JP2005311469A - Solid-state imaging apparatus - Google Patents

Solid-state imaging apparatus Download PDF

Info

Publication number
JP2005311469A
JP2005311469A JP2004122158A JP2004122158A JP2005311469A JP 2005311469 A JP2005311469 A JP 2005311469A JP 2004122158 A JP2004122158 A JP 2004122158A JP 2004122158 A JP2004122158 A JP 2004122158A JP 2005311469 A JP2005311469 A JP 2005311469A
Authority
JP
Japan
Prior art keywords
solid
state imaging
imaging device
chip lens
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004122158A
Other languages
Japanese (ja)
Other versions
JP4419658B2 (en
Inventor
Ryoji Suzuki
亮司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004122158A priority Critical patent/JP4419658B2/en
Publication of JP2005311469A publication Critical patent/JP2005311469A/en
Application granted granted Critical
Publication of JP4419658B2 publication Critical patent/JP4419658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state imaging apparatus for correcting shading that is applied to ununiform distance from a center of an image caused by an asymmetrical photo sensor shape and an asymmetrical shape of a light shield film aperture so as to uniformize a shading amount over whole imaging regions thereby reducing uneven sensitivity and improving the sensitivity as a result. <P>SOLUTION: A shrink rate of an on-chip lens and an in-layer lens and a wiring film or the like located in the lower layer of the on-chip lens is selected differently in horizontal and vertical directions, and a shrink center is deviated from a center of an imaging region so as to optimize the layout of the on-chip lens with respect to a light receiving section with an asymmetrical structure thereby obtaining a uniform shading characteristic. Further, even the shrink rate in the horizontal and vertical directions is partially changed to attain a furthermore optimum component layout thereby attaining the uniformized shading characteristic. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の受光部を含む撮像領域を形成した半導体基板上に各受光部に対応してオンチップレンズを設けた固体撮像装置に関し、特に固体撮像装置のチップ周辺に生じる感度低下(シェーディング)を改善するための構造に関するものである。   The present invention relates to a solid-state imaging device in which an on-chip lens is provided corresponding to each light-receiving unit on a semiconductor substrate in which an imaging region including a plurality of light-receiving units is formed. ) For improving the structure.

従来より、ビデオカメラやデジタルスチルカメラ等において、CCDイメージセンサやCMOSイメージセンサ等の固体撮像装置が広く使用されている。
図4は従来の固体撮像装置の素子構造の例を示す断面図であり、CMOSイメージセンサの例を示している。
図において、半導体基板10の上層部には、上からP+層11、N層12、N−層13を含むフォトセンサ20が2次元配列で設けられ、長方形状の撮像領域を構成しており、半導体基板10の上部に層間絶縁膜30を介して配線膜40、50、60、層内レンズ70、カラーフィルタ80、オンチップレンズ90等が配置されている。
Conventionally, solid-state imaging devices such as CCD image sensors and CMOS image sensors have been widely used in video cameras, digital still cameras, and the like.
FIG. 4 is a cross-sectional view showing an example of the element structure of a conventional solid-state imaging device, and shows an example of a CMOS image sensor.
In the figure, photosensors 20 including a P + layer 11, an N layer 12, and an N− layer 13 from the top are provided in a two-dimensional array on the upper layer portion of the semiconductor substrate 10 to form a rectangular imaging region, Wiring films 40, 50, 60, an intralayer lens 70, a color filter 80, an on-chip lens 90, etc. are disposed on the semiconductor substrate 10 with an interlayer insulating film 30 interposed therebetween.

ところで、ビデオカメラやデジタルスチルカメラ等においては、そこに用いられているレンズの絞りによって決定される射出瞳が存在する。レンズ焦点からその射出瞳までの距離である射出瞳距離が有限であるために、光学系の中心である固体撮像素子中心から周辺へと遠ざかるに従って固体撮像装置に入射する主光線が傾き、入射角度が大きくなる。
そのため、例えば図4に示すようなオンチップレンズを有する固体撮像装置において、半導体基板上に配置されたフォトセンサとオンチップレンズの配列ピッチが等しい場合、すなわち各画素のフォトセンサの直上にオンチップレンズが存在する場合は、半導体基板の周辺ではオンチップレンズに入射した光がフォトセンサ中心に集光せず、フォトセンサに隣接して形成されている配線等によってけられてしまい、感度低下を引き起こす。これはすなわちシェーディングと呼ばれる画面の感度ムラの原因である。
By the way, in a video camera, a digital still camera, or the like, there is an exit pupil determined by the lens aperture used therein. Since the exit pupil distance, which is the distance from the lens focal point to the exit pupil, is finite, the principal ray incident on the solid-state imaging device is tilted as the distance from the center of the solid-state image sensor, which is the center of the optical system, to the periphery. Becomes larger.
Therefore, for example, in a solid-state imaging device having an on-chip lens as shown in FIG. 4, when the arrangement pitch of the photo sensor arranged on the semiconductor substrate and the on-chip lens is equal, that is, on-chip directly above the photo sensor of each pixel. If there is a lens, the light incident on the on-chip lens is not collected at the center of the photosensor around the semiconductor substrate, but is scattered by the wiring formed adjacent to the photosensor, resulting in a decrease in sensitivity. cause. This is a cause of uneven sensitivity of the screen called shading.

そこで、このシェーディングを補正する技術としては、フォトセンサのピッチよりもオンチップレンズのピッチを小さくする方法が用いられている。具体的には、オンチップレンズの配置を固体撮像装置の光学中心を中心として主に縮小倍率(以下、シュリンクという)をかけることによって実現している(例えば特許文献1参照)。
これは、いわゆる射出瞳補正と呼ばれる技術であり、特にCCDイメージセンサを中心に、オンチップレンズ、層内レンズ、不純物レイヤ等にシュリンクをかけて撮像領域の中心部と周辺部とで各素子の位置をずらすことにより、固体撮像装置の周辺部においてもオンチップレンズに入射した光をフォトセンサに集光させている。特に最近では、携帯電話や個人情報携帯端末などのモバイル機器に固体撮像装置が搭載されるようになり、小型化のために射出瞳距離の非常に短い光学系が用いられているため、周辺画素への光の入射角度は更に大きくなり、オンチップレンズの射出瞳補正技術がますます重要になってきている。
特許公報第2600250号
Therefore, as a technique for correcting the shading, a method of making the pitch of the on-chip lens smaller than the pitch of the photosensor is used. Specifically, the arrangement of the on-chip lens is realized mainly by applying a reduction magnification (hereinafter referred to as shrink) around the optical center of the solid-state imaging device (see, for example, Patent Document 1).
This is a technique called so-called exit pupil correction. In particular, with the CCD image sensor as the center, an on-chip lens, an intra-layer lens, an impurity layer, etc. are shrunk, and the center and peripheral portions of the imaging region By shifting the position, the light incident on the on-chip lens is condensed on the photosensor also in the peripheral portion of the solid-state imaging device. In particular, recently, solid-state imaging devices have been installed in mobile devices such as mobile phones and personal information portable terminals, and an optical system with a very short exit pupil distance is used for miniaturization. Increasing the incident angle of light on the screen, the on-chip lens exit pupil correction technology is becoming increasingly important.
Patent Publication No. 2600250

しかしながら、上記従来の射出瞳補正技術を用いた場合でも、CMOSイメージセンサでは、各画素内に各種のトランジスタや多数の配線があるために、フォトセンサをシリコン基板上で矩形に作ることができないことから、フォトセンサ形状や遮光膜開口形状に起因して画素の四隅で光量の落ち方が異なり、感度が特に低下する場所が生じて不自然なシェーディングとなっている。   However, even when the above-described conventional exit pupil correction technology is used, in the CMOS image sensor, there are various transistors and a large number of wirings in each pixel, so that the photosensor cannot be made rectangular on the silicon substrate. Therefore, due to the shape of the photosensor and the opening shape of the light shielding film, the way in which the amount of light falls at the four corners of the pixel is different, and there is a place where the sensitivity is particularly lowered, resulting in an unnatural shading.

そこで本発明は、非対称なフォトセンサ形状及び遮光膜開口形状に起因する画面中心からの距離に対して不均一なシェーディングを補正し、撮像領域全体でシェーディング量を均一にでき、結果として感度ムラの低減や感度の向上を図ることが可能な固体撮像装置を提供することを目的とする。   Therefore, the present invention corrects non-uniform shading with respect to the distance from the center of the screen due to the asymmetric photosensor shape and the shape of the light shielding film opening, and makes it possible to make the shading amount uniform over the entire imaging region, resulting in sensitivity variations. An object of the present invention is to provide a solid-state imaging device capable of reducing and improving sensitivity.

