JP2005311015A - Solid-state imaging device and method of manufacturing the same - Google Patents

Solid-state imaging device and method of manufacturing the same Download PDF

Info

Publication number
JP2005311015A
JP2005311015A JP2004125152A JP2004125152A JP2005311015A JP 2005311015 A JP2005311015 A JP 2005311015A JP 2004125152 A JP2004125152 A JP 2004125152A JP 2004125152 A JP2004125152 A JP 2004125152A JP 2005311015 A JP2005311015 A JP 2005311015A
Authority
JP
Japan
Prior art keywords
film
solid
imaging device
wiring layer
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004125152A
Other languages
Japanese (ja)
Inventor
Yasuyuki Enomoto
容幸 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004125152A priority Critical patent/JP2005311015A/en
Publication of JP2005311015A publication Critical patent/JP2005311015A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the influence of multiplex interference and reflection to a light-receiving portion, while avoiding the problem in shape controllability and the problem of increase in the capacity, when a Cu wiring and a Cu diffusion preventing film are provided in multilayered wiring. <P>SOLUTION: An antireflection film 113 is provided on a silicon substrate 111 in which a photodiode 112 is formed. On the film, a multilayered wiring layer is constituted by stacking interlayer films 115, 122, 132, and 142, Cu wiring films 116, 123, and 133, and Cu diffusion preventing films 121, 131, and 141. On the multilayered wiring layer, a protection film 161, a color filter 162, and a microlens 163 are formed. By removing the Cu diffusion preventing films at a region above the light-receiving region of the photodiode, a region arranged on the light-receiving region of the multilayered wiring layer is allowed to be formed with only a silicon oxide film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばCCDイメージセンサやCMOSイメージセンサといった固体撮像素子及びその製造方法に関し、特に配線に銅配線を用いた場合に有効な固体撮像素子及びその製造方法に関する。   The present invention relates to a solid-state imaging device such as a CCD image sensor or a CMOS image sensor and a manufacturing method thereof, and more particularly to a solid-state imaging device effective when a copper wiring is used as a wiring and a manufacturing method thereof.

近年、この種の固体撮像素子において、多画素化や画素寸法の縮小化が進んでおり、これに伴って使用される配線がAl配線からCu配線に変更されてきている(例えば特許文献1参照)。
図14は従来の固体撮像素子における受光部周辺の積層構造の一例を示す断面図である。
シリコン基板311の上層には光電変換を行うフォトダイオード312が例えば2次元アレイ状に複数形成されており、このシリコン基板311の上面に、SiN膜313及びpoly層間膜314が配置され、その上にCuの第一配線316及び第一配線層間膜315が配置されている。
そして、その上に第一拡散防止膜321、第二配線層間膜322及びCuの第二配線323が配置され、さらに、その上に第二拡散防止膜331、第三配線層間膜332及びCuの第三配線333が配置され、多層配線層を構成している。そして、さらにその上に、第三拡散防止膜341、及び層間膜342が配置され、その上にSiN保護膜361、カラーフィルタ362、及びマイクロレンズ363が配置されている。
なお、各層間膜315、322、332、342にはSiO2 が用いられ、各拡散防止膜321、331、341にはSiC膜が用いられる。
In recent years, in this type of solid-state imaging device, the number of pixels and the size of pixels have been reduced, and the wiring used has been changed from Al wiring to Cu wiring (see, for example, Patent Document 1). ).
FIG. 14 is a cross-sectional view showing an example of a laminated structure around a light receiving portion in a conventional solid-state imaging device.
A plurality of photodiodes 312 that perform photoelectric conversion are formed in an upper layer of the silicon substrate 311, for example, in a two-dimensional array, and an SiN film 313 and a poly interlayer film 314 are disposed on the upper surface of the silicon substrate 311, on which A Cu first wiring 316 and a first wiring interlayer film 315 are arranged.
A first diffusion prevention film 321, a second wiring interlayer film 322, and a Cu second wiring 323 are disposed thereon, and further, a second diffusion prevention film 331, a third wiring interlayer film 332, and a Cu wiring are disposed thereon. A third wiring 333 is arranged to constitute a multilayer wiring layer. Further thereon, a third diffusion preventing film 341 and an interlayer film 342 are disposed, and an SiN protective film 361, a color filter 362, and a microlens 363 are disposed thereon.
Note that SiO 2 is used for the interlayer films 315, 322, 332, and 342, and SiC films are used for the diffusion prevention films 321, 331, and 341.

この図14に示すように、Cu配線を適用する場合には、酸化膜中でのCuの拡散係数が大きいことから、Cuの拡散を防止する層を形成することが必要になる。
そして、一般的には、配線の底面及び側面には、TaあるいはTaNで構成されるバリアメタルを形成し、配線の上層には、SiN膜あるいはSiC膜を形成する。
従って、図14に示すように、固体撮像素子に多層でCu配線を適用する場合、受光部では通常の層間膜と、Cu拡散防止膜であるSiN膜あるいはSiC膜が多層で構成されることとなる。
特開平11−121725号公報
As shown in FIG. 14, when Cu wiring is applied, since the diffusion coefficient of Cu in the oxide film is large, it is necessary to form a layer for preventing diffusion of Cu.
In general, a barrier metal composed of Ta or TaN is formed on the bottom and side surfaces of the wiring, and a SiN film or a SiC film is formed on the upper layer of the wiring.
Accordingly, as shown in FIG. 14, when a multilayer Cu wiring is applied to a solid-state imaging device, a normal interlayer film and a SiN film or SiC film as a Cu diffusion prevention film are configured in a multilayer in the light receiving portion. Become.
Japanese Patent Laid-Open No. 11-121725

しかしながら、上記従来の固体撮像素子において、シリコン基板の受光部(フォトダイオード)の上部に、屈折率が異なる層が積層されることは、各層間膜の界面での反射(例えば図14に示す矢線371)や多重干渉(例えば図14に示す矢線372)による影響で、受光部への入射光の光量低下やノイズ発生の原因となる可能性を有している。
また、Cu拡散防止膜と同じ材料で層間膜を形成することは、多重干渉の観点で優位であるが、例えばデュアルダマシンプロセス(dual damascene process)での形状制御性、あるいは、層間膜の比誘電率上昇による配線容量増加の問題が生じる。
However, in the conventional solid-state imaging device, a layer having a different refractive index is laminated on the light receiving portion (photodiode) of the silicon substrate, which means that reflection at the interface of each interlayer film (for example, the arrow shown in FIG. 14). Line 371) and multiple interference (for example, arrow 372 shown in FIG. 14) may cause a decrease in the amount of incident light to the light receiving unit and noise generation.
Forming an interlayer film with the same material as the Cu diffusion barrier film is advantageous from the viewpoint of multiple interference. For example, the shape controllability in a dual damascene process or the dielectric constant of the interlayer film The problem of an increase in wiring capacity due to an increase in rate occurs.

そこで本発明は、例えば多層配線中に拡散防止膜等を設けた場合でも、各膜の材質を一致させることなく、受光部への反射や多重干渉の影響を低減でき、光量の向上や低ノイズ化を図ることが可能な固体撮像素子及びその製造方法を提供することを目的とする。   Therefore, the present invention can reduce the influence of reflection and multiple interference on the light receiving portion without matching the materials of the respective films even when a diffusion prevention film or the like is provided in the multilayer wiring, for example, improving the light amount and reducing the noise. It is an object of the present invention to provide a solid-state imaging device that can be realized and a manufacturing method thereof.

上述の目的を達成するため、本発明の固体撮像素子は、光電変換を行う受光部を形成した半導体基板と、前記半導体基板の受光部が臨む面上に積層される複数層の配線膜と層間絶縁膜とを含む複層配線層と、前記複層配線層の上層に積層される上部層とを有し、前記複層配線層は、前記受光部の受光領域上に配置される領域が前記複層配線層に含まれる少なくとも1つの膜の屈折率とは異なる単一の屈折率を有する膜によって形成されていることを特徴とする。
また本発明の製造方法は、光電変換を行う受光部を形成した半導体基板と、前記半導体基板の受光部が臨む面上に積層される複数層の配線膜と層間絶縁膜とを含む複層配線層と、前記複層配線層の上層に積層される上部層とを有する固体撮像素子の製造方法であって、
前記複層配線層の形成工程で、前記受光部の受光領域上に配置される領域を前記複層配線層に含まれる少なくとも1つの膜の屈折率とは異なる単一の屈折率を有する膜によって形成することを特徴とする。
In order to achieve the above-described object, a solid-state imaging device according to the present invention includes a semiconductor substrate on which a light receiving portion that performs photoelectric conversion is formed, and a plurality of wiring films and interlayers that are stacked on the surface of the semiconductor substrate facing the light receiving portion. A multilayer wiring layer including an insulating film; and an upper layer stacked on the multilayer wiring layer. The multilayer wiring layer has a region disposed on a light receiving region of the light receiving unit. It is characterized by being formed of a film having a single refractive index different from the refractive index of at least one film included in the multilayer wiring layer.
The manufacturing method of the present invention also includes a multilayer wiring including a semiconductor substrate having a light receiving portion for performing photoelectric conversion, and a plurality of wiring films and an interlayer insulating film laminated on the surface of the semiconductor substrate facing the light receiving portion. A solid-state imaging device having a layer and an upper layer stacked on an upper layer of the multilayer wiring layer,
In the step of forming the multilayer wiring layer, the region disposed on the light receiving region of the light receiving unit is a film having a single refractive index different from the refractive index of at least one film included in the multilayer wiring layer. It is characterized by forming.

本発明の固体撮像素子及びその製造方法によれば、半導体基板上に積層される複層配線層において、受光部の受光領域上に配置される領域を、単一の屈折率を有する膜によって形成したことから、受光部への反射や多重干渉の影響を低減でき、光量の向上や低ノイズ化を図ることが可能となる。
また、この単一の屈折率を有する膜は、複層配線層に含まれる例えば拡散防止膜等の屈折率とは異なる屈折率を有することから、層間膜を拡散防止膜と一致させる必要がなくなり、例えばダマシン工程における形状制御性や層間膜の比誘電率上昇による配線容量増加の問題も生じず、容易に加工を行うことができる。
この結果、例えば多層配線中に拡散防止膜等を設けた場合でも、各膜の材質を一致させることなく、受光部への反射や多重干渉の影響を低減でき、光量の向上や低ノイズ化を図ることが可能な高感度の固体撮像素子を提供できる効果がある。
According to the solid-state imaging device and the method of manufacturing the same of the present invention, in the multilayer wiring layer stacked on the semiconductor substrate, the region disposed on the light receiving region of the light receiving unit is formed by a film having a single refractive index. Therefore, it is possible to reduce the influence of reflection on the light receiving unit and multiple interference, and it is possible to improve the light amount and reduce the noise.
In addition, since the film having a single refractive index has a refractive index different from that of, for example, the diffusion prevention film included in the multilayer wiring layer, it is not necessary to match the interlayer film with the diffusion prevention film. For example, it is possible to easily perform processing without causing problems of shape controllability in a damascene process and an increase in wiring capacity due to an increase in relative dielectric constant of an interlayer film.
As a result, even when a diffusion prevention film or the like is provided in the multilayer wiring, for example, the effects of reflection on the light receiving unit and multiple interference can be reduced without matching the materials of each film, improving the light quantity and reducing noise. There is an effect that it is possible to provide a highly sensitive solid-state imaging device that can be realized.

