JP2005310621A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005310621A
JP2005310621A JP2004127852A JP2004127852A JP2005310621A JP 2005310621 A JP2005310621 A JP 2005310621A JP 2004127852 A JP2004127852 A JP 2004127852A JP 2004127852 A JP2004127852 A JP 2004127852A JP 2005310621 A JP2005310621 A JP 2005310621A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
electrode plate
current collector
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004127852A
Other languages
Japanese (ja)
Inventor
Kunihiko Minetani
邦彦 峯谷
Tatsuya Hashimoto
達也 橋本
Takashi Yao
剛史 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004127852A priority Critical patent/JP2005310621A/en
Publication of JP2005310621A publication Critical patent/JP2005310621A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion battery having an excellent capacity recovery factor after it is over-discharged, and enhanced in the stability and reliability of itself when it is over-charged and over-discharged, wherein the thermal stability of a negative electrode is enhanced when it is over-charged, high safety and reliability is maintained when it is over-charged, and a negative electrode collector is restrained from being dissolved even when it is over-discharged. <P>SOLUTION: In this nonaqueous electrolyte secondary battery, the nonaqueous electrolyte has γ butyrolactone as a main solvent and LiBF<SB>4</SB>as a main electrolyte, and copper or a copper alloy the surface of which is coated with Cu<SB>2</SB>O is used as its negative electrode collector. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水電解液二次電池に関し、特に過充電特性と過放電特性に優れた非水電解液二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery excellent in overcharge characteristics and overdischarge characteristics.

非水電解液を用い、リチウム含有複合酸化物を正極活物質とし、黒鉛などのリチウムイオンの吸蔵放出可能な炭素質材料を負極活物質とするリチウムイオン電池は、水溶液系の二次電池に比べて高電圧でエネルギー密度が高く、近年その用途範囲が拡大し、かつ数量も急激に伸張している一方、より安価なリチウムイオン電池が望まれている。   Lithium ion batteries that use non-aqueous electrolytes, lithium-containing composite oxides as the positive electrode active material, and carbonaceous materials that can occlude and release lithium ions, such as graphite, are negative electrode active materials compared to aqueous secondary batteries. High-voltage, high energy density, recently expanded its application range, and the number is rapidly increasing, while a cheaper lithium ion battery is desired.

このリチウムイオン電池には、安全保護回路を配設する事が必要不可欠であり、この安全保護回路によって、リチウムイオン電池は、過充電、過放電から保護されているが、リチウムイオン電池材料費に占めるこの安全保護回路の割合は大きい。   It is indispensable to install a safety protection circuit for this lithium ion battery, and this safety protection circuit protects the lithium ion battery from overcharge and overdischarge. The share of this safety protection circuit is large.

また、このリチウムイオン電池の負極用集電体には、銅箔が用いられるのが通常である。これは、銅が電池内で比較的安定であり、また工業的に4μm〜20μm程度の薄膜化が可能で、しかも価格が安価で汎用性に優れるからである。しかしながら、このうち銅の化学的安定性は、他の材料に比べれば優位であるということで、電池の集電体としては十分であるとは言えない。   Moreover, it is normal that copper foil is used for the collector for negative electrodes of this lithium ion battery. This is because copper is relatively stable in the battery, can be industrially thinned to about 4 μm to 20 μm, is inexpensive, and has excellent versatility. However, among these, the chemical stability of copper is superior to other materials, so it cannot be said that it is sufficient as a current collector for a battery.

そこで、銅箔上に1μm以上のニッケル被膜またはクロム被膜をメッキ法による不導体被膜を形成する提案(例えば、特許文献1参照)や銅の水酸化物と銅の酸化物を含む複合皮膜を形成する提案(例えば、特許文献2参照)が開示されている。
特開平8−306390号公報 特開平10−94764号公報
Therefore, a proposal to form a non-conductive film by plating with a nickel film or chromium film of 1 μm or more on a copper foil (see, for example, Patent Document 1) or a composite film containing copper hydroxide and copper oxide is formed. The proposal (for example, refer patent document 2) to disclose is disclosed.
JP-A-8-306390 JP-A-10-94764

しかしながら、近年のポータブル機器の小型・軽量かつ長時間駆動が求められ、エネルギー密度の向上が必須である。これに対応するために、集電体の薄肉化は必要不可欠である。しかしながら、特許文献1に開示されている負極用集電体を用いて作製した負極板においては、不導体被膜が1μm以上必要であり、集電体の薄肉化を行うときの被膜の占める割合は無視できない。また、不導体被膜が分厚くなることで、集電体と活物質間の密着性が低下し、そのため、充放電サイクルを繰り返すと、集電体からの活物質の剥離、脱落が生じるといった問題がある。   However, recent portable devices are required to be small, light, and driven for a long time, and improvement of energy density is essential. In order to cope with this, it is essential to reduce the thickness of the current collector. However, in the negative electrode plate manufactured using the negative electrode current collector disclosed in Patent Document 1, a non-conductive film is required to be 1 μm or more, and the proportion of the film when the current collector is thinned is It cannot be ignored. In addition, since the non-conductive coating becomes thicker, the adhesion between the current collector and the active material is reduced. Therefore, when the charge / discharge cycle is repeated, there is a problem that the active material is peeled off from the current collector. is there.

さらに、リチウムイオン電池需要伸張の中、より安価なリチウムイオン電池を提供するために、リチウムイオン電池材料費に占める割合の大きい安全保護回路を削除することが有効であるが、その機能である過充電、過放電に対するリチウムイオン電池自身の安全性、信頼性を向上させる必要がある。   Furthermore, in order to provide cheaper lithium-ion batteries in response to growing demand for lithium-ion batteries, it is effective to delete safety protection circuits that account for a large percentage of lithium-ion battery material costs. It is necessary to improve the safety and reliability of the lithium ion battery itself against charging and over-discharging.

安全保護回路の機能の1つである過充電に対しては、一般に電池搭載セパレータの特有の機能であるセパレータのシャットダウン機能を利用した構成が広く用いられている。通常時、セパレータは正極、負極缶の短絡防止の役割を担っているが、多孔質のポリオレフィン等を用いたセパレータは外部短絡や充電器や電話機本体の電圧制御機能の故障などによる過充電により電池の温度が著しく上昇した場合に多孔質セパレータが軟化することにより、実質的に無孔質となり、電流を流させなくなる、いわゆるシャットダウン機能を有し、このシャットダウンによって電池の温度上昇は150℃付近で停止する。シャットダウン時までに負極表面上には負極活物質として用いている炭素質材料に吸蔵しきれずに析出した金属リチウムが存在するが、安全保護回路を削除しリチウムイオン電池自身の過充電の安全性、信頼性を向上するためには、この金属リチウムの析出した負極の熱安定性がシャットダウンによって停止した電池温度に対して、十分な余裕を持つことが必要である。   For overcharging, which is one of the functions of the safety protection circuit, a configuration using a separator shutdown function, which is a function specific to battery-mounted separators, is widely used. Normally, the separator plays a role in preventing the short circuit between the positive electrode and the negative electrode can, but the separator using porous polyolefin or the like is a battery due to an external short circuit or an overcharge due to a failure in the voltage control function of the charger or the phone body. When the temperature of the battery rises significantly, the porous separator softens, so that it becomes substantially non-porous and has a so-called shutdown function that prevents current from flowing. By this shutdown, the temperature rise of the battery is around 150 ° C. Stop. By the time of shutdown, there is metal lithium deposited on the surface of the negative electrode without being fully occluded in the carbonaceous material used as the negative electrode active material, but the safety protection circuit is removed and the safety of overcharging of the lithium ion battery itself, In order to improve the reliability, it is necessary that the thermal stability of the negative electrode on which the metal lithium is deposited has a sufficient margin with respect to the battery temperature stopped by the shutdown.

