JP2005310823A - Thermophotovoltaic power generation device - Google Patents

Thermophotovoltaic power generation device Download PDF

Info

Publication number
JP2005310823A
JP2005310823A JP2004121714A JP2004121714A JP2005310823A JP 2005310823 A JP2005310823 A JP 2005310823A JP 2004121714 A JP2004121714 A JP 2004121714A JP 2004121714 A JP2004121714 A JP 2004121714A JP 2005310823 A JP2005310823 A JP 2005310823A
Authority
JP
Japan
Prior art keywords
emitter
combustion chamber
combustion
power generation
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004121714A
Other languages
Japanese (ja)
Inventor
Akinori Sato
彰倫 佐藤
Kiyohito Murata
清仁 村田
Tomokazu Iida
智一 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004121714A priority Critical patent/JP2005310823A/en
Publication of JP2005310823A publication Critical patent/JP2005310823A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a thermophotovoltaic power generation device, having high combustion efficiency and high power generation efficiency, even if the combustion chamber is small in volume. <P>SOLUTION: The thermophotovoltaic power generation device has an emitter 5 for radiating infrared light by heating at a high temperature, a plurality of photocells 6 arranged adjacently by making the light reception surface to face one surface of the emitter 5, a first combustion chamber 3 for generating combustion gas for heating one surface of the emitter 5, and a channel 14 for guiding the combustion gas generated in the first combustion chamber 3 to one surface of the emitter 5. A space is provided among a plurality of photocells 6, by forming one surface of the emitter 5 in a dome shape for composing a second combustion chamber 4, and non-burned content in the combustion gas generated in the first combustion chamber 3 is burned in the second combustion chamber 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高熱源体から放射される赤外光を電気エネルギーに変換して出力するための、熱光発電装置に関する。   The present invention relates to a thermophotoelectric generator for converting infrared light emitted from a high heat source into electrical energy and outputting the same.

熱光発電装置(Thermophotovoltaic−System)は、エミッタと呼ばれる物体を高温に熱することによって主に赤外光を発生させ、これを光電池で受光し電気エネルギーとして取り出す発電装置である。この装置では、エミッタの加熱温度を調節することによって、光電池の高感度領域に対応したスペクトルの放射光を生成することが可能であり、それによって高いエネルギー変換効率、即ち発電効率を期待することができる。また、可動部を有さないことから、低騒音、低振動の装置を実現することが可能であり、高寿命、分散型の発電装置として将来が期待されている。   A thermophotovoltaic power generation device (thermophotovoltaic-system) is a power generation device that mainly generates infrared light by heating an object called an emitter to a high temperature, receives the light with a photovoltaic cell, and extracts it as electric energy. In this apparatus, by adjusting the heating temperature of the emitter, it is possible to generate radiation with a spectrum corresponding to the high sensitivity region of the photovoltaic cell, thereby expecting high energy conversion efficiency, that is, power generation efficiency. it can. In addition, since there is no moving part, it is possible to realize a low noise and low vibration device, and the future is expected as a long-life, distributed power generation device.

現在開発されている熱光発電装置は、高温の燃焼ガスによって加熱されるエミッタの発光面の周りに多数の光電池セルを配置した構造を有する。この場合、装置の発電効率を上げるためには、燃料の燃焼エネルギーを効率良くエミッタに伝達しエミッタ温度を高温とすることが必要である。そのためには、エミッタの直前で高温の燃焼反応を起こすことが望ましいが、その場合、完全燃焼を起こすためにエミッタと光電池セル間に充分な容積の燃焼室を確保しなければならない。その結果、エミッタと光電池セルとの距離が大きくなりエミッタからの放射光が光電池セルに効率よく伝達されず、外部に熱として漏洩するものが多くなって装置の発電効率を低下させる問題がある。   The currently developed thermophotoelectric generator has a structure in which a large number of photovoltaic cells are arranged around the light emitting surface of an emitter heated by a high-temperature combustion gas. In this case, in order to increase the power generation efficiency of the apparatus, it is necessary to efficiently transmit the combustion energy of the fuel to the emitter and raise the emitter temperature. For this purpose, it is desirable to cause a high-temperature combustion reaction immediately before the emitter. In that case, a sufficient volume combustion chamber must be secured between the emitter and the photovoltaic cell in order to cause complete combustion. As a result, there is a problem in that the distance between the emitter and the photovoltaic cell is increased, and the emitted light from the emitter is not efficiently transmitted to the photovoltaic cell, and many leaks to the outside as heat, reducing the power generation efficiency of the apparatus.

