JP2005311246A - Chemical mechanical polishing apparatus and method - Google Patents

Chemical mechanical polishing apparatus and method Download PDF

Info

Publication number
JP2005311246A
JP2005311246A JP2004129757A JP2004129757A JP2005311246A JP 2005311246 A JP2005311246 A JP 2005311246A JP 2004129757 A JP2004129757 A JP 2004129757A JP 2004129757 A JP2004129757 A JP 2004129757A JP 2005311246 A JP2005311246 A JP 2005311246A
Authority
JP
Japan
Prior art keywords
wafer
polishing
temperature
polishing pad
platen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004129757A
Other languages
Japanese (ja)
Inventor
Akihiko Yamane
昭彦 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2004129757A priority Critical patent/JP2005311246A/en
Publication of JP2005311246A publication Critical patent/JP2005311246A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a CMP apparatus and a method, whereby the temperature distribution of the surface of a wafer present in the process of polishing can be measured. <P>SOLUTION: In the CMP apparatus, for polishing a wafer 7, which has a polishing pad 35 provided on its surface, a rotating platen 31, and a rotational wafer holding mechanism 8 for holding the wafer 7 by pressing the wafer 7 to the polishing pad, the platen 31 and the polishing pad 35 are transparent; and there is provided a thermography device 41 for measuring the temperature distribution of the whole of the wafer 7 in the process of polishing, through the platen 31 and the polishing pad 35. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体製造プロセスで、ウエハ上の先に形成された層の表面を化学機械研磨(Chemical Mechanical Polishing: CMP)する化学機械研磨(CMP)装置及び化学機械研磨(CMP)方法に関する。   The present invention relates to a chemical mechanical polishing (CMP) apparatus and a chemical mechanical polishing (CMP) method for performing chemical mechanical polishing (CMP) on a surface of a previously formed layer on a wafer in a semiconductor manufacturing process.

近年、半導体製造プロセスにおいては、CMP装置を使用してプロセスの途中のウエハの表面を化学機械研磨(CMP)することが行われており、特許文献1などに説明されている。まず、従来のCMP装置の概略構成を簡単に説明する。   In recent years, in a semiconductor manufacturing process, chemical mechanical polishing (CMP) is performed on the surface of a wafer in the middle of a process using a CMP apparatus, which is described in Patent Document 1 and the like. First, a schematic configuration of a conventional CMP apparatus will be briefly described.

図1は、従来のCMP装置の概略構成を示す図である。図示のように、研磨パッド5を貼り付けたプラテン1を回転させ、研磨パッド5上にスラリ(研磨粒子を含んだ研磨液)6を供給しながら、ウエハ保持機構8に保持されたウエハ7を回転しながら研磨パッド5に押し付けて、ウエハの表面に形成された絶縁膜や金属膜の層を研磨する。化学機械研磨は、ウエハの表面を機械的に削ると同時に研磨液がウエハの表面と化学反応して研磨を行う。そのため、研磨に伴ってウエハ表面が機械的にあるいは化学反応を伴って発熱する。この発熱によるウエハ表面の温度上昇によって、研磨の進行が影響される場合がある。   FIG. 1 is a diagram showing a schematic configuration of a conventional CMP apparatus. As shown in the figure, the platen 1 with the polishing pad 5 attached thereto is rotated to supply the slurry (polishing liquid containing polishing particles) 6 onto the polishing pad 5 while the wafer 7 held by the wafer holding mechanism 8 is held. By pressing against the polishing pad 5 while rotating, the insulating film or metal film layer formed on the surface of the wafer is polished. In the chemical mechanical polishing, the surface of the wafer is mechanically scraped, and at the same time, the polishing liquid chemically reacts with the surface of the wafer to perform polishing. Therefore, the wafer surface generates heat mechanically or with chemical reaction as it is polished. The progress of polishing may be affected by the temperature rise of the wafer surface due to this heat generation.

CMP装置で制御する必要のある重要点は、研磨量を正確に検出して研磨を停止することである。これを終点検出と呼んでいる。終点検出の方法は、研磨中のウエハの表面に光ビームを照射して、反射光の分光特性及び反射光の干渉などを測定することにより、ウエハ表面の研磨対象膜の膜厚変化を検出して判定する方法や、プラテン及びウエハ保持機構の回転負荷の変化を検出する方法など各種提案されている。いずれの終点検出方法を使用する場合でも、上記のように、ウエハ表面の温度が研磨の進行に影響するため、研磨中の温度を検出して管理する必要がある。   The important point that needs to be controlled by the CMP apparatus is to accurately detect the polishing amount and stop polishing. This is called end point detection. The end point detection method detects the change in film thickness of the film to be polished on the wafer surface by irradiating the surface of the wafer being polished with a light beam and measuring the spectral characteristics of the reflected light and interference of the reflected light. Various methods have been proposed, such as a method for determining the rotation load of the platen and the wafer holding mechanism. Regardless of which end point detection method is used, as described above, the temperature of the wafer surface affects the progress of polishing, so it is necessary to detect and manage the temperature during polishing.

研磨の進行具合は、ウエハを研磨パッドに押し付ける圧力などを変化させればそれに応じて変化し、同様にウエハ表面の温度が変化すれば変化する。どのように変化するかは、研磨対象膜の材料、スラリなど各種の要因によることになるが、一般的には、圧力を高めれば研磨の進行が早くなり、温度が高いと研磨の進行が早くなる。ここでは、温度が高いと研磨の進行が早くなるものとして説明するが、これに限定されるものではない。   The progress of the polishing changes according to changes in the pressure or the like that presses the wafer against the polishing pad, and similarly changes as the temperature of the wafer surface changes. How it changes depends on various factors such as the material of the film to be polished and the slurry, but in general, the higher the pressure, the faster the polishing progress, and the higher the temperature, the faster the polishing progress. Become. Here, it is assumed that the polishing progresses faster when the temperature is higher, but the present invention is not limited to this.

研磨の進行を速くすれば、終点検出の少しの誤差でもその間に研磨される量が大きいため、重大な問題になる。一方、研磨の進行を遅くすれば、終点検出に誤差があっても、その間に研磨される量が少ないため、大きな問題にはならない。しかし、これではCMP装置のスループットが低いという問題がある。そこで、現状では、終点検出の精度とスループットを勘案してCMPプロセスの各種の条件を設定している。   If the progress of the polishing is made faster, even a small error in end point detection will cause a large amount of polishing during that time, which will be a serious problem. On the other hand, if the progress of the polishing is slowed, even if there is an error in the end point detection, the amount of polishing in the meantime is small, so there is no big problem. However, this has a problem that the throughput of the CMP apparatus is low. Therefore, at present, various conditions of the CMP process are set in consideration of the accuracy and throughput of end point detection.

そこで、研磨中のウエハの温度又はそれに対応する温度を測定して管理することにより、終点検出の精度を向上することが行われている。例えば、ウエハを保持するウエハ保持機構の各部にサーミスタを設けて、研磨中のウエハの温度を予測して管理することが提案されている。しかし、この方法は、ウエハ自体の温度を測定するものではないので、ウエハの温度を十分な精度で検出することができないという問題がある。   Therefore, the accuracy of the end point detection is improved by measuring and managing the temperature of the wafer being polished or the temperature corresponding thereto. For example, it has been proposed to provide a thermistor in each part of a wafer holding mechanism for holding a wafer to predict and manage the temperature of the wafer being polished. However, since this method does not measure the temperature of the wafer itself, there is a problem that the temperature of the wafer cannot be detected with sufficient accuracy.

特許文献1は、研磨中のウエハの裏面の温度を測定する構成を記載している。図2は、特許文献1に記載されたCMP装置の概略構成を示す図である。図示のように、研磨パッド5を貼り付けたプラテン1を回転させ、研磨パッド5の上にウエハ7を保持したウエハ保持板11を配置して押し付けながら回転する。ウエハ保持板11は、固定の筐体13に設けられた回転駆動機構により回転される。ウエハ保持板11の中心部には穴が設けられており、穴の中に透明盤が設けられている。筐体13の中心部も中空になっており、筐体13の上部に設けた赤外線放射温度計14により研磨中のウエハ7の裏面の温度が測定できる。ウエハ7は薄い板なので、裏面と表面はほぼ同じ温度であると考えられ、研磨中のウエハの表面温度に対応する温度が測定できる。従って、特許文献1のCMP装置では、研磨中のウエハの温度を高精度に測定できるので、終点検出の精度を向上できる。これに応じて、研磨速度を増加させるなど、CMPプロセスのスループットを向上するための各種の方策に応用できる。   Patent Document 1 describes a configuration for measuring the temperature of the back surface of a wafer being polished. FIG. 2 is a diagram showing a schematic configuration of the CMP apparatus described in Patent Document 1. In FIG. As shown in the figure, the platen 1 with the polishing pad 5 attached is rotated, and the wafer holding plate 11 holding the wafer 7 is placed on the polishing pad 5 and rotated while being pressed. Wafer holding plate 11 is rotated by a rotation drive mechanism provided in fixed housing 13. A hole is provided in the center of the wafer holding plate 11, and a transparent plate is provided in the hole. The central portion of the housing 13 is also hollow, and the temperature of the back surface of the wafer 7 being polished can be measured by an infrared radiation thermometer 14 provided on the top of the housing 13. Since the wafer 7 is a thin plate, the back surface and the front surface are considered to have substantially the same temperature, and a temperature corresponding to the surface temperature of the wafer being polished can be measured. Therefore, in the CMP apparatus of Patent Document 1, the temperature of the wafer being polished can be measured with high accuracy, so that the accuracy of end point detection can be improved. Accordingly, the present invention can be applied to various measures for improving the throughput of the CMP process, such as increasing the polishing rate.

特開2002−301660号公報JP 2002-301660 A 特開平7−52032号公報JP-A-7-52032

ウエハには複数層の膜が複数の半導体回路パターンに従って形成されており、ウエハ面の研磨による温度分布は複雑である。また、研磨パッドの高低差などのために部分的な押し付け圧力の差が存在し、更にウエハの押し付け圧分布はパターンにも依存する上スラリの流れ込み量の分布にも左右されるので、研磨中のウエハは全面が同じ温度ではなく、複雑な温度分布をしている。   A plurality of layers of films are formed on a wafer according to a plurality of semiconductor circuit patterns, and the temperature distribution due to polishing of the wafer surface is complicated. In addition, there is a partial pressing pressure difference due to the height difference of the polishing pad, and the wafer pressing pressure distribution also depends on the distribution of the upper slurry flow rate, which depends on the pattern. The entire surface of the wafer is not at the same temperature but has a complicated temperature distribution.

特許文献1に記載されたCMP装置では、研磨中のウエハの中心部の温度を測定しているだけで、ウエハ全面の温度分布を測定することはできない。そのため、ウエハの中心部の温度のみを測定して各種の管理を行っても十分とはいえず、終点検出の精度も十分には向上できないという問題がある。   The CMP apparatus described in Patent Document 1 cannot measure the temperature distribution on the entire surface of the wafer only by measuring the temperature at the center of the wafer being polished. For this reason, it is not sufficient to perform various controls by measuring only the temperature at the center of the wafer, and there is a problem that the accuracy of end point detection cannot be improved sufficiently.

本発明は、CMPプロセスで研磨中のウエハ全面の温度分布を高精度に測定できるCMP装置及び方法の実現を目的とする。   An object of the present invention is to realize a CMP apparatus and method capable of measuring the temperature distribution on the entire surface of a wafer being polished in the CMP process with high accuracy.

上記目的を実現するため、本発明の化学機械研磨装置及び方法は、透明なプラテンと研磨パッドを通して研磨中のウエハ全体の温度分布をサーモグラフィー装置で測定することを特徴とする。   In order to achieve the above object, the chemical mechanical polishing apparatus and method of the present invention are characterized in that the temperature distribution of the entire wafer being polished is measured with a thermography apparatus through a transparent platen and polishing pad.

すなわち、本発明の化学機械研磨装置は、表面に研磨パッドを有し、回転するプラテンと、ウエハを前記研磨パッドに押し付けるように保持しながら回転するウエハ保持機構とを備え、前記ウエハを研磨する化学機械研磨装置において、前記プラテンと前記研磨パッドは透明であり、前記プラテンと前記研磨パッドとを通して研磨中の前記ウエハ全体の温度分布を測定するサーモグラフィ装置を備えることを特徴とする。   That is, the chemical mechanical polishing apparatus of the present invention has a polishing pad on the surface, and includes a rotating platen, and a wafer holding mechanism that rotates while holding the wafer against the polishing pad, and polishes the wafer. In the chemical mechanical polishing apparatus, the platen and the polishing pad are transparent, and a thermography apparatus is provided for measuring a temperature distribution of the entire wafer being polished through the platen and the polishing pad.

また、本発明の化学機械研磨方法は、回転するプラテンの表面に設けられた研磨パッドに、ウエハ保持機構に保持されたウエハを回転しながら前記研磨パッドに押し付けて研磨する化学機械研磨方法において、前記プラテンと前記研磨パッドは透明であり、前記プラテンと前記研磨パッドとを通して研磨中の前記ウエハ全体の温度分布を測定することを特徴とする。   The chemical mechanical polishing method of the present invention is a chemical mechanical polishing method in which a polishing pad provided on the surface of a rotating platen is pressed against the polishing pad while rotating the wafer held by a wafer holding mechanism and polished. The platen and the polishing pad are transparent, and the temperature distribution of the entire wafer during polishing is measured through the platen and the polishing pad.

透明なプラテンは、例えば石英ガラスで作られる。また、透明な研磨パッドは、例えばポリウレタンで作られる。   The transparent platen is made of, for example, quartz glass. The transparent polishing pad is made of polyurethane, for example.

本発明により、研磨中のウエハ全体の温度分布を検出できるので、各種の制御の精度を向上させたり、品質管理の精度を向上させることができる。   According to the present invention, since the temperature distribution of the entire wafer being polished can be detected, the accuracy of various controls can be improved and the accuracy of quality control can be improved.

例えば、前述のように、ウエハ表面の温度により研磨の進行具合が異なる。そのため、ウエハの温度が部分的に異なるとそれぞれの部分での研磨の進行具合が異なることになる。特許文献2は、研磨中のウエハの表面のある部分の膜厚を測定する方法を記載している。例えば、膜厚を測定している場所が他の部分より温度が高いと、その部分の膜厚に基づいて研磨を終了すると、他の部分は研磨が不充分である。逆に、膜厚を測定している場所が他の部分より温度が低いと、その部分の膜厚に基づいて研磨を終了すると、他の部分は研磨のし過ぎとなる。本発明によりウエハの温度分布を測定して、膜厚を測定している場所が他の部分に比べてどのような温度であるかを加味して研磨の終了を判定すれば、研磨量をより高精度に制御できる。   For example, as described above, the progress of polishing differs depending on the temperature of the wafer surface. For this reason, if the temperature of the wafer is partially different, the progress of polishing in each portion will be different. Patent Document 2 describes a method of measuring the film thickness of a portion of the surface of a wafer being polished. For example, if the place where the film thickness is measured is higher in temperature than the other part, when the polishing is finished based on the film thickness of that part, the other part is insufficiently polished. On the contrary, if the temperature of the place where the film thickness is measured is lower than that of the other part, when the polishing is finished based on the film thickness of the part, the other part is overpolished. By measuring the temperature distribution of the wafer according to the present invention and determining the end of polishing in consideration of the temperature at which the film thickness is measured compared to other parts, the polishing amount can be further increased. It can be controlled with high accuracy.

また、ウエハは全面が同じように研磨される必要があり、部分的な研磨量の差には許容範囲があり、この許容範囲を越えるとウエハの一部のダイ(チップ)は不良になる。上記のように、ウエハの温度が部分的に異なるとそれぞれの部分での研磨量に差が生じるが、この差が許容範囲内に入ることが要求される。そこで、本発明により研磨中のウエハの温度分布を測定し、あらかじめ温度分布と実際の研磨量の差の関係を調べて、研磨量の許容範囲に対応する限界温度差を記憶しておく。そして、本発明により研磨中のウエハの温度分布を測定し、ウエハ内の温度差が限界温度差を超えた場合には、研磨速度を遅くするなどの制御を行うことが可能になる。   Further, the entire surface of the wafer needs to be polished in the same manner, and there is an allowable range for the difference in the partial polishing amount. When this allowable range is exceeded, some dies (chips) of the wafer become defective. As described above, when the temperature of the wafer is partially different, a difference occurs in the polishing amount in each part, but this difference is required to fall within an allowable range. Therefore, according to the present invention, the temperature distribution of the wafer being polished is measured, the relationship between the temperature distribution and the difference between the actual polishing amounts is examined in advance, and the critical temperature difference corresponding to the allowable range of the polishing amount is stored. According to the present invention, the temperature distribution of the wafer being polished is measured, and when the temperature difference within the wafer exceeds the limit temperature difference, it is possible to perform control such as slowing the polishing rate.

図3は、本発明の実施例のCMP装置の概略構成を示す図である。実施例のCMP装置では、全面が透明なポリウレタン製研磨パッド35を貼り付けた全体が透明な石英ガラス製プラテン31を回転し、研磨パッド35上にスラリを供給しながら、その上にウエハ保持機構8に保持したウエハ7を回転させながら押し付ける。なお、プラテン31は、すべて透明である必要はなく、例えば、梁(リブ)で構成された金属製の構造物に石英ガラスや透明樹脂などの円板状の透明板を載置した構造でもよい。この場合、撮影範囲に金属の梁の部分が入るとその部分は撮影できないが、前後の温度分布画像を合成すれば特に問題は生じない。   FIG. 3 is a diagram showing a schematic configuration of the CMP apparatus according to the embodiment of the present invention. In the CMP apparatus of the embodiment, the entire surface of the polishing pad 35 made of polyurethane is pasted, and the entire quartz glass platen 31 is rotated to supply a slurry onto the polishing pad 35, while holding a wafer holding mechanism thereon. The wafer 7 held at 8 is pressed while being rotated. The platen 31 does not have to be transparent at all. For example, the platen 31 may have a structure in which a disk-shaped transparent plate such as quartz glass or transparent resin is placed on a metal structure composed of beams (ribs). . In this case, if a metal beam portion enters the imaging range, that portion cannot be imaged, but there is no particular problem if the preceding and following temperature distribution images are combined.

プラテン31の下側には、サーモグラフィ装置41が設けられ、研磨中のウエハ7全体の温度分布をリアルタイムで測定する。   A thermography device 41 is provided below the platen 31 and measures the temperature distribution of the entire wafer 7 being polished in real time.

ウエハ保持機構8は、ウエハ7を研磨パッド上に搬送する時には真空吸着によりウエハ7をチャックして搬送するが、研磨中は真空吸着を解除して、ウエハ7の直径より若干大きな内径を有するガイドリングにより、研磨中にウエハ7が保持機構8より飛び出るのを防止している。なお、研磨中もウエハ保持機構8がウエハ7を真空吸着によりチャックした状態で、回転させるようにしてもよい。研磨中、保持機構8はウエハ7を研磨パッド35に所定の圧力で押し付ける。   The wafer holding mechanism 8 chucks and transports the wafer 7 by vacuum suction when transporting the wafer 7 onto the polishing pad, but releases the vacuum suction during polishing and has a guide having an inner diameter slightly larger than the diameter of the wafer 7. The ring prevents the wafer 7 from jumping out of the holding mechanism 8 during polishing. During the polishing, the wafer holding mechanism 8 may be rotated while chucking the wafer 7 by vacuum suction. During polishing, the holding mechanism 8 presses the wafer 7 against the polishing pad 35 with a predetermined pressure.

なお、スラリにより研磨パッド35の目詰まりが生じるので、図示していないドレッサにより、研磨パッド35の表面は定期的にドレッシングされる。   Since the slurry causes clogging of the polishing pad 35, the surface of the polishing pad 35 is periodically dressed by a dresser (not shown).

サーモグラフィ装置41からの温度画像信号は画像処理装置42に送られ、画像処理装置42は次のような処理を行う。上記のように、ウエハ7は回転する。そのため、ウエハの温度分布の画像はウエハと共に回転することになり、ウエハの温度分布を正確に測定するには、ウエハの回転を検出して、温度分布画像の回転位置に応じた変化を追跡する必要がある。   The temperature image signal from the thermography device 41 is sent to the image processing device 42, and the image processing device 42 performs the following processing. As described above, the wafer 7 rotates. Therefore, the image of the temperature distribution of the wafer rotates with the wafer, and in order to accurately measure the temperature distribution of the wafer, the rotation of the wafer is detected and the change according to the rotation position of the temperature distribution image is tracked. There is a need.

ウエハ7には、ウエハの結晶方向を示すために、図4の(A)に示すように、オリエンテーションフラット(OF)21、又は図34(B)に示すように、ノッチ22が設けられている。OF21及びノッチ22の位置を検出すれば、ウエハ7の回転位置が検出できる。そこで、画像処理装置42は、OF21及びノッチ22の位置を検出して、温度分布画像を回転位置を考慮して合成する。   The wafer 7 is provided with an orientation flat (OF) 21 as shown in FIG. 4A or a notch 22 as shown in FIG. 34B in order to show the crystal direction of the wafer. . If the positions of the OF 21 and the notch 22 are detected, the rotational position of the wafer 7 can be detected. Therefore, the image processing device 42 detects the positions of the OF 21 and the notch 22 and synthesizes the temperature distribution image in consideration of the rotational position.

画像処理装置42は、ウエハ7及びプラテン31と研磨パッド35に関する温度分布情報を制御装置43に送る。制御装置43は、送られた温度分布情報に基づいて各種の制御を行う。この温度分布情報は各種の応用が可能である。   The image processing device 42 sends temperature distribution information regarding the wafer 7, the platen 31, and the polishing pad 35 to the control device 43. The control device 43 performs various controls based on the sent temperature distribution information. This temperature distribution information can be applied in various ways.

例えば、ウエハの温度により研磨の進行具合が異なる。そのため、ウエハの温度が部分的に異なるとそれぞれの部分での研磨の進行具合が異なることになる。前述のように、CMP装置では終点検出を正確に行うことが非常に重要であり、例えば、特許文献2に記載されたような、研磨中のウエハの表面のある部分の膜厚を測定する方法を使用して終点検出を行うとした場合、膜厚を測定しているウエハの表面の部分が他の部分より温度が高いと、このようにして測定した膜厚の情報に基づいて研磨を終了すると、他の部分は研磨が不足していることになる。逆に、膜厚を測定している部分が他の部分より温度が低いと、他の部分は研磨のし過ぎとなる。   For example, the progress of polishing differs depending on the temperature of the wafer. For this reason, if the temperature of the wafer is partially different, the progress of polishing in each portion will be different. As described above, it is very important to accurately detect the end point in the CMP apparatus. For example, a method of measuring the film thickness of a portion of the surface of the wafer being polished as described in Patent Document 2 When the end point detection is performed by using, if the temperature of the surface part of the wafer whose thickness is being measured is higher than the other part, polishing is completed based on the information on the film thickness thus measured. Then, the other portions are insufficiently polished. On the contrary, if the temperature of the part where the film thickness is measured is lower than that of the other part, the other part is overpolished.

本実施例のCMP装置では、ウエハ7の温度分布が測定できるので、膜厚を測定している部分が他の部分に比べて温度が高い場合には、その分研磨の終了を遅らせ、膜厚を測定している部分が他の部分に比べて温度が低い場合には、その分研磨の終了を早くするという制御を行う。   In the CMP apparatus of the present embodiment, the temperature distribution of the wafer 7 can be measured. Therefore, when the temperature of the portion where the film thickness is measured is higher than that of the other portions, the end of the polishing is delayed accordingly, and the film thickness When the temperature of the portion measuring the temperature is lower than that of the other portions, control is performed so that the end of polishing is accelerated accordingly.

また、あらかじめウエハの温度分布と実際の研磨量の差の関係を調べて、研磨量の許容範囲に対応する1枚のウエハ内での限界温度差を決定して記憶しておく。そして、研磨中のウエハの温度分布を測定し、ウエハ内の温度差が限界温度差を超えた場合には、ウエハ7を研磨パッド35に押し付ける圧力を低下させて研磨速度を遅くするように制御する。一般に、研磨速度を遅くすると、1枚のウエハ内の温度差は減少するので、これによりウエハ内の温度差は縮小する。   Further, the relationship between the temperature distribution of the wafer and the difference between the actual polishing amounts is examined in advance, and the critical temperature difference in one wafer corresponding to the allowable range of the polishing amount is determined and stored. Then, the temperature distribution of the wafer being polished is measured, and when the temperature difference within the wafer exceeds the limit temperature difference, the pressure for pressing the wafer 7 against the polishing pad 35 is reduced to control the polishing rate to be slow. To do. In general, when the polishing rate is slowed, the temperature difference in one wafer decreases, thereby reducing the temperature difference in the wafer.

また、研磨圧を部分的に変えられるCMP装置の場合には、測定したウエハの温度分布に応じて一様な研磨が行われるように対応する部分の研磨圧を変化させることも可能である。   Further, in the case of a CMP apparatus in which the polishing pressure can be partially changed, it is possible to change the corresponding portion of the polishing pressure so that uniform polishing is performed according to the measured temperature distribution of the wafer.

従来は、ウエハ内の温度差を測定することができなかったので、上記のようなウエハ内の研磨量の差を生じないように研磨速度を設定していた。言い換えれば、研磨速度を十分に低く設定して1枚のウエハ内の温度差を小さくしてウエハ内の研磨量の差を生じないようにしていた。そのため、十分なスループットが得られていなかった。これに対して、本実施例であれば、ウエハ内の温度差が限界温度差を超える直前まで研磨速度を増加させることが可能であるので、スループットが向上する。   Conventionally, since the temperature difference in the wafer could not be measured, the polishing rate was set so as not to cause the difference in the polishing amount in the wafer as described above. In other words, the polishing rate is set sufficiently low to reduce the temperature difference in one wafer so as not to cause a difference in the polishing amount in the wafer. Therefore, sufficient throughput has not been obtained. On the other hand, in this embodiment, the polishing rate can be increased until immediately before the temperature difference in the wafer exceeds the limit temperature difference, so that the throughput is improved.

以上、本発明の実施例を説明したが、サーモグラフィ装置による温度検出精度を向上するには、較正が重要である。ウエハを研磨状態にセットした研磨開始前の状態では、ウエハ表面の温度は一様であると考えられるので、サーモグラフィ装置が検出したこの状態のウエハ表面の温度分布を基準にして、研磨中に検出した温度分布変化を較正すれば、検出精度を向上できる。   As mentioned above, although the Example of this invention was described, calibration is important in order to improve the temperature detection accuracy by a thermography apparatus. Since the wafer surface temperature is considered to be uniform in the state before starting polishing when the wafer is set in the polishing state, it is detected during polishing based on the temperature distribution of the wafer surface in this state detected by the thermography device. If the temperature distribution change is calibrated, the detection accuracy can be improved.

本発明によれば、研磨中のウエハの表面の温度分布を測定できるので、各種の制御の精度を向上させたり、品質管理の制度を向上させることができる。これにより、CMP装置及び方法のスループットや歩留まりが向上でき、ひいては半導体製造プロセスにおけるコスト低減が図れる。   According to the present invention, since the temperature distribution on the surface of the wafer being polished can be measured, the accuracy of various controls can be improved and the quality control system can be improved. As a result, the throughput and yield of the CMP apparatus and method can be improved, and as a result, costs in the semiconductor manufacturing process can be reduced.

CMP装置の基本構成を示す図である。It is a figure which shows the basic composition of CMP apparatus. 研磨中のウエハの温度を測定可能にした従来例のCMP装置の構成を示す図である。It is a figure which shows the structure of the CMP apparatus of the prior art example which enabled the measurement of the temperature of the wafer in grinding | polishing. 本発明の実施例のCMP装置の概略構成を示す図である。It is a figure which shows schematic structure of the CMP apparatus of the Example of this invention. ウエハのオリエンテーションフラット及びノッチを示す図である。It is a figure which shows the orientation flat and notch of a wafer.

符号の説明Explanation of symbols

1、31…プラテン
5、35…研磨パッド
7…ウエハ
8…ウエハ保持機構
41…サーモグラフィ装置
42…画像処理装置
43…制御装置
DESCRIPTION OF SYMBOLS 1, 31 ... Platen 5, 35 ... Polishing pad 7 ... Wafer 8 ... Wafer holding mechanism 41 ... Thermography apparatus 42 ... Image processing apparatus 43 ... Control apparatus

Claims (2)

表面に研磨パッドを有し、回転するプラテンと、
ウエハを前記研磨パッドに押し付けるように保持しながら回転するウエハ保持機構とを備え、前記ウエハを研磨する化学機械研磨装置において、
前記プラテンと前記研磨パッドは透明であり、
前記プラテンと前記研磨パッドとを通して研磨中の前記ウエハ全体の温度分布を測定するサーモグラフィ装置を備えることを特徴とする化学機械研磨装置。
A rotating platen having a polishing pad on the surface;
A chemical mechanical polishing apparatus comprising a wafer holding mechanism that rotates while holding the wafer so as to press against the polishing pad, and polishing the wafer;
The platen and the polishing pad are transparent,
A chemical mechanical polishing apparatus comprising: a thermography device that measures a temperature distribution of the entire wafer being polished through the platen and the polishing pad.
回転するプラテンの表面に設けられた研磨パッドに、ウエハ保持機構に保持されたウエハを回転しながら前記研磨パッドに押し付けて研磨する化学機械研磨方法において、
前記プラテンと前記研磨パッドは透明であり、
前記プラテンと前記研磨パッドとを通して研磨中の前記ウエハ全体の温度分布を測定することを特徴とする化学機械研磨方法。
In the chemical mechanical polishing method for polishing by pressing the wafer held by the wafer holding mechanism against the polishing pad provided on the surface of the rotating platen while pressing the polishing pad against the polishing pad,
The platen and the polishing pad are transparent,
A chemical mechanical polishing method comprising measuring a temperature distribution of the entire wafer being polished through the platen and the polishing pad.
JP2004129757A 2004-04-26 2004-04-26 Chemical mechanical polishing apparatus and method Pending JP2005311246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004129757A JP2005311246A (en) 2004-04-26 2004-04-26 Chemical mechanical polishing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004129757A JP2005311246A (en) 2004-04-26 2004-04-26 Chemical mechanical polishing apparatus and method

Publications (1)

Publication Number Publication Date
JP2005311246A true JP2005311246A (en) 2005-11-04

Family

ID=35439622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004129757A Pending JP2005311246A (en) 2004-04-26 2004-04-26 Chemical mechanical polishing apparatus and method

Country Status (1)

Country Link
JP (1) JP2005311246A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126902A2 (en) * 2009-04-30 2010-11-04 Applied Materials, Inc. Temperature control of chemical mechanical polishing
JP2015157331A (en) * 2014-02-24 2015-09-03 株式会社ディスコ Grinding device
JP2018030181A (en) * 2016-08-23 2018-03-01 株式会社荏原製作所 Polishing method, polishing device, and recording medium with computer program recorded
WO2020241850A1 (en) * 2019-05-31 2020-12-03 株式会社荏原製作所 Method and system for calibrating radiation thermometer
JP2020197528A (en) * 2019-05-31 2020-12-10 株式会社荏原製作所 Method and system for calibrating radiation thermometer
JP2022022465A (en) * 2020-07-25 2022-02-04 株式会社Revive and design Grass flaw deletion method, flaw deletion monitoring device, and flaw deletion monitoring program
US11446711B2 (en) 2019-05-29 2022-09-20 Applied Materials, Inc. Steam treatment stations for chemical mechanical polishing system
US11577358B2 (en) 2020-06-30 2023-02-14 Applied Materials, Inc. Gas entrainment during jetting of fluid for temperature control in chemical mechanical polishing
US11597052B2 (en) 2018-06-27 2023-03-07 Applied Materials, Inc. Temperature control of chemical mechanical polishing
US11628478B2 (en) 2019-05-29 2023-04-18 Applied Materials, Inc. Steam cleaning of CMP components
US11633833B2 (en) 2019-05-29 2023-04-25 Applied Materials, Inc. Use of steam for pre-heating of CMP components
US11826872B2 (en) 2020-06-29 2023-11-28 Applied Materials, Inc. Temperature and slurry flow rate control in CMP
US11833637B2 (en) 2020-06-29 2023-12-05 Applied Materials, Inc. Control of steam generation for chemical mechanical polishing
US11897079B2 (en) 2019-08-13 2024-02-13 Applied Materials, Inc. Low-temperature metal CMP for minimizing dishing and corrosion, and improving pad asperity
US11919123B2 (en) 2020-06-30 2024-03-05 Applied Materials, Inc. Apparatus and method for CMP temperature control
US12030093B2 (en) 2022-08-16 2024-07-09 Applied Materials, Inc. Steam treatment stations for chemical mechanical polishing system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126902A3 (en) * 2009-04-30 2011-02-03 Applied Materials, Inc. Temperature control of chemical mechanical polishing
WO2010126902A2 (en) * 2009-04-30 2010-11-04 Applied Materials, Inc. Temperature control of chemical mechanical polishing
JP2015157331A (en) * 2014-02-24 2015-09-03 株式会社ディスコ Grinding device
JP2018030181A (en) * 2016-08-23 2018-03-01 株式会社荏原製作所 Polishing method, polishing device, and recording medium with computer program recorded
US11597052B2 (en) 2018-06-27 2023-03-07 Applied Materials, Inc. Temperature control of chemical mechanical polishing
US11633833B2 (en) 2019-05-29 2023-04-25 Applied Materials, Inc. Use of steam for pre-heating of CMP components
US11628478B2 (en) 2019-05-29 2023-04-18 Applied Materials, Inc. Steam cleaning of CMP components
US11446711B2 (en) 2019-05-29 2022-09-20 Applied Materials, Inc. Steam treatment stations for chemical mechanical polishing system
JP7328931B2 (en) 2019-05-31 2023-08-17 株式会社荏原製作所 Method and system for calibrating a radiation thermometer
JP2020197528A (en) * 2019-05-31 2020-12-10 株式会社荏原製作所 Method and system for calibrating radiation thermometer
WO2020241850A1 (en) * 2019-05-31 2020-12-03 株式会社荏原製作所 Method and system for calibrating radiation thermometer
US11897079B2 (en) 2019-08-13 2024-02-13 Applied Materials, Inc. Low-temperature metal CMP for minimizing dishing and corrosion, and improving pad asperity
US11826872B2 (en) 2020-06-29 2023-11-28 Applied Materials, Inc. Temperature and slurry flow rate control in CMP
US11833637B2 (en) 2020-06-29 2023-12-05 Applied Materials, Inc. Control of steam generation for chemical mechanical polishing
US11577358B2 (en) 2020-06-30 2023-02-14 Applied Materials, Inc. Gas entrainment during jetting of fluid for temperature control in chemical mechanical polishing
US11919123B2 (en) 2020-06-30 2024-03-05 Applied Materials, Inc. Apparatus and method for CMP temperature control
JP2022022465A (en) * 2020-07-25 2022-02-04 株式会社Revive and design Grass flaw deletion method, flaw deletion monitoring device, and flaw deletion monitoring program
US12030093B2 (en) 2022-08-16 2024-07-09 Applied Materials, Inc. Steam treatment stations for chemical mechanical polishing system

Similar Documents

Publication Publication Date Title
KR100465929B1 (en) Method and apparatus for monitoring polishing state, polishing device, process wafer, semiconductor device, and method of manufacturing semiconductor device
US6159075A (en) Method and system for in-situ optimization for semiconductor wafers in a chemical mechanical polishing process
JP2005311246A (en) Chemical mechanical polishing apparatus and method
JP3932836B2 (en) Thin film thickness measuring method and apparatus, and device manufacturing method using the same
JP2002124496A (en) Method and equipment for detecting and measuring end point of polishing process, and method and equipment for manufacturing semiconductor device using the same for detecting and measuring end point of polishing process
JP2004531077A (en) Structure and method for conditioning a polishing pad
JP2005518654A (en) Wafer characteristic control method and control system therefor
JP2009033038A (en) Cmp device, and wafer polishing method by cmp
JP2004006692A (en) Chemimechanical polishing apparatus and its control method
US6307628B1 (en) Method and apparatus for CMP end point detection using confocal optics
CN109968186B (en) Spectrum-based chemical mechanical polishing online end point detection method
JP2009026850A (en) Cmp device, and wafer polishing method by cmp
CN115950859B (en) Method and system for judging resolution limit of reflection spectrum according to film thickness detection resolution
US20060113036A1 (en) Computer integrated manufacturing control system for oxide chemical mechanical polishing
US20030049993A1 (en) Semiconductor polishing apparatus and method of detecting end point of polishing semiconductor
JP2002170800A (en) Polishing apparatus, method for manufacturing semiconductor device using the same and semiconductor device manufactured by this method
JP2007142455A (en) Device for process of fabricating semiconductor device
JP2000117626A (en) Wafer grinding device and abrasive quantity detecting means
US6429130B1 (en) Method and apparatus for end point detection in a chemical mechanical polishing process using two laser beams
US6705922B1 (en) Method and apparatus for polishing a semiconductor substrate wafer
JPH09148281A (en) Polishing apparatus and polishing method
WO2023035247A1 (en) Chemical-mechanical polishing device and control method therefor
JP3642250B2 (en) Method for judging polishing conditions of semiconductor substrate
JP2002337046A (en) Polishing device, polishing method and method for manufacturing semiconductor
JPH11204473A (en) Abrasive processing method and device therefor