JP2005310424A - Non-aqueous electrolytic solution battery and its battery case material - Google Patents

Non-aqueous electrolytic solution battery and its battery case material Download PDF

Info

Publication number
JP2005310424A
JP2005310424A JP2004122591A JP2004122591A JP2005310424A JP 2005310424 A JP2005310424 A JP 2005310424A JP 2004122591 A JP2004122591 A JP 2004122591A JP 2004122591 A JP2004122591 A JP 2004122591A JP 2005310424 A JP2005310424 A JP 2005310424A
Authority
JP
Japan
Prior art keywords
battery
weight
battery case
positive electrode
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004122591A
Other languages
Japanese (ja)
Other versions
JP3891188B2 (en
Inventor
Kanji Kawakami
幹児 川上
Makoto Nakanishi
眞 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004122591A priority Critical patent/JP3891188B2/en
Publication of JP2005310424A publication Critical patent/JP2005310424A/en
Application granted granted Critical
Publication of JP3891188B2 publication Critical patent/JP3891188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolytic solution battery which suppresses the deterioration of the battery caused by the corrosion of a battery case in long term storage, in particular, which is improved in the corrosion resistance of the battery case in a high humid environment, and highly reliable. <P>SOLUTION: As a material of the battery case of a non-aqueous electrolytic solution battery, a nickel alloy containing Cr 22-25 wt%, molybdenum 6.5-9.0 wt%, N 0.15-0.25 wt%, and Fe 30-39 wt% and the remainder Ni and other impurities is used. Especially, when the positive electrode material is a 4V class lithium contained transition metal oxide, and the solute of the electrolytic solution is LiPF<SB>4</SB>, LiBF<SB>4</SB>, or a mixture of LiPF<SB>6</SB>and LiBF<SB>4</SB>, a remarkable improvement in corrosion resistance is made. As a suitable gasket material, at least one resin of PPS, PFA or ETFA is used. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水電解液電池に関するものであり、さらに詳しくは電池ケースの金属材料に関するものである。   The present invention relates to a nonaqueous electrolyte battery, and more particularly to a metal material for a battery case.

非水電解液電池では、電解液の溶媒として有機溶媒が使用されるので、正極活物質を適宜選択することにより、高電圧かつ高容量な電池を得ることが可能である。   In the non-aqueous electrolyte battery, an organic solvent is used as a solvent for the electrolyte solution. Therefore, a battery having a high voltage and a high capacity can be obtained by appropriately selecting the positive electrode active material.

このような非水電解液電池において、正極と電気的に直接的あるいはリードなどを介して間接的に接している電池ケースは、電池の連続充電、あるいは無負荷での保存中に電池ケースが高電位となるため電気化学的に腐食しやすい。このため、正極活物質以上に貴な電位を有する耐食性の優れた材料を用いている。これまでにフェライト系ステンレス鋼や、オーステナイト系ステンレス鋼などが提案され広く用いられている。(例えば特許文献1又は特許文献2参照)
特開平7−94212号公報 特許第3195475号公報
In such a non-aqueous electrolyte battery, the battery case that is in direct contact with the positive electrode directly or indirectly through a lead or the like has a high battery case during continuous charging of the battery or storage under no load. It is easily corroded electrochemically because of its potential. For this reason, a material excellent in corrosion resistance having a higher potential than the positive electrode active material is used. So far, ferritic stainless steel and austenitic stainless steel have been proposed and widely used. (For example, see Patent Document 1 or Patent Document 2)
JP-A-7-94212 Japanese Patent No. 3195475

しかし、多湿環境下での保存において、電池内部へ水分が浸入すると、水分が触媒となり電池ケースの腐食が促進され、電池の劣化が加速されるという課題があった。特に、正極の開回路電圧が4V(vs. Li / Li+)以上になる非水電解液電池の電池ケース材料にこれらのステンレス鋼を用いても、長期保存中の電池ケースの溶解は完全に防止できるものではなかった。更にクロムとモリブデンの添加量を増量することで耐食性の向上は図れるが、材料硬度が高まり加工性の悪化を招き、長期保存において耐漏液性が損なわれるという問題もあった。 However, when storing in a humid environment, when moisture enters the inside of the battery, there is a problem that the moisture serves as a catalyst to accelerate the corrosion of the battery case and accelerate the deterioration of the battery. In particular, even when these stainless steels are used as the battery case material of a non-aqueous electrolyte battery in which the open circuit voltage of the positive electrode is 4 V (vs. Li / Li + ) or more, the battery case is completely dissolved during long-term storage. It was not something that could be prevented. Furthermore, although the corrosion resistance can be improved by increasing the addition amount of chromium and molybdenum, there has been a problem that the material hardness is increased, the workability is deteriorated, and the liquid resistance is impaired in long-term storage.

したがって、電池ケースの加工性を損なうことなく耐食性を改善させることは、この種の電池の実用電池としての信頼性を高める上で急務と考えられている。   Therefore, improving the corrosion resistance without impairing the workability of the battery case is considered an urgent need to increase the reliability of this type of battery as a practical battery.

本発明は上記問題に対処するためになされたものであって、長期保存中における電池ケースの腐食による電池の劣化を抑制でき、特に、多湿環境下での電池ケースの耐食性を改善し、信頼性の高い非水電解液電池を提供することを目的とする。   The present invention has been made to address the above problems, and can suppress the deterioration of the battery due to the corrosion of the battery case during long-term storage. In particular, the corrosion resistance of the battery case in a humid environment is improved, and the reliability is improved. An object of the present invention is to provide a nonaqueous electrolyte battery having a high level.

上記目的を達成するために、本発明は、電池ケースの材料としてクロムを22〜25重量%、モリブデンを6.5〜9.0重量%、窒素を0.15〜0.25重量%および鉄を30〜39重量%含有し、残部がニッケルとその他不純物からなるニッケル合金を用いたものである。   In order to achieve the above object, the present invention provides a battery case material comprising 22 to 25% by weight of chromium, 6.5 to 9.0% by weight of molybdenum, 0.15 to 0.25% by weight of nitrogen and iron. Is 30 to 39% by weight, and the balance is nickel alloy composed of nickel and other impurities.

また、本発明の非水電解液電池は正極と負極とセパレータ及び電解液とを、電池ケースと封口板及び樹脂製ガスケットからなる電池容器に収納されたものであって、前記電池ケースの材料としてクロムを22〜25重量%、モリブデンを6.5〜9.0重量%、窒素を0.15〜0.25重量%および鉄を30〜39重量%含有し、残部がニッケルとその他不純物からなるニッケル合金を用いたものである。   Further, the non-aqueous electrolyte battery of the present invention is a battery in which a positive electrode, a negative electrode, a separator, and an electrolytic solution are housed in a battery container composed of a battery case, a sealing plate, and a resin gasket. It contains 22-25% by weight of chromium, 6.5-9.0% by weight of molybdenum, 0.15-0.25% by weight of nitrogen and 30-39% by weight of iron, with the balance being nickel and other impurities. A nickel alloy is used.

このニッケル合金は、より好ましくはニッケルを33〜37重量%含有していることで
ある。
This nickel alloy more preferably contains 33 to 37% by weight of nickel.

また、前記電解液の溶質にLiPF6、LiBF4 またはLiPF6とLiBF4が混合されたものを使用した場合には、LiN(C25SO22やLiN(CF3SO22を用いた場合と比較して、多湿環境下での電池ケースの腐食進行の度合いが大きく改善される。 Further, when LiPF 6 , LiBF 4, or a mixture of LiPF 6 and LiBF 4 is used as the solute of the electrolytic solution, LiN (C 2 F 5 SO 2 ) 2 or LiN (CF 3 SO 2 ) 2 Compared with the case where is used, the degree of progress of corrosion of the battery case in a humid environment is greatly improved.

さらに前記ガスケットの好適な樹脂としては、ポリフェニレンサルファイド、パーフルオロアルコキシアルカンまたはエチレン−テトラフルオロエチレンコポリマーの少なくともひとつの樹脂が挙げられる。   Further, a suitable resin for the gasket includes at least one resin of polyphenylene sulfide, perfluoroalkoxyalkane or ethylene-tetrafluoroethylene copolymer.

ステンレス鋼において、クロムとモリブデンの含有が耐食性に対し非常に効果があることは知られている。これはクロムやモリブデンが空気中の酸素や水分と反応して酸化物や水酸化物の不動態被膜を形成し、この被膜がステンレス鋼の表面に形成され腐食の進行を抑制するためである。しかしクロムとモリブデンを大量に含有すると材料硬度が高まり加工性の悪化を招くという問題もあった。これに対し、種々の検討の結果、クロムを22〜25重量%、モリブデンを6.5〜9.0重量%、窒素を0.15〜0.25重量%および鉄を30〜39重量%含有し、残部がニッケルとその他不純物からなるニッケル合金を用いると、これまでのフェライト系ステンレス鋼や、オーステナイト系ステンレス鋼に比べ、加工性を損なうことなく高い耐食性を得られることを見出した。   In stainless steel, it is known that the inclusion of chromium and molybdenum is very effective for corrosion resistance. This is because chromium or molybdenum reacts with oxygen or moisture in the air to form a passive film of oxide or hydroxide, and this film is formed on the surface of stainless steel to suppress the progress of corrosion. However, when a large amount of chromium and molybdenum is contained, there is a problem that the material hardness increases and the workability deteriorates. On the other hand, as a result of various examinations, it contains 22 to 25% by weight of chromium, 6.5 to 9.0% by weight of molybdenum, 0.15 to 0.25% by weight of nitrogen and 30 to 39% by weight of iron. In addition, it was found that when a nickel alloy consisting of nickel and other impurities is used as the balance, high corrosion resistance can be obtained without impairing workability as compared with conventional ferritic stainless steel and austenitic stainless steel.

本発明のニッケル合金では、さらに、ニッケルを33〜37重量%含有していると、より高い耐食性が得られることを見出した。   It has been found that the nickel alloy of the present invention can obtain higher corrosion resistance when it contains 33 to 37% by weight of nickel.

また、携帯電話やPDAなどの情報端末の高機能化に伴い、高電位を有するLiCoO2、LiNiO2またはLiMn24などを正極材料に用いた非水電解液電池の需要は高まっている。しかしLiCoO2、LiNiO2またはLiMn24などの4V級リチウム含有遷移金属酸化物(正極の開回路電圧が4V以上(vs.Li/Li+)になる材料)を正極活物質に用いた場合には、正極の電位が4V以上(vs.Li/Li+)になり、従来より広く電池ケース材料に用いられているステンレス鋼では長期保存中の電池ケースの腐食は完全には防止できず、さらなる長期信頼性の向上が求められていた。そこで、LiCoO2、LiNiO2またはLiMn24など4V級の正極材料を用いた非水電解液電池の電池ケースに対して、本発明の鋼材を使用すると従来のステンレス鋼に対し高い孔食電位が得られるため、4Vを超える高い電位に対しても腐食を抑制でき、長期信頼性の向上が達成できる。 In addition, as information terminals such as mobile phones and PDAs become highly functional, demand for nonaqueous electrolyte batteries using LiCoO 2 , LiNiO 2, LiMn 2 O 4 or the like having a high potential as a positive electrode material is increasing. However, when a 4V-class lithium-containing transition metal oxide such as LiCoO 2 , LiNiO 2 or LiMn 2 O 4 (a material in which the open circuit voltage of the positive electrode is 4 V or more (vs. Li / Li + )) is used as the positive electrode active material In this case, the potential of the positive electrode is 4 V or more (vs. Li / Li + ), and stainless steel that has been widely used as a battery case material in the past cannot completely prevent corrosion of the battery case during long-term storage. There was a need for further long-term reliability improvements. Therefore, when the steel material of the present invention is used for a battery case of a non-aqueous electrolyte battery using a 4V-class positive electrode material such as LiCoO 2 , LiNiO 2 or LiMn 2 O 4, the pitting potential is higher than that of conventional stainless steel. Therefore, corrosion can be suppressed even at a high potential exceeding 4 V, and improvement in long-term reliability can be achieved.

また、LiPF6やLiBF4は電気伝導性、熱的安定性及び耐酸化性に優れ、さらに比較的安価であるため非水電解液電池によく使用されている。しかしLiPF6やLiBF4を電解液の溶質に用いた電池において、電池内部に水分が浸入すると、LiPF6やLiBF4は浸入した水分と反応し、ハロゲンイオンを解離する。このハロゲンイオンが鋼の表面に形成された不動態被膜を局部的に破壊して局部腐食を起こし、電池劣化を加速的に引き起こす。 Further, LiPF 6 and LiBF 4 are excellent in electric conductivity, thermal stability and oxidation resistance, and are relatively inexpensive and are often used in non-aqueous electrolyte batteries. However, in a battery using LiPF 6 or LiBF 4 as the electrolyte solute, when moisture enters the battery, LiPF 6 or LiBF 4 reacts with the intruded moisture and dissociates halogen ions. This halogen ion locally destroys the passive film formed on the surface of the steel to cause local corrosion and accelerate battery deterioration.

したがってLiPF6やLiBF4を電解液の溶質に用いた電池を多湿環境下で使用した場合、長期信頼性などに問題があり、実使用上の大きな課題があった。そこで、電解液の溶質にLiPF6、LiBF4またはLiPF6およびLiBF4が混合されたものを使用した非水電解液電池の電池ケースに本発明のニッケル合金を使用すると、クロムやモリブデンの含有量が多いために不動態被膜の形成能力が向上し、緻密な被膜の形成がなされることによって、ハロゲンイオンによる鋼の表面の局部腐食を抑制し、電池ケースの耐食性を向上させることができ、多湿環境下での長期信頼性を改善できる。 Therefore, when a battery using LiPF 6 or LiBF 4 as the solute of the electrolyte is used in a humid environment, there is a problem in long-term reliability and the like, and there is a big problem in practical use. Therefore, when the nickel alloy of the present invention is used in a battery case of a non-aqueous electrolyte battery using LiPF 6 , LiBF 4 or a mixture of LiPF 6 and LiBF 4 in the electrolyte solute, the content of chromium and molybdenum Therefore, the ability to form a passive film is improved, and the formation of a dense film suppresses local corrosion of the steel surface by halogen ions, improving the corrosion resistance of the battery case. Long-term reliability in the environment can be improved.

また、ポリフェニレンサルファイド、パーフルオロアルコキシアルカンまたはエチレン−テトラフルオロエチレンコポリマーの少なくともひとつの樹脂をガスケットに用いるのも好ましい。従来から広くガスケット材として用いられているポリプロピレンなどに比べ、上記樹脂は水蒸気透過度が低いために、電池内部への水分の浸入量を低減することができる。   It is also preferable to use at least one resin of polyphenylene sulfide, perfluoroalkoxyalkane or ethylene-tetrafluoroethylene copolymer for the gasket. Compared to polypropylene, which has been widely used as a gasket material, the resin has a low water vapor permeability, so that the amount of moisture entering the battery can be reduced.

本発明により、電池ケースが腐食しにくく、信頼性の高い非水電解液電池が提供でき、特に多湿環境下での保存において、水分が触媒となった電池ケースの腐食を抑制することができる。   According to the present invention, it is possible to provide a highly reliable non-aqueous electrolyte battery with which the battery case is unlikely to corrode, and the corrosion of the battery case in which moisture becomes a catalyst can be suppressed particularly when stored in a humid environment.

本発明は、一次電池、二次電池を問わずに適用可能である。本発明の骨子は、非水電解液電池の電池ケース材料であり、これら以外の部材には従来公知の材料を特に制限無く用いることができる。   The present invention is applicable to both primary batteries and secondary batteries. The gist of the present invention is a battery case material of a nonaqueous electrolyte battery, and conventionally known materials can be used for members other than these without particular limitation.

図1は、本発明の一実施形態である非水電解液電池の断面図である。   FIG. 1 is a cross-sectional view of a nonaqueous electrolyte battery according to an embodiment of the present invention.

図1において1は正極端子を兼ねる電池ケースである。この電池ケース1は、クロム(Cr)を22〜25重量%、モリブデン(Mo)を6.5〜9.0重量%、窒素(N)を0.15〜0.25重量%および鉄(Fe)を30〜39重量%含有し、残部がニッケル(Ni)とその他不純物からなるニッケル合金を用いると、これまでのフェライト系ステンレス鋼や、オーステナイト系ステンレス鋼に比べ、加工性を損なうことなく高い耐食性を得られる。   In FIG. 1, reference numeral 1 denotes a battery case that also serves as a positive electrode terminal. This battery case 1 has 22-25% by weight of chromium (Cr), 6.5-9.0% by weight of molybdenum (Mo), 0.15-0.25% by weight of nitrogen (N) and iron (Fe ) In a content of 30 to 39% by weight, and the balance is nickel (Ni) and other impurities, and is higher than conventional ferritic stainless steel and austenitic stainless steel without sacrificing workability. Corrosion resistance can be obtained.

前記その他不純物としては、炭素(C)、シリコン(Si)、マンガン(Mn)、リン(P)、硫黄(S)などが挙げられる。これは、特に成分量を規定するもので無く、本発明の作用を阻害しない程度に微量になっていれば良く、不可避に混入する不純物を含むものである。   Examples of the other impurities include carbon (C), silicon (Si), manganese (Mn), phosphorus (P), and sulfur (S). This does not particularly define the amount of the component, and it is sufficient that the amount is small enough not to impede the action of the present invention, and includes impurities that are inevitably mixed.

ここで、Niを33〜37重量%含有するとさらに高い耐食性が得られる。これは、Niは表面不動態被膜の形成には寄与しないが、Niの持つ高い耐食性の為に腐食の進行を抑制させる働きがあるためである。ただし、多量のNiの含有は鋼材の硬度を高めてしまい、加工性が悪化するが、我々は種々の検討の結果Niを33〜37重量%含有すれば、加工性を損なうことなくさらに高い耐食性を得られることを見出した。   Here, when 33 to 37% by weight of Ni is contained, higher corrosion resistance can be obtained. This is because Ni does not contribute to the formation of a surface passive film, but has a function of suppressing the progress of corrosion due to the high corrosion resistance of Ni. However, the inclusion of a large amount of Ni increases the hardness of the steel material, and the workability deteriorates. However, as a result of various studies, if Ni is contained in an amount of 33 to 37% by weight, higher corrosion resistance is obtained without impairing the workability. I found out that

2は負極端子を兼ねる封口板であり、通常ステンレス鋼が用いられる。なお、この封口板に対しても、本発明のニッケル合金を使用すると、さらに高い耐食性をもつ非水電解液電池が得られる。   A sealing plate 2 also serves as a negative electrode terminal, and stainless steel is usually used. In addition, when the nickel alloy of the present invention is used for this sealing plate, a non-aqueous electrolyte battery having higher corrosion resistance can be obtained.

3はケースと封口板を絶縁するガスケットであり、ポリフェニレンサルファイド、パーフルオロアルコキシアルカンまたはエチレン−テトラフルオロエチレンコポリマーの少なくともひとつの樹脂であると樹脂の水蒸気透過度が低いために、例えば、多湿環境下での保存において、電池内部への水分の浸入量を低減することができ、水分が触媒となった電池ケースの腐食を抑制することができるので好ましい。   3 is a gasket that insulates the case from the sealing plate. Since at least one resin of polyphenylene sulfide, perfluoroalkoxyalkane, or ethylene-tetrafluoroethylene copolymer has a low water vapor permeability, In storage, the amount of moisture permeating into the battery can be reduced, and the corrosion of the battery case in which moisture becomes a catalyst can be suppressed, which is preferable.

4は正極で、正極活物質としては、リチウムイオンと層間化合物を形成する材料、例えばV25、Nb22、MnO2などの金属酸化物などが挙げられ、さらにLiCoO2、LiNiO2またはLiMn24などの4V級リチウム含有遷移金属酸化物が好適であり、
これらの酸化物にマグネシウムやアルミニウムなどが添加されているのも好ましい。
4 is a positive electrode, and examples of the positive electrode active material include materials that form an intercalation compound with lithium ions, such as metal oxides such as V 2 O 5 , Nb 2 O 2 , and MnO 2 , and LiCoO 2 , LiNiO 2. Or 4V grade lithium-containing transition metal oxides such as LiMn 2 O 4 are suitable,
It is also preferable that magnesium or aluminum is added to these oxides.

ここで、LiCoO2、LiNiO2またはLiMn24などの4V級リチウム含有遷移金属酸化物を正極活物質に用いた場合に、Crを22〜25重量%、Moを6.5〜9.0重量%、Nを0.15〜0.25重量%およびFe30〜39重量%含有し、残部がNiとその他不純物からなるニッケル合金を電池ケース材料に用いると、これまでのフェライト系ステンレス鋼や、オーステナイト系ステンレス鋼に比べ、正極活物質以上の貴の電位を有するために、大幅な耐食性の改善が見られる。 Here, when a 4V-class lithium-containing transition metal oxide such as LiCoO 2 , LiNiO 2 or LiMn 2 O 4 is used as the positive electrode active material, Cr is 22 to 25 wt% and Mo is 6.5 to 9.0. When a nickel alloy containing 0.1% to 0.25% by weight of N and 0.1% to 0.25% by weight of Fe and 30 to 39% by weight of Fe and the balance being Ni and other impurities is used as a battery case material, conventional ferritic stainless steel, Compared with austenitic stainless steel, since it has a noble potential higher than that of the positive electrode active material, a significant improvement in corrosion resistance can be seen.

5は負極で、負極活物質としては、リチウムイオンを電気化学的に吸蔵および放出することが可能な物質や金属リチウムなどが挙げられる。リチウムイオンを電気化学的に吸蔵および放出することが可能な物質として、例えばチタン酸リチウムなどの正極活物質に比べて卑な金属酸化物、黒鉛やコークス等の炭素材料、もしくはリチウム−アルミニウム合金、リチウム−鉛合金、リチウム−錫合金等のリチウム合金などが挙げられる。   Reference numeral 5 denotes a negative electrode, and examples of the negative electrode active material include a material capable of electrochemically inserting and extracting lithium ions and lithium metal. As a substance capable of electrochemically inserting and extracting lithium ions, for example, a base metal oxide, a carbon material such as graphite or coke, or a lithium-aluminum alloy, compared to a positive electrode active material such as lithium titanate, Examples include lithium alloys such as lithium-lead alloys and lithium-tin alloys.

6は、通常ポリプロピレン製不織布からなるセパレータであり、7は正極集電体である。また、図示していないが、有機溶媒とリチウム塩からなる電解液が封入されている。   6 is a separator usually made of a nonwoven fabric made of polypropylene, and 7 is a positive electrode current collector. Although not shown, an electrolytic solution composed of an organic solvent and a lithium salt is enclosed.

以下、本発明の実施例を図面および表を参照しながら、さらに具体的に説明する。   Hereinafter, embodiments of the present invention will be described more specifically with reference to the drawings and tables.

(実験1)
図1の構造を持つ非水電解液電池を作成した。電池ケース1は、後述する(表1)に示した材料で作成した。封口板2は、JIS規格におけるステンレス鋼のSUS316で作成した。ケースと封口板を絶縁するガスケット3にはポリプロピレン製ガスケットを用いた。正極4は、4V級活物質であるLiCoO2に導電剤としてカーボンブラック、および結着剤としてフッ素樹脂粉末を混合し、直径10mm、厚み0.5mmのペレット状に成型した後、250℃中で24時間乾燥したものを用いた。
(Experiment 1)
A nonaqueous electrolyte battery having the structure of FIG. 1 was prepared. The battery case 1 was made of the materials shown in (Table 1) described later. The sealing plate 2 was made of stainless steel SUS316 according to JIS standards. A polypropylene gasket was used as the gasket 3 for insulating the case and the sealing plate. The positive electrode 4 is obtained by mixing LiCoO 2 which is a 4V class active material with carbon black as a conductive agent and fluororesin powder as a binder, and forming into a pellet shape with a diameter of 10 mm and a thickness of 0.5 mm at 250 ° C. What was dried for 24 hours was used.

負極5は黒鉛化メソフェーズピッチ炭素繊維粉末に結着剤としてスチレンブタジエンゴムを添加し、イオン交換水で希釈、混合し、直径11mm、厚み0.5mmのペレット状に成型した後、150℃中で24時間乾燥したものを用いた。   The negative electrode 5 is obtained by adding styrene butadiene rubber as a binder to graphitized mesophase pitch carbon fiber powder, diluting and mixing with ion-exchanged water, and forming into a pellet shape having a diameter of 11 mm and a thickness of 0.5 mm, at 150 ° C. What was dried for 24 hours was used.

さらに、セパレータ6はポリプロピレン製不織布を用いた。正極集電体7は、導電性カーボン塗料をケース1の内面に塗布した後、塗膜の水分を除去するためにケースを150℃で6時間乾燥したものを用いた。また、電解液としてはエチレンカーボネートとメチルエチルカーボネ−トを体積比1:3の割合で混合した溶媒に後述する(表2)および(表3)に示した溶質を1mol/lの割合で溶解したものを用いた。   Further, the nonwoven fabric made of polypropylene was used for the separator 6. As the positive electrode current collector 7, a conductive carbon paint was applied to the inner surface of the case 1 and then the case was dried at 150 ° C. for 6 hours in order to remove moisture from the coating film. In addition, as an electrolytic solution, a solute shown in (Table 2) and (Table 3) described later in a solvent in which ethylene carbonate and methyl ethyl carbonate are mixed at a volume ratio of 1: 3 at a ratio of 1 mol / l. The dissolved one was used.

完成電池はいずれも直径16mm、厚さ1.6mmである。これらの電池について、組み立て後、4.2Vの定電圧で24時間初充電(保護抵抗50Ω)を行った。これらの放電容量を、初充電直後と、60℃90%の高温多湿環境下で4.2Vの定電圧を印加した状態で40日間保存したものについてそれぞれ測定し残存容量率(%)を求めた。放電容量は2kΩの定抵抗放電を3.0Vに至るまで行い、このときの容量を算出したものである。   Each finished battery has a diameter of 16 mm and a thickness of 1.6 mm. These batteries were first charged (protective resistance 50Ω) for 24 hours at a constant voltage of 4.2 V after assembling. These discharge capacities were measured for those stored for 40 days immediately after the initial charge and in a state where a constant voltage of 4.2 V was applied in a high-temperature and high-humidity environment at 60 ° C. and 90% to determine the remaining capacity ratio (%). . The discharge capacity is a constant resistance discharge of 2 kΩ up to 3.0 V, and the capacity at this time is calculated.