この問題を解決するために、エミッタと光電池セル間とは別の部分に燃焼室を設け、そこで燃焼し高温となったガスをエミッタの発光面に供給する構成とすることにより、エミッタと光電池セル間の距離を可能な限り小さくして放射光の漏洩を防止することが行われている。ところがこの場合は、エミッタとは離れた燃焼室で高温の燃焼反応を起こすために、燃焼室からの放熱が大きく、燃焼エネルギーが効率よくエミッタに伝達されない。   In order to solve this problem, a structure is provided in which a combustion chamber is provided in a part different from between the emitter and the photovoltaic cell, and gas that has been burned and heated to the emitter's light emitting surface is supplied to the emitter and the photovoltaic cell. The distance between them is made as small as possible to prevent radiation leakage. However, in this case, since a high-temperature combustion reaction occurs in a combustion chamber that is away from the emitter, heat radiation from the combustion chamber is large, and combustion energy is not efficiently transmitted to the emitter.

本発明に関連する技術は、以下の特許文献1〜5に記載されている。
特開2000−106001号公報 特開2000−106452号公報 特開2002−315371号公報 特開2002−319693号公報 特開2003−46106号公報
Techniques related to the present invention are described in the following Patent Documents 1 to 5.
JP 2000-106001 A JP 2000-106452 A JP 2002-315371 A Japanese Patent Laid-Open No. 2002-319693 JP 2003-46106 A

本発明は、従来の熱光発電装置における上記の問題を解決するためになされたもので、燃料の完全燃焼が可能でしかも燃焼室からの放熱量を小さく維持しかつ放射光の漏洩を効果的に防止することが可能な、新規な構造の熱光発電装置を提供することを課題とする。   The present invention has been made in order to solve the above-described problems in the conventional thermophotovoltaic power generation apparatus, and enables complete combustion of the fuel while maintaining a small amount of heat released from the combustion chamber and effectively leaking radiant light. It is an object of the present invention to provide a thermoluminescent power generation device having a novel structure that can be prevented.

本発明の第1の熱光発電装置は、上記課題を解決するために、高温に加熱されることにより赤外光を放射するエミッタと、前記エミッタの一表面にその受光面を対向させて近接配置した複数の光電池セルと、前記エミッタの前記一表面を加熱するための燃焼ガスを生成する第1の燃焼室と、前記第1の燃焼室で生成された前記燃焼ガスを前記エミッタの一表面に導くための流路とを備える熱光発電装置において、前記エミッタの前記一表面をドーム状に形成することにより前記複数の光電池セルとの間にスペースを設けて第2の燃焼室を構成し、前記第1の燃焼室で生成された燃焼ガス中の未燃焼分を該第2の燃焼室で燃焼させるように構成する。   In order to solve the above problems, a first thermophotovoltaic power generator of the present invention has an emitter that emits infrared light when heated to a high temperature, and a light receiving surface facing the one surface of the emitter. A plurality of photovoltaic cells arranged; a first combustion chamber for generating combustion gas for heating the one surface of the emitter; and the combustion gas generated in the first combustion chamber for supplying one surface of the emitter In the thermophotovoltaic power generation device including the flow path for guiding the first to the second, a space is provided between the plurality of photovoltaic cells to form a second combustion chamber by forming the one surface of the emitter into a dome shape. The unburned portion in the combustion gas generated in the first combustion chamber is combusted in the second combustion chamber.

上記装置によれば、エミッタの燃焼ガスによって加熱される表面、即ち発光面が光電池セルを囲むようにドーム状に形成されているので、エミッタ発光面と光電池セル間にスペースが形成され、このスペースが第2の燃焼室(副燃焼室)として動作して第1の燃焼室(主燃焼室)で未燃焼分を完全に燃焼させる。そのため、第1の燃焼室において燃料の完全燃焼を達成する必要は無く、燃焼量を少なくして燃焼ガスの温度を下げることができる。これによって、第1の燃焼室からの放熱量が少なくなる。なお、エミッタの発光面をドーム状として光電池セルの受光面を包囲することにより、エミッタからの放射光は光電池セルの受光面に集光し、光電池セル以外の部分にもれることが少なくなり、装置の発電効率が向上する。   According to the above apparatus, since the surface heated by the combustion gas of the emitter, that is, the light emitting surface is formed in a dome shape so as to surround the photovoltaic cell, a space is formed between the emitter emitting surface and the photovoltaic cell. Operates as a second combustion chamber (sub-combustion chamber) to completely burn the unburned portion in the first combustion chamber (main combustion chamber). Therefore, it is not necessary to achieve complete combustion of the fuel in the first combustion chamber, and the temperature of the combustion gas can be lowered by reducing the combustion amount. This reduces the amount of heat released from the first combustion chamber. In addition, by making the light emitting surface of the emitter a dome shape and surrounding the light receiving surface of the photovoltaic cell, the emitted light from the emitter is collected on the light receiving surface of the photovoltaic cell, and is less likely to leak to parts other than the photovoltaic cell, The power generation efficiency of the device is improved.