上述の目的を達成するため、本発明の固体撮像装置は、複数の受光部を含む撮像領域と、前記受光部に向かって入射光を集光する複数のオンチップレンズとを有するとともに、1画素内に1つの前記受光部と1つの前記オンチップレンズとを含み、前記オンチップレンズは同画素内の前記受光部の直上から前記撮像領域内の所定の位置に向かってずれて形成され、前記複数のオンチップレンズの隣接する2つのオンチップレンズの間隔は少なくとも2種類存在することを特徴とする。   In order to achieve the above-described object, a solid-state imaging device of the present invention includes an imaging region including a plurality of light receiving units, a plurality of on-chip lenses that collect incident light toward the light receiving unit, and one pixel. Including the one light receiving portion and one on-chip lens, wherein the on-chip lens is formed to be shifted from a position immediately above the light receiving portion in the pixel toward a predetermined position in the imaging region, There are at least two kinds of intervals between two adjacent on-chip lenses of the plurality of on-chip lenses.

本発明の固体撮像装置によれば、オンチップレンズが画素内の受光部の直上から撮像領域内の所定の位置に向かってずれて形成され、隣接する2つのオンチップレンズの間隔が複数類存在する構造により、受光部の非対称形状にかかわらず、オンチップレンズの位置を最適化することが可能になるので、撮像領域全体でシェーディング量を均一にでき、結果として感度ムラの低減、感度の向上を実現できる効果がある。   According to the solid-state imaging device of the present invention, the on-chip lens is formed so as to be shifted from a position immediately above the light receiving unit in the pixel toward a predetermined position in the imaging region, and there are plural kinds of intervals between two adjacent on-chip lenses. With this structure, it is possible to optimize the position of the on-chip lens regardless of the asymmetric shape of the light receiving part, so that the shading amount can be made uniform throughout the imaging area, resulting in reduced sensitivity unevenness and improved sensitivity. There is an effect that can be realized.

本発明の実施の形態では、オンチップレンズ及びその下層に配置される層内レンズ、配線膜等のシュリンク率を水平方向及び垂直方向で異なる値とし、また、シュリンクする中心を撮像領域の中心からずらすことにより、非対称構造の受光部に対してオンチップレンズ等の配置を最適化し、均一なシェーディング特性を得られるようにする。また、水平方向及び垂直方向のシュリンク率についても、部分的に変化させることにより、さらに最適な素子配置を行い、シェーディング特性の均一化を達成する。   In the embodiment of the present invention, the shrink rate of the on-chip lens, the inner layer lens disposed below the on-chip lens, the wiring film, and the like is set to different values in the horizontal direction and the vertical direction, and the shrinking center is set from the center of the imaging region. By shifting, it is possible to optimize the arrangement of on-chip lenses and the like with respect to the light receiving portion having an asymmetric structure, and obtain uniform shading characteristics. Further, by partially changing the shrink ratio in the horizontal direction and the vertical direction, further optimal element arrangement is performed, and uniform shading characteristics are achieved.

図1は本発明の実施例による固体撮像装置の素子構造の例を示す断面図である。
本実施例の固体撮像装置は、1画素内に1つの受光部と1つのオンチップレンズとを含むCMOSイメージセンサとして構成されており、半導体基板110の上層部には、上からP+層111、N層112、N−層113を含むフォトセンサ120が2次元配列で設けられており、半導体基板110の上部に層間絶縁膜130を介して電極膜140、配線膜150、160、層内レンズ170、カラーフィルタ180、オンチップレンズ190等が配置されている。
FIG. 1 is a sectional view showing an example of an element structure of a solid-state imaging device according to an embodiment of the present invention.
The solid-state imaging device according to the present embodiment is configured as a CMOS image sensor including one light receiving unit and one on-chip lens in one pixel, and an upper layer portion of the semiconductor substrate 110 has a P + layer 111, Photosensors 120 including an N layer 112 and an N− layer 113 are provided in a two-dimensional array. The electrode film 140, the wiring films 150 and 160, and the inner lens 170 are disposed on the semiconductor substrate 110 via the interlayer insulating film 130. A color filter 180, an on-chip lens 190, and the like are disposed.

