動合成機(クルアケム社製、製品名「PS250」)を用い、制御多孔性ガラス(以下CPGという)上で、常法に従って固相法により、RNAのセンス鎖(5´‐配列表配列番号1‐3´)(以下RNA1という)又はアンチセンス鎖(5´‐配列表配列番号2‐3´)(以下RNA2という)の5´末端をアミノ化試薬(グレン・リサーチ社製、製品名「5´‐アミノモディファイア5」)で化学修飾した。
Production Example 1
Using a DNA / RNA automatic synthesizer (product name “PS250” manufactured by KruAchem, Inc.) on a controlled porous glass (hereinafter referred to as “CPG”), the sense strand of RNA (5′-sequence list) is obtained by a solid phase method according to a conventional method. SEQ ID NO: 1-3 ') (hereinafter referred to as RNA 1 ) or antisense strand (5'-Sequence Listing SEQ ID NO: 2-3') (hereinafter referred to as RNA 2 ) amination reagent (Glen Research) And chemically modified with the product name “5′-amino modifier 5”).

次いで、得られた反応生成物に28%濃度のアンモニア水を加え、50℃において6時間かきまぜることにより、固相担体からの化学修飾物の切り出しと同時に、保護基の脱離を行ったのち、逆相高速液体クロマトグラフィーにより精製した。得られた化学修飾RNAは質量分析(MALDI TOF−MS)により同定した。このようにして、次に示す末端が化学修飾されたRNA2種を製造した。
RNA3 5´‐配列表配列番号16‐3´(センス)
RNA4 5´‐配列表配列番号17‐3´(アンチセンス)
ただし、塩基配列中のn=−O−CH2CH2−O−CH2CH2NH2
このようにして得たRNAのMALDI TOF−MSを表5に示す。
Next, 28% strength aqueous ammonia was added to the obtained reaction product, and the mixture was stirred for 6 hours at 50 ° C., so that the chemically modified product was removed from the solid phase carrier and the protecting group was removed. Purified by reverse phase high performance liquid chromatography. The obtained chemically modified RNA was identified by mass spectrometry (MALDI TOF-MS). In this way, two kinds of RNA having the following chemically modified ends were produced.
RNA 3 5′-sequence listing SEQ ID NO: 16-3 ′ (sense)
RNA 4 5′-sequence listing SEQ ID NO: 17-3 ′ (antisense)
However, n = —O—CH 2 CH 2 —O—CH 2 CH 2 NH 2 in the base sequence
Table 5 shows the MALDI TOF-MS of the RNA thus obtained.

製造例2
中間位置置換用のアミノ試薬(グレン・リサーチ社製、製品名「アミノモディファイアC2dT」)を用い、製造例1と同様にして塩基配列中の非末端位置にあるt又はuをXに置換した次に示すRNA4種を製造した。
RNA5 5´‐配列表配列番号18‐3´(センス)
RNA6 5´‐配列表配列番号19‐3´(アンチセンス)
RNA7 5´‐配列表配列番号20‐3´(センス)
RNA8 5´‐配列表配列番号21‐3´(アンチセンス)
ただし、X=

Figure 2005312397
このようにして得たRNAのMALDI TOF−MSを表5に示す。 Production Example 2
Using an amino reagent for intermediate position substitution (manufactured by Glen Research, product name “Amino modifier C 2 dT”), t or u at the non-terminal position in the base sequence is set to X in the same manner as in Production Example 1. Four kinds of RNA shown below were produced.
RNA 5 5'-sequence listing SEQ ID NO: 18-3 '(sense)
RNA 6 5′-sequence listing SEQ ID NO: 19-3 ′ (antisense)
RNA 7 5′-sequence listing SEQ ID NO: 20-3 ′ (sense)
RNA 8 5'-sequence listing SEQ ID NO: 21-3 '(antisense)
Where X =
Figure 2005312397
Table 5 shows MALDI TOF-MS of the RNA thus obtained.

製造例3
RNA1の5´末端を製造例1と同様にして化学修飾したのち、末端アミノ基の保護基であるモノメトキシトリチル基(MMT)を3%濃度のトリクロロ酢酸アセトニトリル溶液で1分間処理することにより脱離させた。
次いで、ヘキサメトキシジイソシアネートをアセトニトリルに溶かして調製した0.5モル濃度溶液を加え、20℃で5時間反応させたのち、生成物を分離し、これにジメチルホルムアミド中で各種ポリアミン、糖類又は各種ペプチドのフリーのアミノ基をもつものを連続的に反応させた。
Production Example 3
After chemically modifying the 5 ′ end of RNA 1 in the same manner as in Production Example 1, the monoaminotrityl group (MMT), which is a protecting group for the terminal amino group, was treated with a 3% trichloroacetic acid acetonitrile solution for 1 minute. Desorbed.
Next, after adding a 0.5 molar solution prepared by dissolving hexamethoxydiisocyanate in acetonitrile and reacting at 20 ° C. for 5 hours, the product was separated, and this was separated into various polyamines, sugars or various peptides in dimethylformamide. Those having a free amino group were continuously reacted.

次に、反応生成物を常法に従って、濃アンモニア水中、50℃で6時間処理することにより、固相担体からの切り出しと保護基の除去を行ったのち、得られた5´末端コンジュゲートRNAを逆相高速液体クロマトグラフィーにより精製し、MALDI TOF−MSにより同定した。
このようにして、表1に示す5´‐末端にポリアミン、糖類又はペプチドが導入されたRNAが得られた。
このようにして得たRNAのMALDI TOF−MSを表5に示す。
センス鎖 5´‐配列表配列番号22‐3´
ただし、塩基配列中のn=−O−CH2CH2−O−CH2CH2−NH−R1
Next, the reaction product is treated in concentrated ammonia water at 50 ° C. for 6 hours according to a conventional method to cleave from the solid phase carrier and remove the protective group, and then the 5′-end conjugated RNA obtained. Was purified by reverse phase high performance liquid chromatography and identified by MALDI TOF-MS.
Thus, RNA having polyamine, saccharide or peptide introduced at the 5′-end shown in Table 1 was obtained.
Table 5 shows the MALDI TOF-MS of the RNA thus obtained.
Sense strand 5'-sequence listing SEQ ID NO: 22-3 '
However, n = —O—CH 2 CH 2 —O—CH 2 CH 2 —NH—R 1 in the base sequence

Figure 2005312397
Figure 2005312397

製造例4
製造例2と同様にして、非末端位置に化学修飾塩基Xを含むセンス鎖を製造し、アミノ化試薬の保護基であるトリフルオロアセチル基をエチレングリコールの20%濃度アセトニトリル溶液で1分間処理することによって脱離させた。次いで、製造例3と同様にして、先ずヘキサメチレンジイソシアネートをアセトニトリル溶液として反応させ、さらに各種ポリアミンをジメチルホルムアミド溶液として反応させたのち、製造例3と同様に処理することによって、表2に示されるような非末端位置に化学修飾塩基YをもつRNAを得た。
このようにして得たRNAのMALDI TOF−MSを表5に示す。
センス鎖=5´‐配列表配列番号23‐3´
Y=

Figure 2005312397
Production Example 4
In the same manner as in Production Example 2, a sense strand containing a chemically modified base X at the non-terminal position is produced, and the trifluoroacetyl group, which is a protecting group of the amination reagent, is treated with a 20% acetonitrile solution of ethylene glycol for 1 minute. Was released. Next, in the same manner as in Production Example 3, first, hexamethylene diisocyanate is reacted as an acetonitrile solution, and various polyamines are reacted as a dimethylformamide solution. RNA having a chemically modified base Y at such a non-terminal position was obtained.
Table 5 shows the MALDI TOF-MS of the RNA thus obtained.
Sense strand = 5′-sequence listing SEQ ID NO: 23-3 ′
Y =
Figure 2005312397

Figure 2005312397
Figure 2005312397

これらのセンス鎖と製造例3で得た非末端位置に化学修飾塩基Yをもつアンチセンス鎖とを用いて、コンジュゲートsiRNAを製造した。このようにして得られたコンジュゲートsiRNAはMALDI TOF−MSによって同定された。   Using these sense strands and the antisense strand having the chemically modified base Y at the non-terminal position obtained in Production Example 3, conjugate siRNA was produced. The conjugated siRNA thus obtained was identified by MALDI TOF-MS.

製造例5
製造例3及び製造例4とを組み合わせることによりRNA1の5´末端をnで化学修飾し、かつ塩基配列の非末端位置にあるtをXによって置換することにより、表3に示すRNAを製造した。このようにして得たコンジュゲートRNAのMALDI TOF−MSを表5に示す。
センス鎖=5´‐配列表配列番号24‐3´
ただし、塩基配列中のn=−O−CH2CH2−O−CH2CH2−NH−R1
X=

Figure 2005312397
Production Example 5
By combining Production Example 3 and Production Example 4 with RNA, the RNA 1 shown in Table 3 is produced by chemically modifying the 5 ′ end of RNA 1 with n and substituting t at the non-terminal position of the base sequence with X. did. Table 5 shows MALDI TOF-MS of the conjugate RNA thus obtained.
Sense strand = 5′-sequence listing SEQ ID NO: 24-3 ′
However, n = —O—CH 2 CH 2 —O—CH 2 CH 2 —NH—R 1 in the base sequence
X =
Figure 2005312397

Figure 2005312397
Figure 2005312397

製造例6
製造例5と同様にしてRNA1の5´‐末端をnで化学修飾し、かつ塩基配列の非末端位置にある複数のu又はtをXによって置換することにより、表4に示すRNAを製造した。このようにして得たコンジュゲートRNAのMALDI TOF−MSを表5に示す。
Production Example 6
In the same manner as in Production Example 5, RNA 5 shown in Table 4 was produced by chemically modifying the 5′-end of RNA 1 with n, and substituting multiple u or t at the non-terminal position of the base sequence with X. did. Table 5 shows MALDI TOF-MS of the conjugate RNA thus obtained.

Figure 2005312397
Figure 2005312397

Figure 2005312397
Figure 2005312397

実施例1〜14
センス鎖として、RNA9、RNA15〜RNA27を、アンチセンス鎖としてRNA2を用いてコンジュゲート型siRNAを形成させた。
このようにして得たコンジュゲート型siRNAの1μMを、ウシ胎児血清(FBS)を10質量%含むRPMI培地中に添加し、37℃においてインキュベートしたのち、2時間、4時間、6時間、12時間及び24時間経過後のコンジュゲートsiRNAの分解率を測定した。この測定は、20質量%ポリアクリルアミドゲル電気泳動によりsiRNAを分離し、銀染色法を用いて検出することにより行った。この結果を表6に示す。
なお、対照として化学修飾塩基を導入しないセンス鎖RNA1及び化学修飾塩基を導入しないアンチセンス鎖RNA2を用いて形成させたsiRNAについての分解率も併記した。
Examples 1-14
Conjugated siRNA was formed using RNA 9 and RNA 15 to RNA 27 as the sense strand and RNA 2 as the antisense strand.
1 μM of the conjugated siRNA thus obtained was added to RPMI medium containing 10% by mass of fetal bovine serum (FBS), incubated at 37 ° C., and then 2 hours, 4 hours, 6 hours, 12 hours. The degradation rate of the conjugated siRNA after 24 hours was measured. This measurement was performed by separating siRNA by 20% by mass polyacrylamide gel electrophoresis and detecting it using a silver staining method. The results are shown in Table 6.
In addition, the degradation rate about siRNA formed using sense strand RNA 1 which does not introduce | transduce a chemically modified base and antisense strand RNA 2 which does not introduce | transduce a chemically modified base is also written together as a control | contrast.

Figure 2005312397
Figure 2005312397

この表から分るように、5´末端に化学修飾塩基を導入したセンス鎖と、また5´末端に化学修飾塩基を導入したアンチセンス鎖を用いたsiRNAについては、スペルミンコンジュゲート(RNA9)のセンス鎖を用いた場合は、酵素に対する耐性が低いが、それ以外の場合は、明らかにかなりの耐性の向上を示した。特に7個のLeuArg又はLeuLysをコンジュゲートしたセンス鎖を用いたもの(RNA26又はRNA27)は、高い耐性を示した。 As can be seen from this table, for siRNA using a sense strand having a chemically modified base introduced at the 5 ′ end and an antisense strand having a chemically modified base introduced at the 5 ′ end, spermine conjugate (RNA 9 ) When the sense strand was used, the resistance to the enzyme was low, but in other cases, the resistance was clearly significantly improved. In particular, those using a sense strand conjugated with 7 LeuArg or LeuLys (RNA 26 or RNA 27 ) showed high resistance.

実施例15〜19
実施例1〜14と同様にして、非末端に化学修飾塩基を有するセンス鎖と化学修飾塩基を有しないアンチセンス鎖からsiRNAを形成させ、その酵素による分解率を測定した。その結果を表7に示す。
Examples 15-19
In the same manner as in Examples 1 to 14, siRNA was formed from a sense strand having a chemically modified base at the non-terminal and an antisense strand not having a chemically modified base, and the degradation rate by the enzyme was measured. The results are shown in Table 7.

Figure 2005312397
Figure 2005312397

非末端に化学修飾塩基を有するセンス鎖と化学修飾塩基を有しないアンチセンス鎖から形成されたsiRNAのほとんどは、24時間経過しても、その分解率は50%以下である。   Most of siRNAs formed from a sense strand having a chemically modified base at the non-terminal and an antisense strand not having a chemically modified base have a degradation rate of 50% or less even after 24 hours.

実施例20〜32
実施例1〜14と同様にして、5´末端と非末端に化学修飾塩基を同時に導入したセンス鎖と化学修飾塩基を有しないアンチセンス鎖からsiRNAを形成させ、その酵素による分解率を測定した。その結果を表8に示す。
Examples 20-32
In the same manner as in Examples 1 to 14, siRNA was formed from a sense strand in which a chemically modified base was introduced at the 5 ′ end and a non-terminal at the same time and an antisense strand having no chemically modified base, and the degradation rate by the enzyme was measured. . The results are shown in Table 8.

Figure 2005312397
Figure 2005312397

この表から明らかなように、5´末端と非末端に化学修飾塩基を同時に導入したセンス鎖を用いたsiRNAについては、PKIα核外移行シグナルペプチド(RNA37)、Dsk−1核外移行シグナルペプチド(RNA39)、SV40 T 抗原核局在化シグナルペプチド(RNA42)、人工ペプチド(RNA43)、人工ペプチド(RNA44)をコンジュゲートした場合は、特に高い酵素分解耐性を示す。 As is apparent from this table, for siRNAs using sense strands in which chemically modified bases are introduced simultaneously at the 5 ′ end and non-end, PKIα nuclear export signal peptide (RNA 37 ), Dsk-1 nuclear export signal peptide (RNA 39 ), SV40 T antigen nuclear localization signal peptide (RNA 42 ), artificial peptide (RNA 43 ), and artificial peptide (RNA 44 ) are conjugated and show particularly high resistance to enzymatic degradation.

また、5´末端、複数の非末端が同時にコンジュゲートされたsiRNAについては、HIV−1 Rev核外移行シグナルペプチド(RNA45)、PKIα核外移行シグナルペプチド(RNA46)及びMAPKK核外移行シグナルペプチド(RNA47)をコンジュゲートしたものは、いずれも分解率5%以下という高い耐性を示す。 In addition, for siRNA in which 5 ′ end and a plurality of non-terminals are conjugated at the same time, HIV-1 Rev nuclear export signal peptide (RNA 45 ), PKIα nuclear export signal peptide (RNA 46 ) and MAPKK nuclear export signal All of the conjugates of peptides (RNA 47 ) exhibit high resistance with a degradation rate of 5% or less.

参考例1
実施例1〜32で得たsiRNA100μmMに、白血病細胞(Jurkat:0.5×106cell/ml)を加え、10質量%のFBSを含むRPMI培地中、5体積%CO2を含む雰囲気中において、37℃で48時間インキュベートしたのち、細胞毒性をセル・バイアビリティ・キット(プロメガ社製)を用いて測定した。
その結果、実施例21及び実施例26で得たsiRNAについては、48時間後の細胞生存率が90%とわずかな毒性が認められたが、それ以外のものについては、ほとんど毒性は認められなかった。
Reference example 1
Leukemia cells (Jurkat: 0.5 × 10 6 cells / ml) were added to 100 μmM of siRNA obtained in Examples 1 to 32, and in an RPMI medium containing 10% by mass of FBS in an atmosphere containing 5% by volume of CO 2 . After incubating at 37 ° C. for 48 hours, cytotoxicity was measured using a cell viability kit (Promega).
As a result, the siRNA obtained in Example 21 and Example 26 showed a slight toxicity with a cell survival rate of 90% after 48 hours, but almost no toxicity was observed for other siRNAs. It was.

参考例2
蛍光ラベル化したコンジュゲートsiRNA(1μM)を白血病細胞(Jurkat:1×106cells/ml)へ加え、10%FBSを含むRPMI培地中、5%CO2存在下、37℃で48時間インキュベートした。その後、細胞をPBS(−)で3回洗浄し、共焦点レーザ蛍光顕微鏡で細胞導入性及び細胞内局在化を観察した。
その結果、センス鎖5´‐末端に各種ペプチドをコンジュゲートした実施例2、実施例3、実施例4、実施例5、実施例9、実施例10、実施例11、実施例13で得たsiRNAのすべてにおいて細胞への取り込みが著しく促進された(共焦点レーザー励起蛍光顕微鏡の観察による)。
また、核外移行シグナルペプチドをコンジュゲートした実施例2、実施例3、実施例4、実施例5で得たsiRNAと人工ペプチドをコンジュゲートした実施例11で得たsiRNAは細胞質に、核外移行シグナルペプチドをコンジュゲートした実施例9、実施例10と人工ペプチドをコンジュゲートした実施例13で得たsiRNAは核内にそれぞれ局在化していることが分った。
Reference example 2
Fluorescently labeled conjugate siRNA (1 μM) was added to leukemia cells (Jurkat: 1 × 10 6 cells / ml) and incubated in RPMI medium containing 10% FBS for 48 hours at 37 ° C. in the presence of 5% CO 2 . . Thereafter, the cells were washed three times with PBS (−), and cell introduction property and subcellular localization were observed with a confocal laser fluorescence microscope.
As a result, it was obtained in Example 2, Example 3, Example 4, Example 5, Example 9, Example 10, Example 11, and Example 13 in which various peptides were conjugated to the 5′-end of the sense strand. All of the siRNAs significantly enhanced cellular uptake (by observation with confocal laser-excited fluorescence microscope).
In addition, the siRNA obtained in Example 11 conjugated with the artificial RNA and the siRNA obtained in Example 2, Example 3, Example 4, and Example 5 conjugated with the nuclear export signal peptide were added to the cytoplasm, It was found that the siRNA obtained in Example 9 and Example 10 conjugated with the transition signal peptide and Example 13 conjugated with the artificial peptide were localized in the nucleus.

コンジュゲートsiRNA(100nM)を白血病細胞(K−562:1×106cells/ml)へ添加し、10%FBSを含むRPMI培地中、5%CO2存在下、37℃で48時間インキュベートした。次いで、プロテイン・チロシンキナーゼ・アッセイ法によりチロシンキナーゼ阻害活性を測定し、百分率で表わした。
その結果、天然型siRNA(RNA1/RNA2)においては、6%の阻害効果しか認められなかったのに対して,コンジュゲートsiRNAでは90%以上という高い阻害効果が見られた。特に,センス鎖5´‐末端と3´‐末端近傍を同時にHIV−1 Rev核外移行シグナルペプチドでコンジュゲートした実施例21で得たsiRNA(RNA36/RNA2)ではほぼ100%の阻害効果を達成した。
Conjugate siRNA (100 nM) was added to leukemia cells (K-562: 1 × 10 6 cells / ml) and incubated in RPMI medium containing 10% FBS at 37 ° C. for 48 hours in the presence of 5% CO 2 . Subsequently, the tyrosine kinase inhibitory activity was measured by the protein tyrosine kinase assay and expressed as a percentage.
As a result, the natural siRNA (RNA 1 / RNA 2 ) showed only a 6% inhibitory effect, whereas the conjugated siRNA showed a high inhibitory effect of 90% or more. In particular, the siRNA (RNA 36 / RNA 2 ) obtained in Example 21 in which the sense strand 5′-end and the vicinity of the 3′-end are simultaneously conjugated with the HIV-1 Rev nuclear export signal peptide have an almost 100% inhibitory effect. Achieved.

本発明によれば、遺伝子医薬の効力を向上させることができるので、医薬分野においての利用性が高い。   According to the present invention, since the efficacy of gene medicine can be improved, the utility in the pharmaceutical field is high.

Claims (6)

2本鎖を構成するセンス鎖及びアンチセンス鎖の少なくとも一方における5´末端又はアンチセンス鎖のダングリングエンド或はその両方に化学修飾塩基が導入されていることを特徴とするコンジュゲート型siRNA。   A conjugated siRNA, wherein a chemically modified base is introduced at the 5 ′ end of at least one of a sense strand and an antisense strand constituting the double strand or a dangling end of the antisense strand, or both. センス鎖及びアンチセンス鎖の少なくとも一方が、非末端位置において化学修飾塩基を含むことを特徴とするコンジュゲート型siRNA。   A conjugated siRNA, wherein at least one of the sense strand and the antisense strand contains a chemically modified base at a non-terminal position. 化学修飾塩基がポリアミン分子を結合したものである請求項1又は2記載のコンジュゲート型siRNA。   The conjugated siRNA according to claim 1 or 2, wherein the chemically modified base binds a polyamine molecule. 2本鎖を構成するセンス鎖及びアンチセンス鎖の少なくとも一方における5´末端又はアンチセンス鎖のダングリングエンド或はその両方に、二官能性リンカーを介して、核外移行シグナルペプチド又は膜融合ペプチドを導入したものであることを特徴とするコンジュゲート型siRNA。   A nuclear export signal peptide or a membrane fusion peptide via a bifunctional linker at the 5 'end of at least one of the sense strand and the antisense strand constituting the double strand or the dangling end of the antisense strand or both Conjugated siRNA, characterized in that is introduced. センス鎖及びアンチセンス鎖の少なくとも一方が、非末端位置において、二官能性リンカーを介して、核外移行シグナルペプチド又は膜融合ペプチドを導入したものであることを特徴とするコンジュゲート型siRNA。   A conjugated siRNA, wherein at least one of a sense strand and an antisense strand has a nuclear export signal peptide or a membrane fusion peptide introduced through a bifunctional linker at a non-terminal position. 二官能性リンカーが、二価の化学修飾塩基残基である請求項4又は5記載のコンジュゲート型siRNA。
The conjugated siRNA according to claim 4 or 5, wherein the bifunctional linker is a divalent chemically modified base residue.
JP2004136228A 2004-02-20 2004-04-30 NEW CONJUGATED TYPE siRNA Withdrawn JP2005312397A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004136228A JP2005312397A (en) 2004-04-30 2004-04-30 NEW CONJUGATED TYPE siRNA
EP05719362A EP1731615A1 (en) 2004-02-20 2005-02-21 Cytoplasmic localization dna and rna
US10/589,955 US20080071068A1 (en) 2004-02-20 2005-02-21 Cytoplasmic Localization Dna and Rna
PCT/JP2005/002743 WO2005080582A1 (en) 2004-02-20 2005-02-21 Cytoplasmic localization dna and rna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136228A JP2005312397A (en) 2004-04-30 2004-04-30 NEW CONJUGATED TYPE siRNA

Publications (1)

Publication Number Publication Date
JP2005312397A true JP2005312397A (en) 2005-11-10

Family

ID=35440504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136228A Withdrawn JP2005312397A (en) 2004-02-20 2004-04-30 NEW CONJUGATED TYPE siRNA

Country Status (1)

Country Link
JP (1) JP2005312397A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008361A1 (en) * 2010-07-10 2012-01-19 財団法人北九州産業学術推進機構 Method for introducing nucleic acid to cell and nucleic acid complex
JP2013523149A (en) * 2010-04-09 2013-06-17 メルク・シャープ・エンド・ドーム・コーポレイション Novel single chemical and oligonucleotide delivery methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523149A (en) * 2010-04-09 2013-06-17 メルク・シャープ・エンド・ドーム・コーポレイション Novel single chemical and oligonucleotide delivery methods
WO2012008361A1 (en) * 2010-07-10 2012-01-19 財団法人北九州産業学術推進機構 Method for introducing nucleic acid to cell and nucleic acid complex
US9057067B2 (en) 2010-07-10 2015-06-16 Kinki University Method for transfecting nucleic acid to cell and nucleic acid complex
JP5738862B2 (en) * 2010-07-10 2015-06-24 学校法人近畿大学 Nucleic acid introduction method and nucleic acid complex

Similar Documents

Publication Publication Date Title
WO2005080582A1 (en) Cytoplasmic localization dna and rna
Venkatesan et al. Peptide conjugates of oligonucleotides: synthesis and applications
Hnedzko et al. Sequence-selective recognition of double-stranded RNA and enhanced cellular uptake of cationic nucleobase and backbone-modified peptide nucleic acids
Zhang et al. Aromatic amide foldamers: structures, properties, and functions
Cheng Beyond de novo protein design—de novo design of non-natural folded oligomers
Burkoth et al. Incorporation of unprotected heterocyclic side chains into peptoid oligomers via solid-phase submonomer synthesis
Lu et al. Chemical strategies for the synthesis of peptide− oligonucleotide conjugates
ES2638324T3 (en) Methods of creating and examining DNA-encoded libraries
KR101388320B1 (en) Cationic oligonucleotides, automated methods for preparing same and their uses
KR101590652B1 (en) Means for delivery of nucleic acids active for gene silencing using synthetic polymers
JP2008220366A (en) Modification type pna/rna complex
Puah et al. Selective binding to mRNA duplex regions by chemically modified peptide nucleic acids stimulates ribosomal frameshifting
de Rochambeau et al. Modular strategy to expand the chemical diversity of DNA and sequence-controlled polymers
Kaihatsu et al. Enhanced Strand Invasion by Peptide Nucleic Acid− Peptide Conjugates
Fraley et al. Cationic oligonucleotide− peptide conjugates with aggregating properties enter efficiently into cells while maintaining hybridization properties and enzymatic recognition
Musumeci et al. DNA-and RNA-binding ability of oligoDapT, a nucleobase-decorated peptide, for biomedical applications
Krishna et al. Incorporating GC pair-recognizing guanidinium into PNAs for sequence and structure specific recognition of dsRNAs over dsDNAs and ssRNAs
Skakuj et al. Mercury-free automated synthesis of guanidinium backbone oligonucleotides
Chen et al. A concise method for the preparation of peptide and arginine-rich peptide-conjugated antisense oligonucleotide
Fürniss et al. Peptoids and polyamines going sweet: Modular synthesis of glycosylated peptoids and polyamines using click chemistry
Abramova et al. Solid-phase-supported synthesis of morpholinoglycine oligonucleotide mimics
Meena et al. Triazine-based janus G–C nucleobase as a building block for self-assembly, peptide nucleic acids, and smart polymers
Grijalvo et al. Stepwise synthesis of oligonucleotide–peptide conjugates containing guanidinium and lipophilic groups in their 3′-termini
JP2005312397A (en) NEW CONJUGATED TYPE siRNA
JP2022534245A (en) Polymers containing multiple functionalized side chains for biomolecular delivery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051017

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070420

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080311