第2の燃焼室では、第1の燃焼室で高温となった燃焼ガスをさらに燃焼するため、第2の燃焼室、すなわちエミッタの直前でガスが最高温度に達する。従って、エミッタ温度が上昇し光電池セルへの放射量が増加する。なお、熱放射における放射量は絶対温度の4乗に比例するため、温度のわずかな上昇であってもそれが放射量の増加に与える影響は大きい。さらにエミッタが高温となることによって、放射光スペクトルのピーク波長は短波長側へシフトするが、光電池セルは短波長側で発電効率が高いので、放射スペクトルのうち光電変換に有効な波長の割合、即ち有効波長率が向上する。その結果、装置の発電効率が向上する。   In the second combustion chamber, the combustion gas having a high temperature in the first combustion chamber is further burned, so that the gas reaches the maximum temperature immediately before the second combustion chamber, that is, the emitter. Therefore, the emitter temperature rises and the amount of radiation to the photovoltaic cell increases. In addition, since the radiation amount in thermal radiation is proportional to the fourth power of the absolute temperature, even a slight increase in temperature has a great influence on the radiation amount increase. Furthermore, when the emitter becomes high temperature, the peak wavelength of the emitted light spectrum shifts to the short wavelength side, but since the photovoltaic cell has high power generation efficiency on the short wavelength side, the ratio of the wavelength effective for photoelectric conversion in the emission spectrum, That is, the effective wavelength ratio is improved. As a result, the power generation efficiency of the device is improved.

本発明では、上記第1の熱光発電装置において、第2の燃焼室内で燃焼ガスによるスワール流が形成されるように、第1の燃焼室から第2の燃焼室に向かう燃焼ガスの流路を第2の燃焼室への流入面に対して角度を設けて形成している。   In the present invention, in the first thermoelectric generator, the flow path of the combustion gas from the first combustion chamber toward the second combustion chamber so that a swirl flow is formed by the combustion gas in the second combustion chamber. Is formed at an angle with respect to the inflow surface into the second combustion chamber.

第2の燃焼室内でスワール流を起こすことにより、燃料と空気の混合が促進し燃焼反応が起こりやすくなる。そのため、燃焼ガス温度がさらに高温となって装置の発電効率が向上する。また、燃焼室の容積が小さくても燃焼反応が促進されるので、第2の燃焼室を小さくして、装置を小型化することが可能である。さらに、第2の燃焼室を小さくすることによって燃焼室からの放熱量が少なくなるので、エミッタの加熱効率が上昇しエミッタがさらに高温となる効果がある。   By causing a swirl flow in the second combustion chamber, the mixing of fuel and air is promoted and a combustion reaction is likely to occur. Therefore, the combustion gas temperature is further increased, and the power generation efficiency of the apparatus is improved. In addition, since the combustion reaction is promoted even if the volume of the combustion chamber is small, it is possible to reduce the size of the apparatus by reducing the size of the second combustion chamber. Furthermore, since the amount of heat released from the combustion chamber is reduced by reducing the size of the second combustion chamber, there is an effect that the heating efficiency of the emitter is increased and the emitter is further heated.

また、スワール流を起こすことにより、燃焼ガスの流れが安定してエミッタ温度分布予測が容易となる効果もある。   Further, by causing the swirl flow, there is an effect that the flow of the combustion gas is stabilized and the emitter temperature distribution can be easily predicted.

本発明では、上記第1の装置において、さらに、エミッタの前記一表面以外の表面に対向して反射板を設けることにより、エミッタの光電池セル方向以外へ放射される光をこの反射板によってエミッタ方向に反射し、エミッタにより回収させる。これによってエミッタはさらに加熱され高温となるので、装置の発電効率が向上する。   According to the present invention, in the first device, a reflector is provided opposite to the surface other than the one surface of the emitter, so that light radiated in a direction other than the direction of the photovoltaic cell of the emitter is emitted by the reflector in the emitter direction. And is collected by the emitter. This further heats the emitter to a high temperature, improving the power generation efficiency of the device.

本発明の第2の熱光発電装置は、高温に加熱されることにより赤外光を放射する柱状のエミッタと、前記柱状エミッタの軸方向の側壁に受光面を対向させかつ前記側壁を取り囲むように配置された複数の光電池セルと、前記エミッタの前記側壁を加熱するための燃焼ガスを生成する第1の燃焼室と、前記第1の燃焼室で生成された前記燃焼ガスを前記エミッタの側壁に導くための流路とを備える熱光発電装置において、前記柱状エミッタの側壁と前記複数の光電池セル間にスペースを設けて第2の燃焼室を構成し、前記第1の燃焼室で生成された燃焼ガス中の未燃焼分を該第2の燃焼室で燃焼させる構成を取っている。   The second thermophotovoltaic power generator of the present invention has a columnar emitter that emits infrared light when heated to a high temperature, a light receiving surface facing the side wall in the axial direction of the columnar emitter, and surrounds the side wall. A plurality of photovoltaic cells, a first combustion chamber for generating a combustion gas for heating the sidewall of the emitter, and the combustion gas generated in the first combustion chamber for the sidewall of the emitter In the thermophotovoltaic power generation device comprising a flow path for leading to the first and second photovoltaic cells, a space is provided between a side wall of the columnar emitter and the plurality of photovoltaic cells to form a second combustion chamber, which is generated in the first combustion chamber. In this case, unburned components in the combustion gas are combusted in the second combustion chamber.

また、上記第2の熱光発電装置において、第2の燃焼室内で前記柱状エミッタ側壁を取り囲む燃焼ガスのスワール流が形成されるように、前記燃焼ガスの流路を前記第2の燃焼室への流入面に対して角度を設けて形成している。   In the second thermoelectric generator, the flow path of the combustion gas to the second combustion chamber is formed so that a swirl flow of the combustion gas surrounding the columnar emitter side wall is formed in the second combustion chamber. An angle is provided with respect to the inflow surface.

上記構成により、第1の熱光発電装置について説明したのと同様の効果を有する熱光発電装置が得られる。   With the above configuration, a thermophotoelectric generator having the same effect as described for the first thermophotoelectric generator can be obtained.

[実施例1]
図1は、本発明の実施例1にかかる熱光発電装置の概略構成を示す断面図であり、図2は図1に示す主燃焼室および副燃焼室の構造を示す要部断面図である。本実施例の熱光発電装置は、断熱材製の壁面1、2で構成される主燃焼室(第1の燃焼室)3と、主燃焼室3で燃焼したガスを再燃焼させる副燃焼室(第2の燃焼室)4を備えている。副燃焼室4は、選択波長発光エミッタ5の底面をドーム型に構成し、その下方に光電池モジュール6を配置して構成されている。光電池モジュール6は周知のように、複数の光電池セルを直列あるいは直並列に接続して構成されている。7は石英等で構成されたフィルタであって、エミッタ5の放射光のうち、光電池セルでの光電変換に寄与しない波長成分をカットして光電池セルの不必要な加熱を防止するためのものである。
[Example 1]
FIG. 1 is a cross-sectional view showing a schematic configuration of a thermophotovoltaic power generator according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view of a main part showing structures of a main combustion chamber and a sub-combustion chamber shown in FIG. . The thermophotovoltaic power generator according to this embodiment includes a main combustion chamber (first combustion chamber) 3 composed of wall surfaces 1 and 2 made of heat insulating material, and a sub-combustion chamber for recombusting the gas burned in the main combustion chamber 3. (Second combustion chamber) 4 is provided. The sub-combustion chamber 4 is configured by forming the bottom surface of the selective wavelength light emitting emitter 5 in a dome shape and disposing the photovoltaic module 6 below it. As is well known, the photovoltaic module 6 is configured by connecting a plurality of photovoltaic cells in series or in series-parallel. A filter 7 is made of quartz or the like, and is used to prevent unnecessary heating of the photovoltaic cell by cutting the wavelength component that does not contribute to photoelectric conversion in the photovoltaic cell from the emitted light of the emitter 5. is there.

8は光電池モジュール6の冷却ブロックであり、空気導入口9から導入された外気によって冷却され、光電池モジュール6を冷却する。エミッタ5は、SiCあるいはYb23等を材料とする多孔性セラミックで構成され、例えば1500℃程度に加熱されることによって赤外光を効率よく発光する。副燃焼室4で燃焼したガスは、多孔性セラミックであるエミッタ5を通過して熱交換器10に導入され、その後排気口11より装置外部に排出される。 Reference numeral 8 denotes a cooling block for the photovoltaic module 6, which is cooled by the outside air introduced from the air inlet 9 and cools the photovoltaic module 6. The emitter 5 is made of a porous ceramic made of SiC, Yb 2 O 3 or the like, and emits infrared light efficiently by being heated to about 1500 ° C., for example. The gas burned in the auxiliary combustion chamber 4 passes through the emitter 5 which is a porous ceramic, is introduced into the heat exchanger 10, and is then discharged from the exhaust port 11 to the outside of the apparatus.

12は空気と燃料の混合室、13は燃料パイプである。空気導入口9から導入された空気は、主燃焼室4の側壁の外周を介して熱交換器10に導入され、燃焼ガスによって発生する熱を吸収することによって加熱された後、混合室12に送られ、ここで燃料と混合されて主燃焼室3に供給され燃料を燃焼させる。   12 is a mixing chamber of air and fuel, and 13 is a fuel pipe. The air introduced from the air inlet 9 is introduced into the heat exchanger 10 through the outer periphery of the side wall of the main combustion chamber 4 and heated by absorbing the heat generated by the combustion gas, and then into the mixing chamber 12. It is sent here, mixed with fuel and supplied to the main combustion chamber 3 to burn the fuel.

