JP2005311415A - Acoustic vibration generation element - Google Patents

Acoustic vibration generation element Download PDF

Info

Publication number
JP2005311415A
JP2005311415A JP2004121484A JP2004121484A JP2005311415A JP 2005311415 A JP2005311415 A JP 2005311415A JP 2004121484 A JP2004121484 A JP 2004121484A JP 2004121484 A JP2004121484 A JP 2004121484A JP 2005311415 A JP2005311415 A JP 2005311415A
Authority
JP
Japan
Prior art keywords
acoustic vibration
piezoelectric ceramic
acoustic
piezoelectric
generating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004121484A
Other languages
Japanese (ja)
Inventor
Mitsuo Tamura
光男 田村
Yoshiyuki Abe
善幸 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2004121484A priority Critical patent/JP2005311415A/en
Publication of JP2005311415A publication Critical patent/JP2005311415A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acoustic vibration generation element that is shaped nearly a square, can provide a high acoustic output without distortion, provides excellent acoustic matching with a human body, and can easily be manufactured. <P>SOLUTION: The acoustic vibration generation element adopts a piezoelectric bimorph structure wherein piezoelectric ceramics rectangular plates 2 the front side and the rear side of each of which are metalized are clad to the front side and the rear side of an elastic plate 1. The acoustic vibration generation element is characterized in that at least two of the piezoelectric ceramics rectangular plates 2 or more are arranged and clad in parallel at nearly equal positions on the front side and the rear sides of the elastic plate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、音響電気信号を音響振動に変換して頭骨や腕に伝搬させ、それを聴覚神経で聴取する骨伝導スピーカー等に関し、特に骨伝導スピーカーに用いるのに好適な、音響振動発生素子に関するものである。   The present invention relates to a bone conduction speaker or the like that converts an acoustoelectric signal into acoustic vibration and propagates it to the skull or arm and listens to it with an auditory nerve, and more particularly to an acoustic vibration generating element suitable for use in a bone conduction speaker. Is.

従来、骨伝導用の電気−機械トランスデューサとしては、主に電磁式が用いられ、ダイナミックスピーカと同じ原理のコイルを流れる電流とマグネットとの相互作用で発生する駆動力を機械振動に変えるもので、いくつかの提案がなされている。しかし、電磁方式の発生力は電磁力であり、電流を必要とするが、巻線の有する抵抗でエネルギー損失を生じ、電源から供給されるエネルギーの大半はジュール熱として散失し、音響エネルギーとして使用される分はわずかに1%にすぎない。また、低音領域では低インピーダンスの為に、電流が過剰になり易く電源側の負荷が大きく、結果的に低音域では出力を制限せざるを得ない為に、低音の音響出力不足になり易いという欠点があった。   Conventionally, as an electro-mechanical transducer for bone conduction, the electromagnetic type is mainly used, and the driving force generated by the interaction between the magnet and the current flowing through the coil of the same principle as the dynamic speaker is changed to mechanical vibration. Several proposals have been made. However, the generated force of the electromagnetic method is electromagnetic force and requires current, but energy loss is caused by the resistance of the winding, and most of the energy supplied from the power source is lost as Joule heat and used as acoustic energy Only 1% is done. In addition, because the impedance is low in the low frequency range, the current tends to be excessive and the load on the power supply side is large. There were drawbacks.

一方、少数ではあるが、圧電素子を用いた骨伝導用トランスデユーサの提案がある。(例えば、特許文献1及び2参照)この場合は圧電発音体として多く用いられる金属板と圧電材料を貼りあわせた圧電ユニモルフ素子構造を用いているが、実用域のサイズでは基本的に共振周波数が1kHz以上になる為に、共振周波数より下の低音域の再生が不充分になり易い欠点があった。また、振動系の機械的品質係数Qmが高い為に特定の周波数で強調されたり、逆に減衰したりするために自然な音の再生ができないという欠点もあった。   On the other hand, there are a few proposals for bone conduction transducers using piezoelectric elements. (For example, see Patent Documents 1 and 2) In this case, a piezoelectric unimorph element structure in which a metal plate often used as a piezoelectric sounding body and a piezoelectric material are bonded together is used. Since the frequency is 1 kHz or more, there is a drawback that reproduction in a low frequency range below the resonance frequency tends to be insufficient. In addition, since the mechanical quality factor Qm of the vibration system is high, the sound is emphasized at a specific frequency or is attenuated, so that a natural sound cannot be reproduced.

特に、骨伝導スピーカーは、低電圧で大きな音響出力が要求され、そのためには圧電セラミックス矩形板の厚さを薄くするか、積層構造をとり、周波数特性を維持して出力を上げるには後述のとおり振動子の幅を広げることが考えられるが、以下のような問題点が生ずる。   In particular, bone conduction speakers are required to have a large acoustic output at a low voltage. For this purpose, the piezoelectric ceramic rectangular plate is made thin or a laminated structure to maintain the frequency characteristics and increase the output as described later. Although it is conceivable to increase the width of the vibrator as described above, the following problems arise.

音響振動発生用のバイモルフ振動子については、その構成と音響性能の関係については基本的なところは数式的にも十分に理論付けされているため、以下に若干の数式を用いて説明する。まず、音響出力の周波数特性に関与する素子の共振周波数frについて数1の関係で構成要素と関係する。 Regarding the bimorph vibrator for generating acoustic vibrations, the basic relationship between the configuration and the acoustic performance is sufficiently theoretically expressed mathematically, and will be described below using some mathematical expressions. First, the relationship between components in relation to the number 1 for the resonance frequency f r of the elements involved in the frequency characteristic of the acoustic output.

Figure 2005311415
Figure 2005311415

数1のLはバイモルフ振動子の長さであり、小型化のために短くしようとすると他の要素で補正しない限り急激に共振周波数を上げて周波数特性を高域のほうに持ち上げる傾向がある。数1はバイモルフ振動子の支持形態が一端固定、一端自由の片持ち式である場合も、両端自由の場合も同形式であり、αnが異なるのみである。このように式中のαnは振動姿態で決まる定数であり、以後の説明では触れない。 L in Equation 1 is the length of the bimorph vibrator, and when trying to shorten it for miniaturization, unless it is corrected by other factors, there is a tendency that the resonance frequency is suddenly raised and the frequency characteristic is raised toward the high range. Formula 1 is the same in both cases where the bimorph vibrator is supported at one end fixed and one end free cantilever, and both ends are free, and only α n is different. As described above, α n in the equation is a constant determined by the vibration mode, and will not be described in the following description.

数1のKは、圧電材料とシム材料の厚みおよび弾性係数で決まる曲げの弾性係数である。この関係を数2に示す。   K in Equation 1 is an elastic modulus of bending determined by the thickness and elastic modulus of the piezoelectric material and shim material. This relationship is shown in Equation 2.

Figure 2005311415
Figure 2005311415

ここで、wは素子の幅、EsとEcはシム材料と圧電材料の弾性係数であり、2tsとtcはシムと圧電材料の厚みを示す。eは後述の圧電応力定数、εsは圧電材料の誘電率を示す。幅wが決まるとKは構成材料の弾性係数と厚みに支配される。 Here, w is the width of the element, E s and E c is the modulus of elasticity of the shim material and the piezoelectric material, 2t s and t c indicates the thickness of the shim and piezoelectric material. e represents a piezoelectric stress constant described later, and ε s represents a dielectric constant of the piezoelectric material. When the width w is determined, K is governed by the elastic modulus and thickness of the constituent material.

ρSは単位長さあたりの重さを示し、数3で示される。   ρS represents the weight per unit length, and is represented by Equation 3.

(数3)
ρS=2w(tcρc+tsρs
ここで、ρc、ρsは、それぞれ圧電材料とシム材料の比重を示す。
(Equation 3)
ρS = 2w (t c ρ c + t s ρ s )
Here, ρ c and ρ s indicate specific gravity of the piezoelectric material and the shim material, respectively.

次に、音響振動発生素子の駆動力の源である、電界に応じて発生する曲げモーメントMeについて説明する。圧電バイモルフ素子に電圧を印加されたときに曲げモーメントMeが発生して素子が屈曲変形して振動する。曲げモーメントMeと構成要素との関係は数4で示される。 Next, the source of the driving force of the acoustic vibration generating element, the bending moment M e explained generated in response to an electric field. When a voltage is applied to the piezoelectric bimorph element, a bending moment Me is generated, and the element is bent and vibrated. The relationship between the bending moment Me and the constituent elements is expressed by Equation 4.

(数4)
e=w(tc+2ts)eV
eは圧電材料の圧電応力定数で電界に応じて発生する応力の度合いを示し、Vは印加する電圧を示している。
(Equation 4)
M e = w (t c + 2t s ) eV
e is a piezoelectric stress constant of the piezoelectric material, indicating the degree of stress generated according to the electric field, and V indicating the voltage to be applied.

両端自由の支持形態における振動時の振幅は、位置の関数であり、ψ(x)とすると振幅ψ(x)は数5で表現される。   The amplitude at the time of vibration in the free-supported form at both ends is a function of the position.

Figure 2005311415
Figure 2005311415

ここで、αは角周波数ωと構成要素できまる数6で表される。   Here, α is expressed by the angular frequency ω and the number 6 that can be defined by the components.

Figure 2005311415
Figure 2005311415

また、xはバイモルフの長さ方向の中心点を原点とした座標上の任意の一点を示す位置のファクターである。   Further, x is a factor of a position indicating an arbitrary point on the coordinates with the center point in the length direction of the bimorph as the origin.

数5から、曲げモーメントMeが大きいほど発生する変位が大きくなり、結果として、その時間微分である振動速度、振動の加速度が大きくなる。音響振動発生素子の振動方向の駆動力をFbと表現するとき素子の長さ方向における微小区間dxの重量ρSdxとその部分の加速度αの積で得られる微小区間毎に発生する慣性力を全区間について積分した値として数7で求めることができる。 From Equation 5, the greater the bending moment Me , the greater the generated displacement, and as a result, the vibration speed and vibration acceleration, which are time derivatives thereof, increase. When the driving force in the vibration direction of the acoustic vibration generating element is expressed as Fb, the inertial force generated in each minute section obtained by the product of the weight ρSdx of the minute section dx in the length direction of the element and the acceleration α of the part is expressed in all sections. As an integrated value for, it can be obtained by Equation 7.

Figure 2005311415
Figure 2005311415

数7では数5の三角関数と双曲線関数の部分はφ(α、x)と略記した。ρS,Kともに幅wが積の形で入っており、ルートの部分ではwの効果はキャンセルされ、数4のMeに幅wが含まれる。即ち、数7の被積分関数は、前述の通り各部分での慣性力を示し、振動姿態や周波数に応じて変化するが、大きな曲げモーメントの結果として大きな振幅が得られ、大きな駆動力Fbの発生に寄与することが、数5および数7から説明できる。 In Equation 7, the trigonometric and hyperbolic functions of Equation 5 are abbreviated as φ (α, x). .rho.s, K has entered in both width w form of a product, the effect of w in the portion of the route is canceled, include the width w to the number 4 of M e. That is, the integrand of Equation 7 indicates the inertial force in each part as described above, and changes according to the vibration state and frequency, but a large amplitude is obtained as a result of a large bending moment, and a large driving force F b. It can be explained from Equations 5 and 7 that it contributes to the generation of.

前述のとおり、曲げモーメントMeは圧電材料のe定数および駆動電圧V以外には厚みtc、2tsと幅wに依存する。大きな曲げモーメントを得んとして厚みをtcもしくは2tsの双方もしくはいずれかの一方を大きくすると、数2の曲げ弾性係数Kが急激に増大して共振周波数を引き上げるため音響出力の周波数特性に大きく影響を及ぼす。 As described above, the bending moment M e is dependent on the thickness t c, 2t s and the width w is in addition to e constants and the driving voltage V of the piezoelectric material. When the thickness is increased either both or one of t c or 2t s a large bending moment as ¥, largely on the frequency characteristics of the acoustic output for raising the resonant frequency number 2 for flexural modulus K is rapidly increased affect.

また、音響特性の周波数特性を維持しながら出力パワーを拡大する方策として、数4から明らかなように、幅wの増大も曲げモーメントの増大に寄与できるが、一定以上の拡大を行うと幅方向の屈曲振動モードの共振と、長手方向の主振動モードとの干渉が始まり、対象周波数域内に幅方向の屈曲振動の影響が現れ、結果として音響出力の周波数特性の変化やひずみの要因となり、自然な音の再生ができなくなるという問題点がある。   In addition, as a measure for expanding the output power while maintaining the frequency characteristics of the acoustic characteristics, as is clear from Equation 4, an increase in the width w can also contribute to an increase in the bending moment. Interference between the resonance of the bending vibration mode and the main vibration mode in the longitudinal direction begins, and the influence of bending vibration in the width direction appears in the target frequency range, resulting in changes in the frequency characteristics and distortion of the acoustic output, resulting in natural There is a problem that it becomes impossible to reproduce a proper sound.

特開昭59−140796号公報JP 59-140796 A 特開昭59−178895号公報JP 59-178895 A

小型で所望の周波数特性を満足し、かつ高出力(大きな駆動力)の音響振動発生素子を得ることと、人体との音響整合が良い、製造が容易な音響振動発生素子の提供を目的とするものである。   An object of the present invention is to provide an acoustic vibration generating element that is small, satisfies a desired frequency characteristic, and has a high output (large driving force), and that is easily matched with the human body and easy to manufacture. Is.

本発明によれば、表裏面をメタライズした圧電セラミックス矩形板を弾性板の表裏面に張り合わせた圧電バイモルフ構造の音響振動発生素子において、前記弾性板の表裏面それぞれのほぼ等しい位置に少なくとも2枚以上の前記圧電セラミックス矩形板を並行に並べて張り合わせたことを特徴とする音響振動発生素子が得られる。   According to the present invention, in an acoustic vibration generating element having a piezoelectric bimorph structure in which piezoelectric ceramic rectangular plates whose surfaces are metallized are bonded to the front and back surfaces of the elastic plate, at least two or more sheets are provided at substantially equal positions on the front and back surfaces of the elastic plate. An acoustic vibration generating element characterized in that the piezoelectric ceramic rectangular plates are aligned and bonded in parallel is obtained.

また、本発明によれば、前記圧電セラミックス矩形板は、複数の内部電極層と圧電セラミックス層を厚さ方向に積層し、一層置きに共通の外部電極に接続した構造であることを特徴とする音響振動発生素子が得られる。   According to the present invention, the piezoelectric ceramic rectangular plate has a structure in which a plurality of internal electrode layers and piezoelectric ceramic layers are laminated in the thickness direction and connected to a common external electrode every other layer. An acoustic vibration generating element is obtained.

また、本発明によれば、可撓性物質で表裏面もしくは全面を被覆したことを特徴とする音響振動発生素子が得られる。   In addition, according to the present invention, an acoustic vibration generating element characterized in that the front and back surfaces or the entire surface is coated with a flexible material can be obtained.

前述の通り、圧電セラミックス矩形板と弾性板を張り合わせた圧電バイモルフ構造において、一枚の弾性板の表裏面に複数の圧電セラミックス矩形板を張り合わせ複数の圧電バイモルフを構成することで、幅方向には圧電素子が複数の箇所で分断されていることになり、幅方向に発生する曲げモーメントは長さ方向に発生する曲げモーメントに比べると無視できる程に小さくなるために幅方向の振動モードは励起されにくい。結果として、正方形に近い形状でも一方向のみの振動モードとなり、歪の少ない大きな音響出力が得られ、同時に人体との音響整合も良く製造が容易な音響振動発生素子の提供が可能である。   As described above, in a piezoelectric bimorph structure in which a piezoelectric ceramic rectangular plate and an elastic plate are bonded together, a plurality of piezoelectric ceramic rectangular plates are bonded to the front and back surfaces of one elastic plate to form a plurality of piezoelectric bimorphs. The piezoelectric element is divided at multiple locations, and the bending moment generated in the width direction is negligibly small compared to the bending moment generated in the length direction. Hateful. As a result, it is possible to provide an acoustic vibration generating element that has a vibrational mode in only one direction even with a shape close to a square, can obtain a large acoustic output with little distortion, and at the same time has good acoustic matching with the human body and is easy to manufacture.

更に、圧電セラミックス矩形板を複数の内部電極と圧電セラミックス層の積層体とすることで、内部電極間隔を狭くすることができるので、音響振動発生素子を圧電セラミックス矩形板と同じ電界強度で駆動する場合は、駆動電圧の低電圧化が可能となる。   Furthermore, since the interval between the internal electrodes can be narrowed by making the piezoelectric ceramic rectangular plate a laminate of a plurality of internal electrodes and piezoelectric ceramic layers, the acoustic vibration generating element is driven with the same electric field strength as the piezoelectric ceramic rectangular plate. In this case, the drive voltage can be lowered.

以下に、本発明の実施の形態について、図1〜図3を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.

図1は、本発明の一実施の形態で、1枚の弾性板1の表裏面にそれぞれ4枚の圧電セラミックス矩形板2を張り合わせた音響振動発生素子の斜視図である。弾性板1は真鍮製で寸法が長さ30mm、幅25mm、厚さ0.1mmである。また、圧電セラミックス矩形板2は、NECトーキン製圧電セラミックス(商品名ネペック10)を用い、長さ30mm、幅8mm、厚さ0.15mmの圧電セラミックス矩形板の表裏面に銀電極を焼付け、温度100℃のシリコーンオイル中で、150Vの直流電圧を印加し分極した物を使用し、エポキシ系接着剤で張り合わせた。並行に並べたときの圧電セラミックス矩形板の間隔は0.5mmとした。   FIG. 1 is a perspective view of an acoustic vibration generating element in which four piezoelectric ceramic rectangular plates 2 are bonded to the front and back surfaces of one elastic plate 1 according to an embodiment of the present invention. The elastic plate 1 is made of brass and has a length of 30 mm, a width of 25 mm, and a thickness of 0.1 mm. The piezoelectric ceramic rectangular plate 2 uses NEC TOKIN piezoelectric ceramics (trade name NEPEC 10), and silver electrodes are baked on the front and back surfaces of the piezoelectric ceramic rectangular plate having a length of 30 mm, a width of 8 mm, and a thickness of 0.15 mm. In a silicone oil at 100 ° C., a material polarized by applying a direct current voltage of 150 V was used and bonded together with an epoxy adhesive. The interval between the piezoelectric ceramic rectangular plates when arranged in parallel was 0.5 mm.

図2は、本発明の異なる実施の形態で使用した、複数の内部電極3と圧電セラミックス層4の積層体で側面に銀電極を焼き付ける前の斜視図である。出発原料として前述の実施の形態と同じ圧電セラミックスの粉末を用い、厚さ35μmのグリーンシートを作製し、このグリーンシート上に、銀/パラジウム電極ペーストで所定形状の内部電極パターンを印刷し、この内部電極を印刷したグリーンシート4枚と印刷しないグリーンシートとを熱圧着し、1200℃で焼結して、しかる後に対向する2側面に露出する内部電極に接続する銀電極を焼き付けて作製した。積層体の寸法は前述の実施の形態の圧電セラミックス矩形板2と同じとし、この積層体を前述の実施の形態と同じ弾性板の表裏面にそれぞれ0.5mm間隔で4枚、エポキシ系接着剤で張り合わせ、音響振動発生素子とした。   FIG. 2 is a perspective view of a laminate of a plurality of internal electrodes 3 and a piezoelectric ceramic layer 4 used in different embodiments of the present invention before a silver electrode is baked on the side surface. Using the same piezoelectric ceramic powder as in the previous embodiment as a starting material, a 35 μm-thick green sheet was prepared, and an internal electrode pattern having a predetermined shape was printed on the green sheet with a silver / palladium electrode paste. Four green sheets on which internal electrodes were printed and green sheets that were not printed were thermocompression bonded and sintered at 1200 ° C., and then silver electrodes connected to the internal electrodes exposed on the two opposite side surfaces were baked. The dimensions of the laminate are the same as those of the piezoelectric ceramic rectangular plate 2 of the above-described embodiment, and this laminate is provided on the front and back surfaces of the same elastic plate as that of the above-described embodiment with 4 sheets each having an interval of 0.5 mm. To obtain an acoustic vibration generating element.

図3は、図1の音響振動発生素子の表裏面に可撓性物質としてシリコーン樹脂5を被覆した音響振動発生素子で、図3(a)は斜視図、図3(b)はA−A’の断面図である。シリコーン樹脂5の厚さは、ほぼ2mmである。   3 is an acoustic vibration generating element in which a silicone resin 5 is coated as a flexible material on the front and back surfaces of the acoustic vibration generating element in FIG. 1, FIG. 3 (a) is a perspective view, and FIG. 3 (b) is AA. It is sectional drawing of '. The thickness of the silicone resin 5 is approximately 2 mm.

比較例として、実施の形態と同じ弾性板の表裏面に、同じNECトーキン製圧電セラミックスで長さ30mm、幅24mm、厚さ0.15mmの両面をメタライズした圧電セラミックス矩形板をエポキシ系接着剤で張り合わせ、音響振動発生素子とした。比較例の音響振動発生素子を図4に示した。   As a comparative example, on the front and back surfaces of the same elastic plate as in the embodiment, a piezoelectric ceramic rectangular plate that is metalized on both sides with a length of 30 mm, a width of 24 mm, and a thickness of 0.15 mm with the same NEC TOKIN piezoelectric ceramic is used with an epoxy adhesive. Lamination and acoustic vibration generating elements were obtained. The acoustic vibration generating element of the comparative example is shown in FIG.

次に、本実施の形態の音響振動発生素子と比較例の音響振動発生素子の音響出力を定量的に確認する為に、人工内耳(B&K社製 Artificial Mastoid Type 4930)を用いて人体の聴覚神経に相当する位置での加速度とそのひずみについて測定した。測定結果を図5(a)、図5(b)に示した。   Next, in order to quantitatively confirm the acoustic output of the acoustic vibration generating element of this embodiment and the acoustic vibration generating element of the comparative example, an artificial inner ear (Artificial Mastoid Type 4930, manufactured by B & K) is used for the auditory nerve of the human body. The acceleration and the strain at the position corresponding to were measured. The measurement results are shown in FIGS. 5 (a) and 5 (b).

図5(a)、図5(b)から明らかなように、本発明の一実施例と異なる実施例では400Hzから4000Hzまでほぼ平坦な加速度が測定され、骨伝導スピーカーの音響振動発生素子として十分な特性が得られているが、比較例では一定周波数間隔で幅方向と長さ方向の結合で、たくさんの不要振動が発生し、歪が多い音響出力であることが分かる。   As is apparent from FIGS. 5A and 5B, in an embodiment different from the embodiment of the present invention, a substantially flat acceleration is measured from 400 Hz to 4000 Hz, which is sufficient as an acoustic vibration generating element of a bone conduction speaker. However, in the comparative example, it can be seen that a lot of unnecessary vibration is generated by coupling in the width direction and the length direction at a constant frequency interval, and the sound output has a lot of distortion.

1枚の弾性板の表裏面にそれぞれ4枚の圧電セラミックス矩形板を張り合わせた音響振動発生素子の斜視図。FIG. 3 is a perspective view of an acoustic vibration generating element in which four piezoelectric ceramic rectangular plates are bonded to the front and back surfaces of one elastic plate. 複数の内部電極と圧電セラミックス層の積層体で側面に銀電極を焼き付ける前の斜視図。The perspective view before baking a silver electrode on a side surface with the laminated body of a some internal electrode and a piezoelectric ceramic layer. 図1の音響振動発生素子の表裏面に可撓性物質としてシリコーン樹脂を被覆した音響振動発生素子で、図3(a)は斜視図、図3(b)はA−A’の断面図。FIG. 3A is a perspective view, and FIG. 3B is a cross-sectional view taken along line A-A ′. FIG. 3A is an acoustic vibration generating element in which a silicone resin is coated on the front and back surfaces of the acoustic vibration generating element of FIG. 比較例の音響振動発生素子を示す図。The figure which shows the acoustic vibration generating element of a comparative example. 音響振動発生素子の加速度およびひずみの測定結果を示す図。図5(a)は加速度の測定結果を示す図、図5(b)はひずみの測定結果を示す図。The figure which shows the measurement result of the acceleration and distortion of an acoustic vibration generating element. FIG. 5A is a diagram showing a measurement result of acceleration, and FIG. 5B is a diagram showing a measurement result of strain.

符号の説明Explanation of symbols

1 弾性板
2 圧電セラミックス矩形板
3 内部電極
4 圧電セラミックス層
5 シリコーン樹脂
1 Elastic plate 2 Piezoelectric ceramic rectangular plate 3 Internal electrode 4 Piezoelectric ceramic layer 5 Silicone resin

Claims (3)

表裏面をメタライズした圧電セラミックス矩形板を弾性板の表裏面に張り合わせた圧電バイモルフ構造の音響振動発生素子において、前記弾性板の表裏面それぞれのほぼ等しい位置に少なくとも2枚以上の前記圧電セラミックス矩形板を並行に並べて張り合わせたことを特徴とする音響振動発生素子。   In an acoustic vibration generating element having a piezoelectric bimorph structure in which piezoelectric ceramic rectangular plates with metallized front and back surfaces are bonded to the front and back surfaces of an elastic plate, at least two or more piezoelectric ceramic rectangular plates at approximately equal positions on the front and back surfaces of the elastic plate An acoustic vibration generating element characterized in that the two are aligned and bonded in parallel. 前記圧電セラミックス矩形板は、複数の内部電極層と圧電セラミックス層を厚さ方向に積層し、一層置きに共通の外部電極に接続した構造であることを特徴とする請求項1記載の音響振動発生素子。   2. The acoustic vibration generation according to claim 1, wherein the piezoelectric ceramic rectangular plate has a structure in which a plurality of internal electrode layers and piezoelectric ceramic layers are stacked in a thickness direction and connected to a common external electrode every other layer. element. 可撓性物質で表裏面もしくは全面を被覆したことを特徴とする請求項1もしくは2記載の音響振動発生素子。   3. The acoustic vibration generating element according to claim 1, wherein the front and back surfaces or the entire surface is covered with a flexible material.
JP2004121484A 2004-04-16 2004-04-16 Acoustic vibration generation element Pending JP2005311415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004121484A JP2005311415A (en) 2004-04-16 2004-04-16 Acoustic vibration generation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004121484A JP2005311415A (en) 2004-04-16 2004-04-16 Acoustic vibration generation element

Publications (1)

Publication Number Publication Date
JP2005311415A true JP2005311415A (en) 2005-11-04

Family

ID=35439730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004121484A Pending JP2005311415A (en) 2004-04-16 2004-04-16 Acoustic vibration generation element

Country Status (1)

Country Link
JP (1) JP2005311415A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060768A1 (en) * 2005-11-24 2007-05-31 Murata Manufacturing Co., Ltd. Electroacoustic transducer
WO2011162002A1 (en) * 2010-06-25 2011-12-29 京セラ株式会社 Acoustic generator
US8148879B2 (en) 2008-05-29 2012-04-03 Murata Manufacturing Co., Ltd. Sheet-type vibrator and acoustic apparatus
US8363863B2 (en) 2008-05-29 2013-01-29 Murata Manufacturing Co., Ltd. Piezoelectric speaker, speaker apparatus, and tactile feedback apparatus
JP2013026195A (en) * 2011-07-26 2013-02-04 Advantest Corp Switching device, manufacturing method of the same, transmission channel switching device, and testing device
JP2013026194A (en) * 2011-07-26 2013-02-04 Advantest Corp Switch device, transmission channel switching device, and test device
JP2013030273A (en) * 2011-07-26 2013-02-07 Advantest Corp Switching device
WO2014192778A1 (en) * 2013-05-29 2014-12-04 京セラ株式会社 Acoustic device and use method thereof
KR101507751B1 (en) 2012-08-30 2015-04-07 쿄세라 코포레이션 Acoustic generator, acoustic generation device, and electronic device
KR101507747B1 (en) 2012-12-17 2015-04-07 쿄세라 코포레이션 Acoustic generator, acoustic generation device, and electronic device
JP2015141978A (en) * 2014-01-28 2015-08-03 ムネカタ株式会社 Piezoelectric type vibration power generating device

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586241B2 (en) 2005-11-24 2009-09-08 Murata Manufacturing Co., Ltd. Electroacoustic transducer
WO2007060768A1 (en) * 2005-11-24 2007-05-31 Murata Manufacturing Co., Ltd. Electroacoustic transducer
US8363863B2 (en) 2008-05-29 2013-01-29 Murata Manufacturing Co., Ltd. Piezoelectric speaker, speaker apparatus, and tactile feedback apparatus
US8148879B2 (en) 2008-05-29 2012-04-03 Murata Manufacturing Co., Ltd. Sheet-type vibrator and acoustic apparatus
CN104540083B (en) * 2010-06-25 2018-02-23 京瓷株式会社 Sound generator and speaker unit
JP2012110018A (en) * 2010-06-25 2012-06-07 Kyocera Corp Acoustic generator
JP4969706B2 (en) * 2010-06-25 2012-07-04 京セラ株式会社 Sound generator
JP2012110017A (en) * 2010-06-25 2012-06-07 Kyocera Corp Acoustic generator
CN104540083A (en) * 2010-06-25 2015-04-22 京瓷株式会社 Acoustic generator and loudspeaker device
KR101656722B1 (en) * 2010-06-25 2016-09-12 쿄세라 코포레이션 Acoustic generator
US9386378B2 (en) 2010-06-25 2016-07-05 Kyocera Corporation Acoustic generator
CN102959988A (en) * 2010-06-25 2013-03-06 京瓷株式会社 Acoustic generator
KR20140032513A (en) * 2010-06-25 2014-03-14 쿄세라 코포레이션 Acoustic generator
KR101439193B1 (en) * 2010-06-25 2014-09-12 쿄세라 코포레이션 Acoustic generator
WO2011162002A1 (en) * 2010-06-25 2011-12-29 京セラ株式会社 Acoustic generator
US8897473B2 (en) 2010-06-25 2014-11-25 Kyocera Corporation Acoustic generator
CN102959988B (en) * 2010-06-25 2016-01-20 京瓷株式会社 Sound generator
US8872524B2 (en) 2011-07-26 2014-10-28 Advantest Corporation Switching apparatus, switching apparatus manufacturing method, transmission line switching apparatus, and test apparatus
JP2013030273A (en) * 2011-07-26 2013-02-07 Advantest Corp Switching device
JP2013026194A (en) * 2011-07-26 2013-02-04 Advantest Corp Switch device, transmission channel switching device, and test device
JP2013026195A (en) * 2011-07-26 2013-02-04 Advantest Corp Switching device, manufacturing method of the same, transmission channel switching device, and testing device
KR101507751B1 (en) 2012-08-30 2015-04-07 쿄세라 코포레이션 Acoustic generator, acoustic generation device, and electronic device
KR101507747B1 (en) 2012-12-17 2015-04-07 쿄세라 코포레이션 Acoustic generator, acoustic generation device, and electronic device
JP2014232966A (en) * 2013-05-29 2014-12-11 京セラ株式会社 Acoustic equipment and method of application
CN105210385A (en) * 2013-05-29 2015-12-30 京瓷株式会社 Acoustic device and use method thereof
WO2014192778A1 (en) * 2013-05-29 2014-12-04 京セラ株式会社 Acoustic device and use method thereof
US9807520B2 (en) 2013-05-29 2017-10-31 Kyocera Corporation Acoustic device and method of using the same
CN105210385B (en) * 2013-05-29 2019-05-03 京瓷株式会社 Acoustic equipment and the method for using the acoustic equipment
JP2015141978A (en) * 2014-01-28 2015-08-03 ムネカタ株式会社 Piezoelectric type vibration power generating device

Similar Documents

Publication Publication Date Title
JP3958739B2 (en) Acoustic vibration generator
JP6059300B2 (en) Piezoelectric vibration element, piezoelectric vibration device, and portable terminal
JP5558577B2 (en) Piezoelectric vibration device and portable terminal using the same
JP4766052B2 (en) Electroacoustic transducer
JP4761459B2 (en) Piezoelectric vibration unit and piezoelectric speaker
JPWO2013002384A1 (en) Sound generator and sound generator using the same
WO2013099512A1 (en) Vibration device, sound generator, speaker system, and electronic device
JP2005311415A (en) Acoustic vibration generation element
JP2001016691A (en) Piezoelectric sounding body and its production
JP5676016B2 (en) Vibration device, sound generator, speaker system, electronic equipment
US9848268B2 (en) Acoustic generator, acoustic generation device, and electronic apparatus
JP5934145B2 (en) Mobile device
JP2007221532A (en) Acoustic vibration generating element
JP3587519B2 (en) Piezoelectric transducer
JP5637211B2 (en) Oscillator
JP6319678B2 (en) Piezoelectric speaker
JP2005294986A (en) Acoustic vibration generation device
JP5225518B1 (en) Piezoelectric vibration element, piezoelectric vibration device, and portable terminal
JP5890209B2 (en) Sound generator
JP6258666B2 (en) Electronics
JP6258667B2 (en) Electronics
JP2007228610A (en) Acoustic vibration generating element
JP2002108346A (en) Piezoelectric sounding body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090401