そして、本実施例の固体撮像装置では、フォトセンサの集光に影響を与える各レイヤ、具体的には図1の各矢印ア〜オに示すように、フォトセンサ120のN−層113、配線膜160、層内レンズ170、カラーフィルタ180、及びオンチップレンズ190は、それぞれ個別に設定されるシュリンク率でシュリンクされ、フォトセンサ120の中心から所定のずれ量だけずれた状態で配置されている。
なお、各レイヤのずれ量(シュリンク率)は、フォトセンサ120から遠いレイヤになるにしたがって大きくなっているが、各レイヤ内においても、一律のずれ量を有するものでなく、各レイヤの垂直方向と水平方向とで異なるずれ量で形成され、さらに、垂直方向及び水平方向においても異なるすれ量をもって形成されている。また、シュリンクの中心も、撮像領域の中心とは異なる位置に配置されている。
In the solid-state imaging device according to the present embodiment, the N-layer 113 of the photosensor 120, the wiring, as shown in each of the layers that affect the condensing of the photosensor, specifically, arrows A to O in FIG. The film 160, the in-layer lens 170, the color filter 180, and the on-chip lens 190 are shrunk at a shrink rate that is individually set, and are disposed in a state of being shifted from the center of the photosensor 120 by a predetermined shift amount. .
Note that the shift amount (shrink rate) of each layer increases as the layer becomes farther from the photosensor 120. However, even within each layer, it does not have a uniform shift amount, and the vertical direction of each layer. Are formed with different amounts of deviation in the horizontal direction, and with different amounts of deviation in the vertical direction and the horizontal direction. Further, the center of the shrink is also arranged at a position different from the center of the imaging region.

以下、このような撮像装置におけるシュリンク構造の具体例を説明する。
図2は本実施例における撮像領域のシュリンク構造の具体例を示す平面図である。
図において、撮像領域200にシュリンク中心201を通る垂直線202及び水平線203を引き、これら垂直線202及び水平線203で区切られた領域A〜Dのシュリンク率及びシュリンク方向を矢印a〜d及びa´〜d´で示している。
本実施例では、各領域におけるシュリンク率は、垂直線202及び水平線203を挟んで水平方向及び垂直方向にそれぞれ線対称であるが、水平方向と垂直方向とで異なるシュリンク率を用いており、また、同じ水平方向でも矢印aと矢印a´で示す部分では、異なるシュリンク率を用いている。
Hereinafter, a specific example of the shrink structure in such an imaging apparatus will be described.
FIG. 2 is a plan view showing a specific example of the shrink structure of the imaging region in the present embodiment.
In the figure, a vertical line 202 and a horizontal line 203 passing through the shrink center 201 are drawn in the imaging area 200, and the shrink rate and the shrink direction of the areas A to D divided by the vertical line 202 and the horizontal line 203 are indicated by arrows a to d and a ′. ~ D '.
In this embodiment, the shrinkage rate in each region is symmetrical with respect to the horizontal direction and the vertical direction across the vertical line 202 and the horizontal line 203, but different shrinkage rates are used in the horizontal direction and the vertical direction. Even in the same horizontal direction, different shrink ratios are used in the portions indicated by arrows a and a ′.

これは、例えば図3に示すように、垂直方向と水平方向とで同じシュリンク率を用いた場合には、各領域A〜Dで一様なシュリンクをかけてしまうと、撮像領域の外周に行くに従い、各画素間の継ぎ目のずれ量が大となり、画面上につなぎ目が見えてしまい、さらにそのシュリンク率の差が大きいときは、電気的な接続も取れなくなってしまう。
そこで、図2に示すように、各領域A〜Dで異なるシュリンクをかけることにより、各画素のつなぎ目でのずれは発生しないため、画面上につなぎ目が見えることはない。
また、撮像領域の中心とシュリンクの中心とをずらすことにより、各レイヤにおいて最適な集光を得ることができる。
For example, as shown in FIG. 3, when the same shrink rate is used in the vertical direction and the horizontal direction, if uniform shrink is applied in each of the areas A to D, it goes to the outer periphery of the imaging area. Accordingly, the amount of shift of the joint between the pixels becomes large, and a joint can be seen on the screen. Further, when the difference in the shrink rate is large, the electrical connection cannot be established.
Therefore, as shown in FIG. 2, by applying different shrinkage in each of the areas A to D, no shift occurs at the joint of each pixel, so that the joint is not visible on the screen.
Further, by shifting the center of the imaging region and the center of the shrink, it is possible to obtain optimum light collection in each layer.

なお、以上の実施例は本発明の一例であり、本発明の具体的な形態、例えば上述したシュリンク率のかけ方やシュリンクをかけるレイヤの選択等については、種々変形が可能である。
また、以上は本発明をCMOSイメージセンサに適用した例を説明したが、CCDイメージセンサにも同様に適用できるものである。
The above embodiment is an example of the present invention, and various modifications can be made to the specific form of the present invention, for example, the method of applying the shrink rate and the selection of the layer to which the shrink is applied.
Further, the example in which the present invention is applied to the CMOS image sensor has been described above, but the present invention can be similarly applied to a CCD image sensor.

本発明の実施例による固体撮像装置の素子構造の例を示す断面図である。It is sectional drawing which shows the example of the element structure of the solid-state imaging device by the Example of this invention. 図1に示す固体撮像装置におけるシュリンク構造を示す平面図である。It is a top view which shows the shrink structure in the solid-state imaging device shown in FIG. 従来の固体撮像装置におけるシュリンク構造を示す平面図である。It is a top view which shows the shrink structure in the conventional solid-state imaging device. 従来例による固体撮像装置の素子構造の例を示す断面図である。It is sectional drawing which shows the example of the element structure of the solid-state imaging device by a prior art example.

符号の説明Explanation of symbols

110……半導体基板、111……P層、112……N層、113……N−層、120……フォトセンサ、130……層間絶縁膜、140……電極膜、150、160……配線膜、170……層内レンズ、180……カラーフィルタ、190……オンチップレンズ。
DESCRIPTION OF SYMBOLS 110 ... Semiconductor substrate, 111 ... P layer, 112 ... N layer, 113 ... N-layer, 120 ... Photo sensor, 130 ... Interlayer insulating film, 140 ... Electrode film, 150, 160 ... Wiring Membrane, 170 ... intra-layer lens, 180 ... color filter, 190 ... on-chip lens.

Claims (9)

複数の受光部を含む撮像領域と、前記受光部に向かって入射光を集光する複数のオンチップレンズとを有するとともに、1画素内に1つの前記受光部と1つの前記オンチップレンズとを含み、
前記オンチップレンズは同画素内の前記受光部の直上から前記撮像領域内の所定の位置に向かってずれて形成され、
前記複数のオンチップレンズの隣接する2つのオンチップレンズの間隔は少なくとも2種類存在する、
ことを特徴とする固体撮像装置。
An imaging region including a plurality of light receiving units, and a plurality of on-chip lenses that collect incident light toward the light receiving unit, and one light receiving unit and one on-chip lens in one pixel Including
The on-chip lens is formed to be shifted from a position immediately above the light receiving unit in the pixel toward a predetermined position in the imaging region,
There are at least two kinds of intervals between two adjacent on-chip lenses of the plurality of on-chip lenses.
A solid-state imaging device.
前記所定の位置は前記撮像領域の中心と異なっていることを特徴とする請求項1記載の固体撮像装置。   The solid-state imaging device according to claim 1, wherein the predetermined position is different from a center of the imaging region. 前記1画素を構成する要素のうち、前記オンチップレンズの下方に位置する少なくも1つの要素は、前記撮像領域内の所定の位置に向かってずれて形成されていることを特徴とする請求項1記載の固体撮像装置。   The at least one element located below the on-chip lens among the elements constituting the one pixel is formed so as to be shifted toward a predetermined position in the imaging region. The solid-state imaging device according to 1. 前記オンチップレンズの下方に位置する要素のずれ量は、前記オンチップレンズのずれ量よりも小さいことを特徴とする請求項3記載の固体撮像装置。   The solid-state imaging device according to claim 3, wherein a shift amount of an element located below the on-chip lens is smaller than a shift amount of the on-chip lens. 前記オンチップレンズの下方に位置する要素には、カラーフィルタ、層内レンズ、配線膜、不純物マスク、電極膜、素子分離層のいくつかを含むことを特徴とする請求項3記載の固体撮像装置。   4. The solid-state imaging device according to claim 3, wherein the element located below the on-chip lens includes a color filter, an in-layer lens, a wiring film, an impurity mask, an electrode film, and an element isolation layer. . 前記ずれ量が少なくとも前記撮像領域の垂直方向と水平方向で異なることを特徴とする請求項1記載の固体撮像装置。   The solid-state imaging device according to claim 1, wherein the shift amount is different at least in a vertical direction and a horizontal direction of the imaging region. 前記ずれ量が前記撮像領域の垂直方向に複数存在することを特徴とする請求項6記載の固体撮像装置。   The solid-state imaging device according to claim 6, wherein there are a plurality of deviation amounts in a direction perpendicular to the imaging region. 前記ずれ量が前記撮像領域の水平方向に複数存在することを特徴とする請求項6記載の固体撮像装置。   The solid-state imaging device according to claim 6, wherein there are a plurality of deviation amounts in a horizontal direction of the imaging region. 前記ずれ量が前記撮像領域の垂直方向及び水平方向に複数存在することを特徴とする請求項6記載の固体撮像装置。
The solid-state imaging device according to claim 6, wherein there are a plurality of deviation amounts in a vertical direction and a horizontal direction of the imaging region.
JP2004122158A 2004-04-16 2004-04-16 Solid-state imaging device Expired - Fee Related JP4419658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122158A JP4419658B2 (en) 2004-04-16 2004-04-16 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122158A JP4419658B2 (en) 2004-04-16 2004-04-16 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2005311469A true JP2005311469A (en) 2005-11-04
JP4419658B2 JP4419658B2 (en) 2010-02-24

Family

ID=35439774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122158A Expired - Fee Related JP4419658B2 (en) 2004-04-16 2004-04-16 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4419658B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011254266A (en) * 2010-06-01 2011-12-15 Sharp Corp Solid-state image sensor and electronic information apparatus
JP2016526294A (en) * 2013-05-21 2016-09-01 クラレト,ホルヘ ヴィセンテ ブラスコ Monolithic integration of plenoptic lenses on photosensor substrates
WO2016143554A1 (en) * 2015-03-12 2016-09-15 ソニー株式会社 Solid-state image capture element, image capture apparatus, and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016129109A1 (en) 2015-02-13 2017-11-24 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011254266A (en) * 2010-06-01 2011-12-15 Sharp Corp Solid-state image sensor and electronic information apparatus
JP2016526294A (en) * 2013-05-21 2016-09-01 クラレト,ホルヘ ヴィセンテ ブラスコ Monolithic integration of plenoptic lenses on photosensor substrates
WO2016143554A1 (en) * 2015-03-12 2016-09-15 ソニー株式会社 Solid-state image capture element, image capture apparatus, and electronic device
US10256269B2 (en) 2015-03-12 2019-04-09 Sony Corporation Solid-state imaging element, imaging device, and electronic apparatus

Also Published As

Publication number Publication date
JP4419658B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP5263279B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
US6970293B2 (en) Solid state imaging device
JP6141024B2 (en) Imaging apparatus and imaging system
US7800191B2 (en) Solid-state imaging device and method for driving the same
TWI636557B (en) Solid-state imaging device, manufacturing method thereof, and electronic device
US20130334642A1 (en) Solid-state imaging device, electronic apparatus, and method for manufacturing the same
US20070045518A1 (en) Solid-state image pickup device and image pickup camera
JP4946147B2 (en) Solid-state imaging device
JP2006049721A (en) Solid-state imaging device and its manufacturing method
JP2009088255A (en) Color solid-state imaging device and electronic information equipment
KR20070083785A (en) Solid-state image pickup device and mask manufacturing method
JP2006303328A (en) Method of manufacturing solid imaging apparatus, and electronic information apparatus
US10812746B2 (en) Solid-state imaging device and method for producing the same, and electronic apparatus
JP4682504B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
US20120262611A1 (en) Method for calculating shift amount of image pickup element and image pickup element
JP2007311563A (en) Solid-state imaging apparatus, and electronic information equipment
JP4419658B2 (en) Solid-state imaging device
JP2009049117A (en) Method of forming color filter of solid-state image pickup device, solid-state image pickup device, and pattern mask set for solid-state image pickup device
US20190268543A1 (en) Image sensor and focus adjustment device
JP4662966B2 (en) Imaging device
JP2001339056A (en) Solid-state camera
JP2005101266A (en) Solid state imaging device, method for manufacturing the same and camera
JP2007288164A (en) Solid-state image pickup device
EP3522221A1 (en) Imaging element and focus adjustment device
JP4951898B2 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and image capturing apparatus using solid-state imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees