JP2005311248A - Magnetic-path constituting sintered-member, and manufacturing method thereof - Google Patents

Magnetic-path constituting sintered-member, and manufacturing method thereof Download PDF

Info

Publication number
JP2005311248A
JP2005311248A JP2004129820A JP2004129820A JP2005311248A JP 2005311248 A JP2005311248 A JP 2005311248A JP 2004129820 A JP2004129820 A JP 2004129820A JP 2004129820 A JP2004129820 A JP 2004129820A JP 2005311248 A JP2005311248 A JP 2005311248A
Authority
JP
Japan
Prior art keywords
magnetic
sintered
nonmagnetic
magnetic path
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004129820A
Other languages
Japanese (ja)
Inventor
Tetsuji Yamamoto
哲治 山本
Ryuji Shiga
竜治 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Toyoda Koki KK
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd, Toyoda Koki KK filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2004129820A priority Critical patent/JP2005311248A/en
Publication of JP2005311248A publication Critical patent/JP2005311248A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the manufacturing cost of a magnetic-path constituting sintered-member comprising magnetic members and a non-magnetic member, by improving its dimensional accuracy. <P>SOLUTION: The magnetic-path constituting sintered-member 15 comprises a non-magnetic member 18 made of a plate material and first and second magnetic sintered-members 16, 17 made of powder of a magnetic material as raw material and jointed by sintering respectively to one surface and the other surface of the non-magnetic member. It is desirable that a plurality of small holes 18a, etc. be formed in the non-magnetic member, to joint the first and second magnetic sintered-members to the non-magnetic member also by anchor effect, caused by the small holes 18a, etc. The manufacturing method of the magnetic-path, constituting sintered-member 15, has a process of injecting a first ferromagnetic raw material 16R to serve as the first magnetic sintered-member in a molding hole 31a of a compression molding die 31; a process of molding the surface of the raw material 16R by a molding plate 34; a process of mounting thereafter the non-magnetic member on the surface of the molded raw material 16R; a process of further injecting thereon a second ferromagnetic raw material 17R to serve as the second magnetic sintered-member; a process of molding a magnetic-path constituting non-sintered-member 15A by compressing the resultant intermediate; and a process of sintering the member 15A. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電磁弁などの電磁機器に使用する磁路構成焼結部材及びその製造方法に関するものである。   The present invention relates to a magnetic path constituting sintered member used for an electromagnetic device such as an electromagnetic valve and a method for manufacturing the same.

電磁弁の電磁駆動部の磁路構成部材であるステータコアとしては、非磁性体からなるスリーブの両端部に磁性体からなる第1及び第2のソレノイドハウジングを所定の距離をおいて嵌合固定し、両ソレノイドハウジングの内面にプランジャを摺動自在に案内支持する嵌合孔を形成したものがある(特許文献1参照)。この技術では、予め成形された第1及び第2のソレノイドハウジングをスリーブの両端部に嵌合固定しており、各ソレノイドハウジングに形成された各嵌合孔間の同心精度が低いので、嵌合孔に対するプランジャの摺動抵抗が増大し、電磁弁の作動の際のヒステリシスが増大するという問題がある。   As a stator core that is a magnetic path constituent member of an electromagnetic drive portion of a solenoid valve, first and second solenoid housings made of a magnetic material are fitted and fixed at both ends of a sleeve made of a non-magnetic material at a predetermined distance. There is one in which fitting holes for slidably guiding and supporting the plunger are formed on the inner surfaces of both solenoid housings (see Patent Document 1). In this technique, the first and second solenoid housings molded in advance are fitted and fixed to both ends of the sleeve, and the concentric accuracy between the fitting holes formed in each solenoid housing is low. There is a problem that the sliding resistance of the plunger with respect to the hole increases, and the hysteresis during the operation of the solenoid valve increases.

このような問題を解決する技術として、プランジャを往復移動自在に収容支持する磁性体よりなる一体構造の固定コアの収容部のプランジャと径方向に対向する環状部位を、機械的強度を損なわない程度に薄肉化し、かつ複数の貫通孔を形成することにより、磁路面積は減少させて磁気抵抗を増加させるようにした技術がある(特許文献2参照)。この貫通孔は、(1) レーザ照射、(2) 切削加工、(3) プレス加工、(4) ウォータジェット加工等により形成される。この技術によれば、一体形成された固定コアにプランジャを摺動自在に案内支持する嵌合孔を形成しているので、嵌合孔に対するプランジャの摺動抵抗は減少し、電磁弁が作動する際のヒステリシスは減少する。しかしながら、切削などの1次加工で薄肉化した環状部位に2次加工で複数の貫通孔を形成しており、この2次加工には精密な加工機や特殊な加工機を必要とするので、製造コストが増大するという問題がある。   As a technique for solving such a problem, an annular portion that is radially opposed to the plunger of the housing portion of the integral structure fixed core made of a magnetic material that accommodates and supports the plunger so as to be able to reciprocate is provided so as not to impair the mechanical strength. There is a technique in which a magnetic path area is reduced and a magnetic resistance is increased by forming a plurality of through holes (see Patent Document 2). This through hole is formed by (1) laser irradiation, (2) cutting, (3) press working, (4) water jet machining, or the like. According to this technique, since the fitting hole that slidably guides and supports the plunger is formed in the integrally formed fixed core, the sliding resistance of the plunger with respect to the fitting hole is reduced, and the solenoid valve operates. Hysteresis is reduced. However, a plurality of through holes are formed by secondary processing in the annular part thinned by primary processing such as cutting, and this secondary processing requires a precise processing machine and a special processing machine. There is a problem that the manufacturing cost increases.

このような問題を解決する技術として、上部及び下部が強磁性体の粉末よりなる焼結素材の射出成形体からなり、中央部が非磁性体の粉末よりなる焼結素材の射出成形体からなる中空管形状の一体の射出成形体を形成して、これを焼結することにより一体の中空管を得る技術がある(特許文献3参照)。この技術によれば、焼結により一体成形される中空管に嵌合孔が形成されるので、嵌合孔に対するプランジャの摺動抵抗は減少して電磁弁が作動する際のヒステリシスは減少し、また中空管の一部に磁気抵抗を増加させるための精密な加工機や特殊な加工機による加工を必要としないので製造コストを低下させることができる。
特開平01−242884号公報(第2頁右上欄第5行〜第11行、第1図) 特開2001−263521号公報(段落〔0017〕〜〔0018〕、図1、図2) 特開2001−148308号公報(段落〔0013〕〜〔0021〕、図2、図3)
As a technique for solving such a problem, the upper and lower portions are made of a sintered material injection-molded body made of a ferromagnetic powder, and the central portion is made of a sintered material injection-molded body made of a non-magnetic powder. There is a technique in which a hollow tube-shaped integral injection molded body is formed and sintered to obtain an integral hollow tube (see Patent Document 3). According to this technique, since the fitting hole is formed in the hollow tube integrally formed by sintering, the sliding resistance of the plunger with respect to the fitting hole is reduced, and the hysteresis when the solenoid valve is operated is reduced. In addition, the manufacturing cost can be reduced because it is not necessary to process a precision processing machine or a special processing machine for increasing the magnetic resistance in a part of the hollow tube.
Japanese Laid-Open Patent Publication No. 01-242848 (page 2, upper right column, lines 5 to 11 and FIG. 1) JP 2001-263521 A (paragraphs [0017] to [0018], FIGS. 1 and 2) JP 2001-148308 A (paragraphs [0013] to [0021], FIGS. 2 and 3)