一方、安全保護回路の機能の1つである過放電保護を削除した場合、負極活物質として用いている炭素質材料は、通常の充放電条件下ではリチウムのドープ・脱ドープに伴う電位範囲がリチウム基準で0.1V〜1.0Vの範囲内であるが、電話機本体の電圧制御異常などで過放電状態になると負極電位が1Vを越える。銅製の集電体は、負極活物質の電位が0.1〜1Vの範囲内であれば非常に安定しているが、負極活物質の電位が1Vを越え、さらに銅の酸化還元電位に達すると溶解し始める。その結果、集電体の集電性能が劣化したり、溶解した銅が正極表面に析出してその性能に悪影響を及ぼし、電池容量を損なわせる。このように、過放電時に一度劣化した電極の性能は、再び充電を行ってもほとんど回復せず、容量は大きく劣化したままとなる。   On the other hand, when overdischarge protection, which is one of the functions of the safety protection circuit, is deleted, the carbonaceous material used as the negative electrode active material has a potential range associated with lithium doping / dedoping under normal charge / discharge conditions. Although it is in the range of 0.1 V to 1.0 V on the basis of lithium, the negative electrode potential exceeds 1 V when an overdischarge state occurs due to voltage control abnormality of the telephone body. A copper current collector is very stable when the potential of the negative electrode active material is in the range of 0.1 to 1 V, but the potential of the negative electrode active material exceeds 1 V and further reaches the redox potential of copper. Then it begins to dissolve. As a result, the current collecting performance of the current collector is deteriorated, or dissolved copper is deposited on the surface of the positive electrode, adversely affecting the performance, and the battery capacity is impaired. As described above, the performance of the electrode once deteriorated at the time of overdischarge hardly recovers even after charging again, and the capacity remains greatly deteriorated.

この過放電状態になり、負極電位が1Vを越えると、特許文献2に開示されている銅の水酸化物と銅の酸化物を含む複合皮膜を銅箔上に形成しても、銅の水酸化物や銅の酸化物でもCuOの場合は、酸化還元電位に達するために溶解し、過放電特性が劣化する。   When this overdischarged state occurs and the negative electrode potential exceeds 1 V, the copper water disclosed in Patent Document 2 is formed on the copper foil even if the composite film containing the copper hydroxide and the copper oxide is formed. Even when an oxide or copper oxide is CuO, it dissolves to reach the oxidation-reduction potential, and the overdischarge characteristics deteriorate.

本発明は、上記のような課題を解決するため、非水溶媒として、環状カーボネートであるγブチロラクトン(GBL)を主溶媒とし、電解質としては、LiBF4を主電解質とした、非水電解液を用いることを特徴とする。前述過充電時シャットダウンによって停止した電池温度である150付近では電解液とLiの反応による、Li2CO3 の被膜生成時の発熱が生じる。γブチロラクトン(GBL)は引火点が従来の電解液に比べて高く、還元してもガス化しないで高分子化して金属リチウム上に被膜を生成することにより金属リチウムの反応性を低下させる。一方LiBF4も不活性な厚いLiFの層を形成することにより、析出した金属リチウムと電解液との発熱反応を抑える効果を有するため、金属リチウムの析出した負極の熱安定性は180℃付近まで上昇し、過充電の安全性、信頼性が向上する。 In order to solve the above-described problems, the present invention provides a non-aqueous electrolyte solution using γ-butyrolactone (GBL) which is a cyclic carbonate as a main solvent as a non-aqueous solvent, and LiBF 4 as a main electrolyte as an electrolyte. It is characterized by using. In the vicinity of 150, which is the battery temperature stopped by the above-described shutdown during overcharge, heat is generated during Li 2 CO 3 coating generation due to the reaction between the electrolyte and Li. γ-butyrolactone (GBL) has a flash point higher than that of conventional electrolytes, and reduces the reactivity of metallic lithium by forming a film on metallic lithium by polymerizing without reducing it to gas even when reduced. On the other hand, LiBF 4 also has an effect of suppressing the exothermic reaction between the deposited metallic lithium and the electrolyte by forming an inert thick LiF layer, so that the thermal stability of the negative electrode on which metallic lithium is deposited is up to about 180 ° C. The safety and reliability of overcharging are improved.

また、銅または銅合金からなる負極集電体として、その表面がCu2O被膜で被覆されていることを特徴とする負極集電体であり、このCu2O被膜は、酸素濃度が15体積%以下の雰囲気中で加熱処理された被膜であり、カソード還元法による酸化膜厚値で10nm以上、500nm以下であることが好ましい。 Further, as a negative electrode collector made of copper or a copper alloy, an anode current collector, characterized in that the surface is coated with Cu 2 O film, the Cu 2 O film, the oxygen concentration is 15 vol. %, And the film thickness is preferably 10 nm or more and 500 nm or less in terms of the oxide film thickness by the cathode reduction method.

このような非水電解液と負極集電体を用い、集電体には少なくとも片面に炭素材料を負極活物質の主成分とする負極活物質層を有する負極板とリチウム遷移金属複合酸化物を正極活物質の主成分とする正極板とをセパレータを介して絶縁されている極板群を電池ケースに収容し、非水電解液を注液してなる非水電解液二次電池は、過充電時の高い安全性、信頼性を維持し、過放電状態になった場合でも、薄肉化を行った負極集電体の溶解を抑制でき、過放電後においても初期容量に対する容量回復率に優れた非水電解液二次電池を提供することができる。   Using such a non-aqueous electrolyte and a negative electrode current collector, the current collector includes a negative electrode plate having a negative electrode active material layer having a carbon material as a main component of the negative electrode active material on at least one surface and a lithium transition metal composite oxide. A non-aqueous electrolyte secondary battery in which an electrode plate group, which is insulated from a positive electrode plate having a main component of a positive electrode active material via a separator, is accommodated in a battery case and a non-aqueous electrolyte is injected, Maintains high safety and reliability during charging, suppresses dissolution of the thinned negative electrode current collector even in an overdischarged state, and excels in capacity recovery with respect to the initial capacity even after overdischarged In addition, a non-aqueous electrolyte secondary battery can be provided.

以上説明したように、本発明によれば、過充電時に金属リチウムの析出した負極の耐熱性を向上し、過充電時の高い安全性、信頼性を維持し、過放電状態になった場合でも、薄肉化を行った負極集電体が溶解するのを抑制でき、過放電後においても初期容量に対する容量回復率に優れた電池を得ることができる。   As described above, according to the present invention, the heat resistance of the negative electrode on which metallic lithium is deposited during overcharge is improved, high safety and reliability during overcharge are maintained, and even when an overdischarge state occurs. Thus, dissolution of the thinned negative electrode current collector can be suppressed, and a battery excellent in capacity recovery rate relative to the initial capacity can be obtained even after overdischarge.

また、集電体と負極活物質層との密着性も改善され、充放電を繰り返しても容量劣化の少ない電池を得ることができる。   In addition, the adhesion between the current collector and the negative electrode active material layer is improved, and a battery with little capacity deterioration can be obtained even when charging and discharging are repeated.

以下に、本発明の実施の形態について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施形態に係る円筒型リチウム二次電池の断面図である。   FIG. 1 is a cross-sectional view of a cylindrical lithium secondary battery according to an embodiment of the present invention.

図1に示すように、正極板5と負極板6とがセパレータ7を介在して渦巻状に捲回された極板群が、有底筒状の電池ケース8に収容されており、負極板6から連接する負極リード9が下部絶縁板10を介して、前記ケース8と電気的に接続され、正極板5から連接する正極リード3が上部絶縁板4を介して、封口板1の内部端子に電気的に接続されており、非水電解液(図示せず)を注液し、封口板1と電池ケース8とが絶縁ガスケット2を介してかしめ封口されている。   As shown in FIG. 1, an electrode plate group in which a positive electrode plate 5 and a negative electrode plate 6 are wound in a spiral shape with a separator 7 interposed therebetween is housed in a bottomed cylindrical battery case 8, and the negative electrode plate 6 is connected to the case 8 via the lower insulating plate 10, and the positive electrode lead 3 connected to the positive plate 5 is connected to the internal terminal of the sealing plate 1 via the upper insulating plate 4. A non-aqueous electrolyte (not shown) is injected, and the sealing plate 1 and the battery case 8 are caulked and sealed via the insulating gasket 2.

この正極板5は、アルミニウム製の箔やラス加工やエッチング処理された箔からなる集電体の片側または両面に正極活物質と結着剤、必要に応じて導電剤を溶媒に混練分散させたペーストを塗布、乾燥、圧延して作製することができる。そして、正極板の厚みは巻芯を用いて、その形状にできるだけ忠実に捲回する必要があり、120μm〜210μmの厚みで、柔軟性があることが好ましい。   This positive electrode plate 5 is obtained by kneading and dispersing a positive electrode active material and a binder, and if necessary, a conductive agent in a solvent on one or both sides of a current collector made of an aluminum foil, a lathed or etched foil. The paste can be applied, dried and rolled. And the thickness of a positive electrode plate needs to be wound as faithfully as possible in the shape using a winding core, and it is preferable that it is 120 micrometers-210 micrometers, and has flexibility.

正極活物質としては、例えば、リチウムイオンをゲストとして受け入れ得るリチウム含有遷移金属化合物が使用される。例えば、コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムから選ばれる少なくとも一種類の金属とリチウムとの複合金属酸化物、LiCoO2、LiMnO2、LiNiO2、LiCoxNi(1-x)2(0<x<1)、LiCrO2、αLiFeO2、LiVO2等が好ましい。 As the positive electrode active material, for example, a lithium-containing transition metal compound that can accept lithium ions as a guest is used. For example, a composite metal oxide of at least one metal selected from cobalt, manganese, nickel, chromium, iron, and vanadium and lithium, LiCoO 2 , LiMnO 2 , LiNiO 2 , LiCo x Ni (1-x) O 2 ( 0 <x <1), LiCrO 2 , αLiFeO 2 , LiVO 2 and the like are preferable.

結着剤としては、活物質間の密着性を保つフッ素樹脂材料、ポリアルキレンオキサイド骨格を持つ高分子材料、またはスチレン−ブタジエン共重合体などがある。フッ素系樹脂材料として、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン(VDF)とヘキサフルオロプロピレン(HFP)の共重合体P(VDF−HFP)が好ましい。   Examples of the binder include a fluororesin material that maintains adhesion between active materials, a polymer material having a polyalkylene oxide skeleton, and a styrene-butadiene copolymer. As the fluorine resin material, polyvinylidene fluoride (PVDF), copolymer P (VDF-HFP) of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) is preferable.

必要に応じて加える導電剤としてはアセチレンブラック、グラファイト、炭素繊維等の炭素系導電材が好ましい。   As the conductive agent added as necessary, carbon-based conductive materials such as acetylene black, graphite, and carbon fiber are preferable.

分散媒としては、結着剤が溶解可能な分散媒が適切で、有機結着剤の場合は、アセトン、シクロヘキサノン、N−メチル−2−ピロリドン(NMP)、メチルエチルケトン(MEK)等の有機溶剤を単独またはこれらを混合した混合分散媒が好ましく、水系結着剤の場合は水が好ましい。   As the dispersion medium, a dispersion medium in which the binder can be dissolved is suitable. In the case of the organic binder, an organic solvent such as acetone, cyclohexanone, N-methyl-2-pyrrolidone (NMP), methyl ethyl ketone (MEK), or the like is used. Single or a mixed dispersion medium in which these are mixed is preferable. In the case of an aqueous binder, water is preferable.

また、負極板6は、集電体の片側または両面に負極活物質と結着剤、必要に応じて導電剤を分散媒に混錬分散させたペーストを塗布、乾燥、圧延して作製することができる。そして、負極板の厚みは巻芯を用いて、その形状にできるだけ忠実に捲回する必要があり、正極板と同様に130μm〜210μmの厚みで、柔軟性があることが好ましい。   The negative electrode plate 6 is prepared by applying, drying, and rolling a paste obtained by kneading and dispersing a negative electrode active material and a binder, and if necessary, a conductive agent in a dispersion medium on one side or both sides of a current collector. Can do. The thickness of the negative electrode plate needs to be wound as faithfully as possible using a winding core, and is preferably 130 μm to 210 μm thick and flexible like the positive electrode plate.

この負極集電体として用いる銅または銅合金は、特に限定されるものではなく、Cu2O被膜が形成されるものであればよく、圧延箔、電解箔などが挙げられ、その形状も箔、孔開き箔、エキスパンド材、ラス材等であっても構わない。 The copper or copper alloy used as the negative electrode current collector is not particularly limited as long as a Cu 2 O film is formed, and examples thereof include a rolled foil and an electrolytic foil. It may be a perforated foil, an expanded material, a lath material, or the like.

負極集電体の表面に形成されるCu2O被膜は、酸素濃度が15体積%以下の雰囲気中で加熱処理することによって容易に作製することができ、その膜厚はカソード還元法による酸化膜厚値で10nm以上、500nm以下が好ましい。 The Cu 2 O film formed on the surface of the negative electrode current collector can be easily produced by heat treatment in an atmosphere having an oxygen concentration of 15% by volume or less, and the film thickness is an oxide film formed by a cathode reduction method. The thickness value is preferably 10 nm or more and 500 nm or less.

Cu2O被膜が10nm未満の場合には、欠陥のない均一な被膜が形成することができないので好ましくなく、500nmを超えると負極活物質と負極集電体との密着性が低下し、充放電サイクルを繰り返すと、負極集電体からの負極活物質の剥離、脱落が生じるので好ましくない。 When the Cu 2 O film is less than 10 nm, it is not preferable because a uniform film without defects cannot be formed. When the Cu 2 O film exceeds 500 nm, the adhesion between the negative electrode active material and the negative electrode current collector decreases, and charge / discharge is caused. Repeating the cycle is not preferable because the negative electrode active material peels off from the negative electrode current collector.

また、銅の厚みは引張り強度が強い程好ましいが、厚くなると電池内部の空隙体積が少なくなり、エネルギー密度が低下するので15μm以下が好ましく、6〜10μmの範囲が最適である。   Further, the copper thickness is preferably as the tensile strength is strong. However, when the thickness is increased, the void volume inside the battery is reduced and the energy density is lowered.

このような負極集電体を用いることにより、負極活物質層との密着性が改善され、充放電を繰り返しても容量劣化の少ない電池を得ることができ、過放電状態になった場合でも、負極集電体が溶解するのを抑制でき、過放電後の容量回復率に優れた電池を得ることができる。   By using such a negative electrode current collector, the adhesion with the negative electrode active material layer is improved, a battery with little capacity deterioration can be obtained even after repeated charge and discharge, and even when overdischarged, Dissolution of the negative electrode current collector can be suppressed, and a battery having an excellent capacity recovery rate after overdischarge can be obtained.

負極活物質としては、例えば、リチウムイオンを吸蔵、脱離し得る黒鉛型結晶構造を有するグラファイトを含む材料、例えば天然黒鉛や人造黒鉛が使用される。特に、格子面(002)の面間隔(d002)が0.3350〜0.3400nmである黒鉛型結晶構造を有する炭素材料を使用することが好ましい。 As the negative electrode active material, for example, a material containing graphite having a graphite-type crystal structure capable of inserting and extracting lithium ions, such as natural graphite and artificial graphite, is used. In particular, it is preferable to use a carbon material having a graphite-type crystal structure in which the lattice spacing ( 002 ) has an interval (d 002 ) of 0.3350 to 0.3400 nm.

結着剤、分散媒および必要に応じて加えることができる導電剤、可塑剤は正極と同様のものを使用することができる。   As the binder, the dispersion medium, and the conductive agent and plasticizer that can be added as necessary, the same materials as those for the positive electrode can be used.

セパレータとしては、ポリエチレン樹脂、ポリプロピレン樹脂などの微多孔性ポリオレフィン系樹脂が好ましい。   The separator is preferably a microporous polyolefin resin such as polyethylene resin or polypropylene resin.

非水電解液としては、非水溶媒と電解質からなり、非水溶媒としては、環状カーボネートであるγブチロラクトン(GBL)を使用し、一種類で使用しても良く、その他の成分として環状カーボネートおよび鎖状カーボネートをγブチロラクトン(GBL)に加え二種類以上組み合わせて使用しても良い。前記環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、およびブチレンカーボネート(BC)から選ばれる少なくとも一種であることが好ましい。また、前記鎖状カーボネートとしては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびエチルメチルカーボネート(EMC)等から選ばれる少なくとも一種であることが好ましく、更にγブチロラクトン(GBL)の含有率は体積比率で50%以上が好ましい。   The non-aqueous electrolyte is composed of a non-aqueous solvent and an electrolyte. As the non-aqueous solvent, γ-butyrolactone (GBL), which is a cyclic carbonate, may be used alone, and as other components, cyclic carbonate and Two or more chain carbonates may be used in combination with γ-butyrolactone (GBL). The cyclic carbonate is preferably at least one selected from ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). The chain carbonate is preferably at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and the like, and the content of γ-butyrolactone (GBL) is The volume ratio is preferably 50% or more.

電解質としては、LiBF4を主電解質として使用し、一種類で使用しても良く、その他電子吸引性の強いリチウム塩、例えば、LiPF6、LiClO4、LiAsF6、LiCF3SO3、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33等を、LiBF4に加え二種類以上組み合わせて使用しても良い。これらの電解質は、前記非水溶媒に対して0.5M/L〜2.0M/Lの濃度で溶解させることが好ましく、更にLiBF4の含有率が全電解質モル濃度比率で50%以上が好ましい。 As the electrolyte, LiBF 4 may be used as the main electrolyte, and may be used alone. Other lithium salts having strong electron-withdrawing properties, such as LiPF 6 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 or the like may be used in combination of two or more in addition to LiBF 4 . These electrolytes are preferably dissolved at a concentration of 0.5 M / L to 2.0 M / L in the non-aqueous solvent, and the content of LiBF 4 is preferably 50% or more in terms of the total electrolyte molar concentration ratio. .

このような非水電解液を用いることにより、金属リチウムの析出した負極の熱安定性が180℃付近まで上昇し、過充電の安全性、信頼性向上する。   By using such a non-aqueous electrolyte, the thermal stability of the negative electrode on which metallic lithium is deposited increases to around 180 ° C., and the safety and reliability of overcharging are improved.

以下、本発明を実施例および比較例を用いて詳細に説明するが、これらは本発明を何ら限定するものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, these do not limit this invention at all.

(実施例1)
負極集電体として、厚み7μmの圧延銅箔をN2:O2=98:2の混合気体雰囲気中、150℃で3時間加熱処理して本発明の銅箔を作製した。この箔をXPSにより酸化被膜の定性を行い、Cu2O被膜であることを確認した。またカソード還元法により、被膜厚みを測定すると50nmであった。
(Example 1)
As the negative electrode current collector, a rolled copper foil having a thickness of 7 μm was heat-treated at 150 ° C. for 3 hours in a mixed gas atmosphere of N 2 : O 2 = 98: 2 to produce the copper foil of the present invention. The oxide film was qualitatively measured by XPS and confirmed to be a Cu 2 O film. Further, the thickness of the film was measured by the cathode reduction method to be 50 nm.

次に、負極板6の製造方法を説明する。負極活物質として鱗片状黒鉛粉末50重量部、結着剤としてスチレンブタジエンゴム5重量部、増粘剤としてカルボキシルメチルセルロース1重量部に対して水99重量部に溶解した増粘剤水溶液23重量部とを混錬分散して負極用ペーストを得た。得られた負極用ペーストを前記集電体上にドクターブレード方式で厚さ180μmに両面塗布乾燥後、厚さ140μmに圧延、切断してシート状の負極板6を作製した。   Next, a method for manufacturing the negative electrode plate 6 will be described. 50 parts by weight of scaly graphite powder as a negative electrode active material, 5 parts by weight of styrene butadiene rubber as a binder, 23 parts by weight of a thickener aqueous solution dissolved in 99 parts by weight of water with respect to 1 part by weight of carboxymethylcellulose as a thickener, Was kneaded and dispersed to obtain a negative electrode paste. The obtained negative electrode paste was coated on the current collector by a doctor blade method to a thickness of 180 μm on both sides and dried, then rolled and cut to a thickness of 140 μm to prepare a sheet-like negative electrode plate 6.

正極板5の製造方法を説明する。先ず、正極活物質としてLiCoO2粉末50重量部、導電剤としてアセチレンブラック0.8重量部、結着剤としてPVDF6重量部、溶媒としてNMP溶液を41.5重量部、それぞれ配合し、混練分散して正極活物質ペーストを得た。次いで、この正極活物質ペーストを、厚さ30μmのアルミニウム箔にドクターブレード方式で厚さ約230μmに両面塗布して乾燥後、厚さ180μmに圧延し、切断して正極板5を得た。 A method for manufacturing the positive electrode plate 5 will be described. First, 50 parts by weight of LiCoO 2 powder as a positive electrode active material, 0.8 parts by weight of acetylene black as a conductive agent, 6 parts by weight of PVDF as a binder, and 41.5 parts by weight of an NMP solution as a solvent are mixed, kneaded and dispersed. Thus, a positive electrode active material paste was obtained. Next, this positive electrode active material paste was applied to both sides of an aluminum foil having a thickness of 30 μm to a thickness of about 230 μm by a doctor blade method, dried, rolled to a thickness of 180 μm, and cut to obtain a positive electrode plate 5.

次に、このようにして作製した正極板5と負極板6とを、厚さ20μmのポリプロピレン樹脂製の微多孔膜からなるセパレータ7を介して絶縁した状態で渦巻状に捲回した電極群を電池ケースに収容した。   Next, an electrode group in which the positive electrode plate 5 and the negative electrode plate 6 thus produced are wound in a spiral shape in a state where the positive electrode plate 5 and the negative electrode plate 6 are insulated through a separator 7 made of a polypropylene resin microporous film having a thickness of 20 μm. Housed in a battery case.

次に、負極板6から連接する負極リード9を下部絶縁板10を介して、前記ケース8と電気的に接続し、正極板5から連接する正極リード3を上部絶縁板4を介して、封口板1の内部端子に電気的に接続した後、非水電解液(図示せず)を注液し、封口板1と電池ケース8が絶縁ガスケット2を介してかしめ封口して、直径17mm、高さ50mmサイズで電池容量が780mAhの円筒型リチウムイオン二次電池を作製し、電池Aとした。   Next, the negative electrode lead 9 connected to the negative electrode plate 6 is electrically connected to the case 8 via the lower insulating plate 10, and the positive electrode lead 3 connected to the positive electrode plate 5 is sealed via the upper insulating plate 4. After electrically connecting to the internal terminals of the plate 1, a non-aqueous electrolyte (not shown) is injected, and the sealing plate 1 and the battery case 8 are caulked and sealed through the insulating gasket 2, and the diameter is 17 mm. A cylindrical lithium ion secondary battery having a size of 50 mm and a battery capacity of 780 mAh was produced.

なお電解液は、γブチロラクトン(GBL)100体積%の媒中に、電解質としてLiBF4を1.5モル溶かした電解液を所定量注液した。この電解液は、正極活物質層および負極活物質層内に含浸されて、電池反応において、微多孔膜のセパレータを通して正極板5と負極板6間のLiイオンの移動を担う。この電解液は、正極活物質層および負極活物質層内に含浸されて、電池反応において、多孔質セパレータの微少孔を通して正極板5と負極板6間のLiイオンの移動を担う。 The electrolyte solution was a predetermined amount of an electrolyte solution in which 1.5 mol of LiBF 4 was dissolved as an electrolyte in 100% by volume of γ-butyrolactone (GBL). This electrolytic solution is impregnated in the positive electrode active material layer and the negative electrode active material layer, and is responsible for the movement of Li ions between the positive electrode plate 5 and the negative electrode plate 6 through the separator of the microporous membrane in the battery reaction. This electrolytic solution is impregnated in the positive electrode active material layer and the negative electrode active material layer, and is responsible for the movement of Li ions between the positive electrode plate 5 and the negative electrode plate 6 through the micropores of the porous separator in the battery reaction.

(実施例2)
電解液として、γブチロラクトン(GBL)とエチレンカーボネート(EC)の体積比率が50:50の媒中に、電解質としてLiBF4を1.5モル溶かした電解液を所定量注液した以外は実施例1と同様にして円筒型リチウムイオン二次電池を作製し、電池Bとした。
(Example 2)
Except that a predetermined amount of an electrolytic solution in which 1.5 mol of LiBF 4 was dissolved as an electrolyte was injected into a medium having a volume ratio of γ-butyrolactone (GBL) and ethylene carbonate (EC) of 50:50 as an electrolytic solution. In the same manner as in Example 1, a cylindrical lithium ion secondary battery was produced and designated as Battery B.

(実施例3)
電解液として、γブチロラクトン(GBL)とエチレンカーボネート(EC)の体積比率が50:50の媒中に、電解質としてLiBF4とLiPF6 がモル濃度比率で50:50であり全電解質濃度が1.5モル溶かした電解液を所定量注液した以外は実施例1と同様にして円筒型リチウムイオン二次電池を作製し、電池Cとした。
(Example 3)
As electrolyte, in a medium having a volume ratio of γ-butyrolactone (GBL) and ethylene carbonate (EC) of 50:50, LiBF 4 and LiPF 6 as an electrolyte are in a molar ratio of 50:50, and the total electrolyte concentration is 1. A cylindrical lithium ion secondary battery was produced as Battery C in the same manner as in Example 1 except that a predetermined amount of 5 mol dissolved electrolyte was injected.

(比較例1)
電解液として、γブチロラクトン(GBL)100体積%の媒中に、電解質としてLiPF6を1.5モル溶かした電解液を所定量注液した以外は実施例1と同様にして円筒型リチウムイオン二次電池を作製し、電池Dとした。
(Comparative Example 1)
Cylindrical lithium ion 2 was prepared in the same manner as in Example 1 except that a predetermined amount of an electrolytic solution in which 1.5 mol of LiPF 6 was dissolved as an electrolyte was poured into 100% by volume of γ-butyrolactone (GBL) as an electrolytic solution. A secondary battery was produced and designated as Battery D.

(比較例2)
電解液として、エチレンカーボネート(EC):エチルメチルカーボネート(EMC)の体積比率が30:70の媒中に、電解質としてLiBF4を1.5モル溶かした電解液を所定量注液した以外は実施例1と同様にして円筒型リチウムイオン二次電池を作製し、電池Eとした。
(Comparative Example 2)
As an electrolytic solution, a predetermined amount of an electrolytic solution in which 1.5 mol of LiBF 4 was dissolved as an electrolyte was injected into a medium having a volume ratio of ethylene carbonate (EC): ethyl methyl carbonate (EMC) of 30:70. A cylindrical lithium ion secondary battery was produced in the same manner as in Example 1, and designated as battery E.

(比較例3)
電解液として、エチレンカーボネート(EC):エチルメチルカーボネート(EMC)の体積比率が30:70の媒中に、電解質としてLiPF6を1.5モル溶かした電解液を所定量注液した以外は実施例1と同様にして円筒型リチウムイオン二次電池を作製し、電池Fとした。
(Comparative Example 3)
As an electrolytic solution, a predetermined amount of an electrolytic solution in which 1.5 mol of LiPF 6 was dissolved as an electrolyte was poured into a medium having a volume ratio of ethylene carbonate (EC): ethyl methyl carbonate (EMC) of 30:70. A cylindrical lithium ion secondary battery was produced in the same manner as in Example 1, and designated as Battery F.

(実施例4)
負極集電体として実施例1と同様の厚みが10μmの圧延銅箔をN2:O2=85:15の混合気体雰囲気中、150℃で3時間加熱処理した以外は実施例1と同様にして作製した集電体を用い、実施例1と同様にして作製した負極板を負極板Gとし、この負極板を用いた以外は実施例1と同様にして円筒型リチウムイオン二次電池を作製し、電池Gとした。
Example 4
As a negative electrode current collector, a rolled copper foil having a thickness of 10 μm as in Example 1 was subjected to heat treatment at 150 ° C. for 3 hours in a mixed gas atmosphere of N 2 : O 2 = 85: 15. A negative electrode plate produced in the same manner as in Example 1 was used as the negative electrode plate G, and a cylindrical lithium ion secondary battery was produced in the same manner as in Example 1 except that this negative electrode plate was used. And battery G.

なお、このときの負極集電体表面には、厚さ40nmのCu2Oからなる酸化被膜が形成されていた。 At this time, an oxide film made of Cu 2 O having a thickness of 40 nm was formed on the surface of the negative electrode current collector.

(実施例5)
負極集電体として実施例1と同様の厚みが6μmの圧延銅箔をN2:O2=98:2の混合気体雰囲気中、150℃で0.5時間加熱処理した以外は実施例1と同様にして作製した集電体を用い、実施例1と同様にして作製した負極板を負極板Hとし、この負極板を用いた以外は実施例1と同様にして円筒型リチウムイオン二次電池を作製し、電池Hとした。
(Example 5)
Example 1 except that a rolled copper foil having a thickness of 6 μm similar to Example 1 was heat-treated at 150 ° C. for 0.5 hour in a mixed gas atmosphere of N 2 : O 2 = 98: 2 as the negative electrode current collector. A negative electrode plate produced in the same manner as in Example 1 was used as the negative electrode plate H using the current collector produced in the same manner, and a cylindrical lithium ion secondary battery was produced in the same manner as in Example 1 except that this negative electrode plate was used. To make a battery H.

なお、このときの負極集電体表面には、厚さ10nmのCu2Oからなる酸化被膜が形成されていた。 At this time, an oxide film made of Cu 2 O having a thickness of 10 nm was formed on the surface of the negative electrode current collector.

(実施例6)
負極集電体として実施例1と同様の厚みが7μmの圧延銅箔をN2:O2=98:2の混合気体雰囲気中、180℃で3時間加熱処理した以外は実施例1と同様にして作製した集電体を用い、実施例1と同様にして作製した負極板を負極板Iとし、この負極板を用いた以外は実施例1と同様にして円筒型リチウムイオン二次電池を作製し、電池Iとした。
(Example 6)
As a negative electrode current collector, a rolled copper foil having a thickness of 7 μm as in Example 1 was subjected to heat treatment at 180 ° C. for 3 hours in a mixed gas atmosphere of N 2 : O 2 = 98: 2 in the same manner as in Example 1. A negative electrode plate produced in the same manner as in Example 1 was used as the negative electrode plate I, and a cylindrical lithium ion secondary battery was produced in the same manner as in Example 1 except that this negative electrode plate was used. Battery I was obtained.

なお、このときの負極集電体表面には、厚さ500nmのCu2Oからなる酸化被膜が形成されていた。 At this time, an oxide film made of Cu 2 O having a thickness of 500 nm was formed on the surface of the negative electrode current collector.

(比較例4)
負極集電体として実施例1と同様の厚みが7μmの圧延銅箔を用いたが、何も処理をしないで実施例1と同様にして作製した集電体を用い、実施例1と同様にして作製した負極板を負極板Jとし、この負極板を用いた以外は実施例1と同様にして、円筒型リチウムイオン二次電池を作製し、電池Jとした。
(Comparative Example 4)
As the negative electrode current collector, a rolled copper foil having a thickness of 7 μm similar to that in Example 1 was used, but a current collector produced in the same manner as in Example 1 without any treatment was used, and the same as in Example 1. A negative electrode plate produced in this manner was used as a negative electrode plate J, and a cylindrical lithium ion secondary battery was produced in the same manner as in Example 1 except that this negative electrode plate was used.

なお、このときの負極集電体表面には、厚さ12nmのCuOとCu2Oが混在する酸化被膜が形成されていた。 Note that an oxide film in which CuO and Cu 2 O having a thickness of 12 nm were mixed was formed on the surface of the negative electrode current collector at this time.

(比較例5)
負極集電体として実施例1と同様の厚みが7μmの圧延銅箔をN2:O2=98:2の混合気体雰囲気中、150℃で36時間加熱処理した以外は実施例1と同様にして作製した集電体を用い、実施例1と同様にして作製した負極板を負極板Kとし、この負極板を用いた以外は実施例1と同様にして円筒型リチウムイオン二次電池を作製し、電池Kとした。
(Comparative Example 5)
As a negative electrode current collector, a rolled copper foil having a thickness of 7 μm as in Example 1 was subjected to heat treatment at 150 ° C. for 36 hours in a mixed gas atmosphere of N 2 : O 2 = 98: 2 as in Example 1, and the same as in Example 1. A negative electrode plate produced in the same manner as in Example 1 was used as the negative electrode plate K, and a cylindrical lithium ion secondary battery was produced in the same manner as in Example 1 except that this negative electrode plate was used. The battery K was obtained.

なお、このときの負極集電体表面には、厚さ600nmのCu2Oからなる酸化被膜が形成されていた。 At this time, an oxide film made of Cu 2 O having a thickness of 600 nm was formed on the surface of the negative electrode current collector.

(比較例6)
負極集電体として実施例1と同様の厚みが7μmの圧延銅箔をN2:O2=80:20の混合気体雰囲気中、150℃で3時間加熱処理した以外は実施例1と同様にして作製した集電体を用い、実施例1と同様にして作製した負極板を負極板Lとし、この負極板を用いた以外は実施例1と同様にして円筒型リチウムイオン二次電池を作製し、電池Lとした。
(Comparative Example 6)
As a negative electrode current collector, a rolled copper foil having a thickness of 7 μm as in Example 1 was heat treated at 150 ° C. for 3 hours in a mixed gas atmosphere of N 2 : O 2 = 80: 20. A negative electrode plate produced in the same manner as in Example 1 was used as the negative electrode plate L, and a cylindrical lithium ion secondary battery was produced in the same manner as in Example 1 except that this negative electrode plate was used. The battery L was obtained.

なお、このときの負極集電体表面には、厚さ52nmのCuOとCu2Oが混在する酸化被膜が形成されていた。 Note that an oxide film containing 52 nm thick CuO and Cu 2 O was formed on the surface of the negative electrode current collector at this time.

(比較例7)
負極集電体として厚みが5μmの圧延銅箔の表面に2μmのニッケルメッキを施した集電体を用いた以外は実施例1と同様にして作製した集電体を用い、実施例1と同様にして作製した負極板を負極板Mとし、この負極板を用いた以外は実施例1と同様にして円筒型リチウムイオン二次電池を作製し、電池Mとした。
(Comparative Example 7)
A current collector produced in the same manner as in Example 1 was used except that a current collector obtained by subjecting a surface of a rolled copper foil having a thickness of 5 μm to nickel plating of 2 μm as the negative electrode current collector was used. A negative electrode plate produced as described above was used as a negative electrode plate M, and a cylindrical lithium ion secondary battery was produced in the same manner as in Example 1 except that this negative electrode plate was used.

このようにして得られた電池のうち電池A〜電池Fついて室温環境下(20℃〜25℃)で780mAh(1ItA相当)で印加電圧12Vで過充電試験を行い、電池温度上昇によるセパレータのシャットダウンが発生した直後、過充電を停止し、電池冷却後、負極を電池分解する事により取り出し、負極のみを電池ケースに再び収容し、防爆機能付温度槽内に設置し、5℃/minで昇温することによって、負極のみの発火温度を測定し、金属リチウムの析出した負極の熱安定性を比較した結果を表1に示す。   Among the batteries obtained in this way, overcharge tests were performed on battery A to battery F at room temperature (20 ° C. to 25 ° C.) at 780 mAh (equivalent to 1 ItA) at an applied voltage of 12 V, and the separator was shut down due to an increase in battery temperature. Immediately after the occurrence of overcurrent, overcharge is stopped, the battery is cooled, the negative electrode is taken out by disassembling the battery, only the negative electrode is accommodated again in the battery case, and installed in a temperature tank with an explosion-proof function. Table 1 shows the results of measuring the ignition temperature of only the negative electrode by heating and comparing the thermal stability of the negative electrode on which metallic lithium is deposited.

Figure 2005310621
Figure 2005310621

表1から明らかなように、本発明A〜Cの負極の発火温度はいずれも180℃以上であり、過充電のセパレータシャットダウンによって上昇が停止する電池の温度は150℃付近に対して十分な余裕度を有し、過充電時の電池の安全性、信頼性が高いことが判った。   As is clear from Table 1, the ignition temperatures of the negative electrodes of the present inventions A to C are all 180 ° C. or higher, and the temperature of the battery whose rise is stopped by the overcharge separator shutdown is sufficient for the vicinity of 150 ° C. It was found that the battery is highly safe and reliable during overcharge.

次に、前記電池A、電池G〜電池Lについて、過放電特性とサイクル寿命特性を評価した。   Next, the battery A and the batteries G to L were evaluated for overdischarge characteristics and cycle life characteristics.

過放電特性は、20℃の環境下、4.2Vで2時間の定電流−定電圧充電を行い、電池電圧が4.2Vに達するまでは550mA(0.7ItA)の定電流充電を行い、その後、電流値が減衰して40mA(0.05ItA)になるまで充電した後、780mA(1ItA)の定電流で3.0Vの放電終止電圧まで放電する充放電を繰り返し、10サイクル目の容量を初期容量とした。そして、放電状態からさらに50Ωの定抵抗を接続して、0Vまで放電を行うことで過放電状態にして一ヶ月間放置した後、上記充放電条件にて過放電後容量を測定し、初期容量に対する容量回復率を求めた結果を表2に示す。   The overdischarge characteristics are constant current-constant voltage charging at 4.2V for 2 hours in an environment of 20 ° C., and constant current charging at 550 mA (0.7 ItA) until the battery voltage reaches 4.2V. Then, after charging until the current value decays to 40 mA (0.05 ItA), charging and discharging are repeated until the discharge end voltage is 3.0 V at a constant current of 780 mA (1 ItA). The initial capacity was used. Then, after connecting a constant resistance of 50Ω from the discharge state and discharging to 0V, the overdischarge state was left for one month, and then the capacity after overdischarge was measured under the above charge / discharge conditions. Table 2 shows the results of the capacity recovery rate for the above.

サイクル寿命特性は、4.2Vで2時間の定電流−定電圧充電を行い、電池電圧が4.2Vに達するまでは550mA(0.7ItA)の定電流充電を行い、その後、電流値が減衰して40mA(0.05ItA)になるまで充電した後、780mA(1ItA)の定電流で3.0Vの放電終止電圧まで放電する充放電サイクル試験を20℃の環境下で繰り返し、3サイクル目を初期容量とし、この充放電サイクルを500サイクル繰り返した時点の初期容量に対する容量維持率の平均値の結果を表2に示す。   The cycle life characteristics are constant current-constant voltage charging for 2 hours at 4.2V, constant current charging of 550mA (0.7ItA) until the battery voltage reaches 4.2V, and then the current value decays. Then, after charging to 40 mA (0.05 ItA), a charge / discharge cycle test in which discharge is performed at a constant current of 780 mA (1 ItA) to a discharge end voltage of 3.0 V is repeated in an environment of 20 ° C. Table 2 shows the result of the average value of the capacity retention ratio with respect to the initial capacity when the charge / discharge cycle was repeated 500 times as the initial capacity.

充放電サイクルを500サイクル繰り返した時点で、各電池を分解して負極板A、負極板G〜負極板Mを取りだして、図2に示すように均等に20分割してそれぞれの部位において、目視にて極板観察を行い、負極集電体上に負極活物質が50%以上残っている場合を1ポイントと数え、すべての部位に50%以上残っている場合を20ポイントとして、負極活物質と集電体との密着性を評価するとともに、負極集電体の亀裂の有無を観察した結果を表2に示す。   When the charge / discharge cycle was repeated 500 times, each battery was disassembled and the negative electrode plate A and the negative electrode plate G to negative electrode plate M were taken out and divided into 20 equal parts as shown in FIG. When the negative electrode active material is 50% or more remaining on the negative electrode current collector, one point is counted, and when 50% or more remains on all parts, the negative electrode active material is 20 points. Table 2 shows the results of observing the adhesion between the electrode and the current collector and observing the presence or absence of cracks in the negative electrode current collector.

Figure 2005310621
Figure 2005310621

表2より明らかなように、負極集電体表面にCu2O被膜が形成されている本発明の電池A、電池G〜電池Lは、いずれも初期容量に対する容量回復率が95%前後であり、過放電によってほとんど容量が劣化しないことがわかった。これに対して、負極集電体表面の被膜がCu2Oだけで形成されていない電池J及び電池L(比較例4、比較例6)の電池では、被膜厚みに関係無く容量回復率がそれぞれ24%、26%と非常に悪く、過放電による容量劣化が著しかった。このことから、Cu2O被膜で被覆された銅箔を負極集電体として用いることは過放電による容量劣化を抑える上できわめて有効であることがわかった。 As is clear from Table 2, the capacity recovery rate with respect to the initial capacity is about 95% for the battery A and the batteries G to L of the present invention in which the Cu 2 O film is formed on the surface of the negative electrode current collector. It was found that the capacity was hardly deteriorated by overdischarge. In contrast, the batteries J and L (Comparative Example 4 and Comparative Example 6) in which the coating on the surface of the negative electrode current collector is not formed of only Cu 2 O have a capacity recovery rate regardless of the coating thickness. It was very bad at 24% and 26%, and the capacity deterioration due to overdischarge was remarkable. From this, it was found that using a copper foil coated with a Cu 2 O coating as a negative electrode current collector is extremely effective in suppressing capacity deterioration due to overdischarge.

また、本発明の電池は比較例の電池と比べて、充放電を繰り返しても容量の劣化が少なくサイクル特性に優れていることがわかった。   In addition, it was found that the battery of the present invention was superior in cycle characteristics as compared with the battery of the comparative example with little deterioration in capacity even after repeated charge and discharge.

そして、本発明の表面にCu2O被膜が形成されている負極板は負極活物質と高い密着性を示すが、Cu2O被膜が厚すぎると、集電体とCu2O被膜間またはCu2O被膜と負極活物質層との界面抵抗が大きいため、特性が劣化し、特に、比較例Hは集電体表面に2μmのニッケルメッキを施していることから、Cu2O被膜と比較して、密着性が低下しているものと推測される。 And the negative electrode plate in which the Cu 2 O film is formed on the surface of the present invention shows high adhesion with the negative electrode active material. However, if the Cu 2 O film is too thick, the current collector and the Cu 2 O film or Cu Since the interface resistance between the 2 O film and the negative electrode active material layer is large, the characteristics deteriorate. In particular, Comparative Example H has a 2 μm nickel plating on the surface of the current collector, so compared with the Cu 2 O film. Thus, it is presumed that the adhesion is lowered.

また、上記の実施例では、円筒型電池に適用する場合を例に挙げて説明したが、本発明は電池形状に特に制限はなく、扁平型、角型など、他の色々な形状をもった二次電池に適用することができる。   Further, in the above embodiment, the case where it is applied to a cylindrical battery has been described as an example. However, the present invention has no particular limitation on the battery shape, and has various other shapes such as a flat shape and a square shape. It can be applied to a secondary battery.

本発明の実施形態を示すリチウム二次電池の断面図Sectional drawing of the lithium secondary battery which shows embodiment of this invention 本発明の負極集電体と活物質の密着性評価概略図Schematic diagram of adhesion evaluation of negative electrode current collector and active material of the present invention

符号の説明Explanation of symbols

1 封口板
2 絶縁ガスケット
3 正極リード
4 上部絶縁板
5 正極板
6 負極板
7 セパレータ
8 電池ケース
9 負極リード
10 下部絶縁板
DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Insulating gasket 3 Positive electrode lead 4 Upper insulating plate 5 Positive electrode plate 6 Negative electrode plate 7 Separator 8 Battery case 9 Negative electrode lead 10 Lower insulating plate

Claims (1)

リチウム含有複合酸化物を正極活物質とする正極板と、リチウムイオンの吸蔵放出可能な炭素質材料を負極活物質とする負極板とがセパレータを介して絶縁されている極板群をケースに収納し、非水電解液を注液してなる二次電池において、前記非水電解液がγブチロラクトンを主溶媒とし、LiBF4を主電解質とする非水電解液であり、前記負極板の負極集電体が銅または銅合金であって、その表面がCu2O被膜で被覆されていることを特徴とする非水電解液二次電池。 An electrode plate group in which a positive electrode plate using a lithium-containing composite oxide as a positive electrode active material and a negative electrode plate using a carbonaceous material capable of occluding and releasing lithium ions as a negative electrode active material are housed in a case. In the secondary battery obtained by injecting a non-aqueous electrolyte, the non-aqueous electrolyte is a non-aqueous electrolyte containing γ-butyrolactone as a main solvent and LiBF 4 as a main electrolyte, and the negative electrode collector of the negative electrode plate A non-aqueous electrolyte secondary battery, wherein the electric body is copper or a copper alloy, and the surface thereof is coated with a Cu 2 O film.
JP2004127852A 2004-04-23 2004-04-23 Nonaqueous electrolyte secondary battery Pending JP2005310621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004127852A JP2005310621A (en) 2004-04-23 2004-04-23 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004127852A JP2005310621A (en) 2004-04-23 2004-04-23 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005310621A true JP2005310621A (en) 2005-11-04

Family

ID=35439136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004127852A Pending JP2005310621A (en) 2004-04-23 2004-04-23 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005310621A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170875A (en) * 2007-12-21 2009-07-30 Murata Mfg Co Ltd Multilayer ceramic electronic component and method for manufacturing the same
CN102800868A (en) * 2012-08-30 2012-11-28 中国科学技术大学 Composition of positive electrode material of lithium-ion battery and lithium-ion battery
JP2013251048A (en) * 2012-05-30 2013-12-12 Toyota Motor Corp Nonaqueous electrolyte secondary battery, and method of manufacturing the same
WO2014024531A1 (en) * 2012-08-09 2014-02-13 トヨタ自動車株式会社 Method for producing battery and battery
US9418790B2 (en) 2007-12-21 2016-08-16 Murata Manufacturing Co., Ltd. Method for manufacturing a multilayer ceramic electronic component
JP6178035B1 (en) * 2016-03-03 2017-08-09 三井金属鉱業株式会社 Method for producing copper clad laminate
WO2017150043A1 (en) * 2016-03-03 2017-09-08 三井金属鉱業株式会社 Production method for copper-clad laminate plate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170875A (en) * 2007-12-21 2009-07-30 Murata Mfg Co Ltd Multilayer ceramic electronic component and method for manufacturing the same
US9418790B2 (en) 2007-12-21 2016-08-16 Murata Manufacturing Co., Ltd. Method for manufacturing a multilayer ceramic electronic component
JP2013251048A (en) * 2012-05-30 2013-12-12 Toyota Motor Corp Nonaqueous electrolyte secondary battery, and method of manufacturing the same
WO2014024531A1 (en) * 2012-08-09 2014-02-13 トヨタ自動車株式会社 Method for producing battery and battery
CN102800868A (en) * 2012-08-30 2012-11-28 中国科学技术大学 Composition of positive electrode material of lithium-ion battery and lithium-ion battery
JP6178035B1 (en) * 2016-03-03 2017-08-09 三井金属鉱業株式会社 Method for producing copper clad laminate
WO2017150043A1 (en) * 2016-03-03 2017-09-08 三井金属鉱業株式会社 Production method for copper-clad laminate plate
CN107614753A (en) * 2016-03-03 2018-01-19 三井金属矿业株式会社 The manufacture method of copper-clad laminated board
US10244635B2 (en) 2016-03-03 2019-03-26 Mitsui Mining & Smelting Co., Ltd. Production method for copper-clad laminate plate

Similar Documents

Publication Publication Date Title
KR100686848B1 (en) Lithium rechargeable battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4159212B2 (en) Nonaqueous electrolyte secondary battery
JP4196373B2 (en) Nonaqueous electrolyte secondary battery
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
JP4667373B2 (en) Lithium ion secondary battery and its charge / discharge control system
KR20190008100A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
KR101836043B1 (en) Nonaqueous electrolyte secondary battery
JP6872095B2 (en) Negative electrode including electrode protection layer and lithium secondary battery to which this is applied
JP2014199714A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20110021974A (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2001176497A (en) Nonaqueous electrolyte secondary battery
JP2010123331A (en) Nonaqueous electrolyte secondary battery
JP2011060481A (en) Nonaqueous electrolyte secondary battery
JP2020102348A (en) Manufacturing method of lithium ion battery, and lithium ion battery
JP2015195195A (en) Nonaqueous electrolyte secondary battery
JP5217281B2 (en) Nonaqueous electrolyte secondary battery
JP4026351B2 (en) Negative electrode current collector, and negative electrode plate and non-aqueous electrolyte secondary battery using the current collector
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
KR102275862B1 (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
JP2005310621A (en) Nonaqueous electrolyte secondary battery
WO2012043733A1 (en) Method for manufacturing nonaqueous electrolyte secondary battery