JP2005308486A - Vibration sensor, inspection device, and inspection method of buried pipe - Google Patents

Vibration sensor, inspection device, and inspection method of buried pipe Download PDF

Info

Publication number
JP2005308486A
JP2005308486A JP2004124348A JP2004124348A JP2005308486A JP 2005308486 A JP2005308486 A JP 2005308486A JP 2004124348 A JP2004124348 A JP 2004124348A JP 2004124348 A JP2004124348 A JP 2004124348A JP 2005308486 A JP2005308486 A JP 2005308486A
Authority
JP
Japan
Prior art keywords
vibration sensor
contact
case
vibration
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004124348A
Other languages
Japanese (ja)
Other versions
JP4391875B2 (en
Inventor
Takushi Minaki
卓士 皆木
Takashi Ninomiya
隆志 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2004124348A priority Critical patent/JP4391875B2/en
Publication of JP2005308486A publication Critical patent/JP2005308486A/en
Application granted granted Critical
Publication of JP4391875B2 publication Critical patent/JP4391875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To acquire highly accurate data, while keeping a simple constitution of the whole inspection device, by preventing with a simple constitution, entrance of a noise into a vibration sensor for receiving an elastic wave signal, when inspecting a buried pipe by an impact elastic wave method. <P>SOLUTION: A vibration sensor body 10 is supported by an elastic support tool 15 in a case 11, and a contactor 101 of the vibration sensor body 10 is projected to the outside of the case 11, and a pressure sensor 14 generating a contact pressure control signal by transmission of a contact pressure of the contactor 101 through the support tool 15 is provided in the case 11. Consequently, a noise from the case 11 side can be reduced or blocked by adjustment of a spring constant of the elastic support tool 15 or by addition of a vibration isolation member such as rubber, a foaming material or a gel material to the elastic support tool 15, to thereby acquire accurate received wave data. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は衝撃弾性波法により埋設管を検査する場合に使用する検査装置及びその検査装
置の主要部である振動センサー並びにその検査装置を使用して埋設管を検査する方法に関
するものである。
The present invention relates to an inspection apparatus used when inspecting an embedded pipe by a shock elastic wave method, a vibration sensor as a main part of the inspection apparatus, and a method for inspecting an embedded pipe using the inspection apparatus.

近来、下水管路や農水管路においては、埋設管の経年に伴う腐食摩耗や破損により陥没
や漏水等の事故が増加しつつある。このため適切な劣化診断とその診断結果に基づく適切
な修繕・更新が要請されている。
この下水管路や農水管路の劣化診断においては、一般に、修繕・改築工事の順番及び工
事方法を決定するために、調査流域を構成する要素区域間の劣化進行度の順位付けや定量
的な劣化レベルの進行度の把握が必要である。
従来では、目視やTVカメラを用いて外観調査を行い、必要に応じコア抜きにより得た
試料の物性を調査しているが、直視し得る劣化しか捉えることができず、管外周や肉厚内
の劣化が見逃されてしまい、劣化の程度を適切に定量的に把握することが困難である。ま
たは、定量的なデータを収集するには、コアを大量に抜く必要があり、健全管体の強度低
下が余儀なくされ、作業コストの過大化も避けられない。
Recently, in sewage pipes and agricultural water pipes, accidents such as depression and water leakage are increasing due to corrosive wear and breakage of buried pipes over time. For this reason, appropriate deterioration diagnosis and appropriate repair / updating based on the diagnosis result are required.
In this deterioration diagnosis of sewage pipes and agricultural water pipes, in general, in order to determine the order of repair and reconstruction works and the construction method, ranking of the degree of deterioration between the element areas constituting the survey basin and quantitative It is necessary to grasp the progress of the deterioration level.
Conventionally, visual inspection or visual inspection is performed using a TV camera, and the physical properties of the sample obtained by removing the core are investigated as necessary. It is difficult to accurately and quantitatively grasp the degree of deterioration. Or, in order to collect quantitative data, it is necessary to remove a large number of cores, and the strength of the healthy tubular body is inevitably lowered, and the work cost is inevitably increased.

非破壊試験法として、超音波法、打音法、衝撃弾性波法が知られている。
しかしながら、超音波法では、入力波としての超音波が高周波であり、エネルギーも小
さいので、入力波をコンクリート中に伝播させ難く、コンクリート製品の検査には適さな
い。
打音法では、マイクロフォン等の非接触式の音響機器で信号を受信しているために、周
囲の雑音の影響を受け易い、打撃点の裏面側の反射の影響を受け易い、定量的な解析・診
断に個人差が生じ易い等の不都合があり、診断精度に問題がある。
衝撃弾性波法は、被検査体に打撃等の機械的衝撃で弾性波を入力し、被検査体に接触さ
せた振動子が受振した波形の周波数スペクトルを求め、その周波数スペクトルの解析・判
定により劣化診断を行う方法であり、本出願人においては、衝撃弾性波法を利用した埋設
管の診断システムを既に提案している。(例えば、特許文献1、非特許文献1、非特許文
献2等)
As a nondestructive test method, an ultrasonic method, a percussion method, and a shock elastic wave method are known.
However, in the ultrasonic method, since the ultrasonic wave as an input wave has a high frequency and low energy, it is difficult for the input wave to propagate through the concrete, and it is not suitable for the inspection of concrete products.
In the sounding method, since the signal is received by a non-contact acoustic device such as a microphone, it is easily affected by ambient noise, and is easily affected by reflection on the back side of the hitting point.・ There are inconveniences such as easy individual differences in diagnosis, and there is a problem in diagnosis accuracy.
The shock elastic wave method is a method in which an elastic wave is input to an object to be inspected by mechanical impact such as hitting, a frequency spectrum of a waveform received by a vibrator in contact with the object to be inspected, and analysis and determination of the frequency spectrum is performed. The present applicant has already proposed a diagnosis system for buried pipes using the shock elastic wave method. (For example, Patent Document 1, Non-Patent Document 1, Non-Patent Document 2, etc.)