このように、本実施例では、主燃焼室3に対してエミッタ直前に副燃焼室4を設けた2段燃焼の構造を取り、主燃焼室3での未燃焼分を副燃焼室4で完全燃焼させエミッタを高温の燃焼ガスで効率よく加熱するようにしている。そのため、主燃焼室3では完全燃焼させる必要が無く、燃焼温度を下げて燃焼させることができる。従って、主燃焼室3からの放熱量は大きく減少する。副燃焼室4で完全燃焼し高温となった燃焼ガスは、多孔質(ポーラス)体であるエミッタ5を通過する間に熱伝導によりエミッタ5を加熱し、高温とする。これによって、エミッタ5は赤外光を放射すようになる。エミッタ5からの赤外光は、光電池モジュール6によって受光されて電気エネルギーに変換される。   As described above, in this embodiment, a two-stage combustion structure is provided in which the auxiliary combustion chamber 4 is provided immediately before the emitter with respect to the main combustion chamber 3, and the unburned portion in the main combustion chamber 3 is completely removed in the auxiliary combustion chamber 4. It is made to burn and the emitter is efficiently heated with a high-temperature combustion gas. Therefore, it is not necessary to perform complete combustion in the main combustion chamber 3, and combustion can be performed at a lower combustion temperature. Accordingly, the amount of heat released from the main combustion chamber 3 is greatly reduced. The combustion gas that has been completely burned in the auxiliary combustion chamber 4 and has reached a high temperature heats the emitter 5 by heat conduction while passing through the emitter 5 that is a porous body, and raises the temperature. As a result, the emitter 5 emits infrared light. Infrared light from the emitter 5 is received by the photovoltaic module 6 and converted into electrical energy.

エミッタ5は、燃焼ガスの熱エネルギーをできる限り吸収するために、その容積は大きいほうが良い。図1の装置では、エミッタ5は2段に分割された構造をとっている。これは、エミッタを分割することによってエミッタ材を介した熱伝導を一旦遮断することと、下段のエミッタで生じた発光を上段のエミッタで反射させ回収することによって、エミッタをさらに高温とするためである。   The emitter 5 should have a large volume in order to absorb the thermal energy of the combustion gas as much as possible. In the apparatus of FIG. 1, the emitter 5 has a structure divided into two stages. This is because heat conduction through the emitter material is once interrupted by dividing the emitter, and light emitted from the lower emitter is reflected and recovered by the upper emitter, thereby raising the temperature of the emitter further. is there.

本実施例では、さらに、図2に示すように、主燃焼室3から副燃焼室4への燃焼ガスの流路14に角度を設けることにより、流入する燃焼ガスにより副燃焼室4内にスワール流を起こすことを特徴としている。このスワール流によって、副燃焼室4内で燃料と空気の混合が促進し、完全燃焼が起こりやすくなる。そのため、主燃焼室3および副燃焼室4のスペースをさらに小さくすることができ、装置全体を小型、軽量化することができる。また、スワール流を起こすことにより燃焼ガスの流れが安定するので、エミッタの温度分布予測が容易となる。   In the present embodiment, as shown in FIG. 2, the combustion gas flow path 14 from the main combustion chamber 3 to the sub-combustion chamber 4 is provided with an angle, so that the swirl is introduced into the sub-combustion chamber 4 by the inflowing combustion gas. It is characterized by causing a flow. This swirl flow promotes mixing of fuel and air in the auxiliary combustion chamber 4 and facilitates complete combustion. Therefore, the space of the main combustion chamber 3 and the auxiliary combustion chamber 4 can be further reduced, and the entire apparatus can be reduced in size and weight. Further, since the flow of the combustion gas is stabilized by causing the swirl flow, the temperature distribution of the emitter can be easily predicted.

[実施例2]
図3は、本発明の実施例2にかかる熱光発電装置の概略構成を示す断面図である。本実施例の装置は、図1および2に示す熱光発電装置において、エミッタ50の光電池モジュール6と対向する表面以外の表面51に対向する断熱性筐体部材16に反射面17を設け、高温に加熱されたエミッタ50から放射される赤外光のうち、光電池モジュール6方向以外に放射される光を反射し再びエミッタ50に戻すようにしたことを特徴としている。なお、18は石英ガラスであって、燃焼ガスと反射面17を隔離し、反射面への熱伝達を防ぎ反射面17を保護するために設けられている。
[Example 2]
FIG. 3 is a cross-sectional view illustrating a schematic configuration of the thermophotovoltaic power generator according to the second embodiment of the present invention. The apparatus of the present embodiment is the thermophotovoltaic power generation apparatus shown in FIGS. 1 and 2, in which the reflective surface 17 is provided on the heat insulating casing member 16 facing the surface 51 other than the surface facing the photovoltaic module 6 of the emitter 50. Of the infrared light emitted from the emitter 50 heated to, the light emitted in the direction other than the direction of the photovoltaic module 6 is reflected and returned to the emitter 50 again. In addition, 18 is quartz glass, and is provided in order to isolate combustion gas and the reflective surface 17, and to prevent the heat transfer to a reflective surface and to protect the reflective surface 17.

エミッタ50は、反射面17で反射された光を回収することにより、さらに加熱され高温となるため、光電池モジュール6方向への放射量が増加すると共に、発光波長が短波長側へシフトするので光電変換に寄与する有効波長率が向上して発電効率が改善される効果がある。   The emitter 50 is further heated to a high temperature by collecting the light reflected by the reflecting surface 17, so that the amount of radiation in the direction of the photovoltaic module 6 increases and the emission wavelength shifts to the short wavelength side. There is an effect that the effective wavelength ratio contributing to the conversion is improved and the power generation efficiency is improved.

また、本実施例においても、主燃焼室3から副燃焼室4への燃焼ガスの流路に角度を持たせることにより、副燃焼室4内にてスワール流を起こし燃焼を促進できることは勿論である。   Also in this embodiment, by providing an angle in the flow path of the combustion gas from the main combustion chamber 3 to the sub-combustion chamber 4, it is possible to cause a swirl flow in the sub-combustion chamber 4 and promote combustion. is there.

なお、図3において、図1および2に示したものと同じ符号は、同じかあるいは類似の構成部材を示すので、その重複した説明は省略する。   In FIG. 3, the same reference numerals as those shown in FIGS. 1 and 2 indicate the same or similar constituent members, and therefore redundant description thereof is omitted.

[実施例3]
図4は、本発明の実施例3にかかる熱光発電装置の概略構成を示す断面図である。本実施例では、装置の底部に主燃焼室を設け、筒状エミッタの側面に副燃焼室を設けることによって、全体として縦長の構造とした熱光発電装置を提供する。
[Example 3]
FIG. 4 is a cross-sectional view illustrating a schematic configuration of the thermophotovoltaic power generator according to Embodiment 3 of the present invention. In the present embodiment, a thermo-electric power generation device having a vertically long structure as a whole is provided by providing a main combustion chamber at the bottom of the device and providing a sub-combustion chamber on the side surface of the cylindrical emitter.

図4において、20は断熱性の部材21で構成した主燃焼室、22は燃料の供給パイプ、23は空気燃料混合室である。24は柱状の選択波長発光エミッタ、25は石英フィルタ、26は光電池モジュール、27は光電池モジュール26の冷却ブロック、さらに28はエミッタ26の柱状側面と光電池モジュール26とで構成した副燃焼室である。本実施例では、柱状エミッタ24の側面をドーム状、すなわち凹面状に形成して光電池モジュール26との間にスペースを構成し、副燃焼室28を構成している。   In FIG. 4, 20 is a main combustion chamber composed of a heat insulating member 21, 22 is a fuel supply pipe, and 23 is an air fuel mixing chamber. Reference numeral 24 denotes a columnar selective wavelength light emitting emitter, 25 denotes a quartz filter, 26 denotes a photovoltaic module, 27 denotes a cooling block of the photovoltaic module 26, and 28 denotes a sub-combustion chamber constituted by the columnar side surface of the emitter 26 and the photovoltaic module 26. In the present embodiment, the side surface of the columnar emitter 24 is formed in a dome shape, that is, a concave shape, and a space is formed between the columnar emitter 24 and the photovoltaic cell module 26, thereby forming the auxiliary combustion chamber 28.

選択波長発光エミッタ24はSiC、Yb23等を材料とする多孔性セラミックであって、副燃焼室28で完全燃焼した燃焼ガスを通過させ、その間に熱伝導によって燃焼ガスの熱エネルギーを吸収して自身が加熱される。なお、燃焼ガスは開口29を介して熱交換器30に導入され、ここで空気配管31を経由して導入された空気との間で熱交換を行って冷却され、排出口32より装置外部に輩出される。 The selective wavelength light emitting emitter 24 is a porous ceramic made of SiC, Yb 2 O 3 or the like, and allows the combustion gas completely burned in the sub-combustion chamber 28 to pass through and absorbs the heat energy of the combustion gas by heat conduction during that time Then it heats itself. The combustion gas is introduced into the heat exchanger 30 through the opening 29, where it is cooled by exchanging heat with the air introduced through the air pipe 31, and is discharged from the discharge port 32 to the outside of the apparatus. Produced.

なお、図4では明示していないが、本実施例においても、主燃焼室20から副燃焼室28への燃焼ガスの流路33は、副燃焼室28への流入面に対して角度を付けて形成されており、それによって副燃焼室28内でスワール流34を発生させることが行われる。このスワール流34によって副燃焼室28内で燃焼が促進され、さらに燃焼ガスの流れが安定することによりエミッタの温度分布予測が容易となる効果がある。また、副燃焼室28の容積を小さくし、装置の小型、軽量化を図ることができる。   Although not clearly shown in FIG. 4, also in this embodiment, the combustion gas flow path 33 from the main combustion chamber 20 to the sub-combustion chamber 28 is angled with respect to the inflow surface to the sub-combustion chamber 28. As a result, a swirl flow 34 is generated in the auxiliary combustion chamber 28. Combustion is promoted in the sub-combustion chamber 28 by the swirl flow 34, and the flow of the combustion gas is stabilized, so that the emitter temperature distribution can be easily predicted. Further, the volume of the auxiliary combustion chamber 28 can be reduced, and the apparatus can be reduced in size and weight.

以上のように、本発明の熱光発電装置では、光電池セルに対向するエミッタの発光面をドーム状としてエミッタ周辺から放射光が光電池セル以外の部分に洩れることを防ぎながら、エミッタと光電池セル間に副燃焼室を確保し、主燃焼室で未燃焼の燃料をエミッタ直前で完全燃焼させる構成を取っている。これによって、燃料によるエミッタの加熱効率が向上し、さらにエミッタからの放射光の光電池セル方向以外への漏洩も少なくなるので、装置の発電効率が大幅に向上する。   As described above, in the thermophotovoltaic power generator of the present invention, the light emitting surface of the emitter facing the photovoltaic cell is formed in a dome shape to prevent the radiated light from leaking from the periphery of the emitter to a portion other than the photovoltaic cell, and between the emitter and the photovoltaic cell. The sub-combustion chamber is secured, and unburned fuel is completely burned immediately before the emitter in the main combustion chamber. Thereby, the heating efficiency of the emitter by the fuel is improved, and further, the leakage of the emitted light from the emitter to the direction other than the direction of the photovoltaic cell is reduced, so that the power generation efficiency of the apparatus is greatly improved.

本発明の実施例1にかかる熱光発電装置の概略構成を示す断面図。Sectional drawing which shows schematic structure of the thermophotovoltaic power generating apparatus concerning Example 1 of this invention. 図1に示す装置の要部の構造を示す断面図。Sectional drawing which shows the structure of the principal part of the apparatus shown in FIG. 本発明の実施例2にかかる熱光発電装置の概略構成を示す断面図。Sectional drawing which shows schematic structure of the thermophotovoltaic power generating apparatus concerning Example 2 of this invention. 本発明の実施例3にかかる熱光発電装置の概略構成を示す断面図。Sectional drawing which shows schematic structure of the thermophotovoltaic power generating apparatus concerning Example 3 of this invention.

符号の説明Explanation of symbols

1、2…断熱材製壁面
3…主燃焼室
4…副燃焼室
5…選択波長発光エミッタ
6…光電池モジュール
7…石英フィルタ
8…冷却ブロック
10…熱交換器
11…排気口
14…ガス流路
DESCRIPTION OF SYMBOLS 1, 2 ... Wall surface 3 made of heat insulating material ... Main combustion chamber 4 ... Subcombustion chamber 5 ... Selected wavelength light emission emitter 6 ... Photovoltaic module 7 ... Quartz filter 8 ... Cooling block 10 ... Heat exchanger 11 ... Exhaust port 14 ... Gas flow path

Claims (5)

高温に加熱されることにより赤外光を放射するエミッタと、前記エミッタの一表面にその受光面を対向させて近接配置した複数の光電池セルと、前記エミッタの前記一表面を加熱するための燃焼ガスを生成する第1の燃焼室と、前記第1の燃焼室で生成された前記燃焼ガスを前記エミッタの一表面に導くための流路とを備える熱光発電装置において、
前記エミッタの前記一表面をドーム状に形成することにより前記複数の光電池セルとの間にスペースを設けて第2の燃焼室を構成し、前記第1の燃焼室で生成された燃焼ガス中の未燃焼分を該第2の燃焼室で燃焼させるようにしたことを特徴とする、熱光発電装置。
An emitter that emits infrared light by being heated to a high temperature, a plurality of photovoltaic cells that are arranged close to each other with its light-receiving surface facing one surface of the emitter, and combustion for heating the one surface of the emitter In a thermophotovoltaic power generation device comprising: a first combustion chamber for generating gas; and a flow path for guiding the combustion gas generated in the first combustion chamber to one surface of the emitter.
By forming the one surface of the emitter into a dome shape, a space is provided between the plurality of photovoltaic cells to form a second combustion chamber, and in the combustion gas generated in the first combustion chamber An unburned portion is combusted in the second combustion chamber.
請求項1に記載の熱光発電装置において、前記第2の燃焼室内で燃焼ガスによるスワール流が形成されるように、前記燃焼ガスの流路を前記第2の燃焼室への流入面に対して角度を設けて形成したことを特徴とする、熱光発電装置。   2. The thermophotoelectric generator according to claim 1, wherein a flow path of the combustion gas is formed with respect to an inflow surface to the second combustion chamber so that a swirl flow is formed by the combustion gas in the second combustion chamber. A thermophotovoltaic power generation device characterized by being formed at an angle. 請求項1または2に記載の熱光発電装置において、前記エミッタの前記一表面以外の表面に対向して反射板が設けられていることを特徴とする、熱光発電装置。   The thermophotoelectric generator according to claim 1, wherein a reflector is provided to face a surface other than the one surface of the emitter. 高温に加熱されることにより赤外光を放射する柱状のエミッタと、前記柱状エミッタの軸方向の側壁に受光面を対向させかつ前記側壁を取り囲むように配置された複数の光電池セルと、前記エミッタの前記側壁を加熱するための燃焼ガスを生成する第1の燃焼室と、前記第1の燃焼室で生成された前記燃焼ガスを前記エミッタの側壁に導くための流路とを備える熱光発電装置において、
前記柱状エミッタの側壁と前記複数の光電池セル間にスペースを設けて第2の燃焼室を構成し、前記第1の燃焼室で生成された燃焼ガス中の未燃焼分を該第2の燃焼室で燃焼させるようにしたことを特徴とする、熱光発電装置。
A columnar emitter that emits infrared light when heated to a high temperature, a plurality of photovoltaic cells disposed so as to oppose a light receiving surface to and surround the side wall in the axial direction of the columnar emitter, and the emitter Thermoelectric power generation comprising: a first combustion chamber that generates combustion gas for heating the side wall of the first gas; and a flow path for guiding the combustion gas generated in the first combustion chamber to the side wall of the emitter In the device
A space is provided between the side wall of the columnar emitter and the plurality of photovoltaic cells to form a second combustion chamber, and unburned components in the combustion gas generated in the first combustion chamber are removed from the second combustion chamber. A thermoelectric power generator characterized by being burned in
請求項4に記載の熱光発電装置において、前記第2の燃焼室内で前記柱状エミッタ側壁を取り囲む燃焼ガスのスワール流が形成されるように、前記燃焼ガスの流路を前記第2の燃焼室への流入面に対して角度を設けて形成したことを特徴とする、熱光発電装置。   5. The thermophotoelectric generator according to claim 4, wherein the flow path of the combustion gas is formed in the second combustion chamber so that a swirl flow of the combustion gas surrounding the columnar emitter side wall is formed in the second combustion chamber. A thermophotovoltaic power generation device characterized in that it is formed at an angle with respect to the inflow surface.
JP2004121714A 2004-04-16 2004-04-16 Thermophotovoltaic power generation device Pending JP2005310823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004121714A JP2005310823A (en) 2004-04-16 2004-04-16 Thermophotovoltaic power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004121714A JP2005310823A (en) 2004-04-16 2004-04-16 Thermophotovoltaic power generation device

Publications (1)

Publication Number Publication Date
JP2005310823A true JP2005310823A (en) 2005-11-04

Family

ID=35439278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004121714A Pending JP2005310823A (en) 2004-04-16 2004-04-16 Thermophotovoltaic power generation device

Country Status (1)

Country Link
JP (1) JP2005310823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098025A1 (en) * 2013-12-24 2015-07-02 日本電気株式会社 Thermovoltaic power generation apparatus and thermovoltaic power generation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098025A1 (en) * 2013-12-24 2015-07-02 日本電気株式会社 Thermovoltaic power generation apparatus and thermovoltaic power generation method

Similar Documents

Publication Publication Date Title
US6065418A (en) Sequence of selective emitters matched to a sequence of photovoltaic collectors
US6768049B2 (en) Thermophotovoltaic electric power generating apparatus and power generating method thereof
KR101304102B1 (en) Micro-thermophotovoltaic system
JPS63316486A (en) Thermoelectric and photoelectric generation device
JP4538981B2 (en) Thermolight generator
KR101029572B1 (en) Thermophotovoltaic generator using combustion in porous media of ceramic fiber
CN103997281A (en) Secondary-power-generation thermophotovoltaic and thermoelectric co-production device
US7060891B2 (en) Thermophotovoltaic generator apparatus
US20060107995A1 (en) Thermophotovoltaic device
WO2018162408A1 (en) Hybrid solar powered stirling engine
JP2005310823A (en) Thermophotovoltaic power generation device
JP4134815B2 (en) Thermolight generator
US7781671B2 (en) Micro-combustor system for the production of electrical energy
JP2001196622A (en) Power generator
KR20190120909A (en) Thermophotovoltaic device
JP2005304250A (en) Thermophtovoltaic generator
JP2017184567A (en) Thermophotovoltaic generator and thermophotovoltaic generation system
JP2005207625A (en) Heat photovoltaic generation device
JP2005011937A (en) Thermophotovoltaic generator
KR101888036B1 (en) Thermophotovoltaic device
JP2006228821A (en) Thermophotovoltaic power generator
JP3714086B2 (en) Thermolight generator
JP2004088922A (en) Thermo-photovoltaic generator
KR102435437B1 (en) Combustor for thermophotovoltaic
CN115539950A (en) Thermophotovoltaic power generation device