しかしながら、最後に述べた特許文献3の技術では、非磁性焼結素材を焼結してなる中央部の非磁性部材の厚さの精度及び両側の各磁性部材との接合面の平面度が低くなるので、電磁弁の電磁駆動部に使用した場合などには、特性のばらつきが増大するという問題がある。また、射出成形工法の工程コストは高く成形サイクルタイムも長いため、製品コスト、設備投資費などの負担が大きくなるという問題もある。本発明はこのような各問題を解決することを目的とする。   However, in the technique of Patent Document 3 described at the end, the accuracy of the thickness of the nonmagnetic member at the center portion formed by sintering the nonmagnetic sintered material and the flatness of the joint surface with each magnetic member on both sides are low. Therefore, when used in an electromagnetic drive unit of a solenoid valve, there is a problem that variation in characteristics increases. In addition, since the process cost of the injection molding method is high and the molding cycle time is long, there is a problem that burdens such as product cost and capital investment cost are increased. The object of the present invention is to solve each of these problems.

このために、本発明による磁路構成焼結部材は、予め成形された板材よりなる非磁性部材と、磁性材料の粉末を素材として非磁性部材の一方の表面に焼結により結合された第1磁性焼結部材と、磁性材料の粉末を素材として非磁性部材の他方の表面に焼結により結合された第2磁性焼結部材よりなることを特徴とするものである。   For this purpose, the magnetic path constituting sintered member according to the present invention is a first non-magnetic member made of a pre-formed plate material and a first non-magnetic member bonded to one surface of the non-magnetic member using a powder of magnetic material as a raw material. It comprises a magnetic sintered member and a second magnetic sintered member bonded to the other surface of the non-magnetic member by sintering using a magnetic material powder.

請求項1に記載の磁路構成焼結部材において、板材よりなる非磁性部材には孔または溝を形成し、第1及び第2磁性焼結部材は、それぞれの粉末状の素材が孔または溝内に入って焼結されることにより非磁性部材に結合されていることが好ましい。   2. The magnetic path constituting sintered member according to claim 1, wherein a hole or a groove is formed in a nonmagnetic member made of a plate material, and each of the first and second magnetic sintered members is formed of a hole or groove in a powdery state. It is preferable to be bonded to the non-magnetic member by entering and sintering.

請求項1または請求項2に記載の磁路構成焼結部材において、非磁性部材は環状に成形された平板であり、第1及び第2磁性焼結部材は、非磁性部材の軸線方向となる各面にそれぞれ結合されていることが好ましい。   The magnetic path constituting sintered member according to claim 1 or 2, wherein the nonmagnetic member is a flat plate formed in an annular shape, and the first and second magnetic sintered members are in the axial direction of the nonmagnetic member. It is preferable that each surface is bonded.

請求項1〜請求項3に記載の磁路構成焼結部材を製造する方法は、請求項4に示すように、圧縮成形型に形成した成形孔内に第1磁性焼結部材となる所定量の粉末状の第1の強磁性素材を装入する第1工程と、成形治具を成形孔内に所定位置まで挿入して装入された粉末状の第1の強磁性素材の表面を板材よりなる非磁性部材の表面と同一形状に成形する第2工程と、成形された第1の強磁性素材の表面上に非磁性部材を載置する第3工程と、載置された非磁性部材よりも上となる成形孔内に第2磁性焼結部材となる所定量の粉末状の第2の強磁性素材を装入する第4工程と、装入された粉末状の第1及び第2の強磁性素材と非磁性部材を圧縮して未焼結の第1磁性部材と未焼結の第2磁性部材と非磁性部材よりなる未焼結の磁路構成部材を成形する第5工程と、未焼結の磁路構成部材を加熱して未焼結の第1及び第2の磁性部材を焼結するとともにこの各磁性部材と非磁性部材とを結合させる第6工程よりなることが好ましい。   The method for producing a magnetic path constituting sintered member according to any one of claims 1 to 3 includes a predetermined amount that becomes a first magnetic sintered member in a molding hole formed in a compression mold as shown in claim 4. The first step of charging the powdery first ferromagnetic material and the surface of the powdered first ferromagnetic material inserted by inserting the forming jig into the forming hole up to a predetermined position A second step of forming the same shape as the surface of the nonmagnetic member, a third step of placing the nonmagnetic member on the surface of the molded first ferromagnetic material, and the placed nonmagnetic member A fourth step of charging a predetermined amount of the powdery second ferromagnetic material to be the second magnetic sintered member into the molding hole which is higher than the above, and the charged powdery first and second powders A non-sintered magnetic path component comprising a non-sintered first magnetic member, a non-sintered second magnetic member, and a non-magnetic member by compressing the ferromagnetic material and non-magnetic member of And a fifth step of heating the unsintered magnetic path constituent member to sinter the unsintered first and second magnetic members and to combine the respective magnetic members with the non-magnetic member. It is preferable to consist of a process.

請求項4に記載の磁路構成焼結部材の製造方法において、圧縮成形型はその成形孔の断面形状を円形にするとともに同成形孔内に同軸的にアーバを設け、第1及び第4工程においては第1及び第2の強磁性素材は成形孔とアーバの間に装入することが好ましい。   5. The method of manufacturing a sintered member having a magnetic path according to claim 4, wherein the compression mold has a circular cross-sectional shape of the molding hole, and an arbor is provided coaxially in the molding hole. In this case, the first and second ferromagnetic materials are preferably inserted between the forming hole and the arbor.

上述のように、本発明の磁路構成焼結部材によれば、中央部の非磁性部材は予め成形された板材よりなるものであるのでその厚さの精度及び両側の各磁性部材との接合面の平面度は高いものとなる。従って磁路構成焼結部材の磁気特性は一定したものとなり、電磁弁の電磁駆動部などに使用した場合でも、電磁機器の作動特性はばらつきのない安定したものとなる。   As described above, according to the magnetic path constituting sintered member of the present invention, the nonmagnetic member at the center is made of a pre-formed plate, so that the accuracy of the thickness and the joining with the magnetic members on both sides are performed. The flatness of the surface is high. Therefore, the magnetic characteristics of the magnetic path constituting sintered member are constant, and even when used in an electromagnetic drive portion of a solenoid valve, the operating characteristics of the electromagnetic device are stable without variation.