特開2004−028976号公報JP 2004-028976 A 皆木、鎌田、野崎、船橋, 弾性波によるコンクリート下水管路の劣化診断手法に関する基礎研究,コンクリート工学年次論文集,2002,VOL24,No1,p.1539−1544Minaki, Kamada, Nozaki, Funabashi, Basic research on deterioration diagnosis method of concrete sewer pipes by elastic wave, Annual report of concrete engineering, 2002, VOL24, No1, p. 1539-1544

図7は本出願人が提案した衝撃弾性波法を利用した埋設管の検査方法に使用する検査装
置を示している。
図7において、20’は台車、21a’は台車20’に取付けた第1アーム、A’は第
1アーム21a’の先端に装着した振動センサー、21b’は台車20’に取付けた第2
アーム、B’は第2アーム21b’の先端に装着したハンマー、4’は制御ユニット、5
’は操作・データ記録及び解析を行うコンピュータであり、第1アームの操作によって振
動センサーを被検査管体の内面に接触させ、次いで第2アームを操作し、更にハンマーを
操作して管体内面を打撃し、この打撃により発生した弾性波を振動センサーに受振させ、
その受振波形の周波数スペクトルを高速フーリエ変換プログラムで求め、この周波数スペ
クトルの解析判定に基づき埋設管の劣化診断を行っている。
FIG. 7 shows an inspection apparatus used for the buried pipe inspection method using the shock elastic wave method proposed by the present applicant.
In FIG. 7, 20 ′ is a carriage, 21a ′ is a first arm attached to the carriage 20 ′, A ′ is a vibration sensor attached to the tip of the first arm 21a ′, and 21b ′ is a second arm attached to the carriage 20 ′.
Arm B ′ is a hammer attached to the tip of the second arm 21b ′, 4 ′ is a control unit, 5
'Is a computer that performs operation, data recording and analysis. By operating the first arm, the vibration sensor is brought into contact with the inner surface of the tube to be inspected, then the second arm is operated, and the hammer is further operated to operate the inner surface of the tube. , The elastic wave generated by this blow is received by the vibration sensor,
The frequency spectrum of the received waveform is obtained by a fast Fourier transform program, and the deterioration diagnosis of the buried pipe is performed based on the analysis determination of the frequency spectrum.

今、入力点での入力を図8の(イ)に示すインパルスIとすると、このインパルスIが
管端での反射、クラック等の欠陥箇所での反射・透過を経て入力点に到来し、その到来波
xには、管体の曲げ剛性EI、減衰係数c、経過時間t、入力点と受振点との距離L等が関
与し、
If the input at the input point is the impulse I shown in FIG. 8 (a), the impulse I arrives at the input point through reflection and transmission at a defect portion such as reflection at the tube end and crack, The incoming wave x involves the bending rigidity EI of the tube, the damping coefficient c, the elapsed time t, the distance L between the input point and the receiving point, and the like.

x=x(EI,c,L,t)
で表すことができ、入力弾性波が図8の(ロ)に示すようにf(t)であるとすると、
出力Xは

Figure 2005308486
で表すことができる。 x = x (EI, c, L, t)
If the input elastic wave is f (t) as shown in FIG.
Output X is
Figure 2005308486
It can be expressed as

この受振波Xの周波数スペクトルを求めると、前記した管端や欠陥箇所での反射のため
に複雑な分布パターンとなり、固有振動周波数で最大ピークとなり、管体にひび割れが存
在すると、管体の曲げ剛性の低下のために固有振動周波数(最大ピーク周波数)が低周波
域側にシフトし、同周波数スペクトルの(低周波域成分)/(高周波域成分)の比が増加
し、最大ピーク値が減少し、特に、管体のひび割れが管軸方向であるときは、分割された
質量の異なるコンクリート部分が衝撃によってそれぞれ別個に振動するものの、連成振動
における相互作用により減衰時間に影響が現れるために所定強度以上のピーク本数が少な
くなり、劣化の程度、ひび割れのパターンに応じた情報を得ることができて定量的な劣化
診断を行うことが可能になる。
When the frequency spectrum of the received wave X is obtained, a complicated distribution pattern is formed due to reflection at the above-described tube end or defect portion, the maximum peak occurs at the natural vibration frequency, and cracks are present in the tube. Due to the decrease in rigidity, the natural vibration frequency (maximum peak frequency) shifts to the low frequency side, the ratio of (low frequency component) / (high frequency component) of the same frequency spectrum increases, and the maximum peak value decreases. In particular, when the crack of the pipe body is in the direction of the pipe axis, the divided concrete parts with different masses vibrate separately due to impact, but the interaction in the coupled vibration affects the damping time. The number of peaks having a predetermined intensity or more is reduced, information according to the degree of deterioration and the pattern of cracks can be obtained, and quantitative deterioration diagnosis can be performed.

上記の検査装置において、アームはギア機構により傾動され、ギアの遊びによるガタツ
キが避けられず、振動センサーの受振波でこのガタツキ箇所に衝突音が発生し、この衝突
音やハンマー打撃により発生する弾性波がアームを経て振動センサーに伝播され、この伝
播波がノイズとなって測定誤差となる問題がある。
このため、アームに防振機構を組み込んでいるが、検査装置の構造の複雑化、高価格化
が避けられない。
In the inspection apparatus described above, the arm is tilted by the gear mechanism, and rattling due to gear play is inevitable, and a collision sound is generated at the rattling portion by the vibration wave of the vibration sensor, and the elasticity generated by the collision sound or hammering. There is a problem that the wave is propagated to the vibration sensor through the arm, and this propagation wave becomes noise and causes a measurement error.
For this reason, although the anti-vibration mechanism is incorporated in the arm, the structure of the inspection apparatus is complicated and expensive.

本発明の目的は、埋設管を衝撃弾性波法により検査する場合、弾性波信号を受振する振
動センサーへのノイズの侵入を簡易な構成で防止して検査装置全体の簡易な構成を保持し
つつ高精度のデータを得ることにある。
An object of the present invention is to maintain a simple configuration of the entire inspection apparatus by preventing noise from entering a vibration sensor that receives an elastic wave signal with a simple configuration when an embedded tube is inspected by a shock elastic wave method. It is to obtain highly accurate data.

本発明に係る振動センサーは、振動センサー本体がケース内に弾性支持具により支承さ
れ、振動センサー本体の接触子がケース外に頭出され、該接触子の接触圧力が前記支持治
具を経て伝達されて接触圧制御信号を発生する圧力センサーがケース内に設けられている
ことを特徴とする。
In the vibration sensor according to the present invention, the vibration sensor main body is supported by the elastic support in the case, the contact of the vibration sensor main body is cued out of the case, and the contact pressure of the contact is transmitted through the support jig. A pressure sensor that generates a contact pressure control signal is provided in the case.

本発明に係る検査装置は、請求項1記載の振動センサーを支持する支持手段と、打撃具
を支持する支持手段とが架台上に搭載され、振動センサー内の圧力センサーからの制御信
号によって接触子の接触圧力を所定圧力に設定するための操作機構及び打撃具操作機構が
設けられていることを特徴とする。
The inspection apparatus according to the present invention includes a support means for supporting the vibration sensor according to claim 1 and a support means for supporting the hitting tool mounted on a gantry, and a contactor according to a control signal from a pressure sensor in the vibration sensor. An operating mechanism and a striking tool operating mechanism for setting the contact pressure to a predetermined pressure are provided.

本発明に係る埋設管の検査方法は、請求項2記載の検査装置を埋設管の被検査管体内に
導入し、振動センサー支持手段を操作して接触子を被検査管体内面に所定の圧力で接触さ
せ、而るのち、ハンマー支持手段を操作して被検査管体内面を打撃し、前記振動センサー
本体が受振した波形の周波数スペクトルを測定し、この周波数スペクトルの解析・判定に
より埋設管の劣化診断を行うことを特徴とする。
According to the buried pipe inspection method of the present invention, the inspection apparatus according to claim 2 is introduced into the inspection pipe body of the embedded pipe, and the vibration sensor support means is operated to place the contact on the inner surface of the inspection pipe body at a predetermined pressure. After that, the hammer support means is operated to strike the inner surface of the tube to be inspected, and the frequency spectrum of the waveform received by the vibration sensor body is measured. It is characterized by performing deterioration diagnosis.

本発明に係る振動センサーでは、振動センサー本体の接触子の接触圧力を設定するため
の圧力センサーをセンサーのケース内に設けており、振動センサー支持手段に圧力センサ
ーを設ける必要がないから、センサー支持手段の構造を簡易化できる。また、振動センサ
ー支持手段側からのノイズを、弾性支持治具のバネ常数の調整、またはゴムや発泡材やゲ
ル材等の除振部材の弾性支持治具への付加により軽減もしくは遮断でき、正確な受振波デ
ータを得ることができると共に振動センサー支持手段に除振機構を設ける必要がないので
、センサー支持手段の構造を簡易化できる。
本発明に係る検査装置では、ハンマー打撃により発生する弾性波の一部の振動センサー
支持手段及びハンマー支持手段を経ての振動センサー接触子への伝播を振動センサー内の
弾性支持治具により軽減乃至は防止でき、また、振動センサー支持手段及びハンマー支持
手段のギア機構の遊びでの衝突音発生源となり得る受振弾性波の一部の両支持手段への伝
播を振動センサー内の弾性支持治具により軽減乃至は防止できるので、正確な受振波デー
タを得ることができると共に振動センサー支持手段及びハンマー支持手段に除振機構を設
ける必要がないので、これら支持手段の構造を簡易化できる。
本発明に係る埋設管の検査方法では、ノイズの無い受振波から正確な周波数スペクトル
を求めることができ、埋設管の劣化診断を正確に行うことができる。
In the vibration sensor according to the present invention, the pressure sensor for setting the contact pressure of the contact of the vibration sensor main body is provided in the sensor case, and it is not necessary to provide the pressure sensor in the vibration sensor support means. The structure of the means can be simplified. In addition, noise from the vibration sensor support means side can be reduced or blocked by adjusting the spring constant of the elastic support jig or by adding a vibration isolator such as rubber, foam, or gel to the elastic support jig. Therefore, it is not necessary to provide a vibration isolation mechanism in the vibration sensor support means, so that the structure of the sensor support means can be simplified.
In the inspection apparatus according to the present invention, propagation of a part of the elastic wave generated by hammer hit to the vibration sensor contact through the vibration sensor support means and the hammer support means is reduced or reduced by the elastic support jig in the vibration sensor. The elastic support jig in the vibration sensor reduces the propagation of part of the received elastic wave to both support means, which can be prevented, and can be a source of collision noise in the play of the gear mechanism of the vibration sensor support means and hammer support means. In addition, since it is possible to obtain accurate received wave data, it is not necessary to provide a vibration isolation mechanism in the vibration sensor support means and the hammer support means, so that the structure of these support means can be simplified.
In the buried pipe inspection method according to the present invention, an accurate frequency spectrum can be obtained from a noise-free vibration wave, and the deterioration diagnosis of the buried pipe can be accurately performed.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1の(イ)は本発明に係る振動センサーの実施例を一部を断面で示す側面図、図1の
(ロ)は図1の(イ)におけるロ−ロ断面図、図1の(ハ)は図1の(イ)におけるハ−
ハ断面図、図1の(ニ)は同上実施例の上面図である。
図1において、11はケースであり、111センサー本体収容室と圧力伝達治具収納室
112とを備えている。12はケース11の圧力伝達治具収納室112内に上下に摺動可
能に収容された圧力伝達治具であり、圧縮に対して剛直な六面壁立体から構成されている
。13はケース下端に螺子等で固着された下蓋であり、ロードセル等の圧力センサー14
が固定され、この圧力センサー14の接触子141が圧力伝達治具12の下面に接触され
ている。10は振動センサー本体であり、螺子式接触子101が着脱可能とされ、長さの
異なる接触子101の交換により接触子101の突出長さが所定長さに設定されている。
15は弾性支持治具であり、筒形であって圧力伝達治具12の上面に載置され、この筒
形弾性支持治具15内に振動センサー本体10が差し込まれ、振動センサー本体10の上
側鍔部102(ナットの螺合により設けることができる)が支持治具15の上端で支承さ
れ、振動センサー本体下端部103が圧力伝達治具上面の孔121に挿通されている。1
04は振動センサー本体10の電気ケーブル、142は圧力センサー14の電気ケーブル
であり、圧力伝達治具12のケーブル挿通孔122を経てケース11より引出されている
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 (a) is a side view showing a part of a vibration sensor according to an embodiment of the present invention in cross section, FIG. 1 (b) is a cross-sectional view of FIG. (C) is the same as (a) in FIG.
FIG. 1C is a top view of the embodiment.
In FIG. 1, reference numeral 11 denotes a case, which includes a 111 sensor main body storage chamber and a pressure transmission jig storage chamber 112. Reference numeral 12 denotes a pressure transmission jig accommodated in the pressure transmission jig accommodation chamber 112 of the case 11 so as to be slidable in the vertical direction, and is constituted by a six-sided wall solid rigid against compression. Reference numeral 13 denotes a lower lid fixed to the lower end of the case with a screw or the like, and a pressure sensor 14 such as a load cell.
The contact 141 of the pressure sensor 14 is in contact with the lower surface of the pressure transmission jig 12. Reference numeral 10 denotes a vibration sensor main body. The screw-type contact 101 can be attached and detached, and the protruding length of the contact 101 is set to a predetermined length by exchanging the contacts 101 having different lengths.
Reference numeral 15 denotes an elastic support jig, which has a cylindrical shape and is placed on the upper surface of the pressure transmission jig 12. The vibration sensor main body 10 is inserted into the cylindrical elastic support jig 15, and the upper side of the vibration sensor main body 10. A flange portion 102 (which can be provided by screwing a nut) is supported at the upper end of the support jig 15, and the vibration sensor main body lower end portion 103 is inserted into the hole 121 on the upper surface of the pressure transmission jig. 1
04 is an electric cable of the vibration sensor main body 10, 142 is an electric cable of the pressure sensor 14, and is pulled out from the case 11 through the cable insertion hole 122 of the pressure transmission jig 12.