本発明の実施の形態では、フォトダイオード(受光部)を形成したシリコン基板上に反射防止膜を設け、その上にシリコン酸化膜による層間膜とCuによる配線膜とSiCによるCu拡散防止膜を積層した複層配線層を形成し、その上に保護膜、カラーフィルタ、マイクロレンズ等の上部層を形成する。
そして、Cu拡散防止膜をフォトダイオードの受光領域の上部領域で除去することにより、複層配線層の受光領域上に配置される領域では、Cu拡散防止膜とは異なる単一の屈折率を有するシリコン酸化膜によって形成されることになる。
この製法としては、Cu拡散防止膜を形成する毎に、このCu拡散防止膜の受光領域に対応する領域を開口し、次の膜の積層に移行するような方法を用いたり、あるいは、複層配線層を形成した後、受光領域に対応する領域に複層配線層を貫通する開口凹部を形成し、この開口凹部に新たに絶縁膜を埋め込むような方法を用いることができる。
In the embodiment of the present invention, an antireflection film is provided on a silicon substrate on which a photodiode (light receiving portion) is formed, and an interlayer film made of a silicon oxide film, a wiring film made of Cu, and a Cu diffusion prevention film made of SiC are laminated thereon. The multilayer wiring layer is formed, and upper layers such as a protective film, a color filter, and a microlens are formed thereon.
Then, by removing the Cu diffusion preventing film in the upper region of the light receiving region of the photodiode, the region disposed on the light receiving region of the multilayer wiring layer has a single refractive index different from that of the Cu diffusion preventing film. It is formed by a silicon oxide film.
As this manufacturing method, each time a Cu diffusion prevention film is formed, a method is used in which a region corresponding to the light receiving region of the Cu diffusion prevention film is opened and the next film is laminated, or a multilayer is formed. After forming the wiring layer, it is possible to use a method in which an opening recess that penetrates the multilayer wiring layer is formed in a region corresponding to the light receiving region, and a new insulating film is embedded in the opening recess.

図1は本発明の実施例1による固体撮像素子における受光部周辺の積層構造を示す断面図である。なお、本実施例の説明及び各図において、説明を簡単にするために、シリコン基板に形成された素子領域や素子分離領域等の詳細な構成は省略する。
シリコン基板(半導体基板)111の上層には光電変換を行うフォトダイオード(受光部)112が例えば2次元アレイ状に複数形成されており、このシリコン基板111の上面に、SiN膜113及びpoly層間膜114が配置され、その上に第一配線116及び第一配線層間膜115が配置されている。
そして、その上に第一拡散防止膜121、第二配線層間膜122及び第二配線123が配置され、さらに、その上に第二拡散防止膜131、第三配線層間膜132及び第三配線133が配置され、その上に第三拡散防止膜141、及び層間膜142が配置されて、三層の複層配線層(一般的には多層配線層という)を構成している。
また、その上に上部層として、SiN保護膜161、カラーフィルタ162、及びマイクロレンズ163が配置されている。
なお、本例において、各配線116、123、133は全てCu配線で膜厚は全層200nmである。また、各層間膜115、122、132、142は全てSiO2 であり、膜厚は第一配線層間膜115が150nm、第二、第三配線層間膜122、132が約450nm、上層の層間膜142が約150nmである。また、各拡散防止膜121、131、141は全てSiC膜であり、膜厚は全て50nmである。また、poly層間膜114が450nm、SiN膜113の膜厚は50nmである。
FIG. 1 is a cross-sectional view showing a laminated structure around a light receiving portion in a solid-state imaging device according to Embodiment 1 of the present invention. It should be noted that in the description of the present embodiment and the respective drawings, detailed configurations such as element regions and element isolation regions formed on the silicon substrate are omitted for the sake of simplicity.
A plurality of photodiodes (light receiving portions) 112 that perform photoelectric conversion are formed in an upper layer of a silicon substrate (semiconductor substrate) 111, for example, in a two-dimensional array, and an SiN film 113 and a poly interlayer film are formed on the upper surface of the silicon substrate 111. 114 is arranged, and a first wiring 116 and a first wiring interlayer film 115 are arranged thereon.
A first diffusion prevention film 121, a second wiring interlayer film 122, and a second wiring 123 are disposed thereon, and further, a second diffusion prevention film 131, a third wiring interlayer film 132, and a third wiring 133 are disposed thereon. The third diffusion prevention film 141 and the interlayer film 142 are arranged thereon to form a three-layer wiring layer (generally referred to as a multilayer wiring layer).
Further, an SiN protective film 161, a color filter 162, and a microlens 163 are disposed as upper layers thereon.
In this example, all the wirings 116, 123, 133 are Cu wirings, and the film thickness is 200 nm in all layers. The interlayer films 115, 122, 132, 142 are all made of SiO 2 , and the film thickness is 150 nm for the first wiring interlayer film 115, about 450 nm for the second and third wiring interlayer films 122, 132, and the upper interlayer film. 142 is about 150 nm. Each of the diffusion prevention films 121, 131, and 141 is a SiC film, and the film thickness is all 50 nm. Further, the poly interlayer film 114 is 450 nm, and the film thickness of the SiN film 113 is 50 nm.

そして、本実施例の固体撮像素子では、図示のように、各拡散防止膜121、131、141は、図14に示す従来例が多層配線層の全体を覆う状態で各拡散防止膜が形成されているのとは異なり、フォトダイオード112の受光領域に対応する開口を有している。なお、拡散防止膜121、131、141の開口は、その内周が各配線116、123、133よりも内側に位置している。
このため、フォトダイオード112の受光領域の上層には、SiC膜による拡散防止膜121、131、141は配置されず、SiN膜113、poly層間膜114、SiO2 膜よりなる層間膜115、122、132、142、SiN保護膜161、カラーフィルタ162、及びマイクロレンズ163が配置されている。
したがって、この固体撮像素子では、図14に示す固体撮像素子に比べて、受光部の上層領域における各層の屈折率のばらつきを抑制して、受光部への反射や多重干渉の影響を低減でき、光量の向上や低ノイズ化を図ることが可能となる。
In the solid-state imaging device of this embodiment, as shown in the figure, each diffusion prevention film 121, 131, 141 is formed with each diffusion prevention film in a state where the conventional example shown in FIG. 14 covers the entire multilayer wiring layer. Unlike the case, an opening corresponding to the light receiving region of the photodiode 112 is provided. Note that the openings of the diffusion prevention films 121, 131, and 141 are located on the inner side of the wirings 116, 123, and 133.
For this reason, the diffusion preventing films 121, 131, 141 made of SiC are not arranged on the light receiving region of the photodiode 112, but the interlayer films 115, 122 made of the SiN film 113, the poly interlayer film 114, the SiO 2 film, 132, 142, a SiN protective film 161, a color filter 162, and a microlens 163 are arranged.
Therefore, in this solid-state imaging device, compared to the solid-state imaging device shown in FIG. 14, it is possible to suppress the variation in the refractive index of each layer in the upper layer region of the light receiving unit, and to reduce the influence of reflection on the light receiving unit and multiple interference, It becomes possible to improve the amount of light and reduce the noise.

次に、本実施例の固体撮像素子の製造方法を説明する。
図2〜図7は本実施例の製造方法を説明する断面図である。
まず、図2において、フォトダイオード112を形成したシリコン基板111の上にSiN膜113、poly層間膜114、第一配線116、第一配線層間膜115を形成し、その上に第一拡散防止膜121を全面形成した段階で、この第一拡散防止膜121に受光領域に対応した開口を形成するためのマスクとなるレジスト151をリソグラフィ技術を用いてパターン形成する。
そして、図3においてRIE技術により、Cu拡散防止膜121を加工し、アッシング技術及び後処理技術により、レシスト151を剥離することにより、第一拡散防止膜121に受光領域に対応した開口を形成する。次に、図4において、第二配線層間膜122を例えばCVD法により積層する。なお、この時、受光領域上のCu拡散防止膜121を除去することで生じた段差の影響を受け、第二配線層間膜122に段差が生じることがある。そこで、本例では、図5において、第二配線層間膜122の上面をCMP法によって平坦化した後、図6において、第二配線層間膜122の上面に第二配線123を埋め込み形成する。なお、本例では、CMP法により平坦化を行ったが、必ずしも必要と言う訳では無い。また、第二配線層間膜を塗布材料により形成した場合には、段差が生じない可能性も高いため、このような処理は不要となる。
この後、図7において、第二のCu拡散防止膜131を全面形成した後、図2〜図6で説明したのと同様の工程を繰り返し、それぞれ開口を有するCu拡散防止膜131、141を形成した後、従来と同様の工程で上層の保護膜161、カラーフィルタ162、及びマイクロレンズ163を形成していき、最終的に図1に示す固体撮像素子を作成する。
Next, a method for manufacturing the solid-state imaging device of this embodiment will be described.
2-7 is sectional drawing explaining the manufacturing method of a present Example.
First, in FIG. 2, a SiN film 113, a poly interlayer film 114, a first wiring 116, and a first wiring interlayer film 115 are formed on a silicon substrate 111 on which a photodiode 112 is formed, and a first diffusion prevention film is formed thereon. At the stage where the entire surface 121 is formed, a resist 151 serving as a mask for forming an opening corresponding to the light receiving region is formed in the first diffusion prevention film 121 using a lithography technique.
Then, in FIG. 3, the Cu diffusion prevention film 121 is processed by the RIE technique, and the resist 151 is peeled off by the ashing technique and the post-processing technique, thereby forming an opening corresponding to the light receiving region in the first diffusion prevention film 121. . Next, in FIG. 4, the second wiring interlayer film 122 is laminated by, for example, the CVD method. At this time, a step may occur in the second wiring interlayer film 122 due to the effect of the step generated by removing the Cu diffusion prevention film 121 on the light receiving region. Therefore, in this example, after the upper surface of the second wiring interlayer film 122 is planarized by CMP in FIG. 5, the second wiring 123 is embedded in the upper surface of the second wiring interlayer film 122 in FIG. In this example, planarization is performed by the CMP method, but this is not always necessary. In addition, when the second wiring interlayer film is formed of a coating material, there is a high possibility that no step is generated, and thus such a process is unnecessary.
Thereafter, in FIG. 7, after the second Cu diffusion prevention film 131 is formed on the entire surface, the same steps as described in FIGS. 2 to 6 are repeated to form Cu diffusion prevention films 131 and 141 having openings, respectively. After that, the upper protective film 161, the color filter 162, and the microlens 163 are formed in the same process as the conventional one, and finally the solid-state imaging device shown in FIG. 1 is created.

なお、本実施例では、一般的なビアファースト法による製造方法を適用した例を説明し、デュアルダマシン法による製造方法は説明しないが、これらは適宜応用することが可能であるものとする。また、SiN膜113はシリコン基板111からの反射防止層として機能しているが、このSiN膜113を削除し、受光領域上では最上層のSiN膜より下層側の層間絶縁膜を単一の屈折率を有する構造にすることも可能である。さらに、この種の固体撮像素子において、カラーフィルタやマイクロレンズは必ずしも必要ではなく、これらを設けない構造についても同様に適用できるものである。   In this embodiment, an example in which a manufacturing method by a general via first method is applied will be described, and a manufacturing method by a dual damascene method will not be described, but these can be appropriately applied. The SiN film 113 functions as an antireflection layer from the silicon substrate 111. However, the SiN film 113 is deleted, and the interlayer insulating film on the lower layer side of the uppermost SiN film is made a single refracting layer on the light receiving region. It is also possible to have a structure having a rate. Further, in this type of solid-state imaging device, a color filter and a microlens are not necessarily required, and can be similarly applied to a structure in which these are not provided.

図8は本発明の実施例2による固体撮像素子における受光部周辺の積層構造を示す断面図である。なお、本実施例の説明及び各図において、説明を簡単にするために、シリコン基板に形成された素子領域や素子分離領域等の詳細な構成は省略する。
シリコン基板211の上層には光電変換を行うフォトダイオード(受光部)212が例えば2次元アレイ状に複数形成されており、このシリコン基板211の上面に、SiN膜213及びpoly層間膜214が配置され、その上に第一配線216及び第一配線層間膜215が配置されている。
そして、その上に第一拡散防止膜221、第二配線層間膜222及び第二配線223が配置され、さらに、その上に第二拡散防止膜231、第三配線層間膜232及び第三配線233が配置され、多層(三層)配線層を構成している。そして、さらにその上に、第三拡散防止膜241、及び層間膜242が配置され、その上にSiN保護膜261、カラーフィルタ262、及びマイクロレンズ263が配置されている。なお、各膜の材質や膜厚は実施例1と共通であるものとする。
そして、本実施例の固体撮像素子では、最下層の第一拡散防止膜221から上層の層間膜242にかけて、フォトダイオード212の受光領域に対応する開口凹部252が形成されており、この開口凹部252内に絶縁膜253が埋め込み形成されている。すなわち、本実施例では、このような光導波路を設けることにより、フォトダイオード212の上部層の屈折率のばらつきを抑制でき、受光部への反射や多重干渉の影響を低減でき、光量の向上や低ノイズ化を図ることが可能となる。
FIG. 8 is a cross-sectional view showing a laminated structure around the light receiving portion in the solid-state imaging device according to Embodiment 2 of the present invention. It should be noted that in the description of the present embodiment and the respective drawings, detailed configurations such as element regions and element isolation regions formed on the silicon substrate are omitted for the sake of simplicity.
A plurality of photodiodes (light receiving portions) 212 that perform photoelectric conversion are formed in a two-dimensional array, for example, on the upper layer of the silicon substrate 211, and the SiN film 213 and the poly interlayer film 214 are disposed on the upper surface of the silicon substrate 211. The first wiring 216 and the first wiring interlayer film 215 are disposed thereon.
A first diffusion prevention film 221, a second wiring interlayer film 222, and a second wiring 223 are disposed thereon, and further, a second diffusion prevention film 231, a third wiring interlayer film 232, and a third wiring 233 are disposed thereon. Are arranged to constitute a multilayer (three layers) wiring layer. Further thereon, a third diffusion prevention film 241 and an interlayer film 242 are disposed, and an SiN protective film 261, a color filter 262, and a micro lens 263 are disposed thereon. Note that the material and thickness of each film are the same as those in the first embodiment.
In the solid-state imaging device of the present embodiment, an opening recess 252 corresponding to the light receiving region of the photodiode 212 is formed from the lowermost first diffusion prevention film 221 to the upper interlayer film 242, and this opening recess 252. An insulating film 253 is embedded in the inside. That is, in this embodiment, by providing such an optical waveguide, variation in the refractive index of the upper layer of the photodiode 212 can be suppressed, the influence of reflection on the light receiving unit and multiple interference can be reduced, and the amount of light can be improved. Noise can be reduced.

次に、本実施例の固体撮像素子の製造方法を説明する。
図9〜図12は本実施例の製造方法を説明する断面図である。
まず、図9は、フォトダイオード112を形成したシリコン基板111の上に従来と同様の製法により、最上層の層間膜242まで形成した状態で、その上に多層配線層を貫通する開口凹部252を形成するためのマスクとなるレジスト251をリソグラフィ技術を用いてパターン形成する。
次に、図10において、このレジストをマスクとして受光領域上の多層膜をRIE技術により第一Cu拡散防止膜221まで除去するように加工し、アッシング技術及び後処理技術により加工する。なお、本実施例では、第一のCu拡散防止膜221まで加工したが、さらに、下層まで加工し、シリコン基板211まで露出させても良い。
次に、図11において、開口凹部252に対し、例えば、HDP−CVD法により、絶縁膜253を埋め込む。この時、この絶縁膜253は、可視光に対して透明な膜が望しく、かつ、第一配線層間膜215及びpoly層間膜214と同じ屈折率を持つ膜が良い。本実施例では、SiO2 膜を使用した。なお、開口凹部252をシリコン基板211、若しくは、SiN膜213まで形成した場合、埋め込み絶縁膜253は、第一配線層間膜215、poly層間膜214と同じ屈折率を有する材料に限定する必要はなくなる。
次いで、図12に示すように、CMP法により、層間膜242の上に成膜された絶縁膜253を除去し、平坦化する。
この後、SiNの保護膜261、カラーフィルタ262、マイクロレンズ263を形成する工程を経て、図8に示した固体撮像素子を完成する。
Next, a method for manufacturing the solid-state imaging device of this embodiment will be described.
9-12 is sectional drawing explaining the manufacturing method of a present Example.
First, in FIG. 9, an opening recess 252 penetrating the multilayer wiring layer is formed on the silicon substrate 111 on which the photodiode 112 is formed by the same manufacturing method as before until the uppermost interlayer film 242 is formed. A resist 251 serving as a mask for formation is patterned using a lithography technique.
Next, in FIG. 10, using this resist as a mask, the multilayer film on the light receiving region is processed so as to be removed up to the first Cu diffusion prevention film 221 by the RIE technique, and is processed by the ashing technique and the post-processing technique. In this embodiment, the first Cu diffusion prevention film 221 is processed, but it may be further processed up to the lower layer and exposed to the silicon substrate 211.
Next, in FIG. 11, an insulating film 253 is embedded in the opening recess 252 by, for example, HDP-CVD. At this time, the insulating film 253 is desired to be a film transparent to visible light, and is preferably a film having the same refractive index as that of the first wiring interlayer film 215 and the poly interlayer film 214. In this example, a SiO 2 film was used. When the opening recess 252 is formed up to the silicon substrate 211 or the SiN film 213, the buried insulating film 253 is not necessarily limited to a material having the same refractive index as that of the first wiring interlayer film 215 and the poly interlayer film 214. .
Next, as shown in FIG. 12, the insulating film 253 formed on the interlayer film 242 is removed by CMP and planarized.
Thereafter, a process of forming a protective film 261 of SiN, a color filter 262, and a microlens 263 is performed to complete the solid-state imaging device shown in FIG.

なお、本実施例においても、マイクロレンズは必ずしも必要でなく、また、受光部上に、シリコン基板211からの反射防止層として機能するSiN膜213が存在するが、このSiN膜213を削除し、受光部上では、最上層のSiN保護膜261より下層側の層間絶縁膜を単一の屈折率を有する構造にすることも可能である。
さらに、本実施例では、光導波路の中に透明絶縁膜を形成するに当たり、HDP−CVD法により、埋め込みを行ったが、塗布法により実施しても良い。また、塗布法により、平坦化も同時に実現できれば、上述のCMP法による平坦化プロセスは削除可能となる。
Also in this embodiment, the microlens is not necessarily required, and the SiN film 213 that functions as an antireflection layer from the silicon substrate 211 exists on the light receiving portion, but this SiN film 213 is deleted, On the light receiving portion, the interlayer insulating film below the uppermost SiN protective film 261 may have a structure having a single refractive index.
Further, in this embodiment, the transparent insulating film is formed in the optical waveguide by the HDP-CVD method, but may be applied by a coating method. Further, if planarization can be realized at the same time by the coating method, the above-described planarization process by the CMP method can be eliminated.

図13は本発明の実施例3による固体撮像素子における受光部周辺の積層構造を示す断面図である。なお、本実施例3は実施例2の変形であり、図13において図8に示す固体撮像素子と共通の構成については同一符号を付して説明は省略する。
上記実施例2では、フォトダイオードの受光領域上に開口凹部252を形成し、HDP−CVD法で絶縁膜253の埋め込みを行い、CMPにより平坦化したが、このCMPの平坦化を行わず、この埋め込み絶縁膜253の上層に絶縁膜253よりも屈折率の高い材料、例えば、SiN膜254を成膜し、このSiN膜254が受光領域の上方にのみ残るように、エッチバックあるいはCMPを行い、図13に示すように、SiN膜254による凹レンズを形成して、絶縁膜253の導波路に効率よく光を集光させるようにした。なお、その他は実施例2と同様であるので説明は省略する。
FIG. 13 is a cross-sectional view showing a laminated structure around a light receiving portion in a solid-state imaging device according to Embodiment 3 of the present invention. Note that the third embodiment is a modification of the second embodiment, and in FIG. 13, the same components as those in the solid-state imaging device shown in FIG.
In Example 2 described above, the opening recess 252 is formed on the light receiving region of the photodiode, and the insulating film 253 is buried by the HDP-CVD method and planarized by CMP. A material having a refractive index higher than that of the insulating film 253, for example, a SiN film 254 is formed on the buried insulating film 253, and etch back or CMP is performed so that the SiN film 254 remains only above the light receiving region. As shown in FIG. 13, a concave lens made of the SiN film 254 was formed so that the light was efficiently condensed on the waveguide of the insulating film 253. The rest of the configuration is the same as that of the second embodiment, and a description thereof will be omitted.

本発明の実施例1による固体撮像素子における受光部周辺の積層構造を示す断面図である。It is sectional drawing which shows the laminated structure around the light-receiving part in the solid-state image sensor by Example 1 of this invention. 図1に示す固体撮像素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the solid-state image sensor shown in FIG. 図1に示す固体撮像素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the solid-state image sensor shown in FIG. 図1に示す固体撮像素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the solid-state image sensor shown in FIG. 図1に示す固体撮像素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the solid-state image sensor shown in FIG. 図1に示す固体撮像素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the solid-state image sensor shown in FIG. 図1に示す固体撮像素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the solid-state image sensor shown in FIG. 本発明の実施例2による固体撮像素子における受光部周辺の積層構造を示す断面図である。It is sectional drawing which shows the laminated structure around the light-receiving part in the solid-state image sensor by Example 2 of this invention. 図8に示す固体撮像素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the solid-state image sensor shown in FIG. 図8に示す固体撮像素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the solid-state image sensor shown in FIG. 図8に示す固体撮像素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the solid-state image sensor shown in FIG. 図8に示す固体撮像素子の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the solid-state image sensor shown in FIG. 本発明の実施例2による固体撮像素子における受光部周辺の積層構造を示す断面図である。It is sectional drawing which shows the laminated structure around the light-receiving part in the solid-state image sensor by Example 2 of this invention. 従来の固体撮像素子における受光部周辺の積層構造を示す断面図である。It is sectional drawing which shows the laminated structure around the light-receiving part in the conventional solid-state image sensor.

符号の説明Explanation of symbols

111……シリコン基板、112……フォトダイオード(受光部)、113……SiN膜、114……poly層間膜、115、122、132……配線層間膜、116、123、133……配線、121、131、141……拡散防止膜、142……層間膜、161……SiN保護膜、162……カラーフィルタ、163……マイクロレンズ。   111... Silicon substrate, 112... Photodiode (light receiving portion), 113... SiN film, 114... Poly interlayer film, 115, 122, 132. 131, 141... Diffusion prevention film, 142... Interlayer film, 161... SiN protective film, 162... Color filter, 163.

Claims (15)

光電変換を行う受光部を形成した半導体基板と、前記半導体基板の受光部が臨む面上に積層される複数層の配線膜と層間絶縁膜とを含む複層配線層と、前記複層配線層の上層に積層される上部層とを有し、
前記複層配線層は、前記受光部の受光領域上に配置される領域が前記複層配線層に含まれる少なくとも1つの膜の屈折率とは異なる単一の屈折率を有する膜によって形成されている、
ことを特徴とする固体撮像素子。
A multi-layer wiring layer including a semiconductor substrate on which a light-receiving portion for performing photoelectric conversion is formed; a plurality of wiring films and an interlayer insulating film stacked on a surface of the semiconductor substrate facing the light-receiving portion; and the multi-layer wiring layer An upper layer laminated on the upper layer,
The multilayer wiring layer is formed of a film having a single refractive index different from a refractive index of at least one film included in the multilayer wiring layer in a region disposed on the light receiving region of the light receiving unit. Yes,
A solid-state imaging device.
前記複層配線層に含まれる少なくとも1つの膜が、前記受光部の受光領域に対応する領域で除去されていることを特徴とする請求項1記載の固体撮像素子。   The solid-state imaging device according to claim 1, wherein at least one film included in the multilayer wiring layer is removed in a region corresponding to a light receiving region of the light receiving unit. 前記複層配線層に含まれる少なくとも1つの膜には、配線膜の拡散を防止する拡散防止膜を含むことを特徴とする請求項1記載の固体撮像素子。   2. The solid-state imaging device according to claim 1, wherein the at least one film included in the multilayer wiring layer includes a diffusion preventing film for preventing diffusion of the wiring film. 前記上部層にカラーフィルタ及びマイクロレンズを含むことを特徴とする請求項1記載の固体撮像素子。   The solid-state imaging device according to claim 1, wherein the upper layer includes a color filter and a microlens. 前記複層配線層と上部層との間に前記単一の屈折率を有する膜とは異なる屈折率を有する保護膜が配置されていることを特徴とする請求項1記載の固体撮像素子。   The solid-state imaging device according to claim 1, wherein a protective film having a refractive index different from the film having the single refractive index is disposed between the multilayer wiring layer and the upper layer. 前記単一の屈折率を有する膜はシリコン酸化膜よりなり、前記保護膜がシリコン窒化膜よりなることを特徴とする請求項5記載の固体撮像素子。   6. The solid-state imaging device according to claim 5, wherein the film having a single refractive index is made of a silicon oxide film, and the protective film is made of a silicon nitride film. 前記半導体基板と複層配線層との間に前記単一の屈折率を有する膜とは異なる屈折率を有し、半導体基板からの反射を防止する反射防止膜が配置されていることを特徴とする請求項1記載の固体撮像素子。   An antireflection film having a refractive index different from that of the film having a single refractive index and preventing reflection from the semiconductor substrate is disposed between the semiconductor substrate and the multilayer wiring layer. The solid-state imaging device according to claim 1. 前記単一の屈折率を有する膜はシリコン酸化膜よりなり、前記反射防止膜がシリコン窒化膜よりなることを特徴とする請求項7記載の固体撮像素子。   8. The solid-state imaging device according to claim 7, wherein the film having a single refractive index is made of a silicon oxide film, and the antireflection film is made of a silicon nitride film. 前記配線膜がCu膜よりなり、前記拡散防止膜がSiC膜よりなることを特徴とする請求項3記載の固体撮像素子。   4. The solid-state imaging device according to claim 3, wherein the wiring film is made of a Cu film, and the diffusion prevention film is made of a SiC film. 光電変換を行う受光部を形成した半導体基板と、前記半導体基板の受光部が臨む面上に積層される複数層の配線膜と層間絶縁膜とを含む複層配線層と、前記複層配線層の上層に積層される上部層とを有する固体撮像素子の製造方法であって、
前記複層配線層の形成工程で、前記受光部の受光領域上に配置される領域を前記複層配線層に含まれる少なくとも1つの膜の屈折率とは異なる単一の屈折率を有する膜によって形成する、
ことを特徴とする固体撮像素子の製造方法。
A multi-layer wiring layer including a semiconductor substrate on which a light-receiving portion for performing photoelectric conversion is formed; a plurality of wiring films and an interlayer insulating film stacked on a surface of the semiconductor substrate facing the light-receiving portion; and the multi-layer wiring layer A method of manufacturing a solid-state imaging device having an upper layer stacked on an upper layer of
In the step of forming the multilayer wiring layer, the region disposed on the light receiving region of the light receiving unit is a film having a single refractive index different from the refractive index of at least one film included in the multilayer wiring layer. Form,
A method for manufacturing a solid-state imaging device.
前記複層配線層の形成工程で、前記複層配線層に含まれる少なくとも1つの膜を形成する際に、前記受光部の受光領域に対応する領域に開口を有するパターンに形成することを特徴とする請求項10記載の固体撮像素子の製造方法。   In forming the multilayer wiring layer, when forming at least one film included in the multilayer wiring layer, the multilayer wiring layer is formed in a pattern having an opening in a region corresponding to a light receiving region of the light receiving unit. The manufacturing method of the solid-state image sensor of Claim 10. 前記複層配線層の形成工程で、前記複層配線層を積層形成した後、前記受光部の受光領域に対応する領域に前記複層配線層を貫通する開口凹部を形成し、前記開口凹部内に単一の屈折率を有する膜を埋め込むことを特徴とする請求項10記載の固体撮像素子の製造方法。   In the formation step of the multilayer wiring layer, after the multilayer wiring layer is laminated and formed, an opening recess that penetrates the multilayer wiring layer is formed in a region corresponding to the light receiving region of the light receiving unit, and the inside of the opening recess The method for manufacturing a solid-state imaging device according to claim 10, wherein a film having a single refractive index is embedded in the film. 前記複層配線層に含まれる少なくとも1つの膜には、配線膜の拡散を防止する拡散防止膜を含むことを特徴とする請求項10記載の固体撮像素子の製造方法。   11. The method for manufacturing a solid-state imaging device according to claim 10, wherein the at least one film included in the multilayer wiring layer includes a diffusion preventing film for preventing diffusion of the wiring film. 前記単一の屈折率を有する膜はシリコン酸化膜よりなることを特徴とする請求項10記載の固体撮像素子の製造方法。   11. The method of manufacturing a solid-state imaging device according to claim 10, wherein the film having a single refractive index is made of a silicon oxide film. 前記配線膜がCu膜よりなり、前記拡散防止膜がSiC膜よりなることを特徴とする請求項13記載の固体撮像素子の製造方法。   14. The method of manufacturing a solid-state imaging device according to claim 13, wherein the wiring film is made of a Cu film, and the diffusion prevention film is made of a SiC film.
JP2004125152A 2004-04-21 2004-04-21 Solid-state imaging device and method of manufacturing the same Pending JP2005311015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004125152A JP2005311015A (en) 2004-04-21 2004-04-21 Solid-state imaging device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004125152A JP2005311015A (en) 2004-04-21 2004-04-21 Solid-state imaging device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005311015A true JP2005311015A (en) 2005-11-04