板材よりなる非磁性部材には孔または溝を形成し、第1及び第2磁性焼結部材は、それぞれの粉末状の素材が孔または溝内に入って焼結されることにより非磁性部材に結合されるようにした請求項2の磁路構成焼結部材の発明によれば、非磁性部材と各磁性部材は、第1及び第2磁性焼結部材の粉末状の素材が孔または溝内に入って焼結されることによるアンカー効果により結合強度が高くなるので、破損のおそれが少ない磁路構成焼結部材が得られる。   Holes or grooves are formed in a nonmagnetic member made of a plate material, and the first and second magnetic sintered members are formed into nonmagnetic members by sintering each powdery material entering the holes or grooves. According to the invention of the magnetic path constituting sintered member of claim 2, wherein the non-magnetic member and each magnetic member are the first and second magnetic sintered members in which the powdery material is in a hole or a groove. Since the bond strength is increased by the anchor effect due to entering and being sintered, a magnetic path structure sintered member with less risk of breakage is obtained.

非磁性部材は環状に成形された平板であり、第1及び第2磁性焼結部材は、非磁性部材の軸線方向となる各面にそれぞれ結合されている請求項3の磁路構成焼結部材の発明によれば、磁路構成焼結部材は筒状の磁性部材の長手方向中間部に非磁性部材が設けられたものとなるので、中心孔によりプランジャを摺動自在に支持する電磁弁のステータコアに適した磁路構成焼結部材が得られる。   4. The magnetic path constituting sintered member according to claim 3, wherein the nonmagnetic member is a flat plate formed in an annular shape, and the first and second magnetic sintered members are respectively coupled to respective surfaces in the axial direction of the nonmagnetic member. According to the invention, since the magnetic path constituting sintered member is provided with the nonmagnetic member at the longitudinal intermediate portion of the cylindrical magnetic member, the electromagnetic valve for supporting the plunger slidably by the center hole is provided. A magnetic path constituting sintered member suitable for the stator core is obtained.

また、本発明の請求項4の磁路構成焼結部材の製造方法の発明によれば、第1工程で圧縮成形型に形成した成形孔内に装入した所定量の粉末状の第1の強磁性素材の表面を、第2工程で成形治具により非磁性部材の表面と同一形状に成形し、このように成形した第1の強磁性素材の表面上に第3工程で非磁性部材を載置したので、非磁性部材は正確な位置に傾くことなく設置される。そしてこの非磁性部材の上に第4工程で所定量の粉末状の第2の強磁性素材を装入した後に、第5工程でこれらを圧縮して未焼結の磁路構成部材を成形したので、未焼結の磁路構成部材内における非磁性部材の位置は正確で傾くことはない。従って第6工程でこの未焼結の磁路構成部材を焼結して得た磁路構成焼結部材も非磁性部材の位置は正確で傾くことはないので、その磁気特性は一定したものとなり、電磁弁の電磁駆動部などに使用した場合でも、電磁機器の作動特性はばらつきのない安定したものとなる。   According to the invention of the method for producing a magnetic path constituting sintered member according to claim 4 of the present invention, the first powdery powder of a predetermined amount charged in the molding hole formed in the compression molding die in the first step. The surface of the ferromagnetic material is formed into the same shape as the surface of the nonmagnetic member by the forming jig in the second step, and the nonmagnetic member is formed on the surface of the first ferromagnetic material thus formed in the third step. Since it is mounted, the nonmagnetic member is installed without tilting to an accurate position. And after charging a predetermined amount of the powdery second ferromagnetic material on the non-magnetic member in the fourth step, these are compressed in the fifth step to form an unsintered magnetic path component. Therefore, the position of the nonmagnetic member in the unsintered magnetic path constituent member is accurate and never tilted. Therefore, the magnetic path constituent sintered member obtained by sintering this unsintered magnetic path constituent member in the sixth step also has a constant magnetic property because the position of the nonmagnetic member is not inclined accurately. Even when used in an electromagnetic drive unit of a solenoid valve, the operating characteristics of the electromagnetic device are stable and without variations.

請求項4に記載の磁路構成焼結部材の製造方法において、圧縮成形型はその成形孔の断面形状を円形にするとともに同成形孔内に同軸的にアーバを設け、第1及び第4工程においては第1及び第2の強磁性素材は成形孔とアーバの間に装入するようにした請求項5の磁路構成焼結部材の製造方法の発明によれば、製造される磁路構成焼結部材は筒状となりその長手方向中間部に非磁性部材が設けられたものとなるので、中心孔によりプランジャを摺動自在に支持する電磁弁のステータコアに適した磁路構成焼結部材が得られる。   5. The method of manufacturing a sintered member having a magnetic path according to claim 4, wherein the compression mold has a circular cross-sectional shape of the molding hole, and an arbor is provided coaxially in the molding hole. According to the magnetic path configuration sintered member manufacturing method of claim 5, the first and second ferromagnetic materials are inserted between the molding hole and the arbor. Since the sintered member has a cylindrical shape and is provided with a non-magnetic member in the middle in the longitudinal direction, a magnetic path configuration sintered member suitable for a stator core of an electromagnetic valve that slidably supports a plunger through a center hole is provided. can get.

以下に、図1〜図3に示す実施形態により、本発明による磁路構成焼結部材及びその製造方法を実施するための最良の形態の説明をする。先ず図1によりこの発明による磁路構成焼結部材をステータコアに適用した電磁弁の説明をする。この電磁弁は、互いに同軸的に設けられた電磁駆動部10と弁部20よりなるものである。   In the following, the best mode for carrying out the magnetic path structure sintered member and the manufacturing method thereof according to the present invention will be described with reference to the embodiments shown in FIGS. First, an explanation will be given of an electromagnetic valve in which a magnetic path constituting sintered member according to the present invention is applied to a stator core with reference to FIG. This electromagnetic valve is composed of an electromagnetic drive unit 10 and a valve unit 20 provided coaxially with each other.

電磁駆動部10はステータ11とプランジャ19よりなるもので、ステータ11はステータコア(磁路構成焼結部材)15と電磁コイル13とカバー12により構成されている。ステータコア15は、オーステナイト系ステンレス鋼などの非磁性材料の平板を環状に打ち抜き成形した非磁性部材18と、純鉄またはフェライトなどの磁性材料の粉末を素材として非磁性部材18の軸線方向となる一方の表面に焼結により形成され拡散接合により結合された円筒状の第1磁性焼結部材16と、これと同様に純鉄またはフェライトなどの磁性材料の粉末を素材として非磁性部材18の軸線方向となる他方の表面に焼結により形成され拡散接合により結合された円筒状の第2磁性焼結部材17よりなるものである。   The electromagnetic drive unit 10 includes a stator 11 and a plunger 19, and the stator 11 includes a stator core (magnetic path constituting sintered member) 15, an electromagnetic coil 13, and a cover 12. The stator core 15 has a nonmagnetic member 18 formed by punching a flat plate of a nonmagnetic material such as austenitic stainless steel in an annular shape and a magnetic material powder such as pure iron or ferrite in the axial direction of the nonmagnetic member 18. The cylindrical first magnetic sintered member 16 formed by sintering on the surface of the first magnetic sintered member 16 and bonded by diffusion bonding, and similarly, the axial direction of the nonmagnetic member 18 using a powder of a magnetic material such as pure iron or ferrite as a raw material The cylindrical second magnetic sintered member 17 is formed on the other surface by sintering and bonded by diffusion bonding.

一体的に結合されて円筒状のステータコア15となる各部材16〜18の内径及び外径(次に述べるフランジ部15cを除く)は同一で、ステータコア15の内面には連続した中心孔15bが形成され、また第2磁性焼結部材17の軸線方向外側となる端部にはフランジ部15cが一体的に形成されている。なおこの実施形態では、板材よりなる非磁性部材18には板材を貫通する複数(例えば4個)の小孔18a(図3参照)が形成されており、非磁性部材18の各表面に焼結により形成された第1及び第2磁性焼結部材16,17は各小孔18a内にも入って互いに焼結結合され、これによるアンカー効果によって、非磁性部材18にさらに強固に結合される。   The members 16 to 18 that are integrally joined to form the cylindrical stator core 15 have the same inner diameter and outer diameter (except for the flange portion 15c described below), and a continuous center hole 15b is formed on the inner surface of the stator core 15. In addition, a flange portion 15c is integrally formed at an end portion of the second magnetic sintered member 17 which is on the outer side in the axial direction. In this embodiment, the nonmagnetic member 18 made of a plate material is formed with a plurality of (for example, four) small holes 18a (see FIG. 3) penetrating the plate material, and sintered on each surface of the nonmagnetic member 18. The first and second magnetic sintered members 16 and 17 formed by the above-described method also enter into each small hole 18a and are sinter-bonded to each other, and are further firmly bonded to the non-magnetic member 18 by an anchor effect.

ステータコア15の外周には円筒状の電磁コイル13が設けられ、このステータコア15と電磁コイル13は、それらの外側に設けられた有底円筒状で第1磁性焼結部材16と第2磁性焼結部材17の軸線方向外端部を磁気的に接続する磁性体のカバー12により覆われている。プランジャ19は全体が磁性体よりなるもので、ステータコア15の中心孔15b内に摺動自在に案内支持され、その一端は非磁性部材18付近に位置している。   A cylindrical electromagnetic coil 13 is provided on the outer periphery of the stator core 15, and the stator core 15 and the electromagnetic coil 13 have a bottomed cylindrical shape provided on the outside thereof, and the first magnetic sintered member 16 and the second magnetic sintered member. The outer end of the member 17 in the axial direction is covered with a magnetic cover 12 that magnetically connects the members 17. The plunger 19 is entirely made of a magnetic material, and is slidably guided and supported in the center hole 15 b of the stator core 15. One end of the plunger 19 is located near the nonmagnetic member 18.

弁部20は、弁スリーブ21と、この弁スリーブ21に同軸的に形成した弁孔21aに摺動自在に嵌合支持されたスプール22よりなるもので、弁スリーブ21はその一端のフランジ部がステータコア15のフランジ部15cに当接され、カバー12の開放側端部によりかしめられてステータコア15と同軸的に固定されている。スプール22は、弁スリーブ21の後端にねじ込まれた栓部材23との間に介装したスプリング24により電磁駆動部10側に向けて付勢され、その先端から突出する軸部がプランジャ19に当接されて、不作動状態ではプランジャ19をカバー12の内底面に当接させている。   The valve portion 20 includes a valve sleeve 21 and a spool 22 slidably fitted and supported in a valve hole 21a formed coaxially with the valve sleeve 21. The valve sleeve 21 has a flange portion at one end thereof. Abutted against the flange portion 15 c of the stator core 15 and caulked by the open end portion of the cover 12 and fixed coaxially with the stator core 15. The spool 22 is urged toward the electromagnetic drive unit 10 by a spring 24 interposed between the spool 22 and a plug member 23 screwed into the rear end of the valve sleeve 21, and a shaft portion protruding from the tip of the spool 22 is applied to the plunger 19. The plunger 19 is brought into contact with the inner bottom surface of the cover 12 in a non-operating state.

電磁コイル13に通電すれば、通電量に応じてステータコア15及びカバー12を磁路構成部材とするステータ11が磁化されて、ステータコア15の非磁性部材18付近に一端部が位置するプランジャ19を吸引し、プランジャ19とともにスプール22をスプリング24に抗して移動させて、弁スリーブ21に形成された複数のポートを開閉制御するようになっている。   When the electromagnetic coil 13 is energized, the stator 11 having the stator core 15 and the cover 12 as magnetic path constituent members is magnetized according to the energization amount, and the plunger 19 whose one end is located near the nonmagnetic member 18 of the stator core 15 is attracted. The spool 22 is moved against the spring 24 together with the plunger 19 to control opening and closing of a plurality of ports formed in the valve sleeve 21.

上述した磁路構成焼結部材の実施形態によれば、ステータコア15の中央部の非磁性部材18は予め成形された板材よりなるものであるので厚さの精度及び両側の各磁性部材との接合面の平面度は高いものとなる。従ってステータコア15の磁気特性は一定したものとなり、電磁弁の作動特性はばらつきの少ない安定したものとなる。   According to the embodiment of the magnetic path constituting sintered member described above, the non-magnetic member 18 at the center portion of the stator core 15 is made of a pre-formed plate material, so that the accuracy of thickness and the joining to the magnetic members on both sides are made. The flatness of the surface is high. Accordingly, the magnetic characteristics of the stator core 15 are constant, and the operating characteristics of the solenoid valve are stable with little variation.

また上述した実施形態では、板材よりなる非磁性部材18に板材を貫通する複数の小孔18aを形成し、第1及び第2磁性焼結部材16,17は、それぞれの粉末状の強磁性素材16R,17Rが小孔18a内に入って互いに焼結されることによるアンカー効果によっても、非磁性部材18に結合されるので、非磁性部材18と各磁性部材16,17の間の結合強度が高くなる。従って破損のおそれが少ないステータコア15が得られる。   In the above-described embodiment, a plurality of small holes 18a penetrating the plate material are formed in the nonmagnetic member 18 made of the plate material, and the first and second magnetic sintered members 16 and 17 are each made of powdery ferromagnetic material. Since the anchor effect caused by 16R and 17R entering into the small hole 18a and being sintered to each other is also coupled to the nonmagnetic member 18, the coupling strength between the nonmagnetic member 18 and each of the magnetic members 16 and 17 is increased. Get higher. Therefore, the stator core 15 with less risk of breakage is obtained.

また上述した実施形態では、電磁弁に使用する円筒状のステータコア15に本発明を適用した例につき説明したが、本発明はこれに限られるものではなく、任意の断面形状の筒状、中実の円柱状または任意の断面形状の真直もしくは湾曲した棒状の磁路構成焼結部材に適用することも可能である。   Further, in the above-described embodiment, the example in which the present invention is applied to the cylindrical stator core 15 used for the electromagnetic valve has been described. However, the present invention is not limited to this, and a cylindrical shape or solid shape having an arbitrary cross-sectional shape. It is also possible to apply to a cylindrical magnetic path constituting sintered member having a cylindrical shape or a straight or curved rod shape having an arbitrary cross-sectional shape.