前記の筒形弾性支持治具15には、ケース11と振動センサー本体10との間での振動
の伝播を緩和乃至は遮断するために、図2の(イ)に示すバネ常数を調節したバネ製円筒
治具、図2の(ロ)に示すゴム製筒や発泡樹脂筒等の緩衝材製円筒治具、図2の(ハ)に
示す金属筒片150の上端または下端あるいは上下端に緩衝材製筒片151、152を固
着したもの等を使用することが好ましい。
The cylindrical elastic support jig 15 includes a spring whose spring constant is adjusted as shown in FIG. 2A in order to reduce or block the propagation of vibration between the case 11 and the vibration sensor body 10. A cylindrical jig made of buffer, a cylindrical jig made of a buffer material such as a rubber cylinder or a foamed resin cylinder shown in FIG. 2B, and buffered at the upper or lower end or upper and lower ends of the metal cylinder piece 150 shown in FIG. It is preferable to use a material in which the material cylinder pieces 151 and 152 are fixed.

図1において、16はケース11の上端に螺子等で固着された上蓋であり、前記振動セ
ンサー10の鍔102の外郭よりも小さな孔161が設けられ、この孔161から振動セ
ンサー本体10の接触子101が頭出され、センサー本体10が接触子101の接触点の
上下変位に追従して上下に移動可能とされている。
In FIG. 1, reference numeral 16 denotes an upper lid fixed to the upper end of the case 11 with a screw or the like, and a hole 161 smaller than the outline of the flange 102 of the vibration sensor 10 is provided, from which the contact of the vibration sensor main body 10 is provided. 101 is cued, and the sensor body 10 can move up and down following the vertical displacement of the contact point of the contact 101.

上記の振動センサー本体10は、振動加速度、振動速度、振動変位をピックアップする
何れの方式であってもよく、センサー素子には抵抗線ひずみゲージ、ピエゾ効果を利用し
た半導体ゲージ、圧電磁器等の圧電型加速度ピックアップ等を使用できる。
本発明に係る振動センサーは、下水管路や農水管路内で使用されるときに下水等に触れ
易い部位、特に上蓋16、振動センサーの接触子101、ケース11、下蓋13には耐食
金属製、例えばアルミ合金製、SUS製とすることが好ましい。
The vibration sensor main body 10 may be any system that picks up vibration acceleration, vibration speed, and vibration displacement, and the sensor element is a resistance strain gauge, a semiconductor gauge using the piezoelectric effect, a piezoelectric such as a piezoelectric ceramic. A type acceleration pickup can be used.
The vibration sensor according to the present invention is a corrosion-resistant metal in a portion that is easy to touch sewage when used in a sewage pipe or an agricultural water pipe, in particular, the upper lid 16, the contact 101 of the vibration sensor, the case 11, and the lower lid 13. For example, it is preferable to use an aluminum alloy or SUS.

図3の(イ)は本発明に係る検査装置の実施例を示す側面図である。
図3の(イ)において、20は台車であり、マンホールと管路との間の直交空間を経て
の管路内への搬入を容易に行い得るように図3の(ロ)に示すように中折れ可能としてあ
る。21aは振動センサー支持手段として台車に取付けられた第1アーム、21bはハン
マー支持手段としての第2アームであり、それぞれ下端がギア機構を介してサーボモータ
軸に連結され、サーボモータの駆動により傾動可能とされている。Aは本発明に係る振動
センサーであり、第1アーム21aの先端に固定されている。Bは打撃具としてのインパ
ルスハンマーであり、バネ式、油圧式のインパクター22を備え、第2アーム21bの先
端に固定されている。
上記アームは上下にラック機構やシリンダー機構により可動とする方式とすることもで
きる。
また、ハンマー打撃点と振動センサー接触点間の距離(入力点と出力点との間の距離)
を調整するためにアームを水平方向にも可動制御可能とすることもできる。
上記アームに代え、振動センサーを支持して管内面の所定の位置に接触子を接触させ得
、ハンマーを支持して管内面の所定の位置を打撃できるものであれば、適宜の支持手段を
使用できる。
打撃具としては、インパルスハンマー以外にハンマー、鋼球等が使用できるが、打撃は
常に同じ力で加えることが望ましいので、例えばシュミットハンマーやバネ、ピストン等
を用いてハンマー、鋼球等を打ち出すもの、または一定の高さから鋼球等を落下させるも
のを使用することが望ましい。インパルスハンマーを使用した際は、入力情報の数値デー
タを計測しておき、解析時に反映させるようにしておくことが望ましい。
FIG. 3A is a side view showing an embodiment of the inspection apparatus according to the present invention.
In FIG. 3 (a), reference numeral 20 denotes a carriage, as shown in FIG. 3 (b) so that it can be easily carried into the pipeline through the orthogonal space between the manhole and the pipeline. It can be folded. 21a is a first arm attached to the carriage as a vibration sensor support means, and 21b is a second arm as a hammer support means. The lower ends of the first arm are connected to the servo motor shaft via a gear mechanism, and tilted by driving the servo motor. It is possible. A is a vibration sensor according to the present invention, and is fixed to the tip of the first arm 21a. B is an impulse hammer as a hitting tool, which includes a spring-type or hydraulic-type impactor 22 and is fixed to the tip of the second arm 21b.
The arm can be moved up and down by a rack mechanism or a cylinder mechanism.
Also, distance between hammer hit point and vibration sensor contact point (distance between input point and output point)
In order to adjust the angle, the arm can also be movable and controlled in the horizontal direction.
In place of the arm, if the vibration sensor can be supported and the contact can be brought into contact with a predetermined position on the inner surface of the tube, and the hammer can be supported and the predetermined position on the inner surface of the tube can be hit, an appropriate support means is used. it can.
As the hitting tool, hammers, steel balls, etc. can be used in addition to the impulse hammer. However, it is desirable to always apply the hits with the same force. For example, hammers, steel balls, etc. are hit using a Schmitt hammer, spring, piston, etc. It is desirable to use a steel ball or the like that drops from a certain height. When using an impulse hammer, it is desirable to measure the numerical data of the input information and reflect it during analysis.