また正極として、3.0V級活物質であるLi0.3MnO2または3.5V級活物質であるV25に導電剤としてカーボンブラック、および結着剤としてフッ素樹脂粉末を混合し、直径10mm、厚み0.5mmのペレット状に成型した後、250℃中で24時間乾燥したものを用い、封口板内面に、直径10mm、厚み0.2mmに打抜いた金属リチウム
を圧着させた以外は実験1と同様の方法で電池を組み立てた。
Further, as a positive electrode, a carbon black as a conductive agent and a fluorine resin powder as a binder are mixed with Li 0.3 MnO 2 as a 3.0 V class active material or V 2 O 5 as a 3.5 V class active material, and a diameter of 10 mm. The experiment was conducted except that a metal lithium punched to a diameter of 10 mm and a thickness of 0.2 mm was pressure-bonded to the inner surface of the sealing plate after being molded into a pellet having a thickness of 0.5 mm and dried at 250 ° C. for 24 hours. A battery was assembled in the same manner as in 1.

これらの電池について、活物質にLi0.3MnO2 を用いた電池については3.0mAで3時間放電を行った後、3.1Vの定電圧で24時間初充電(保護抵抗50Ω)を行った。これらの放電容量を、初充電直後と、60℃90%の高温多湿環境下で3.1Vの定電圧を印加した状態で40日間保存したものについてそれぞれ測定し残存容量率(%)を求めた。 For these batteries, batteries using Li 0.3 MnO 2 as the active material were discharged at 3.0 mA for 3 hours, and then charged at a constant voltage of 3.1 V for 24 hours (protection resistance 50Ω). These discharge capacities were measured for those stored for 40 days under the condition of applying a constant voltage of 3.1 V immediately after the initial charge and in a high-temperature and high-humidity environment at 60 ° C. and 90% to determine the remaining capacity ratio (%). .

放電容量は2kΩの定抵抗放電を2.0Vに至るまで行い、このときの容量を算出したものである。   The discharge capacity is a constant resistance discharge of 2 kΩ up to 2.0 V, and the capacity at this time is calculated.

さらに、活物質にV25を用いた電池については3.0mAで3時間放電を行った後、3.6Vの定電圧で24時間初充電(保護抵抗50Ω)を行った。これらの放電容量を、初充電直後と、60℃90%の高温多湿環境下で3.6Vの定電圧を印加した状態で40日間保存したものについてそれぞれ測定し残存容量率(%)を求めた。 Further, a battery using V 2 O 5 as an active material was discharged at 3.0 mA for 3 hours, and then charged at a constant voltage of 3.6 V for 24 hours (protection resistance 50Ω). These discharge capacities were measured for each of those stored for 40 days immediately after the initial charge and in a state where a constant voltage of 3.6 V was applied in a high-temperature and high-humidity environment at 60 ° C. and 90% to determine the remaining capacity ratio (%). .

放電容量は2kΩの定抵抗放電を2.5Vに至るまで行い、このときの容量を算出したものである。   The discharge capacity is obtained by performing a constant resistance discharge of 2 kΩ up to 2.5 V and calculating the capacity at this time.

また、試験後電池を分解し、デジタルマイクロスコープを用いて電池ケース内面の腐食発生個所を観測した。さらに、表面面粗さ計を用いて腐食深さを測定した。   In addition, after the test, the battery was disassembled, and the location of corrosion inside the battery case was observed using a digital microscope. Furthermore, the corrosion depth was measured using a surface roughness meter.

この実験に使用した電池ケースの組成を重量百分率で表したものを(表1)に示す。   Table 1 shows the composition of the battery case used in this experiment expressed as a percentage by weight.

実施例1としてCrを22.2重量%、Moを6.8重量%、Nを0.15重量%、Feを37.5重量%、Niを32.8重量%含有し、残部がその他不純物からなるニッケル合金を使用した。   Example 1 contains 22.2 wt% Cr, 6.8 wt% Mo, 0.15 wt% N, 37.5 wt% Fe, 32.8 wt% Ni, the balance being other impurities A nickel alloy consisting of

実施例2としてCrを24.3重量%、Moを6.5重量%、Nを0.18重量%、Feを39.0重量%、Niを29.9重量%含有し、残部がその他不純物からなるニッケル合金を使用した。   Example 2 contains 24.3% by weight of Cr, 6.5% by weight of Mo, 0.18% by weight of N, 39.0% by weight of Fe and 29.9% by weight of Ni, with the remainder being other impurities. A nickel alloy consisting of

実施例3としてCrを24.2重量%、Moを7.2重量%、Nを0.20重量%、Feを36.8重量%、Niを31.4重量%含有し、残部がその他不純物からなるニッケル合金を使用した。   Example 3 contains 24.2% by weight of Cr, 7.2% by weight of Mo, 0.20% by weight of N, 36.8% by weight of Fe and 31.4% by weight of Ni, with the remainder being other impurities. A nickel alloy consisting of

実施例4としてCrを24.8重量%、Moを8.2重量%、Nを0.23重量%、Feを37.7重量%、Niを28.9重量%含有し、残部がその他不純物からなるニッケル合金を使用した。   Example 4 contains 24.8% by weight of Cr, 8.2% by weight of Mo, 0.23% by weight of N, 37.7% by weight of Fe and 28.9% by weight of Ni, with the remainder being other impurities. A nickel alloy consisting of

実施例5としてCrを23.3重量%、Moを7.5重量%、Nを0.22重量%、Feを33.4重量%、Niを35.5重量%含有し、残部がその他不純物からなるニッケル合金を使用した。   Example 5 contains 23.3% by weight of Cr, 7.5% by weight of Mo, 0.22% by weight of N, 33.4% by weight of Fe and 35.5% by weight of Ni, with the remainder being other impurities. A nickel alloy consisting of

実施例6としてCrを22.1重量%、Moを6.3重量%、Nを0.19重量%、Feを38.0重量%、Niを33.3重量%含有し、残部がその他不純物からなるニッケル合金を使用した。   Example 6 contains 22.1% by weight of Cr, 6.3% by weight of Mo, 0.19% by weight of N, 38.0% by weight of Fe and 33.3% by weight of Ni, with the remainder being other impurities A nickel alloy consisting of

実施例7としてCrを24.9重量%、Moを8.5重量%、Nを0.16重量%、Feを30.0重量%、Niを36.3重量%含有し、残部がその他不純物からなるニッケ
ル合金を用いた。
Example 7 contains 24.9% by weight of Cr, 8.5% by weight of Mo, 0.16% by weight of N, 30.0% by weight of Fe and 36.3% by weight of Ni, with the remainder being other impurities. A nickel alloy consisting of

また、比較例1としてJIS規格におけるSUS316のステンレス鋼を、比較例2としてJIS規格におけるSUS304のステンレス鋼を、比較例3としてJIS規格におけるSUS444のステンレス鋼を、比較例4としてJIS規格におけるSUS447J1のステンレス鋼を、比較例5としてJIS規格におけるSUS317J4Lのステンレス鋼を使用した。   Further, SUS316 stainless steel in JIS standard as Comparative Example 1, SUS304 stainless steel in JIS Standard as Comparative Example 2, SUS444 stainless steel in JIS Standard as Comparative Example 3, SUS447J1 in JIS Standard as Comparative Example 4 Stainless steel was used as Comparative Example 5 as SUS317J4L stainless steel in JIS standards.

Figure 2005310424
Figure 2005310424

(表2)および(表3)に各試験電池の電池ケースに使用した材料、正極活物質、溶質、残存容量率、腐食割合および腐食深さを示す。残存容量率は各電池をそれぞれ10個測定しその平均値とした。また腐食割合は全面腐食を「×」、部分腐食を「△」および腐食が無い場合を「○」で表した。腐食深さは各電池をそれぞれ10個測定しその平均値とした。   (Table 2) and (Table 3) show materials, positive electrode active materials, solutes, residual capacity ratios, corrosion rates, and corrosion depths used for the battery cases of the test batteries. The remaining capacity ratio was determined by measuring 10 batteries and calculating the average value. The corrosion rate is represented by “×” for general corrosion, “Δ” for partial corrosion, and “◯” for no corrosion. The corrosion depth was determined by measuring 10 batteries, and taking the average value.

Figure 2005310424
Figure 2005310424

Figure 2005310424
Figure 2005310424

(表2)および(表3)の結果から分かるように、実施例1〜7のニッケル合金からなる電池ケースを用いた電池(A1〜A32)は、比較例1〜5のステンレス鋼を電池ケースに用いた電池(B1〜B24)に比べて残存容量率の低下が低減された。このことから、本発明のニッケル合金を電池ケースに用いることにより高温多湿環境下で高電位に達している正極の劣化を抑制できることが分かる。   As can be seen from the results of (Table 2) and (Table 3), the batteries (A1 to A32) using the battery case made of the nickel alloy of Examples 1 to 7 are made of the stainless steel of Comparative Examples 1 to 5 as the battery case. As compared with the batteries (B1 to B24) used in the above, the decrease in the remaining capacity ratio was reduced. From this, it can be seen that the use of the nickel alloy of the present invention for a battery case can suppress the deterioration of the positive electrode reaching a high potential in a high temperature and high humidity environment.

なお、試験後に分解調査した結果、B1〜B20の電池はケース内面に腐食が発生しており、容量の低下はこれが原因であった。   In addition, as a result of disassembling and investigating after the test, the batteries B1 to B20 were corroded on the inner surface of the case, and this was caused by the decrease in capacity.

また、実施例1〜4のニッケル合金からなる電池ケースを用いた電池(A1〜A4、A8〜A11、A15〜A18、A22〜A25、A29、A31)においては、部分腐食が発生している電池(A2、A4、A9、A10、A16およびA23)が見られるが、実施例5〜実施例7のニッケル合金からなる電池ケースを用いた電池(A5〜A7、A12〜A14、A19〜A21、A26〜A28、A30、A32)では全て腐食は見られなかった。このことから、実施例5〜実施例7のニッケル合金はより高い耐食性を示すことが分かる。   Further, in the batteries (A1 to A4, A8 to A11, A15 to A18, A22 to A25, A29, and A31) using the battery case made of the nickel alloy of Examples 1 to 4, a battery in which partial corrosion occurs. (A2, A4, A9, A10, A16 and A23) can be seen, but batteries (A5 to A7, A12 to A14, A19 to A21, A26) using battery cases made of nickel alloys of Examples 5 to 7 ~ A28, A30, A32) all showed no corrosion. From this, it can be seen that the nickel alloys of Examples 5 to 7 exhibit higher corrosion resistance.

また、正極の電位が4V以上になるLiCoO2を正極に用いた電池(A1〜A7、B1〜B5)と4V以下であるLi0.3MnO2またはV25 を正極に用いた電池(A29〜A32、B21〜B24)を比べると、LiCoO2を正極に用いた電池では実施例1〜7のニッケル合金を電池ケースに用いることにより、比較例1〜5のステンレス鋼を用いた場合よりも大幅に残存容量率の低下が低減されていることが分かる。さらに、腐食割合や腐食深さを見ると、LiCoO2を正極に用いた電池に実施例1〜7のニッケル合金を正極ケースに用いると、比較例1〜5のステンレス鋼を用いた場合より、腐食が大幅に抑制されていることが分かる。 Also, batteries using LiCoO 2 with positive electrode potential of 4 V or more (A1 to A7, B1 to B5) and batteries using Li 0.3 MnO 2 or V 2 O 5 of 4 V or less (A29 to When A32, B21 to B24) are compared, in the battery using LiCoO 2 as the positive electrode, the nickel alloy of Examples 1 to 7 is used for the battery case, which is much larger than the case of using the stainless steel of Comparative Examples 1 to 5. It can be seen that the decrease in the remaining capacity ratio is reduced. Furthermore, looking at the corrosion rate and the corrosion depth, when the nickel alloy of Examples 1 to 7 is used for the positive electrode case in the battery using LiCoO 2 as the positive electrode, compared to the case of using the stainless steel of Comparative Examples 1 to 5, It can be seen that the corrosion is greatly suppressed.

なお、LiCoO2と同じ4V級リチウム含有遷移金属酸化物であるLiNiO2やLiMn24を正極活物質に用いた場合も同様の結果が得られた。 Similar results were obtained when LiNiO 2 or LiMn 2 O 4 which is the same 4V-class lithium-containing transition metal oxide as LiCoO 2 was used as the positive electrode active material.

さらに、それぞれの溶質において、実施例1〜7のニッケル合金を用いた場合の残存容量率と、比較例1〜5のステンレス鋼を用いた場合の残存容量率の差(例えば溶質がLiPF6の場合はA1〜A7の電池の残存容量率とB1〜B5の電池の残存容量率との差)を比べると、LiN(C25SO22またはLiN(CF3SO22を用いた場合に比べ、溶質にLiPF6またはLiBF4を用いた場合の方が大幅に残存容量率が回復していることが分かる。なおかつ、溶質にLiPF6またはLiBF4を用いた場合は、LiN(C25SO22またはLiN(CF3SO22を用いた場合より高い残存容量率を保持しており優れた特性を示した。特に実施例5〜実施例7のニッケル合金を用いた場合は90%以上の残存容量率を保っている。これはLiPF6またはLiBF4がLiN(C25SO22またはLiN(CF3SO22より優れた耐酸化性を有することに起因しており、この事から、正極の電位が4V以上になる電池にLiPF6またはLiBF4を溶質に用いることは有効であり、実施例1〜7のニッケル合金を正極ケースに用いると、多湿環境下での腐食を抑制し、高い残存容量率を保つことが分かる。これは、LiPF6とLiBF4を混合させた溶質を使用した場合でも同様の結果が得られる。 Further, in each solute, the difference between the remaining capacity ratio when using the nickel alloys of Examples 1 to 7 and the remaining capacity ratio when using the stainless steels of Comparative Examples 1 to 5 (for example, the solute is LiPF 6 ). In this case, when comparing the remaining capacity ratios of the batteries A1 to A7 and the remaining capacity ratios of the batteries B1 to B5, LiN (C 2 F 5 SO 2 ) 2 or LiN (CF 3 SO 2 ) 2 is used. It can be seen that the residual capacity rate is significantly recovered when LiPF 6 or LiBF 4 is used as the solute. In addition, when LiPF 6 or LiBF 4 is used as the solute, the residual capacity ratio is higher than that when LiN (C 2 F 5 SO 2 ) 2 or LiN (CF 3 SO 2 ) 2 is used, which is excellent. The characteristics are shown. In particular, when the nickel alloys of Examples 5 to 7 are used, the remaining capacity ratio of 90% or more is maintained. This is due to the fact that LiPF 6 or LiBF 4 has better oxidation resistance than LiN (C 2 F 5 SO 2 ) 2 or LiN (CF 3 SO 2 ) 2. It is effective to use LiPF 6 or LiBF 4 as a solute for a battery having a voltage of 4 V or more. When the nickel alloy of Examples 1 to 7 is used for a positive electrode case, corrosion under a humid environment is suppressed, and a high remaining capacity ratio is obtained. You can see that The same result is obtained even when a solute in which LiPF 6 and LiBF 4 are mixed is used.

さらに、それぞれの溶質において、実施例1〜7のニッケル合金を用いた場合の腐食深さと、比較例1〜5のステンレス鋼を用いた場合の腐食深さとの差(例えば溶質がLiPF6の場合はA2及びA4の電池の腐食深さとB1〜B5の腐食深さとの差)を比べると、LiN(C25SO22またはLiN(CF3SO22を用いた場合に比べ、溶質にLiPF6またはLiBF4を用いた場合の方が大幅に腐食を抑制していることも分かる。 Further, in each solute, the difference between the corrosion depth when the nickel alloys of Examples 1 to 7 are used and the corrosion depth when the stainless steels of Comparative Examples 1 to 5 are used (for example, when the solute is LiPF 6 ). Is the difference between the corrosion depth of the batteries A2 and A4 and the corrosion depth of B1 to B5), compared to the case of using LiN (C 2 F 5 SO 2 ) 2 or LiN (CF 3 SO 2 ) 2 It can also be seen that corrosion is greatly suppressed when LiPF 6 or LiBF 4 is used as the solute.

なお、LiPF6とLiBF4との混合溶質を使用した場合でも同様の結果が得らた。
(実験2)
電池ケース1は実施例5のCrを23.3重量%、Moを7.5重量%、Nを0.22重量%、Feを33.4重量%、Niを35.5重量%含有し、残部がその不純物からなるニッケル合金を使用し、封口板2はJIS規格におけるステンレス鋼のSUS316からなり、樹脂製ガスケットがポリフェニレンサルファイド(PPS)からなる電池をA33、パーフルオロアルコキシアルカン(PFA)からなる電池をA34、エチレン−テトラフルオロエチレンコポリマー(ETFE)からなる電池をA35、ガスケット材として広く用いられているポリプロピレン(PP)を使用した電池をA36とした以外は実験1
と同様の方法で、電池を組み立て充電した。
Similar results were obtained even when a mixed solute of LiPF 6 and LiBF 4 was used.
(Experiment 2)
The battery case 1 contains 23.3 wt% Cr, 7.5 wt% Mo, 0.22 wt% N, 33.4 wt% Fe, and 35.5 wt% Ni. The balance is made of nickel alloy consisting of the impurities, the sealing plate 2 is made of stainless steel SUS316 according to JIS standards, the resin gasket is made of polyphenylene sulfide (PPS), and the battery is made of A33, perfluoroalkoxyalkane (PFA). Experiment 1 except that the battery was A34, the battery made of ethylene-tetrafluoroethylene copolymer (ETFE) was A35, and the battery using polypropylene (PP) widely used as a gasket material was A36.
The battery was assembled and charged in the same manner as described above.

これらの電池について実験1と同様に、その放電容量を、初充電直後と、60℃90%の高温多湿環境下で4.2Vの定電圧を印加した状態で100日間保存したものについてそれぞれ測定し残存容量率(%)を求めた。放電容量は2kΩの定抵抗放電を3.0
Vに至るまで行い、このときの容量を算出したものである。
As in Experiment 1, the discharge capacities of these batteries were measured for those stored for 100 days immediately after initial charge and under a high temperature and humidity environment of 60 ° C. and 90% with a constant voltage of 4.2 V applied. The remaining capacity ratio (%) was determined. Discharge capacity is 3.0k for constant resistance discharge of 2kΩ
This is performed up to V, and the capacity at this time is calculated.

(表4)に各試験電池に使用したガスケット材、溶質および残存容量率を示す。残存容量率は各電池をそれぞれ10個測定しその平均値とした。   Table 4 shows the gasket material, solute, and remaining capacity rate used for each test battery. The remaining capacity ratio was determined by measuring 10 batteries and calculating the average value.

Figure 2005310424
Figure 2005310424

これらの結果から、樹脂製ガスケットとして特にPPS、PFAまたはETFAの少なくともひとつの樹脂を用いると、従来から広くガスケット材として用いられているポリプロピレンを用いた場合に比べ、高温多湿環境下で高電位に達している正極の劣化を抑制できることが分かる。これは、正極活物質にLiNiO2やLiMn24を用いた場合や、溶質にLiBF4もしくはLiPF6とLiBF4を混合させたものを使用した場合でも同様の結果が得られる。 From these results, when using at least one resin of PPS, PFA or ETFA as a resin gasket, compared with the case of using polypropylene, which has been widely used as a gasket material, it has a higher potential in a high temperature and humidity environment. It can be seen that the deterioration of the positive electrode that has reached can be suppressed. The same result can be obtained even when LiNiO 2 or LiMn 2 O 4 is used as the positive electrode active material, or when LiBF 4 or a mixture of LiPF 6 and LiBF 4 is used as the solute.

本発明の非水電解液電池は、電子機器等の主電源またはバックアップ用電源として有用である。   The non-aqueous electrolyte battery of the present invention is useful as a main power source or backup power source for electronic devices and the like.

本発明の実施例における電池の断面図Sectional drawing of the battery in the Example of this invention

符号の説明Explanation of symbols

1 電池ケース
2 封口板
3 ガスケット
4 正極
5 負極
6 セパレータ
7 正極集電体

DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator 7 Positive electrode collector

Claims (6)

クロムを22〜25重量%、モリブデンを6.5〜9.0重量%、窒素を0.15〜0.25重量%および鉄を30〜39重量%含有し、残部がニッケルとその他不純物からなるニッケル合金を用いた非水電解液電池の電池ケース用材料。 It contains 22-25% by weight of chromium, 6.5-9.0% by weight of molybdenum, 0.15-0.25% by weight of nitrogen and 30-39% by weight of iron, with the balance being nickel and other impurities. A battery case material for a non-aqueous electrolyte battery using a nickel alloy. 正極、負極、セパレータ及び電解液を、電池ケース、封口板及び樹脂製ガスケットからなる電池容器に収納した非水電解液電池であって、前記電池ケースの材料として、クロムを22〜25重量%、モリブデンを6.5〜9.0重量%、窒素を0.15〜0.25重量%および鉄を30〜39重量%含有し、残部がニッケルとその他不純物からなるニッケル合金を用いたことを特徴とする非水電解液電池。   A non-aqueous electrolyte battery in which a positive electrode, a negative electrode, a separator, and an electrolytic solution are housed in a battery container including a battery case, a sealing plate, and a resin gasket, and 22 to 25% by weight of chromium as a material of the battery case, A nickel alloy containing 6.5 to 9.0% by weight of molybdenum, 0.15 to 0.25% by weight of nitrogen and 30 to 39% by weight of iron, with the balance being nickel and other impurities is used. Non-aqueous electrolyte battery. 前記ニッケル合金は前記ニッケルを33〜37重量%含有する請求項2記載の非水電解液電池。   The non-aqueous electrolyte battery according to claim 2, wherein the nickel alloy contains 33 to 37 wt% of the nickel. 前記正極材料が、金属リチウムを対極とした時の開回路電圧が4V以上になる4V級リチウム含有遷移金属酸化物からなる請求項2または3記載の非水電解液電池。   4. The nonaqueous electrolyte battery according to claim 2, wherein the positive electrode material comprises a transition metal oxide containing 4 V class lithium having an open circuit voltage of 4 V or more when metallic lithium is used as a counter electrode. 5. 前記電解液の溶質がLiPF6および/またはLiBF4である請求項4記載の非水電解液電池。 The nonaqueous electrolyte battery according to claim 4 , wherein a solute of the electrolyte is LiPF 6 and / or LiBF 4 . 前記ガスケットがポリフェニレンサルファイド、パーフルオロアルコキシアルカンまたはエチレン−テトラフルオロエチレンコポリマーの少なくともひとつの樹脂からなる請求項5記載の非水電解液電池。











The non-aqueous electrolyte battery according to claim 5, wherein the gasket is made of at least one resin of polyphenylene sulfide, perfluoroalkoxyalkane, or ethylene-tetrafluoroethylene copolymer.











JP2004122591A 2004-04-19 2004-04-19 Non-aqueous electrolyte battery and battery case material Expired - Lifetime JP3891188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122591A JP3891188B2 (en) 2004-04-19 2004-04-19 Non-aqueous electrolyte battery and battery case material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122591A JP3891188B2 (en) 2004-04-19 2004-04-19 Non-aqueous electrolyte battery and battery case material

Publications (2)

Publication Number Publication Date
JP2005310424A true JP2005310424A (en) 2005-11-04
JP3891188B2 JP3891188B2 (en) 2007-03-14

Family

ID=35438968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122591A Expired - Lifetime JP3891188B2 (en) 2004-04-19 2004-04-19 Non-aqueous electrolyte battery and battery case material

Country Status (1)

Country Link
JP (1) JP3891188B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086289A1 (en) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, manufacturing method thereof, and mounting method thereof
JP2007328978A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPWO2020004595A1 (en) * 2018-06-27 2021-03-25 日鉄ケミカル&マテリアル株式会社 Secondary battery Stainless steel foil current collector for positive electrode and secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086289A1 (en) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, manufacturing method thereof, and mounting method thereof
JP2007328978A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPWO2020004595A1 (en) * 2018-06-27 2021-03-25 日鉄ケミカル&マテリアル株式会社 Secondary battery Stainless steel foil current collector for positive electrode and secondary battery
JP7148608B2 (en) 2018-06-27 2022-10-05 日鉄ケミカル&マテリアル株式会社 Stainless foil current collector for secondary battery positive electrode and secondary battery

Also Published As

Publication number Publication date
JP3891188B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
TWI269472B (en) Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
US20050095508A1 (en) Lithium-iron disulfide primary battery
US7438994B2 (en) Non-aqueous electrolyte secondary battery
EP2752913B1 (en) Cylindrical battery
JP2005183384A (en) Electrochemical active material for positive electrode of lithium rechargeable electrochemical cell
Lewandowski et al. Properties of the lithium and graphite–lithium anodes in N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JP4462022B2 (en) Flat type non-aqueous electrolyte battery
JP4727387B2 (en) Lithium battery electrolyte and lithium battery including the same
JP3891188B2 (en) Non-aqueous electrolyte battery and battery case material
JP2001223023A (en) Lithium secondary battery
JP6593659B2 (en) Nonaqueous electrolyte battery and nonaqueous electrolyte battery member
JP2003257384A (en) Ferritic stainless steel for button type lithium secondary battery case and battery case
JP4967464B2 (en) Non-aqueous electrolyte secondary battery
JPH06267542A (en) Nonaqueous electrolyte battery
JP4877678B2 (en) Flat non-aqueous electrolyte secondary battery
JP2008103130A (en) Nonaqueous secondary battery packaging member and reel using the same
JP4753690B2 (en) Organic electrolyte battery
JP2006024407A (en) Organic electrolyte battery
JPH097602A (en) Nonaqueous electrolyte secondary battery
JP2004127545A (en) Lithium battery
JPH11317242A (en) Manufacture of nonaqueous electrolyte battery
JP2013171659A (en) Overcharge inhibitor and lithium ion battery including the same
JP4687021B2 (en) Non-aqueous electrolyte primary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R151 Written notification of patent or utility model registration

Ref document number: 3891188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7