次に図2及び図3により、上述した電磁弁のステータコア15として使用する磁路構成焼結部材の製造方法の説明をする。このステータコア15の製造に使用する製造型30は、図2に示すように、円筒状の成形孔31aが鉛直に形成された圧縮成形型31と、成形孔31a内の下部に摺動可能に嵌合支持されたブッシュ32と、成形孔31aと同軸的になるようにブッシュ32内に摺動可能に嵌合支持されたアーバ33を備えている。ブッシュ32の横断面の寸法形状は、前述した環状に打ち抜き成形した非磁性部材18の平面寸法形状と実質的に同一である。この製造型30を支持する支持台38にはアーバ33より大径で成形孔31aより小径の案内孔38aが鉛直に形成され、この案内孔38aに摺動可能に嵌合支持された支持ロッド39は、スプリング(図示省略)により上向きに付勢されて、その上端面が支持台38の上面と一致する位置で停止されている。製造型30は、そのアーバ33が案内孔38aと同軸的となるように支持台38上に支持されて使用される。   Next, with reference to FIG. 2 and FIG. 3, a method for manufacturing a magnetic path constituent sintered member used as the stator core 15 of the electromagnetic valve described above will be described. As shown in FIG. 2, a manufacturing die 30 used for manufacturing the stator core 15 is slidably fitted to a compression molding die 31 in which a cylindrical molding hole 31a is vertically formed and a lower portion in the molding hole 31a. A bush 32 supported together and an arbor 33 slidably fitted and supported in the bush 32 so as to be coaxial with the molding hole 31a are provided. The dimension and shape of the cross section of the bush 32 are substantially the same as the planar dimension and shape of the non-magnetic member 18 formed by punching and forming the ring. A guide hole 38a having a diameter larger than that of the arbor 33 and smaller than that of the molding hole 31a is vertically formed in the support base 38 that supports the manufacturing die 30, and a support rod 39 that is slidably fitted and supported in the guide hole 38a. Is biased upward by a spring (not shown) and stopped at a position where the upper end surface thereof coincides with the upper surface of the support base 38. The production mold 30 is used while being supported on a support base 38 so that the arbor 33 is coaxial with the guide hole 38a.

この実施形態の磁路構成焼結部材の製造方法は、第1工程〜第6工程の6つの工程よりなるものである。第2工程で使用する成形治具34は、成形孔31aとアーバ33の間に実質的に隙間なく挿入可能な筒状突部34aが下側となる先端に形成され、根本側にはフランジ部34bが形成されている。第5工程で使用する加圧ポンチ35は、成形孔31a内に実質的に隙間なく挿入可能な寸法形状を有している。   The manufacturing method of the magnetic path structure sintered member of this embodiment consists of six steps, the first step to the sixth step. The forming jig 34 used in the second step has a cylindrical protrusion 34a that can be inserted between the forming hole 31a and the arbor 33 without any substantial gap at the lower end, and a flange portion on the base side. 34b is formed. The pressurizing punch 35 used in the fifth step has a size and shape that can be inserted into the forming hole 31a substantially without a gap.

先ず第1工程では、図2(a) に示すように、前述のように支持台38上に支持された製造型30の成形孔31aとアーバ33の間に、第1磁性焼結部材16となる所定量の粉末状の第1の強磁性素材16R(材料は純鉄またはフェライトなど)を装入する。続く第2工程では、図2(b) に示すように、成形治具34の先端の筒状突部34aを成形孔31aとアーバ33の間に、成形治具34の筒状突部34aを、フランジ部34bが圧縮成形型31の上面に当接する所定位置まで挿入する。この筒状突部34aの先端面により第1工程で装入された粉末状の第1の強磁性素材16Rの表面は、前述した板材よりなる非磁性部材18の表面と同一形状に成形されるが、この状態における粉末状の第1の強磁性素材16Rの圧縮率はわずかである。   First, in the first step, as shown in FIG. 2 (a), the first magnetic sintered member 16 and the arbor 33 are formed between the forming hole 31a of the manufacturing die 30 supported on the support base 38 as described above. A predetermined amount of the powdered first ferromagnetic material 16R (the material is pure iron or ferrite) is charged. In the subsequent second step, as shown in FIG. 2 (b), the cylindrical protrusion 34a at the tip of the forming jig 34 is placed between the forming hole 31a and the arbor 33, and the cylindrical protrusion 34a of the forming jig 34 is inserted. The flange portion 34b is inserted to a predetermined position where it comes into contact with the upper surface of the compression mold 31. The surface of the powdery first ferromagnetic material 16R charged in the first step by the tip surface of the cylindrical protrusion 34a is formed in the same shape as the surface of the nonmagnetic member 18 made of the plate material described above. However, the compressibility of the powdery first ferromagnetic material 16R in this state is slight.

続く第3工程では、図2(c) に示すように、オーステナイト系ステンレス鋼などの非磁性材料の平板を環状に打ち抜き成形し、さらに前述のように板材を貫通する複数の小孔18aが打ち抜き形成された非磁性部材18を、第3工程で成形された第1の強磁性素材16Rの表面上に載置する。続く第4工程では、図2(d) に示すように、第1の強磁性素材16R上に載置された非磁性部材18よりも上となる製造型30の成形孔31aとアーバ33の間に、第2磁性焼結部材17となる所定量の粉末状の第2の強磁性素材17R(材料は第1の強磁性素材16Rと同じ)を装入する。   In the subsequent third step, as shown in FIG. 2 (c), a flat plate of a non-magnetic material such as austenitic stainless steel is punched into a ring shape, and a plurality of small holes 18a penetrating the plate material are punched as described above. The formed nonmagnetic member 18 is placed on the surface of the first ferromagnetic material 16R formed in the third step. In the subsequent fourth step, as shown in FIG. 2 (d), the gap between the forming hole 31a of the manufacturing die 30 and the arbor 33 above the nonmagnetic member 18 placed on the first ferromagnetic material 16R. Then, a predetermined amount of the powdery second ferromagnetic material 17R (the material is the same as the first ferromagnetic material 16R) to be the second magnetic sintered member 17 is charged.

そして続く第5工程では、図2(e) に示すように加圧ポンチ35を成形孔31a内に嵌合してアーバ33の上端に当接し、図2(f) に示すように、プレス装置により加圧ポンチ35を成形孔31a内に所定位置まで挿入して、装入された粉末状の第1及び第2の強磁性素材16R,17Rと非磁性部材18を圧縮して、互いに一体的に圧着された未焼結の第1磁性部材16Aと未焼結の第2磁性部材17Aと非磁性部材18よりなる未焼結の磁路構成部材15Aを成形する。この状態では、アーバ33及び支持ロッド39は加圧ポンチ35により押され、スプリングの付勢力に抗して下方に移動される。   In the subsequent fifth step, as shown in FIG. 2 (e), the press punch 35 is fitted into the forming hole 31a and abuts against the upper end of the arbor 33, and as shown in FIG. Thus, the pressure punch 35 is inserted into the molding hole 31a to a predetermined position, and the powdered first and second ferromagnetic materials 16R and 17R and the nonmagnetic member 18 are compressed and integrated with each other. An unsintered magnetic path constituting member 15A composed of the unsintered first magnetic member 16A, the unsintered second magnetic member 17A, and the nonmagnetic member 18 is molded. In this state, the arbor 33 and the support rod 39 are pushed by the pressure punch 35 and moved downward against the biasing force of the spring.

成形された未焼結の磁路構成部材15Aは、製造型30から取り出され、取り出された未焼結の磁路構成部材15Aは、平板を環状に成形した非磁性部材18の軸線方向両側に強磁性素材16R,17Rを圧縮した未焼結の磁性部材16A,17Aが連結された円筒状のものである。この未焼結の磁路構成部材15Aは、そのままでは非磁性部材18と各未焼結の磁性部材16A,17Aが圧着されただけで強度は弱いが、続く第6工程において加熱して焼結することにより、図3に示すように、寸法形状は実質的に変わることなく、未焼結であった第1及び第2の磁性部材16A,17Aは拡散接合により結合されて第1及び第2の磁性焼結部材16,17となり、また各磁性焼結部材16,17と非磁性部材18も拡散接合により結合されて、ステータコアとして使用可能な充分な強度を有する磁路構成焼結部材15となる。   The formed unsintered magnetic path constituting member 15A is taken out from the production mold 30, and the taken out unsintered magnetic path constituting member 15A is provided on both sides in the axial direction of the non-magnetic member 18 in which a flat plate is formed into an annular shape. A cylindrical member is formed by connecting unsintered magnetic members 16A and 17A obtained by compressing the ferromagnetic materials 16R and 17R. The unsintered magnetic path component member 15A is weak as it is as the non-magnetic member 18 and the unsintered magnetic members 16A and 17A are pressure-bonded, but is heated and sintered in the subsequent sixth step. Thus, as shown in FIG. 3, the first and second magnetic members 16A and 17A, which have not been sintered, are joined by diffusion bonding without substantially changing the dimensional shape. The magnetic sintered members 16, 17, and the magnetic sintered members 16, 17 and the nonmagnetic member 18 are also joined by diffusion bonding, and the magnetic path constituting sintered member 15 having sufficient strength that can be used as a stator core, Become.

この実施形態では板材よりなる非磁性部材18には板材を貫通する複数の小孔18aが形成されており、非磁性部材18の各表面に焼結により形成された第1及び第2磁性焼結部材16,17は各小孔18a内にも入って互いに焼結結合され、これによるアンカー効果によっても、非磁性部材18に結合されるので、非磁性部材18と各磁性部材の結合強度はさらに高くなる。ステータコア15の中心孔15bには、必要ならば仕上げ加工を行って精度を向上させる。   In this embodiment, the nonmagnetic member 18 made of a plate material is formed with a plurality of small holes 18a penetrating the plate material, and the first and second magnetic sintered bodies formed on each surface of the nonmagnetic member 18 by sintering. The members 16 and 17 also enter into the small holes 18a and are bonded to each other by sintering. Due to the anchor effect, the members 16 and 17 are also bonded to the nonmagnetic member 18, so that the bonding strength between the nonmagnetic member 18 and each magnetic member is further increased. Get higher. The center hole 15b of the stator core 15 is finished if necessary to improve accuracy.

なお、図1に示す本発明による磁路構成焼結部材を電磁弁のステータコア15に適用した実施形態ではステータコア15の一端にフランジ部15cが一体的に形成されている例を示したのに対し、図2及び図3に示す製造方法の実施形態ではそのようなフランジ部が形成されていない例を示した。しかしこのようなフランジを有する場合には、第1の強磁性部材を図2に示す製造型とは別の製造型を用いて予め圧縮成形しておき、しかる後そのフランジ付の強磁性部材を図2に示すような成形型に移し、以下図2(c)〜(f)と同様に製造することにより容易に形成することができる。   In the embodiment in which the magnetic path constituent sintered member according to the present invention shown in FIG. 1 is applied to the stator core 15 of the electromagnetic valve, an example in which the flange portion 15c is integrally formed at one end of the stator core 15 is shown. In the embodiment of the manufacturing method shown in FIGS. 2 and 3, an example in which such a flange portion is not formed is shown. However, in the case of having such a flange, the first ferromagnetic member is compression-molded in advance using a manufacturing mold different from the manufacturing mold shown in FIG. It can be easily formed by transferring to a mold as shown in FIG. 2 and manufacturing in the same manner as in FIGS. 2 (c) to 2 (f).

また図2及び図3に示す製造方法の実施形態では、非磁性部材18に形成した小孔18aによるアンカー効果により各磁性部材16,17との間の結合強度を向上させた例につき説明したが、このようなアンカー効果による結合強度の向上は、小孔18aの代わりに、図4に示すように非磁性部材18の外周縁(または内周縁)に複数(例えば4個)の小溝18bを形成することによっても得ることができる。   In the embodiment of the manufacturing method shown in FIGS. 2 and 3, the example in which the coupling strength between the magnetic members 16 and 17 is improved by the anchor effect by the small holes 18 a formed in the nonmagnetic member 18 has been described. In order to improve the coupling strength by such an anchor effect, a plurality of (for example, four) small grooves 18b are formed on the outer peripheral edge (or inner peripheral edge) of the nonmagnetic member 18 instead of the small holes 18a as shown in FIG. Can also be obtained.

上述した実施形態の磁路構成焼結部材の製造方法によれば、第1工程で成形孔31aとアーバ33の間に挿入した内に装入した所定量の粉末状の第1の強磁性素材16Rの表面を、第2工程で成形治具34により非磁性部材18の表面と同一形状に成形し、このように成形した第1の強磁性素材16Rの表面上に第3工程で非磁性部材18を載置したので、非磁性部材18は正確な位置に傾くことなく設置される。そしてこのように載置された非磁性部材18の上に第4工程で所定量の粉末状の第2の強磁性素材17Rを装入した後に、これら第1及び第2の強磁性素材16R,17Rと非磁性部材18を加圧ポンチ35により圧縮して未焼結の磁路構成部材15Aを成形したので、未焼結の磁路構成部材15A内における非磁性部材18の位置は正確で傾くことはない。従ってこの未焼結の磁路構成部材15Aを焼結して得た磁路構成焼結部材15も非磁性部材18の位置は正確で傾くことはないので、その磁気特性は一定したものとなり、電磁弁の電磁駆動部のステータコア15に使用した場合には、作動特性にばらつきのない安定した電磁弁が得られる。   According to the manufacturing method of the magnetic path structure sintered member of the above-described embodiment, a predetermined amount of the powdery first ferromagnetic material inserted in the first step inserted between the forming hole 31a and the arbor 33. The surface of 16R is formed in the same shape as the surface of the nonmagnetic member 18 by the forming jig 34 in the second step, and the nonmagnetic member is formed in the third step on the surface of the first ferromagnetic material 16R thus formed. Since 18 is mounted, the nonmagnetic member 18 is installed without being inclined to an accurate position. Then, after a predetermined amount of the powdery second ferromagnetic material 17R is loaded on the nonmagnetic member 18 placed in this way in the fourth step, the first and second ferromagnetic materials 16R, Since the unsintered magnetic path component 15A is formed by compressing the 17R and the nonmagnetic member 18 with the pressure punch 35, the position of the nonmagnetic member 18 in the unsintered magnetic path component 15A is accurate and inclined. There is nothing. Accordingly, the magnetic path constituting sintered member 15 obtained by sintering the unsintered magnetic path constituting member 15A also has a non-inclined position of the nonmagnetic member 18, so that its magnetic characteristics are constant. When used in the stator core 15 of the electromagnetic drive unit of the electromagnetic valve, a stable electromagnetic valve with no variation in operating characteristics can be obtained.

上述した実施形態の磁路構成焼結部材の製造方法では、第5工程ではアーバ33は加圧ポンチ35により押されて下方に移動されるようにしているが、成形治具34の筒状突部34aと同様の筒状突部を加圧ポンチ35に設け、この筒状突部を成形孔31aとアーバ33の間に挿入して粉末状の第1及び第2の強磁性素材16R,17Rと非磁性部材18を圧縮して、未焼結の磁路構成部材15Aを成形するようにしてもよい。このようにすれば第5工程においてアーバ33が下方に移動することはないので、ブッシュ32及びアーバ33は成形孔31a内に圧入固定してもよく、また支持台38に案内孔38a及び支持ロッド39を設ける必要もなくなる。   In the manufacturing method of the magnetic path structure sintered member of the above-described embodiment, in the fifth step, the arbor 33 is pushed by the pressure punch 35 and moved downward. A cylindrical projection similar to the portion 34a is provided on the pressure punch 35, and this cylindrical projection is inserted between the molding hole 31a and the arbor 33 to form powdered first and second ferromagnetic materials 16R and 17R. The nonmagnetic member 18 may be compressed to form an unsintered magnetic path component member 15A. In this way, since the arbor 33 does not move downward in the fifth step, the bush 32 and the arbor 33 may be press-fitted and fixed in the molding hole 31a, and the guide hole 38a and the support rod are formed in the support base 38. It is not necessary to provide 39.

また上述した実施形態の磁路構成焼結部材の製造方法は、円筒状の磁路構成焼結部材15の製造に本発明の製造方法を適用した例につき説明したが、本発明の製造方法はこれに限られるものではなく、任意の断面形状の筒状、中実の円柱状または任意の断面形状の棒状の磁路構成焼結部材の製造に適用することも可能である。そのような場合には、圧縮成形型31の成形孔31a及びアーバ33の断面形状を変え、あるいはブッシュ32及びアーバ33を除いて実施すればよい。   Moreover, although the manufacturing method of the magnetic path structure sintered member of embodiment mentioned above demonstrated per the example which applied the manufacturing method of this invention to manufacture of the cylindrical magnetic path structure sintered member 15, the manufacturing method of this invention is However, the present invention is not limited to this, and the present invention can also be applied to the manufacture of a cylindrical magnetic path constituting sintered member having an arbitrary cross-sectional shape, a solid cylindrical shape, or a rod-shaped magnetic path configuration having an arbitrary cross-sectional shape. In such a case, the cross-sectional shape of the molding hole 31a and the arbor 33 of the compression mold 31 may be changed, or the bush 32 and the arbor 33 may be removed.

本発明による磁路構成焼結部材を電磁弁に適用した場合の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment at the time of applying the magnetic path structure sintered member by this invention to a solenoid valve. 筒状の磁路構成部材の製造に本発明による磁路構成焼結部材の製造方法を適用した場合の一実施形態を示す縦断面図のである。It is a longitudinal cross-sectional view which shows one Embodiment at the time of applying the manufacturing method of the magnetic path structure sintered member by this invention to manufacture of a cylindrical magnetic path structure member. 図2に示す製造方法により製造された磁路構成焼結部材の斜視図である。It is a perspective view of the magnetic path structure sintered member manufactured by the manufacturing method shown in FIG. 本発明による磁路構成焼結部材の変形例の図3に相当する斜視図である。It is a perspective view equivalent to FIG. 3 of the modification of the magnetic path structure sintered member by this invention.

符号の説明Explanation of symbols

15…磁路構成焼結部材(ステータコア)、15A…未焼結の磁路構成部材、16…第1磁性焼結部材、16A…未焼結の第1磁性部材、16R…第1の強磁性素材、17…第2磁性焼結部材、17A…未焼結の第2磁性部材、17R…第2の強磁性素材、18…非磁性部材、18a…孔(小孔)、18b…溝(小溝)、31…圧縮成形型、31a…成形孔、33…アーバ、34…成形治具。 DESCRIPTION OF SYMBOLS 15 ... Magnetic path structure sintered member (stator core), 15A ... Unsintered magnetic path structure member, 16 ... 1st magnetic sintered member, 16A ... Unsintered 1st magnetic member, 16R ... 1st ferromagnetic Material: 17 ... second magnetic sintered member, 17A ... unsintered second magnetic member, 17R ... second ferromagnetic material, 18 ... non-magnetic member, 18a ... hole (small hole), 18b ... groove (small groove) ), 31... Compression mold, 31 a... Molding hole, 33. Arbor, 34.

Claims (5)

予め成形された板材よりなる非磁性部材と、磁性材料の粉末を素材として前記非磁性部材の一方の表面に焼結により結合された第1磁性焼結部材と、磁性材料の粉末を素材として前記非磁性部材の他方の表面に焼結により結合された第2磁性焼結部材よりなることを特徴とする磁路構成焼結部材。 A non-magnetic member made of a pre-formed plate, a first magnetic sintered member bonded to one surface of the non-magnetic member by sintering using a magnetic material powder, and the magnetic material powder as a raw material. A magnetic path constituting sintered member comprising a second magnetic sintered member bonded to the other surface of the nonmagnetic member by sintering. 請求項1に記載の磁路構成焼結部材において、前記板材よりなる非磁性部材には孔または溝を形成し、前記第1及び第2磁性焼結部材は、それぞれの粉末状の素材が前記孔または溝内に入って焼結されることにより前記非磁性部材に結合されていることを特徴とする磁路構成焼結部材。 2. The magnetic path constituting sintered member according to claim 1, wherein a hole or a groove is formed in the nonmagnetic member made of the plate material, and each of the first and second magnetic sintered members is made of the powdery material. A magnetic path constituent sintered member characterized in that it is joined to the non-magnetic member by entering into a hole or groove and being sintered. 請求項1または請求項2に記載の磁路構成焼結部材において、前記非磁性部材は環状に成形された平板であり、前記第1及び第2磁性焼結部材は、前記非磁性部材の軸線方向となる各面にそれぞれ結合されたことを特徴とする磁路構成焼結部材。 3. The magnetic path constituting sintered member according to claim 1, wherein the nonmagnetic member is a flat plate formed in an annular shape, and the first and second magnetic sintered members are axes of the nonmagnetic member. A magnetic-path-sintered sintered member characterized in that it is coupled to each surface to be a direction. 請求項1〜請求項3の何れか1項に記載の磁路構成焼結部材を製造する方法において、圧縮成形型に形成した成形孔内に前記第1磁性焼結部材となる所定量の粉末状の第1の強磁性素材を装入する第1工程と、成形治具を前記成形孔内に所定位置まで挿入して前記装入された粉末状の第1の強磁性素材の表面を前記板材よりなる非磁性部材の表面と同一形状に成形する第2工程と、成形された前記第1の強磁性素材の表面上に前記非磁性部材を載置する第3工程と、載置された前記非磁性部材よりも上となる前記成形孔内に前記第2磁性焼結部材となる所定量の粉末状の第2の強磁性素材を装入する第4工程と、前記装入された粉末状の第1及び第2の強磁性素材と前記非磁性部材を圧縮して未焼結の第1磁性部材と未焼結の第2磁性部材と非磁性部材よりなる未焼結の磁路構成部材を成形する第5工程と、前記未焼結の磁路構成部材を加熱して前記未焼結の第1及び第2の磁性部材を焼結するとともにこの各磁性部材と前記非磁性部材とを結合させる第6工程よりなることを特徴とする磁路構成焼結部材の製造方法。 The method for producing a sintered member having a magnetic path according to any one of claims 1 to 3, wherein a predetermined amount of powder that becomes the first magnetic sintered member is formed in a molding hole formed in a compression mold. A first step of charging the first ferromagnetic material, and a surface of the powdered first ferromagnetic material inserted by inserting a forming jig into the forming hole up to a predetermined position. A second step of forming the same shape as the surface of the nonmagnetic member made of a plate material; a third step of mounting the nonmagnetic member on the surface of the molded first ferromagnetic material; A fourth step of charging a predetermined amount of powdery second ferromagnetic material to be the second magnetic sintered member into the molding hole above the nonmagnetic member; and the charged powder And compressing the first and second ferromagnetic materials and the nonmagnetic member to form an unsintered first magnetic member and an unsintered second magnetic member, A fifth step of forming an unsintered magnetic path constituent member made of a magnetic member, and heating the unsintered magnetic path constituent member to sinter the unsintered first and second magnetic members. And a magnetic path constituting sintered member manufacturing method characterized by comprising a sixth step of coupling each magnetic member and the non-magnetic member. 請求項4に記載の磁路構成焼結部材の製造方法において、前記圧縮成形型はその成形孔の断面形状を円形にするとともに同成形孔内に同軸的にアーバを設け、前記第1及び第4工程においては前記第1及び第2の強磁性素材は前記成形孔とアーバの間に装入することを特徴とする磁路構成焼結部材の製造方法。 5. The method for manufacturing a sintered member having a magnetic path according to claim 4, wherein the compression mold has a circular cross-sectional shape of the molding hole, and an arbor is provided coaxially in the molding hole. In the fourth step, the first and second ferromagnetic materials are inserted between the molding hole and the arbor, and the method for manufacturing a magnetic path constituent sintered member.
JP2004129820A 2004-04-26 2004-04-26 Magnetic-path constituting sintered-member, and manufacturing method thereof Pending JP2005311248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004129820A JP2005311248A (en) 2004-04-26 2004-04-26 Magnetic-path constituting sintered-member, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004129820A JP2005311248A (en) 2004-04-26 2004-04-26 Magnetic-path constituting sintered-member, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005311248A true JP2005311248A (en) 2005-11-04

Family

ID=35439624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004129820A Pending JP2005311248A (en) 2004-04-26 2004-04-26 Magnetic-path constituting sintered-member, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005311248A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230965A (en) * 2011-04-25 2012-11-22 Hitachi Powdered Metals Co Ltd Powder magnetic core, and manufacturing method therefor
JP2013535827A (en) * 2010-07-27 2013-09-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Solenoid actuator
JP2014526017A (en) * 2011-06-29 2014-10-02 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Component for a magnet actuator and method for manufacturing the component
JP2017118124A (en) * 2017-01-26 2017-06-29 日立オートモティブシステムズ株式会社 solenoid
CN107900330A (en) * 2017-10-24 2018-04-13 嘉兴市鹏程磁钢有限公司 A kind of magnet steel blank sintering equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535827A (en) * 2010-07-27 2013-09-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Solenoid actuator
US9401236B2 (en) 2010-07-27 2016-07-26 Robert Bosch Gmbh Magnetic actuator
JP2012230965A (en) * 2011-04-25 2012-11-22 Hitachi Powdered Metals Co Ltd Powder magnetic core, and manufacturing method therefor
JP2014526017A (en) * 2011-06-29 2014-10-02 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Component for a magnet actuator and method for manufacturing the component
US9651163B2 (en) 2011-06-29 2017-05-16 Robert Bosch Gmbh Component for a magnetic actuator as well as a method for its manufacture
JP2017118124A (en) * 2017-01-26 2017-06-29 日立オートモティブシステムズ株式会社 solenoid
CN107900330A (en) * 2017-10-24 2018-04-13 嘉兴市鹏程磁钢有限公司 A kind of magnet steel blank sintering equipment
CN107900330B (en) * 2017-10-24 2019-10-11 嘉兴市鹏程磁钢有限公司 A kind of magnet steel blank sintering equipment

Similar Documents

Publication Publication Date Title
US5950932A (en) Fuel injection valve
KR102215161B1 (en) Method for producing a pole tube, pole tube for an electromagnet, and solenoid valve
CN108150695B (en) Electromagnetic actuating mechanism, magnetic flux disk body for an electromagnetic actuating mechanism, and method for producing an electromagnetic actuating mechanism
JP5097652B2 (en) Fuel injection valve and method of joining two parts
US20020057153A1 (en) Electromagnetic actuator
US20070261245A1 (en) Movable core with valve shaft of solenoid valve and method of manufacturing the same
JPS63111280A (en) Manufacture for solenoid operated fuel injection valve device
JPS5989876A (en) Manufacture of solenoid valve
JP6533803B2 (en) Solenoid valve and method of manufacturing the same
CN104025215B (en) Solenoid Valve, In Particular Quantity Control Valve For A High-Pressure Fuel Pump
JP2005311248A (en) Magnetic-path constituting sintered-member, and manufacturing method thereof
JP3975941B2 (en) Electromagnetic drive device
CN103206571A (en) Electromagnetic valve
CN116436185A (en) Tri-pole magnet array
JP4707443B2 (en) Electromagnetic solenoid, parts thereof and manufacturing method
JP2007142221A (en) Stator core and manufacturing method thereof
JP6370523B2 (en) Electromagnetic actuator and manufacturing method thereof
WO2009090794A1 (en) Fuel injection valve
JP2006114625A (en) Solenoid for electromagnetic valve and manufacturing method of core thereof as well as intermediate ring
US5401107A (en) Component of printing head for wire-impact type dot printer and molding method thereof
JP2001148308A (en) Solenoid
JP2023173945A (en) Solenoid actuator and method of manufacturing the same
JP2013238300A (en) Solenoid valve structure
JP4093467B2 (en) solenoid valve
JP2001090636A (en) Fuel injection valve

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Effective date: 20090915

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202