Family

ID=35439438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004125152A Pending JP2005311015A (en) 2004-04-21 2004-04-21 Solid-state imaging device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005311015A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1962346A2 (en) 2007-02-23 2008-08-27 Canon Kabushiki Kaisha Photoelectric conversion device and method of manufacturing the same
JP2009111059A (en) * 2007-10-29 2009-05-21 Toshiba Corp Semiconductor device and its manufacturing method
JP2010177391A (en) * 2009-01-29 2010-08-12 Sony Corp Solid-state image pickup apparatus, electronic apparatus, and method of manufacturing the solid-state image pickup apparatus
WO2011077709A1 (en) 2009-12-26 2011-06-30 Canon Kabushiki Kaisha Solid-state image pickup device and image pickup system
US8330828B2 (en) 2009-02-24 2012-12-11 Canon Kabushiki Kaisha Device and imaging system
US8508010B2 (en) 2007-12-28 2013-08-13 Sony Corporation Solid-state imaging device, method of manufacturing the same, and camera and electronic apparatus using the same
JP2016051714A (en) * 2014-08-28 2016-04-11 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1962346A2 (en) 2007-02-23 2008-08-27 Canon Kabushiki Kaisha Photoelectric conversion device and method of manufacturing the same
JP2009111059A (en) * 2007-10-29 2009-05-21 Toshiba Corp Semiconductor device and its manufacturing method
US8053268B2 (en) 2007-10-29 2011-11-08 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US8508010B2 (en) 2007-12-28 2013-08-13 Sony Corporation Solid-state imaging device, method of manufacturing the same, and camera and electronic apparatus using the same
JP2010177391A (en) * 2009-01-29 2010-08-12 Sony Corp Solid-state image pickup apparatus, electronic apparatus, and method of manufacturing the solid-state image pickup apparatus
US8330828B2 (en) 2009-02-24 2012-12-11 Canon Kabushiki Kaisha Device and imaging system
WO2011077709A1 (en) 2009-12-26 2011-06-30 Canon Kabushiki Kaisha Solid-state image pickup device and image pickup system
US8912578B2 (en) 2009-12-26 2014-12-16 Canon Kabushiki Kaisha Solid-state image pickup device and image pickup system
JP2016051714A (en) * 2014-08-28 2016-04-11 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP4436326B2 (en) CMOS image sensor
KR100976014B1 (en) Solid-state imaging device, solid-state imaging apparatus and methods for manufacturing the same
US9437635B2 (en) Solid-state image sensor, method of manufacturing the same and camera
JP4873001B2 (en) Solid-state imaging device and manufacturing method thereof, electronic apparatus, and semiconductor device
JP5288823B2 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
CN107482028B (en) Image sensor structure for reducing crosstalk and improving quantum efficiency
KR101438268B1 (en) Grids in backside illumination image sensor chips and methods for forming the same
US20080079106A1 (en) Solid-state imaging device
JP2008192951A (en) Solid state imaging apparatus and manufacturing method thereof
JP5120396B2 (en) Solid-state imaging device and manufacturing method thereof
KR20140068951A (en) Solid-state image pickup device, method for making solid-state image pickup device, and electronic device
WO2010065091A1 (en) Optical waveguide structures for an image sensor
KR20130088705A (en) Methods and apparatus for an improved reflectivity optical grid for image sensors
JP6083572B2 (en) Solid-state imaging device and manufacturing method thereof
JP2006191000A (en) Photoelectric converter
KR100963141B1 (en) Photoelectric conversion device and method of manufacturing the same
JP5948783B2 (en) Solid-state imaging device and electronic device
JP2009194145A (en) Solid-state image sensing element and manufacturing method therefor
JP5987275B2 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP2005311015A (en) Solid-state imaging device and method of manufacturing the same
JP2017162925A (en) Method for manufacturing imaging device
JP2012204387A (en) Solid state imaging device and manufacturing method of the same
JP4725092B2 (en) Solid-state imaging device and manufacturing method thereof
JP7194918B2 (en) Solid-state image sensor
JP2005317839A (en) Element provided with electrode pad