図4はこの検査装置の使用状態を示している。
図4において、まず第1アーム21aを傾動させて振動センサーAの接触子101を管
路内面に接触させ、振動センサーAの圧力センサー〔図1の(イ)の符号14〕の圧力信
号で第1アーム21aを制御して接触子101の接触圧を所定の圧力に設定する。次いで
、第2アーム21bを所定の高さまで傾動させ、その所定の高さでハンマーBのインパク
ター22を動作させ管内面を打撃して入力弾性波を発生させ、振動センサーAの接触子1
01にその弾性波を受振させる。
本発明に係る振動センサーにおいては、図1の(イ)に示すように振動センサー本体1
0とケース11との間に振動吸収機能に優れた弾性支持治具15、例えばバネ常数を調節
したバネ製円筒治具、ゴム製筒や発泡樹脂筒等の緩衝材製円筒治具、金属筒片の上端また
は下端あるいは上下端に緩衝材製筒片を固着した複合治具等を介在させてあるから、図4
において、ハンマーBの打撃振動がアーム21b,21aを経て振動センサー本体に伝播
するのをよく防止でき、管体を伝播してくる弾性波のみを振動センサー本体に受振させ得
てノイズを含まない正確な入力を受振できる。この場合、図1の(イ)に示すように、振
動センサー本体10の電気ケーブル104を圧力伝達治具12に設けた孔122を経てケ
ース11外に引出してあり、弾性支持治具15に電気ケーブル引出し孔を設ける必要がな
いから、支持治具15の振動吸収機能を良好に保障でき、正確な入力の受振を確保できる
FIG. 4 shows the use state of this inspection apparatus.
In FIG. 4, first, the first arm 21a is tilted to bring the contact 101 of the vibration sensor A into contact with the inner surface of the pipe, and the first pressure signal of the pressure sensor of the vibration sensor A (reference numeral 14 in FIG. One arm 21a is controlled to set the contact pressure of the contact 101 to a predetermined pressure. Next, the second arm 21b is tilted to a predetermined height, and the impactor 22 of the hammer B is operated at the predetermined height to strike the inner surface of the tube to generate an input elastic wave. The contact 1 of the vibration sensor A
01 receives the elastic wave.
In the vibration sensor according to the present invention, as shown in FIG.
Elastic support jig 15 having an excellent vibration absorbing function between 0 and case 11, for example, a spring cylindrical jig whose spring constant is adjusted, a cylindrical jig made of a cushioning material such as a rubber cylinder or a foamed resin cylinder, a metal cylinder Since the composite jig | tool which fixed the cylinder piece made from a buffer material is interposed in the upper end or lower end or upper and lower ends of the piece, FIG.
In this case, it is possible to prevent the hammering vibration of the hammer B from propagating to the vibration sensor main body through the arms 21b and 21a, and it is possible to receive only the elastic wave propagating through the tubular body to the vibration sensor main body and to accurately include no noise. Can receive input. In this case, as shown in FIG. 1A, the electric cable 104 of the vibration sensor main body 10 is drawn out of the case 11 through the hole 122 provided in the pressure transmission jig 12, and is electrically connected to the elastic support jig 15. Since there is no need to provide a cable lead-out hole, the vibration absorbing function of the support jig 15 can be satisfactorily secured, and accurate input vibration can be secured.

上記において、出力点と入力点の間隔が短いと、弾性波が管体欠陥箇所点を反射して入
力点に至るまでの距離が長くなり、その間での減衰が大きくなって欠陥情報が弱くなるか
ら、出力点と入力点との距離は管体長さの1/4以上とすることが好ましい。
In the above, if the distance between the output point and the input point is short, the distance until the elastic wave reflects the tube defect point and reaches the input point becomes long, the attenuation between them becomes large and the defect information becomes weak. Therefore, the distance between the output point and the input point is preferably ¼ or more of the tube length.

図4において、台車を中折れ箇所で分離して振動センサーとハンマー間の間隔を所望値
に設定することができる。この場合、ハンマー→第2アーム→台車→管体→台車→第1ア
ームの経路を経てのハンマー打撃音の振動センサー本体への伝播が弾性支持治具で遮断さ
れ、この場合も、管体を伝播してくる弾性波のみを振動センサー本体に受振させ得てノイ
ズを含まない正確な入力を受振できる。
In FIG. 4, the carriage can be separated at the middle folding point, and the distance between the vibration sensor and the hammer can be set to a desired value. In this case, propagation of the hammer hitting sound to the vibration sensor body through the path of the hammer → second arm → cart → tube → cart → first arm is blocked by the elastic support jig. Only the propagating elastic wave can be received by the vibration sensor body, and an accurate input including no noise can be received.

上記において、振動センサーが受振する弾性波中の固有振動周波数成分が最大ピーク値
を呈し(以下、この最大ピーク値を呈する周波数を最大ピーク周波数ともいう)、被検査
管体にクラック等の欠陥があると、管の曲げ剛性の低下のために最大ピーク周波数が低周
波域側にシフトされる。同じ理由で、(低周波成分)/(高周波成分)の比も大きくされ
る。また、被検査管体にクラック等の欠陥があると、振動が伝播し難くなって最大ピーク
の強度値が小さくされる。また、管体に周方向クラックがあると、分割された質量の異な
るコンクリート部分が衝撃によってそれぞれ別個に振動するものの、連成振動における相
互作用により減衰時間に影響が現れるために所定強度以上のピーク本数が少なくされる。
In the above, the natural vibration frequency component in the elastic wave received by the vibration sensor exhibits the maximum peak value (hereinafter, the frequency exhibiting the maximum peak value is also referred to as the maximum peak frequency), and the inspection tube has a defect such as a crack. If it exists, the maximum peak frequency is shifted to the low frequency side due to a decrease in the bending rigidity of the tube. For the same reason, the ratio of (low frequency component) / (high frequency component) is also increased. Further, if there is a defect such as a crack in the tube to be inspected, the vibration is difficult to propagate and the intensity value of the maximum peak is reduced. In addition, if there are circumferential cracks in the pipe body, the divided concrete parts with different masses vibrate separately by impact, but the damping time is affected by the interaction in the coupled vibrations. The number is reduced.

この場合、埋設管内の水位、埋設管の土圧等の環境条件により弾性波の出力波形が変化
することは、前記した振動の基本式〔数1〕において減衰係数cや実質的な曲げ剛性EIの
変化(土圧が高くなると、管の拘束度が増し、実質的に剛性EIが高くなる)を想定すれば明
らかである。
しかしながら、本発明者等の鋭意実験結果によれば、前記したピーク周波数、(低周波
成分)/(高周波成分)の比、ピーク本数は実質的に変化せず、受振弾性波の波高値の減
少にとどまる(これは、管内水位の上昇に比例して管内の水中に出力弾性波の一部が放出
され、管上土圧の上昇に比例して覆土中に出力弾性波の一部が放出されるものと推定され
る)。
実験結果によれば、JISA 5303 B型1種に基づく呼び径250mmのコンク
リートヒュームの出力弾性波の波高値に対する水位x%での補正係数aは、
In this case, the output waveform of the elastic wave changes depending on the environmental conditions such as the water level in the buried pipe and the earth pressure of the buried pipe. This is because the damping coefficient c and the substantial bending rigidity EI in the basic equation [Equation 1] described above. It is clear if the change of (when the earth pressure increases, the degree of restraint of the pipe increases and the rigidity EI increases substantially) is assumed.
However, according to the results of earnest experiments by the present inventors, the peak frequency, the ratio of (low frequency component) / (high frequency component), and the number of peaks do not change substantially, and the peak value of the received elastic wave decreases. (This is because part of the output elastic wave is released into the water in the pipe in proportion to the rise in the pipe water level, and part of the output elastic wave is released in the cover soil in proportion to the rise in the soil pressure on the pipe. Estimated).
According to the experimental results, the correction coefficient a at the water level x% with respect to the peak value of the output elastic wave of the concrete fume having a nominal diameter of 250 mm based on the type 1 of JISA 5303 B is:

〔式2〕 a=1/(−0.005x+1)
で与えられ、覆土厚さymでの補正係数bは、
[Formula 2] a = 1 / (− 0.005x + 1)
The correction coefficient b at the covering soil thickness ym is given by

〔式3〕 b=1/(−0.28y+1.14)
で与えられる。
[Formula 3] b = 1 / (− 0.28y + 1.14)
Given in.

本発明に係る埋設管の検査方法により埋設管の劣化診断を行うには、接合された管体ご
とに、弾性波を入力し、その入力に対する受振弾性波を記録し、この受振弾性波を高速フ
ーリエ変換プログラムで処理して周波数スペクトルを得、この周波数スペクトルを解析し
て劣化判定するが、診断基準の統一のために入力及び入力点と出力点の位置や距離が極力
同じにされる。
前記の数式1から明らかなように、出力は入力f(t)のレベル(波高値)により変化さ
れる。従って入力のレベル差の影響を排除するために、(出力波の周波数スペクトル)/
(入力波の周波数スペクトル)で与えられる伝達関数を解析することが有効である。
インパルスハンマーによる入力弾性波の時間長さはほぼ120μsである。受振弾性波
の測定時間は通常800×10μsとされる。周波数スペクトルの周波数は0.5〜10
kHz(0.5kHz以下の低周波域は雑音排除のためにカット)とされる。
In order to perform the deterioration diagnosis of the buried pipe by the buried pipe inspection method according to the present invention, an elastic wave is input to each of the joined pipes, the received elastic wave is recorded with respect to the input, and the received elastic wave is A frequency spectrum is obtained by processing with a Fourier transform program, and this frequency spectrum is analyzed to determine deterioration. However, in order to unify the diagnostic criteria, the positions of the input, the input point, and the output point and the distance are made the same as much as possible.
As is clear from the above equation 1, the output varies depending on the level (crest value) of the input f (t). Therefore, in order to eliminate the influence of the input level difference, (frequency spectrum of output wave) /
It is effective to analyze the transfer function given by (frequency spectrum of input wave).
The time length of the input elastic wave by the impulse hammer is approximately 120 μs. The measurement time of the received elastic wave is usually 800 × 10 μs. The frequency of the frequency spectrum is 0.5-10
kHz (low frequency range of 0.5 kHz or less is cut to eliminate noise).

本発明に係る埋設管の検査方法により埋設管の劣化診断を行うには、例えば図5に示す
フローに従って進めることができる。この場合、一本の管体の衝撃弾性波試験を行えば、
次の管体内に検査装置を移行させるが、陥没が過酷な場合は衝撃弾性波試験を行うまでも
なく重劣化と判定する。
図4において、3はTVカメラを示し、陥没の程度はTVカメラの監視により行い、管
路内面を監視しつつ検査装置を移行させる。4は制御ユニット、5は操作信号を入力した
り、データ記録、高速フーリエ変換を行うパソコンやTVカメラモニタを示している。
埋設管の劣化診断を行うには、まず、埋設管路の各管体に対し、本発明に係る検査装置
を使用して衝撃弾性波試験を行い、振動センサーが受振する入力弾性波をパソコンに保存
し、高速フーリエ変換ソフトによりその入力弾性波をフーリエ変換して周波数スペクトル
の伝達関数を求める。埋設深さy(m)を測定し、また管内水位x(%)を測定しておき
、前記の式2及び式3により補正係数を算出し、埋設深さに対する補正及び管内水位によ
る補正を行い、補正された周波数スペクトルの伝達関数を求める。
この補正した周波数スペクトルの伝達関数を解析し、最大ピークのスペクトル強度値4
0%以上のピーク本数を求め、ピーク本数が2本以下であれば〔図6の(ロ)参照〕、軸
方向クラック在りと診断し、ピーク本数が3本以上であれば〔図6の(ハ)、図6の(ニ
)参照〕、最大ピークの強度値を解析し、予め求めておいた健全管体の周波数スペクトル
伝達関数〔図6の(イ)参照〕と比較して最大ピークの強度値が顕著に減少しているもの
〔図6の(ハ)参照〕では周方向クラック在りと診断し、最大ピークの強度値の減少程度
が小さなもの〔図6の(ニ)参照〕では管厚み減少と診断することができる。
In order to perform the deterioration diagnosis of the buried pipe by the buried pipe inspection method according to the present invention, for example, the flow shown in FIG. In this case, if a shock elastic wave test of one tube is performed,
The inspection apparatus is transferred to the next tube, but if the depression is severe, it is determined that the deterioration is severe without performing a shock elastic wave test.
In FIG. 4, 3 indicates a TV camera, and the degree of depression is monitored by the TV camera, and the inspection apparatus is shifted while monitoring the inner surface of the pipeline. Reference numeral 4 denotes a control unit, and 5 denotes a personal computer or TV camera monitor for inputting operation signals, data recording, and fast Fourier transform.
In order to diagnose the deterioration of buried pipes, first, each pipe body of the buried pipe line is subjected to a shock elastic wave test using the inspection apparatus according to the present invention, and the input elastic wave received by the vibration sensor is sent to a personal computer. Save and Fourier transform the input elastic wave with fast Fourier transform software to obtain the transfer function of the frequency spectrum. Measure the buried depth y (m), measure the pipe water level x (%), calculate the correction coefficient by the above formulas 2 and 3, and correct the buried depth and the pipe water level. The transfer function of the corrected frequency spectrum is obtained.
The transfer function of this corrected frequency spectrum is analyzed, and the spectrum intensity value of the maximum peak is 4
When the number of peaks of 0% or more is obtained and the number of peaks is 2 or less (see (b) of FIG. 6), it is diagnosed that there is an axial crack, and when the number of peaks is 3 or more (( C) (see (d) of FIG. 6), the intensity value of the maximum peak is analyzed and compared with the frequency spectrum transfer function (see (a) of FIG. 6) of the healthy tube obtained in advance. If the intensity value is significantly reduced (see (c) in FIG. 6), it is diagnosed that there is a circumferential crack, and if the decrease in the intensity value of the maximum peak is small (see (d) in FIG. 6), the tube Diagnosis of thickness reduction.

なお、図6の(イ)〜(ニ)に示す周波数スペクトルの伝達関数は、JISA 530
3B型1種の呼び径250mm、管長さ2mのコンクリート製ヒューム管について、入力
点と受振点との距離を1950mmとし、ハンマーにインパルスハンマーを使用し、振動
センサー本体にキーエンス社製GH−313Aを使用し、弾性支持具にゴムを使用し、受
信アンプにキーエンス社製GA−245を、データロガーにキーエンス社製NR−200
0をそれぞれ使用し、高速フーリエ変換プログラムに株式会社アブティック製を使用して
求めたものである。
In addition, the transfer function of the frequency spectrum shown to (i)-(d) of FIG.
3B type 1 type nominal fume pipe with a nominal diameter of 250 mm and pipe length of 2 m, the distance between the input point and the receiving point is 1950 mm, an impulse hammer is used for the hammer, and GH-313A made by Keyence is used for the vibration sensor body Used, rubber is used for the elastic support, GA-245 manufactured by Keyence Co. is used for the receiving amplifier, and NR-200 manufactured by Keyence Co. is used for the data logger.
Each of 0 is used, and the fast Fourier transform program is obtained by using an Abu boutique Co., Ltd.

本発明に係る振動センサーの実施例を示す図面である。It is drawing which shows the Example of the vibration sensor which concerns on this invention. 本発明に係る振動センサーにおける弾性支持具の異なる例を示す図面である。It is drawing which shows the example from which the elastic supporter in the vibration sensor which concerns on this invention differs. 本発明に係る検査装置の実施例を示す図面である。It is drawing which shows the Example of the inspection apparatus which concerns on this invention. 本発明に係る埋設管の検査方法を説明するために使用した図面である。It is drawing used in order to demonstrate the inspection method of the buried pipe which concerns on this invention. 本発明に係る埋設管の検査方法の実施例でのフローチャートである。It is a flowchart in the Example of the inspection method of the buried pipe which concerns on this invention. 本発明に係る埋設管の検査方法の実施例での受振波の各種周波数スペクトルを示す図面である。It is drawing which shows the various frequency spectrum of the received wave in the Example of the inspection method of the buried pipe which concerns on this invention. 従来の埋設管検査装置を示す図面である。It is drawing which shows the conventional buried pipe inspection apparatus. 衝撃弾性波法における入力を示すために使用した図面である。It is drawing used in order to show the input in a shock elastic wave method.

符号の説明Explanation of symbols

A 振動センサー
B ハンマー
10 振動センサー本体
101 接触子
11 ケース
14 圧力センサー
15 弾性支持具
20 台車
21a 振動センサー支持手段
21b ハンマー支持手段
A Vibration sensor B Hammer 10 Vibration sensor main body 101 Contact 11 Case 14 Pressure sensor 15 Elastic support 20 Cart 21a Vibration sensor support means 21b Hammer support means

Claims (3)

振動センサー本体がケース内に弾性支持具により支承され、振動センサー本体の接触子が
ケース外に頭出され、該接触子の接触圧力が前記支持治具を経て伝達されて接触圧制御信
号を発生する圧力センサーがケース内に設けられていることを特徴とする振動センサー。
The vibration sensor body is supported in the case by an elastic support, the contact of the vibration sensor body is squeezed out of the case, and the contact pressure of the contact is transmitted through the support jig to generate a contact pressure control signal. A vibration sensor characterized in that a pressure sensor is provided in the case.
請求項1記載の振動センサーを支持する支持手段と、打撃具を支持する支持手段が架台上
に搭載され、振動センサー内の圧力センサーからの制御信号によって接触子の接触圧力を
所定圧力に設定するための操作機構及び打撃具操作機構が設けられていることを特徴とす
る検査装置。
The support means for supporting the vibration sensor according to claim 1 and the support means for supporting the impacting tool are mounted on a frame, and the contact pressure of the contact is set to a predetermined pressure by a control signal from the pressure sensor in the vibration sensor. An inspection apparatus comprising an operation mechanism and a striking tool operation mechanism.
請求項2記載の検査装置を埋設管の被検査管体内に導入し、振動センサー支持手段を操作
して接触子を被検査管体内面に所定の圧力で接触させ、而るのち、ハンマー支持手段を操
作して被検査管体内面を打撃し、前記振動センサー本体が受振した波形の周波数スペクト
ルを求め、この周波数スペクトルの解析・判定により埋設管の劣化診断を行うことを特徴
とする埋設管の検査方法。
3. The inspection apparatus according to claim 2 is introduced into a tube to be inspected of an embedded tube, and the vibration sensor support means is operated to bring the contact into contact with the inner surface of the tube to be inspected at a predetermined pressure. The inner surface of the pipe to be inspected is hit by operating the vibration sensor body to obtain the frequency spectrum of the waveform received by the vibration sensor main body, and the deterioration diagnosis of the buried pipe is performed by analyzing and judging the frequency spectrum. Inspection method.
JP2004124348A 2004-04-20 2004-04-20 Inspection method for buried pipes Expired - Fee Related JP4391875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004124348A JP4391875B2 (en) 2004-04-20 2004-04-20 Inspection method for buried pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124348A JP4391875B2 (en) 2004-04-20 2004-04-20 Inspection method for buried pipes

Publications (2)

Publication Number Publication Date
JP2005308486A true JP2005308486A (en) 2005-11-04
JP4391875B2 JP4391875B2 (en) 2009-12-24

Family

ID=35437439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124348A Expired - Fee Related JP4391875B2 (en) 2004-04-20 2004-04-20 Inspection method for buried pipes

Country Status (1)

Country Link
JP (1) JP4391875B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032479A (en) * 2015-08-05 2017-02-09 原子燃料工業株式会社 State evaluating apparatus and state evaluating method of member
CN107271563A (en) * 2017-08-21 2017-10-20 兰州交通大学 Vibration isolator experimental apparatus for capability and method
JP2019056683A (en) * 2017-03-27 2019-04-11 株式会社アミック Diagnostic method for concrete structure and diagnostic device thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233585A (en) * 1975-09-09 1977-03-14 Central Res Inst Of Electric Power Ind Device for controlling contact pressure of probe for ultrasonic flaw de tectors
JP2690064B2 (en) * 1990-11-30 1997-12-10 科学技術振興事業団 Bone elasticity tester for living body
JPH09318342A (en) * 1996-05-31 1997-12-12 Ket Kagaku Kenkyusho:Kk Constant pressure mechanism
JP2003130856A (en) * 2001-10-29 2003-05-08 Akebono Brake Ind Co Ltd Building construction inspection device
JP2004028976A (en) * 2001-10-12 2004-01-29 Sekisui Chem Co Ltd Method and apparatus for inspecting reinforced concrete pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233585A (en) * 1975-09-09 1977-03-14 Central Res Inst Of Electric Power Ind Device for controlling contact pressure of probe for ultrasonic flaw de tectors
JP2690064B2 (en) * 1990-11-30 1997-12-10 科学技術振興事業団 Bone elasticity tester for living body
JPH09318342A (en) * 1996-05-31 1997-12-12 Ket Kagaku Kenkyusho:Kk Constant pressure mechanism
JP2004028976A (en) * 2001-10-12 2004-01-29 Sekisui Chem Co Ltd Method and apparatus for inspecting reinforced concrete pipe
JP2003130856A (en) * 2001-10-29 2003-05-08 Akebono Brake Ind Co Ltd Building construction inspection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032479A (en) * 2015-08-05 2017-02-09 原子燃料工業株式会社 State evaluating apparatus and state evaluating method of member
JP2019056683A (en) * 2017-03-27 2019-04-11 株式会社アミック Diagnostic method for concrete structure and diagnostic device thereof
JP7037776B2 (en) 2017-03-27 2022-03-17 株式会社アミック Diagnostic method for concrete structures and their diagnostic equipment
JP2022060449A (en) * 2017-03-27 2022-04-14 株式会社アミック Diagnostic device and diagnostic method for concrete structure
JP7235265B2 (en) 2017-03-27 2023-03-08 株式会社アミック Concrete structure diagnostic method and its diagnostic device
CN107271563A (en) * 2017-08-21 2017-10-20 兰州交通大学 Vibration isolator experimental apparatus for capability and method
CN107271563B (en) * 2017-08-21 2023-03-31 兰州交通大学 Vibration isolator performance experiment device and method

Also Published As

Publication number Publication date
JP4391875B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4667228B2 (en) Pile inspection method and sensor crimping device
JP4954729B2 (en) Concrete pile soundness evaluation support device, soundness evaluation support method, and soundness evaluation support program
CA3007067C (en) Method and apparatus for non-destructive measurement of modulus of elasticity and/or the compressive strength of masonry samples
JP2004150946A (en) Nondestructive measuring instrument and method for concrete rigidity by ball hammering
JP2010271116A (en) Blow hammer for diagnosis of integrity, and method for diagnosis of integrity in concrete structure using the same
JP6688619B2 (en) Impact device used for impact elastic wave method
JP6130778B2 (en) Method and apparatus for inspecting interface of composite structure
JPH1090234A (en) Method of detecting internal defect of structure
JP3198840U (en) Prop road boundary inspection system
JP3438769B2 (en) Method and apparatus for diagnosing grout filling degree of prestressed concrete
JP4391875B2 (en) Inspection method for buried pipes
JP6364742B2 (en) Structure diagnosis apparatus, structure diagnosis method, and program
JP4515848B2 (en) Inspection method for buried pipes
JP6128432B2 (en) Anchor soundness inspection device and anchor soundness inspection method
JP4413082B2 (en) Inspection method for buried pipes
WO2015059956A1 (en) Structure diagnosis device, structure diagnosis method, and program
JP4413089B2 (en) Inspection method for buried pipes
JP2008185425A (en) Elastic wave transmitting device and reflected elastic wave measuring device
CN110146394A (en) Material property impacts acoustics response test simulation system
RU2402014C1 (en) Device for collisional flaw detection of materials
Feroz et al. Defect Detection in rods using PZT sensors
EP3112836B1 (en) Device and method for detecting the structural integrity of a sample object
KR101935930B1 (en) Apparatus and method for measuring dynamic modulus and poisson&#39;s ratio of an object using impulse technique
JP6504964B2 (en) Member condition evaluation device and condition evaluation method
JP6861969B2 (en) Elastic wave transmission / reception probe, measuring device and measuring method using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4391875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees