JP2005308386A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2005308386A
JP2005308386A JP2005072696A JP2005072696A JP2005308386A JP 2005308386 A JP2005308386 A JP 2005308386A JP 2005072696 A JP2005072696 A JP 2005072696A JP 2005072696 A JP2005072696 A JP 2005072696A JP 2005308386 A JP2005308386 A JP 2005308386A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant inlet
heat exchanger
heat exchange
header portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005072696A
Other languages
Japanese (ja)
Other versions
JP4686220B2 (en
Inventor
Naohisa Higashiyama
直久 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005072696A priority Critical patent/JP4686220B2/en
Priority to DE112005000423T priority patent/DE112005000423T5/en
Priority to US10/586,594 priority patent/US8002024B2/en
Priority to PCT/JP2005/006000 priority patent/WO2005090891A1/en
Publication of JP2005308386A publication Critical patent/JP2005308386A/en
Application granted granted Critical
Publication of JP4686220B2 publication Critical patent/JP4686220B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger with excellent heat exchanging performance. <P>SOLUTION: This heat exchanger 1 comprises a heat exchanging core part 4 constituted by arranging two rows of groups 13 of heat exchanging tubes made by a plurality of heat exchanging tubes 12 in the air flow direction, a refrigerant inlet header part 5 arranged on the upper end side of the heat exchanging tubes 12 and to which the heat exchanging tubes 12 of one row of the groups 13 of the heat exchanging tubes are connected, and a refrigerant header part 6 arranged on the rear side of the refrigerant inlet header part 5 on the upper end side of the heat exchanging tubes 12 and to which the heat exchanging tubes 12 of one row of the groups 13 of the heat exchanging tubes are connected. A refrigerant inlet 37 is formed on a cap 19 blocking one opening of the refrigerant inlet header part 5. A guide 40 inclining upward toward inside of the refrigerant inlet header part 5 is provided to the lower side edge part of the refrigerant inlet 37 of the cap 19. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は熱交換器に関し、さらに詳しくは、たとえば自動車に搭載される冷凍サイクルであるカーエアコンのエバポレータとして使用される熱交換器に関する。   The present invention relates to a heat exchanger, and more particularly to a heat exchanger used as an evaporator of a car air conditioner that is a refrigeration cycle mounted on an automobile, for example.

この明細書および特許請求の範囲において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。また、この明細書および特許請求の範囲において、通風方向下流側(図1に矢印Xで示す方向)を前、これと反対側を後といい、図2の上下、左右を上下、左右というものとする。   In this specification and claims, the term “aluminum” includes aluminum alloys in addition to pure aluminum. Further, in this specification and claims, the downstream side in the ventilation direction (the direction indicated by the arrow X in FIG. 1) is referred to as the front, and the opposite side is referred to as the rear. And

従来、カーエアコン用エバポレータとして、1対の皿状プレートを対向させて周縁部どうしをろう付してなる複数の偏平中空体が並列状に配置され、隣接する偏平中空体間にルーバ付きコルゲートフィンが配置されて偏平中空体にろう付された、所謂積層型エバポレータが広く用いられていた。ところが、近年、エバポレータのさらなる小型軽量化および高性能化が要求されるようになってきた。   Conventionally, as a evaporator for a car air conditioner, a plurality of flat hollow bodies formed by brazing peripheral edges with a pair of plate-shaped plates facing each other are arranged in parallel, and a corrugated fin with a louver between adjacent flat hollow bodies A so-called laminated evaporator, in which the above is disposed and brazed to a flat hollow body, has been widely used. However, in recent years, there has been a demand for further reduction in size and weight and performance of the evaporator.

そして、このような要求を満たすエバポレータとして、本出願人は、先に、間隔をおいて配置された複数の熱交換管からなる熱交換管群が通風方向に並んで2列配置されることにより構成された熱交換コア部と、熱交換コア部の上端側に配置された冷媒入出用タンクと、熱交換コア部の下端側に配置された冷媒ターン用タンクとを備えており、冷媒入出用タンク内が仕切壁により通風方向に並んだ冷媒入口ヘッダ部と冷媒出口ヘッダ部とに区画され、冷媒入口ヘッダ部の一端部に冷媒入口が形成されるとともに、冷媒出口ヘッダ部における冷媒入口と同一端部に冷媒出口が形成され、冷媒ターン用タンク内が仕切壁により通風方向に並んだ冷媒流入ヘッダ部と冷媒流出ヘッダ部とに仕切られ、冷媒ターン用タンクの仕切壁に長さ方向に間隔をおいて複数の冷媒通過穴が形成され、前側の熱交換管群の熱交換管の上端部が冷媒入口ヘッダ部に、後側の熱交換管群の熱交換管の上端部が冷媒出口ヘッダ部にそれぞれ内部に突出した状態で接続され、前側の熱交換管群の熱交換管の下端部が冷媒流入ヘッダ部に、後側の熱交換管群の熱交換管の下端部が冷媒流出ヘッダ部にそれぞれ接続され、冷媒入出用タンクの冷媒入口ヘッダ部に流入した冷媒が、前側の熱交換管群の熱交換管を通って冷媒ターン用タンクの冷媒流入ヘッダ部内に流入し、ついで仕切壁の冷媒通過穴を通って冷媒流出ヘッダ部内に流入し、さらに後側の熱交換管群の熱交換管を通って冷媒入出用タンクの冷媒出口ヘッダ部に流入するようになされているエバポレータを提案した(特許文献1参照)。   As an evaporator satisfying such a requirement, the present applicant firstly arranged two rows of heat exchange tube groups, each of which is composed of a plurality of heat exchange tubes arranged at intervals, arranged in the ventilation direction. It is provided with a configured heat exchange core part, a refrigerant inlet / outlet tank arranged on the upper end side of the heat exchange core part, and a refrigerant turn tank arranged on the lower end side of the heat exchange core part. The inside of the tank is partitioned into a refrigerant inlet header portion and a refrigerant outlet header portion arranged in a ventilation direction by a partition wall, and a refrigerant inlet is formed at one end of the refrigerant inlet header portion, and is the same as the refrigerant inlet in the refrigerant outlet header portion A refrigerant outlet is formed at the end, and the refrigerant turn tank is partitioned into a refrigerant inflow header portion and a refrigerant outflow header portion arranged in the ventilation direction by a partition wall, and is spaced in the length direction from the refrigerant turn tank partition wall The A plurality of refrigerant passage holes are formed, the upper end of the heat exchange pipe of the front heat exchange pipe group is the refrigerant inlet header part, and the upper end of the heat exchange pipe of the rear heat exchange pipe group is the refrigerant outlet header part. The lower end of the heat exchange tube of the front heat exchange tube group is connected to the refrigerant inflow header portion, and the lower end of the heat exchange tube of the rear heat exchange tube group is connected to the refrigerant outflow header portion. The refrigerant that is connected to each other and flows into the refrigerant inlet header of the refrigerant inlet / outlet tank flows into the refrigerant inflow header of the refrigerant turn tank through the heat exchange pipe of the front heat exchange pipe group, and then the refrigerant in the partition wall Proposed an evaporator that flows into the refrigerant outflow header through the passage hole, and further flows into the refrigerant outlet header of the refrigerant inlet / outlet tank through the heat exchange pipe of the rear heat exchange pipe group ( Patent Document 1).

しかしながら、本発明者が種々検討した結果、特許文献1記載のエバポレータにおいては、冷媒入口ヘッダ部の冷媒入口および冷媒出口ヘッダ部の冷媒出口が冷媒入出用タンクの同一端部に形成されていること、ならびに熱交換管の上端部が冷媒入口ヘッダ部内に突出した状態で接続されていることに起因して、次のような問題が生じるおそれのあることが判明した。   However, as a result of various studies by the present inventors, in the evaporator described in Patent Document 1, the refrigerant inlet of the refrigerant inlet header and the refrigerant outlet of the refrigerant outlet header are formed at the same end of the refrigerant inlet / outlet tank. Further, it has been found that the following problem may occur due to the fact that the upper end portion of the heat exchange tube is connected in a state of protruding into the refrigerant inlet header portion.

すなわち、熱交換管における冷媒入口ヘッダ部内に突出した部分が、冷媒入口から流入してきた冷媒に対する抵抗となるので、冷媒入口ヘッダ部内に流入した冷媒は、冷媒入口から遠い位置までは流れにくくなる。したがって、前側熱交換管群における冷媒入口に近い位置にある熱交換管内に多量の冷媒が流入して冷媒流量が多くなるとともに、冷媒入口から遠い位置にある熱交換管内には少量の冷媒が流入することになって冷媒流量が少なくなり、後側熱交換管群においても冷媒入口に近い位置にある熱交換管内内の冷媒流量が多くなるとともに、冷媒入口から遠い位置にある熱交換管内の冷媒流量が少なくなる。その結果、熱交換に寄与する冷媒量が熱交換コア部における冷媒入出タンクの長さ方向に関して不均一になり、熱交換コア部を通過して来た空気の温度も場所によって不均一になって、エバポレータの熱交換性能の向上効果が十分得られないことが判明した。このような問題は、冷媒の流量が少ない場合に、特に顕著に発生する。
特開2003−75024号公報
That is, the portion of the heat exchange pipe that protrudes into the refrigerant inlet header portion becomes a resistance against the refrigerant flowing in from the refrigerant inlet, so that the refrigerant flowing into the refrigerant inlet header portion hardly flows to a position far from the refrigerant inlet. Therefore, a large amount of refrigerant flows into the heat exchange pipe located near the refrigerant inlet in the front side heat exchange pipe group and the refrigerant flow rate increases, and a small amount of refrigerant flows into the heat exchange pipe located far from the refrigerant inlet. As a result, the refrigerant flow rate is reduced, and the refrigerant flow in the heat exchange pipe located near the refrigerant inlet in the rear heat exchange pipe group is increased, and the refrigerant in the heat exchange pipe located far from the refrigerant inlet is used. The flow rate is reduced. As a result, the amount of refrigerant that contributes to heat exchange becomes non-uniform in the length direction of the refrigerant inlet / outlet tank in the heat exchange core, and the temperature of the air that has passed through the heat exchange core also becomes non-uniform depending on the location. It has been found that the effect of improving the heat exchange performance of the evaporator cannot be obtained sufficiently. Such a problem occurs particularly remarkably when the flow rate of the refrigerant is small.
Japanese Patent Laid-Open No. 2003-75024

この発明の目的は、上記問題を解決し、熱交換性能の優れた熱交換器を提供することにある。   An object of the present invention is to solve the above problems and provide a heat exchanger having excellent heat exchange performance.

本発明は、上記課題を解決するために以下の態様からなる。   In order to solve the above-mentioned problems, the present invention comprises the following aspects.

1)上端部において前後方向に並んで配置された冷媒入口ヘッダ部および冷媒出口ヘッダ部と、両ヘッダ部を通じさせる冷媒循環経路とを備えており、冷媒入口ヘッダ部の一端に冷媒入口が形成されるとともに、冷媒出口ヘッダ部における冷媒入口と同一端に冷媒出口が形成され、冷媒入口から冷媒入口ヘッダ部内に流入した冷媒が、冷媒循環経路を通って冷媒出口ヘッダ部に戻り、冷媒出口から送り出されるようになっている熱交換器において、
冷媒入口ヘッダ部の一端開口を閉鎖する閉鎖部材に冷媒入口が形成され、閉鎖部材における冷媒入口の下側縁部に、冷媒入口ヘッダ部内方に向かって上方に傾斜したガイドが設けられている熱交換器。
1) It has a refrigerant inlet header part and a refrigerant outlet header part arranged side by side in the front-rear direction at the upper end part, and a refrigerant circulation path passing through both header parts, and a refrigerant inlet is formed at one end of the refrigerant inlet header part. In addition, a refrigerant outlet is formed at the same end as the refrigerant inlet in the refrigerant outlet header, and the refrigerant flowing into the refrigerant inlet header from the refrigerant inlet returns to the refrigerant outlet header through the refrigerant circulation path and is sent out from the refrigerant outlet. In the heat exchanger that is supposed to be
The refrigerant inlet is formed in a closing member that closes one end opening of the refrigerant inlet header portion, and a guide that is inclined upward toward the inside of the refrigerant inlet header portion is provided at a lower edge of the refrigerant inlet in the closing member. Exchanger.

2)ガイドが部分球面体である上記1)記載の熱交換器。   2) The heat exchanger according to 1) above, wherein the guide is a partial spherical body.

3)冷媒入口ヘッダ部の冷媒入口が円形であり、その内径が3〜8.5mmである上記1)または2)記載の熱交換器。   3) The heat exchanger according to 1) or 2) above, wherein the refrigerant inlet of the refrigerant inlet header is circular and the inner diameter thereof is 3 to 8.5 mm.

4)ガイドの突出端面が、閉鎖部材の垂直な内面に対して傾斜した傾斜面上に位置している上記1)〜3)のうちのいずれかに記載の熱交換器。   4) The heat exchanger according to any one of 1) to 3), wherein the protruding end surface of the guide is located on an inclined surface inclined with respect to the vertical inner surface of the closing member.

5)ガイドの突出端面が位置する傾斜面と、閉鎖部材の垂直な内面とがなす劣角の傾斜角度が15〜60度である上記4)記載の熱交換器。   5) The heat exchanger according to 4) above, wherein an inclined angle between the inclined surface on which the protruding end surface of the guide is located and the vertical inner surface of the closing member is 15 to 60 degrees.

6)閉鎖部材が、冷媒入口ヘッダ部の一端開口を閉鎖する第1閉鎖部と、冷媒出口ヘッダ部における冷媒入口と同一端の開口を閉鎖する第2閉鎖部とを有しており、第1閉鎖部に冷媒入口が形成されるとともにガイドが設けられ、第2閉鎖部に冷媒出口が形成されている上記1)〜5)のうちのいずれかに記載の熱交換器。   6) The closing member has a first closing portion that closes one end opening of the refrigerant inlet header portion, and a second closing portion that closes an opening at the same end as the refrigerant inlet in the refrigerant outlet header portion, The heat exchanger according to any one of 1) to 5) above, wherein a refrigerant inlet is formed in the closed portion and a guide is provided, and a refrigerant outlet is formed in the second closed portion.

7)冷媒入口ヘッダ部の一端部に、閉鎖部材の冷媒入口に通じる冷媒流入口を有するジョイントプレートが接合され、冷媒入口ヘッダ部の冷媒入口が、ジョイントプレートの冷媒流入口よりも上方に偏心している上記1)〜6)のうちのいずれかに記載の熱交換器。   7) A joint plate having a refrigerant inlet leading to the refrigerant inlet of the closing member is joined to one end of the refrigerant inlet header, and the refrigerant inlet of the refrigerant inlet header is eccentric above the refrigerant inlet of the joint plate. The heat exchanger according to any one of 1) to 6) above.

8)ジョイントプレートの冷媒流入口に対する冷媒入口ヘッダ部の冷媒入口の偏心量が0.5〜3mmである上記7)記載の熱交換器。   8) The heat exchanger according to 7) above, wherein the amount of eccentricity of the refrigerant inlet of the refrigerant inlet header portion with respect to the refrigerant inlet of the joint plate is 0.5 to 3 mm.

9)冷媒入口ヘッダ部と冷媒出口ヘッダ部とに跨ってジョイントプレートが接合され、ジョイントプレートに、冷媒入口に通じる冷媒流入口に加えて冷媒出口に通じる冷媒流出口が形成されている上記7)または8)記載の熱交換器。   9) The joint plate is joined across the refrigerant inlet header and the refrigerant outlet header, and the joint plate is formed with a refrigerant outlet leading to the refrigerant outlet in addition to the refrigerant inlet leading to the refrigerant inlet 7) Or the heat exchanger as described in 8).

10)ジョイントプレートの冷媒流入口に冷媒入口管が接続されるとともに、冷媒流出口に冷媒出口管が接続されている上記9)記載の熱交換器。   10) The heat exchanger according to 9), wherein the refrigerant inlet pipe is connected to the refrigerant inlet of the joint plate, and the refrigerant outlet pipe is connected to the refrigerant outlet.

11)ジョイントプレートの冷媒流入口に冷媒入口管の端部に形成された縮径部が挿入されるとともに、冷媒流出口に冷媒出口管の端部に形成された縮径部が挿入され、冷媒入口管および冷媒出口管がそれぞれジョイントプレートに接合されている上記10)記載の熱交換器。   11) The reduced diameter portion formed at the end of the refrigerant inlet pipe is inserted into the refrigerant inlet of the joint plate, and the reduced diameter portion formed at the end of the refrigerant outlet pipe is inserted into the refrigerant outlet. 10. The heat exchanger as described in 10) above, wherein the inlet pipe and the refrigerant outlet pipe are respectively joined to the joint plate.

12)ジョイントプレートに、冷媒流入口および冷媒流出口に通じる2つの冷媒流通部を有する膨張弁取付部材が接合されている上記9)記載の熱交換器。   12) The heat exchanger according to 9) above, wherein an expansion valve mounting member having two refrigerant circulation portions communicating with the refrigerant inlet and the refrigerant outlet is joined to the joint plate.

13)冷媒循環経路が、複数の中間ヘッダ部および複数の熱交換管を備えている上記1)〜12)のうちのいずれかに記載の熱交換器。   13) The heat exchanger according to any one of 1) to 12) above, wherein the refrigerant circulation path includes a plurality of intermediate header portions and a plurality of heat exchange tubes.

14)冷媒入口ヘッダ部の後側に冷媒出口ヘッダ部が配置され、冷媒循環経路が、冷媒入口ヘッダ部の下方にこれと対向するように配置された冷媒流入側中間ヘッダ部、冷媒出口ヘッダ部の下方にこれと対向するように配置された冷媒流出側中間ヘッダ部および複数の熱交換管により構成されており、冷媒流入側中間ヘッダ部と冷媒流出側中間ヘッダ部とが連通させられ、冷媒入口ヘッダ部と冷媒流入側中間ヘッダ部との間、および冷媒出口ヘッダ部と冷媒流出側中間ヘッダ部との間に、それぞれ間隔をおいて配置された複数の熱交換管からなる熱交換管群が少なくとも1列配置されて熱交換コア部が形成され、これらの熱交換管群を構成する熱交換管の両端部が互いに対向するヘッダ部に接続されている上記1)〜13)のうちのいずれかに記載の熱交換器。   14) A refrigerant outlet header portion is arranged on the rear side of the refrigerant inlet header portion, and a refrigerant circulation side intermediate header portion and a refrigerant outlet header portion arranged so that the refrigerant circulation path faces the refrigerant inlet header portion below the refrigerant inlet header portion. The refrigerant outflow side intermediate header portion and a plurality of heat exchange pipes arranged to face the lower portion of the refrigerant, and the refrigerant inflow side intermediate header portion and the refrigerant outflow side intermediate header portion communicate with each other. A heat exchange tube group consisting of a plurality of heat exchange tubes arranged at intervals between the inlet header portion and the refrigerant inflow side intermediate header portion and between the refrigerant outlet header portion and the refrigerant outflow side intermediate header portion. Are arranged in at least one row to form a heat exchange core part, and both ends of the heat exchange pipes constituting these heat exchange pipe groups are connected to the header parts facing each other. Heat described in any Exchanger.

15)冷媒出口ヘッダ部内が区画手段により高さ方向に2つの空間に区画されるとともに、第1の空間に臨むように熱交換管が接続され、区画手段に冷媒通過穴が形成され、冷媒出口ヘッダ部の第2の空間が冷媒出口に通じている上記1)〜14)のうちのいずれかに記載の熱交換器。   15) The refrigerant outlet header is partitioned into two spaces in the height direction by the dividing means, and a heat exchange pipe is connected so as to face the first space, and a refrigerant passage hole is formed in the dividing means. The heat exchanger according to any one of 1) to 14) above, wherein the second space of the header portion communicates with the refrigerant outlet.

16)冷媒入口ヘッダ部と冷媒出口ヘッダ部とが、1つの冷媒入出用タンク内を仕切手段によって前後に区画することにより設けられている上記1)〜15)のうちのいずれかに記載の熱交換器。   16) The heat according to any one of 1) to 15) above, wherein the refrigerant inlet header part and the refrigerant outlet header part are provided by dividing one refrigerant inlet / outlet tank forward and backward by a partitioning means. Exchanger.

17)冷媒入出用タンクが、熱交換管が接続された第1部材と、第1部材における熱交換管とは反対側の部分にろう付された第2部材と、第1および第2部材の両端にろう付された閉鎖部材とよりなり、仕切手段および区画手段が第2部材に一体に形成されている上記16)記載の熱交換器。   17) The refrigerant inlet / outlet tank includes a first member to which the heat exchange pipe is connected, a second member brazed to a portion of the first member opposite to the heat exchange pipe, and the first and second members. The heat exchanger according to 16) above, comprising a closing member brazed to both ends, wherein the partitioning means and the partitioning means are formed integrally with the second member.

18)第1部材が少なくとも片面にろう材層を有するアルミニウムブレージングシートよりなる上記17)記載の熱交換器。   18) The heat exchanger according to 17) above, wherein the first member comprises an aluminum brazing sheet having a brazing material layer on at least one side.

19)第2部材がアルミニウム押出形材よりなる上記17)または18)記載の熱交換器。   19) The heat exchanger according to 17) or 18) above, wherein the second member is formed of an aluminum extruded profile.

20)閉鎖部材が両面にろう材層を有するアルミニウムブレージングシートよりなる上記17)〜19)のうちのいずれかに記載の熱交換器。   20) The heat exchanger according to any one of 17) to 19) above, wherein the closing member comprises an aluminum brazing sheet having a brazing filler metal layer on both sides.

21)圧縮機、コンデンサおよびエバポレータを備えており、エバポレータが、上記1)〜20)のうちのいずれかに記載の熱交換器からなる冷凍サイクル。   21) A refrigeration cycle comprising a compressor, a condenser, and an evaporator, wherein the evaporator includes the heat exchanger according to any one of 1) to 20) above.

22)上記21)記載の冷凍サイクルが、カーエアコンとして搭載されている車両。   22) A vehicle in which the refrigeration cycle described in 21) above is mounted as a car air conditioner.

上記1)の熱交換器によれば、冷媒入口ヘッダ部の一端開口を閉鎖する閉鎖部材に冷媒入口が形成され、閉鎖部材における冷媒入口の下側縁部に、冷媒入口ヘッダ部内方に向かって上方に傾斜したガイドが設けられているので、冷媒入口を通って冷媒入口ヘッダ部内に流入してきた冷媒はガイドに案内されて斜め上方に流れることになり、冷媒は、冷媒入口ヘッダ部内を冷媒入口から遠い位置まで流れやすくなる。したがって、冷媒入口ヘッダ部に接続されているすべての熱交換管内の冷媒流量が均一化されるとともに、冷媒出口ヘッダ部に接続されているすべての熱交換管内の冷媒流量も均一化される。その結果、熱交換に寄与する冷媒量が冷媒循環経路の熱交換コア部における冷媒入口ヘッダ部の長さ方向に関して均一化され、熱交換コア部を通過して来た空気の温度も全体的に均一化されて熱交換器の熱交換性能が著しく向上する。特に、冷媒の流量が少ない場合にも、熱交換性能の低下が防止される。   According to the heat exchanger of the above 1), the refrigerant inlet is formed in the closing member that closes one end opening of the refrigerant inlet header portion, and the refrigerant inlet header portion inward of the refrigerant inlet in the closing member is directed toward the inside of the refrigerant inlet header portion. Since an upwardly inclined guide is provided, the refrigerant that has flowed into the refrigerant inlet header portion through the refrigerant inlet is guided by the guide and flows obliquely upward, and the refrigerant flows in the refrigerant inlet header portion through the refrigerant inlet header portion. It becomes easy to flow to the position far from. Therefore, the refrigerant flow rates in all the heat exchange tubes connected to the refrigerant inlet header portion are made uniform, and the refrigerant flow rates in all the heat exchange tubes connected to the refrigerant outlet header portion are made uniform. As a result, the amount of refrigerant that contributes to heat exchange is made uniform with respect to the length direction of the refrigerant inlet header portion in the heat exchange core portion of the refrigerant circulation path, and the temperature of the air that has passed through the heat exchange core portion is also overall. It becomes uniform and the heat exchange performance of the heat exchanger is significantly improved. In particular, even when the flow rate of the refrigerant is small, a decrease in heat exchange performance is prevented.

上記2)の熱交換器によれば、ガイドが部分球面体であるから、ガイドが冷媒の流れの抵抗になりにくくなる。   According to the heat exchanger of 2) above, since the guide is a partial spherical body, it becomes difficult for the guide to become resistance to the flow of the refrigerant.

上記3)の熱交換器によれば、上記1)の熱交換器による効果が顕著なものになる。   According to the heat exchanger of 3), the effect of the heat exchanger of 1) is remarkable.

上記4)および5)の熱交換器によれば、上記1)の熱交換器による効果が顕著なものになる。   According to the heat exchangers 4) and 5), the effect of the heat exchanger 1) is remarkable.

上記6)の熱交換器によれば、閉鎖部材が、冷媒入口ヘッダ部および冷媒出口ヘッダ部に共通なものになるので、部品点数が少なくなる。   According to the heat exchanger of 6), since the closing member is common to the refrigerant inlet header part and the refrigerant outlet header part, the number of parts is reduced.

上記7)の熱交換器によれば、冷媒入口ヘッダ部の冷媒入口が、ジョイントプレートの冷媒流入口よりも上方に偏心しているので、冷媒入口を通って冷媒入口ヘッダ部内に流入してきた冷媒をガイドにより斜め上方に流す効果が一層優れたものになり、冷媒は、冷媒入口ヘッダ部内を冷媒入口から遠い位置まで一層流れやすくなって、すべての熱交換管内の冷媒流量均一化効果が向上する。   According to the heat exchanger of the above 7), since the refrigerant inlet of the refrigerant inlet header is eccentric above the refrigerant inlet of the joint plate, the refrigerant flowing into the refrigerant inlet header through the refrigerant inlet The effect of flowing obliquely upward by the guide is further improved, and the refrigerant is more likely to flow through the refrigerant inlet header portion to a position far from the refrigerant inlet, and the effect of equalizing the refrigerant flow rate in all the heat exchange tubes is improved.

上記8)の熱交換器によれば、上記7)の熱交換器による効果が顕著なものになる。   According to the heat exchanger of the above 8), the effect by the heat exchanger of the above 7) becomes remarkable.

上記9)の熱交換器によれば、ジョイントプレートが、冷媒入口ヘッダ部および冷媒出口ヘッダ部に共通なものになるので、部品点数が少なくなる。   According to the heat exchanger of 9) above, the joint plate is common to the refrigerant inlet header portion and the refrigerant outlet header portion, so the number of parts is reduced.

上記11)の熱交換器によれば、ジョイントプレートの冷媒流入口に冷媒入口管が接続されるとともに、冷媒流出口に冷媒出口管が接続されている上記10)の熱交換器において、冷媒入口管および冷媒出口管の端部をさらに縮径し、この縮径部を冷媒流入口および冷媒流出口に差し込むのであるから、冷媒流入口および冷媒流出口の外径をかなり小さくすることができ、冷媒流入口と冷媒流出口との間隔を比較的大きくすることができる。したがって、ジョイントプレートの前後方向の寸法が規制された場合であっても、ジョイントプレートにおける冷媒流入口と冷媒流出口との間の部分と冷媒入口ヘッダ部および冷媒出口ヘッダ部との接合面積が大きくなり、接合不良の発生を防止することが可能となって、冷媒入口ヘッダ部と冷媒出口ヘッダ部との短絡が防止される。その結果、冷媒入口管から流入してきた冷媒が、すべての熱交換管内を通過することなく冷媒出口管に入ることが防止され、熱交換器の冷却性能の低下が防止される。さらに、冷媒入口管の端部に縮径部が形成されているので、冷媒入口管から冷媒入口ヘッダ部内に流入する際の冷媒の流速が高速になって、冷媒は冷媒入口ヘッダ部内を冷媒入口とは反対側の端部まで行き渡り易くなり、上記1)の熱交換器による効果が向上する。   According to the heat exchanger of 11) above, the refrigerant inlet pipe is connected to the refrigerant inlet of the joint plate and the refrigerant outlet pipe is connected to the refrigerant outlet. Since the pipe and the end of the refrigerant outlet pipe are further reduced in diameter, and the reduced diameter portion is inserted into the refrigerant inlet and the refrigerant outlet, the outer diameter of the refrigerant inlet and the refrigerant outlet can be considerably reduced. The interval between the refrigerant inlet and the refrigerant outlet can be made relatively large. Therefore, even when the dimension of the joint plate in the front-rear direction is restricted, the joint area between the refrigerant inlet and the refrigerant outlet in the joint plate and the refrigerant inlet header portion and the refrigerant outlet header portion is large. Thus, it is possible to prevent the occurrence of poor bonding, and a short circuit between the refrigerant inlet header portion and the refrigerant outlet header portion is prevented. As a result, the refrigerant flowing from the refrigerant inlet pipe is prevented from entering the refrigerant outlet pipe without passing through all the heat exchange pipes, and the cooling performance of the heat exchanger is prevented from being lowered. Further, since the reduced diameter portion is formed at the end of the refrigerant inlet pipe, the flow velocity of the refrigerant when flowing from the refrigerant inlet pipe into the refrigerant inlet header becomes high, and the refrigerant passes through the refrigerant inlet header. It becomes easy to reach the end on the opposite side, and the effect of the heat exchanger of 1) is improved.

上記15)の熱交換器によれば、区画手段の働きにより、冷媒入口ヘッダ部に接続されたすべての熱交換管の冷媒流通量が一層均一化されるとともに、冷媒出口ヘッダ部に接続されたすべての熱交換管の冷媒流通量が均一化され、熱交換器の熱交換性能が一層向上する。
上記16)の熱交換器によれば、熱交換器全体の部品点数を少なくすることができる。
According to the heat exchanger of the above 15), the refrigerant circulation amount of all the heat exchange pipes connected to the refrigerant inlet header is made more uniform by the function of the partition means, and connected to the refrigerant outlet header. The refrigerant circulation amount of all the heat exchange tubes is made uniform, and the heat exchange performance of the heat exchanger is further improved.
According to the heat exchanger of the above 16), the number of parts of the entire heat exchanger can be reduced.

上記17)の熱交換器によれば、冷媒入出用タンクの仕切手段および区画手段が第2部材に一体に形成されているので、冷媒入出用タンク内に仕切手段および区画手段を設ける作業が簡単になる。   According to the heat exchanger of the above 17), since the partitioning means and the partitioning means of the refrigerant inlet / outlet tank are formed integrally with the second member, the work of providing the partitioning means and the partitioning means in the refrigerant inlet / outlet tank is easy. become.

上記18)の熱交換器によれば、第1部材の少なくとも片面のろう材層を利用し、第1部材と第2部材とをろう付するのと同時に、第1部材と熱交換管とをろう付して冷媒ターン入出用タンクに熱交換管を接続することができるので、製造作業が簡単になる。   According to the heat exchanger of the above 18), the first member and the heat exchange tube are simultaneously bonded to the first member and the second member by using the brazing material layer on at least one side of the first member. Since the heat exchange pipe can be connected to the refrigerant turn-in / out tank by brazing, the manufacturing operation is simplified.

上記19)の熱交換器によれば、冷媒入出用タンクの第2部材を比較的簡単に製造することができる。   According to the heat exchanger of the above 19), the second member of the refrigerant inlet / outlet tank can be manufactured relatively easily.

上記20)の熱交換器によれば、閉鎖部材の両面のろう材層を利用して閉鎖部材を第1および第2部材にろう付することができるとともに、閉鎖部材にジョイントプレートをろう付することができるので、製造作業が簡単になる。   According to the heat exchanger of 20) above, the closing member can be brazed to the first and second members using the brazing material layers on both sides of the closing member, and the joint plate is brazed to the closing member. Manufacturing process is simplified.

以下、この発明の実施形態を、図面を参照して説明する。この実施形態は、この発明による熱交換器をカーエアコン用エバポレータに適用したものである。   Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, the heat exchanger according to the present invention is applied to an evaporator for a car air conditioner.

なお、以下の説明において、図2の左右を左右というものとする。   In the following description, the left and right in FIG.

図1および図2はこの発明による熱交換器を適用したカーエアコン用エバポレータの全体構成を示し、図3〜図10は要部の構成を示し、図11はエバポレータにおける冷媒の流れ方を示す。   1 and 2 show the overall configuration of an evaporator for a car air conditioner to which the heat exchanger according to the present invention is applied, FIGS. 3 to 10 show the configuration of the main part, and FIG. 11 shows how the refrigerant flows in the evaporator.

図1および図2において、フロン系冷媒を使用するカーエアコンに用いられるエバポレータ(1)は、上下方向に間隔をおいて配置されたアルミニウム製冷媒入出用タンク(2)およびアルミニウム製冷媒ターン用タンク(3)と、両タンク(2)(3)間に設けられた熱交換コア部(4)とを備えている。   1 and 2, an evaporator (1) used in a car air conditioner using a chlorofluorocarbon refrigerant is composed of an aluminum refrigerant inlet / outlet tank (2) and an aluminum refrigerant turn tank arranged at intervals in the vertical direction. (3) and a heat exchange core section (4) provided between both tanks (2) and (3).

冷媒入出用タンク(2)は、前側(通風方向下流側)に位置する冷媒入口ヘッダ部(5)と後側(通風方向上流側)に位置する冷媒出口ヘッダ部(6)とを備えている。冷媒入出用タンク(2)の冷媒入口ヘッダ部(5)にアルミニウム製冷媒入口管(7)が接続され、同じく冷媒出口ヘッダ部(6)にアルミニウム製冷媒出口管(8)が接続されている。冷媒ターン用タンク(3)は、前側に位置する冷媒流入ヘッダ部(9)(冷媒流入側中間ヘッダ部)と後側に位置する冷媒流出ヘッダ部(11)(冷媒流出側中間ヘッダ部)とを備えている。   The refrigerant inlet / outlet tank (2) includes a refrigerant inlet header portion (5) located on the front side (downstream side in the ventilation direction) and a refrigerant outlet header portion (6) located on the rear side (upstream side in the ventilation direction). . An aluminum refrigerant inlet pipe (7) is connected to the refrigerant inlet header (5) of the refrigerant inlet / outlet tank (2), and an aluminum refrigerant outlet pipe (8) is also connected to the refrigerant outlet header (6). . The refrigerant turn tank (3) includes a refrigerant inflow header portion (9) (refrigerant inflow side intermediate header portion) located on the front side and a refrigerant outflow header portion (11) (refrigerant outflow side intermediate header portion) located on the rear side. It has.

熱交換コア部(4)は、左右方向に間隔をおいて並列状に配置された複数の熱交換管(12)からなる熱交換管群(13)が、前後方向に並んで複数列、ここでは2列配置されることにより構成されている。各熱交換管群(13)の隣接する熱交換管(12)どうしの間の通風間隙、および各熱交換管群(13)の左右両端の熱交換管(12)の外側にはそれぞれコルゲートフィン(14)が配置されて熱交換管(12)にろう付されている。左右両端のコルゲートフィン(14)の外側にはそれぞれアルミニウム製サイドプレート(15)が配置されてコルゲートフィン(14)にろう付されている。前側熱交換管群(13)の熱交換管(12)の上下両端部は、冷媒入口ヘッダ部(5)および冷媒流入ヘッダ部(9)にそれぞれその内部に突出した状態で接続され、後側熱交換管群(13)の熱交換管(12)の上下両端部は、冷媒出口ヘッダ部(6)および冷媒流出ヘッダ部(11)にそれぞれその内部に突出した状態で接続されている。そして、冷媒流入ヘッダ部(9)、冷媒流出ヘッダ部(11)および各熱交管群(13)の複数の熱交換管(12)によって冷媒入口ヘッダ部(5)と冷媒出口ヘッダ部(6)とを通じさせる冷媒循環経路が形成されている。   The heat exchange core section (4) is composed of a plurality of heat exchange pipe groups (13) each including a plurality of heat exchange pipes (12) arranged in parallel at intervals in the left-right direction. Then, it is configured by arranging two rows. Corrugated fins on the outside of the heat exchange pipes (12) at the left and right ends of each heat exchange pipe group (13) and the ventilation gap between adjacent heat exchange pipes (12) of each heat exchange pipe group (13) (14) is arranged and brazed to the heat exchange pipe (12). Aluminum side plates (15) are respectively arranged outside the corrugated fins (14) at the left and right ends and brazed to the corrugated fins (14). The upper and lower ends of the heat exchange pipe (12) of the front heat exchange pipe group (13) are connected to the refrigerant inlet header part (5) and the refrigerant inflow header part (9) in a state of projecting into the rear side, respectively, The upper and lower ends of the heat exchange pipe (12) of the heat exchange pipe group (13) are connected to the refrigerant outlet header part (6) and the refrigerant outflow header part (11) in a state of projecting into the respective parts. The refrigerant inlet header (9), the refrigerant outlet header (11), and the plurality of heat exchange pipes (12) of each heat exchange pipe group (13) are used as a refrigerant inlet header (5) and a refrigerant outlet header (6). A refrigerant circulation path is formed through the

図3〜図6に示すように、冷媒入出用タンク(2)は、両面にろう材層を有するアルミニウムブレージングシートから形成されかつ熱交換管(12)が接続されたプレート状の第1部材(16)と、アルミニウム押出形材から形成されたベア材よりなりかつ第1部材(16)の上側を覆う第2部材(17)と、両面にろう材層を有するアルミニウムブレージングシートから形成されかつ両部材(16)(17)の両端に接合されて左右両端開口を閉鎖するアルミニウム製キャップ(18)(19)(閉鎖部材)とよりなり、右側キャップ(19)の外面に、冷媒入口ヘッダ部(5)および冷媒出口ヘッダ部(6)に跨るように、前後方向に長いアルミニウム製のジョイントプレート(21)がろう付されている。ジョイントプレート(21)に、冷媒入口管(7)および冷媒出口管(8)が接続されている。   As shown in FIGS. 3 to 6, the refrigerant inlet / outlet tank (2) is a plate-shaped first member formed of an aluminum brazing sheet having a brazing filler metal layer on both sides and connected to a heat exchange pipe (12). 16), a second member (17) made of a bare material formed from an aluminum extruded shape and covering the upper side of the first member (16), and an aluminum brazing sheet having a brazing filler metal layer on both sides. It consists of aluminum caps (18), (19) (closing members) that are joined to both ends of the members (16), (17) to close the left and right end openings, and on the outer surface of the right cap (19), An aluminum joint plate (21) which is long in the front-rear direction is brazed so as to straddle 5) and the refrigerant outlet header portion (6). A refrigerant inlet pipe (7) and a refrigerant outlet pipe (8) are connected to the joint plate (21).

第1部材(16)は、その前後両側部分に、それぞれ中央部が下方に突出した曲率の小さい横断面円弧状の湾曲部(22)を有している。各湾曲部(22)に、前後方向に長い複数の管挿通穴(23)が、左右方向に間隔をおいて形成されている。前後両湾曲部(22)の管挿通穴(23)は、それぞれ左右方向に関して同一位置にある。前側湾曲部(22)の前縁および後側湾曲部(22)の後縁に、それぞれ立ち上がり壁(22a)が全長にわたって一体に形成されている。また、第1部材(16)の両湾曲部(22)間の平坦部(24)に、複数の貫通穴(25)が左右方向に間隔をおいて形成されている。   The first member (16) has curved portions (22) having a small cross-sectional arc shape with a central portion projecting downward at both front and rear side portions thereof. A plurality of tube insertion holes (23) that are long in the front-rear direction are formed in each bending portion (22) at intervals in the left-right direction. The tube insertion holes (23) of the front and rear curved portions (22) are at the same position in the left-right direction. Standing walls (22a) are integrally formed over the entire length at the front edge of the front curved portion (22) and the rear edge of the rear curved portion (22), respectively. In addition, a plurality of through holes (25) are formed at intervals in the left-right direction in the flat portion (24) between the curved portions (22) of the first member (16).

第2部材(17)は下方に開口した横断面略m字状であり、左右方向に伸びる前後両壁(26)と、前後両壁(26)間の中央部に設けられかつ左右方向に伸びるとともに冷媒入出用タンク(2)内を前後2つの空間に仕切る仕切手段としての仕切壁(27)と、前後両壁(26)および仕切壁(27)の上端どうしをそれぞれ一体に連結する上方に突出した2つの略円弧状連結壁(28)とを備えている。第2部材(17)の後壁(26)の下端部と仕切壁(27)の下端部とは、冷媒出口ヘッダ部(6)内を上下2つの空間(6a)(6b)に区画する区画手段としての分流用抵抗板(29)により全長にわたって一体に連結されている。分流用抵抗板(29)の後側部分における左右両端部を除いた部分には、左右方向に長い複数の冷媒通過穴(31A)(31B)が左右方向に間隔をおいて貫通状に形成されている。仕切壁(27)の下端は前後両壁(26)の下端よりも下方に突出しており、その下縁に、下方に突出しかつ第1部材(16)の貫通穴(25)に嵌め入れられる複数の突起(27a)が左右方向に間隔をおいて一体に形成されている。突起(27a)は、仕切壁(27)の所定部分を切除することにより形成されている。   The second member (17) has a substantially m-shaped cross section that opens downward, and is provided in the center between the front and rear walls (26) extending in the left-right direction and the front and rear walls (26) and extends in the left-right direction. A partition wall (27) as a partition means for partitioning the refrigerant inlet / outlet tank (2) into two front and rear spaces, and upper ends of the front and rear walls (26) and the partition wall (27) are integrally connected to each other. Two projecting substantially arc-shaped connecting walls (28) are provided. The lower end portion of the rear wall (26) of the second member (17) and the lower end portion of the partition wall (27) are compartments that divide the refrigerant outlet header portion (6) into two upper and lower spaces (6a) and (6b). It is integrally connected over the entire length by a shunt resistor plate (29) as means. A plurality of refrigerant passage holes (31A) (31B) that are long in the left-right direction are formed in a penetrating manner at intervals in the left-right direction in the portion excluding the left and right end portions in the rear portion of the shunt resistor plate (29). ing. The lower end of the partition wall (27) protrudes downward from the lower ends of the front and rear walls (26), and a plurality of lower walls protrude downward and are fitted into the through holes (25) of the first member (16). The protrusions (27a) are integrally formed with an interval in the left-right direction. The protrusion (27a) is formed by cutting a predetermined portion of the partition wall (27).

図7〜図9に示すように、右側キャップ(19)は、冷媒入口ヘッダ部(5)の右端開口を閉鎖する第1閉鎖部(19A)と、冷媒出口ヘッダ部(6)の右端開口を閉鎖する第2閉鎖部(19B)とを有している。右側キャップ(19)の第1閉鎖部(19A)には、冷媒入口ヘッダ部(5)内に嵌め入れられる左方突出部(32)が一体に形成され、同じく第2閉鎖部(19B)には、冷媒出口ヘッダ部(6)の分流用抵抗板(29)よりも上側の空間(6a)内に嵌め入れられる上側左方突出部(33)と、分流用抵抗板(29)よりも下側の空間(6b)内に嵌め入れられる下側左方突出部(34)とが上下に間隔をおいて一体に形成されている。右側キャップ(19)における前側左方突出部(32)の底壁(32a)に円形の冷媒入口(37)が形成され、同じく後側の上側左方突出部(33)の底壁全体に冷媒出口(38)が形成されている。冷媒入口(37)の内径は3〜8.5mmであることが好ましい。右側キャップ(19)の左方突出部(32)の底壁(32a)内面は垂直であり、この底壁(32a)内面における冷媒入口(37)の下側円弧状縁部に、冷媒入口ヘッダ部(5)内方(左方)に向かって上方に傾斜したガイド(40)が一体に形成されている。ガイド(40)は、球面体の一部を構成する部分球面体であり、ガイド(40)の突出端面(40a)は、左方突出部(32)の底壁(32a)に対して傾斜した傾斜面(F)上に位置している。ガイド(40)の突出端面(40a)が位置する傾斜面(F)と、左方突出部(32)の底壁(32a)内面とがなす劣角の角度αは、15〜60度であることが好ましい(図9参照)。また、右側キャップ(19)の前後両側縁と上縁との間の円弧状部に、それぞれ左方に突出した係合爪(35)が一体に形成されている。さらに、右側キャップ(19)の下縁の前側部分および後側部分に、それぞれ左方に突出した係合爪(36)が一体に形成されている。   As shown in FIGS. 7 to 9, the right cap (19) has a first closing part (19A) for closing the right end opening of the refrigerant inlet header part (5) and a right end opening of the refrigerant outlet header part (6). And a second closing portion (19B) for closing. The first closing part (19A) of the right cap (19) is integrally formed with a left protruding part (32) fitted into the refrigerant inlet header part (5), and is also formed on the second closing part (19B). The upper left projecting portion (33) fitted into the space (6a) above the shunt resistor plate (29) of the refrigerant outlet header (6) and the shunt resistor plate (29). A lower left projecting portion (34) fitted into the side space (6b) is integrally formed with a space in the vertical direction. A circular refrigerant inlet (37) is formed in the bottom wall (32a) of the front left protrusion (32) in the right cap (19), and the refrigerant is also applied to the entire bottom wall of the rear upper left protrusion (33). An outlet (38) is formed. The inner diameter of the refrigerant inlet (37) is preferably 3 to 8.5 mm. The inner surface of the bottom wall (32a) of the left protrusion (32) of the right cap (19) is vertical, and the refrigerant inlet header is formed on the lower arc edge of the refrigerant inlet (37) on the inner surface of the bottom wall (32a). A guide (40) inclined upward toward the inside (left) of the portion (5) is integrally formed. The guide (40) is a partial spherical body constituting a part of the spherical body, and the protruding end surface (40a) of the guide (40) is inclined with respect to the bottom wall (32a) of the left protruding portion (32). Located on the slope (F). An inferior angle α formed by the inclined surface (F) where the protruding end surface (40a) of the guide (40) is located and the inner surface of the bottom wall (32a) of the left protruding portion (32) is 15 to 60 degrees. It is preferable (see FIG. 9). In addition, an engaging claw (35) protruding leftward is formed integrally with the arc-shaped portion between the front and rear side edges and the upper edge of the right cap (19). Further, an engaging claw (36) projecting leftward is formed integrally with the front side portion and the rear side portion of the lower edge of the right cap (19).

左側キャップ(18)は右側キャップ(19)と左右対称形であり、冷媒入口ヘッダ部(5)内に嵌め入れられる右方突出部(39)、冷媒出口ヘッダ部(6)の分流用抵抗板(29)よりも上側の空間(6a)内に嵌め入れられる上側右方突出部(41)、分流用抵抗板(29)よりも下側の空間(6b)内に嵌め入れられる下側右方突出部(42)、および右方に突出した上下の係合爪(43)(44)が一体に形成されている。右方突出部(39)および上側右方突出部(41)の底壁には開口は形成されていない。両キャップ(18)(19)の上縁は、それぞれ冷媒入出用タンク(2)の第2部材(17)上面の両端と合致するように、2つの略円弧状部が前後方向の中央部において一体に連なったような形状となっている。また、両キャップ(18)(19)の下縁は、冷媒入出用タンク(2)の第1部材(16)下面の両端と合致するように、2つの略円弧状部が前後方向の中央部において平坦部を介して一体に連なったような形状となっている。   The left cap (18) is symmetrical with the right cap (19), and the rightward projecting portion (39) fitted into the refrigerant inlet header portion (5) and the shunt resistor plate of the refrigerant outlet header portion (6) Upper right protrusion (41) that fits in space (6a) above (29), lower right that fits in space (6b) below shunt resistor plate (29) The projecting portion (42) and the upper and lower engaging claws (43) and (44) projecting to the right are integrally formed. No opening is formed in the bottom wall of the right protrusion (39) and the upper right protrusion (41). The upper edges of the caps (18) and (19) have two substantially arcuate portions at the center in the front-rear direction so that they coincide with both ends of the upper surface of the second member (17) of the refrigerant inlet / outlet tank (2). It is shaped like a single piece. In addition, the lower edges of the caps (18) and (19) have two substantially arcuate portions in the center in the front-rear direction so as to match both ends of the lower surface of the first member (16) of the refrigerant inlet / outlet tank (2). In FIG. 1, the shape is such that they are connected together through a flat portion.

ジョイントプレート(21)は、右側キャップ(19)の冷媒入口(37)に通じる短円筒状冷媒流入口(45)と、同じく冷媒出口(38)に通じる短円筒状冷媒流出口(46)とを備えている。冷媒流入口(45)および冷媒流出口(46)は、それぞれ円形貫通穴(45a)(46a)と、貫通穴(45a)(46a)の周囲に右方突出状に一体に形成された短円筒状部(45b)(46b)とよりなる。冷媒流入口(45)および冷媒流出口(46)の中心は同一高さ位置にある。冷媒流入口(45)の短円筒状部(45b)の外径は冷媒流出口(46)の短円筒状部(46b)の外径よりも小さくなっている。そして、右側キャップ(19)の冷媒入口(37)は冷媒流入口(45)の円形貫通穴(45a)よりも上方に偏心している。この偏心量Pは0.5〜3mmであることが好ましい(図9参照)。なお、ジョイントプレート(21)の前後方向の長さは50mm以下であることが好ましく、冷媒流入口(45)と冷媒流出口(46)との間隔は6〜9mmであることが好ましい。   The joint plate (21) has a short cylindrical refrigerant inlet (45) leading to the refrigerant inlet (37) of the right cap (19) and a short cylindrical refrigerant outlet (46) also leading to the refrigerant outlet (38). I have. The refrigerant inlet (45) and the refrigerant outlet (46) are respectively a circular through hole (45a) (46a) and a short cylinder integrally formed to protrude rightward around the through holes (45a) (46a). It consists of a shape part (45b) (46b). The centers of the refrigerant inlet (45) and the refrigerant outlet (46) are at the same height. The outer diameter of the short cylindrical portion (45b) of the refrigerant inlet (45) is smaller than the outer diameter of the short cylindrical portion (46b) of the refrigerant outlet (46). The refrigerant inlet (37) of the right cap (19) is eccentric above the circular through hole (45a) of the refrigerant inlet (45). The eccentric amount P is preferably 0.5 to 3 mm (see FIG. 9). The length in the front-rear direction of the joint plate (21) is preferably 50 mm or less, and the distance between the refrigerant inlet (45) and the refrigerant outlet (46) is preferably 6 to 9 mm.

ジョイントプレート(21)における冷媒流入口(45)と冷媒流出口(46)との間の部分には、上下方向に伸びる短絡防止用のスリット(47)が形成され、スリット(47)の上下両端に連なって略三角形状の貫通穴(48)(49)が形成されている。スリット(47)の前後方向の幅は1mm以下であることが好ましい。また、ジョイントプレート(21)における上側貫通穴(48)の上方部分および下側貫通穴(49)の下方部分は、それぞれ左方に突出するように屈曲されて屈曲部(51)(54)が形成されている。上側の屈曲部(51)は、冷媒入口ヘッダ部(5)と冷媒出口ヘッダ部(6)との間に形成された係合部、すなわち右側キャップ(19)の上縁における2つの略円弧状部の間に形成された係合部(52)、および冷媒入出用タンク(2)の第2部材(17)の2つの連結壁(28)間に形成された係合部(53)に係合している。下側の屈曲部(54)は、冷媒入口ヘッダ部(5)と冷媒出口ヘッダ部(6)との間に形成された係合部、すなわち右側キャップ(19)の下縁における2つの略円弧状部の間に形成された上記平坦部からなる係合部(55)、および冷媒入出用タンク(2)の第1部材(16)の平坦部(24)からなる係合部(56)に係合している。さらに、ジョイントプレート(21)の下縁の前後両端部には、それぞれ左方に突出した係合爪(57)が一体に形成されている。係合爪(57)は、右側キャップ(19)の下縁に形成された凹所(19a)内に嵌った状態で右側キャップ(19)に係合している。   In the joint plate (21) between the refrigerant inlet (45) and the refrigerant outlet (46), slits (47) for preventing a short circuit extending in the vertical direction are formed, and both upper and lower ends of the slit (47). A substantially triangular through hole (48) (49) is formed in a row. The width in the front-rear direction of the slit (47) is preferably 1 mm or less. Further, the upper part of the upper through hole (48) and the lower part of the lower through hole (49) of the joint plate (21) are bent so as to protrude to the left, and bent parts (51) (54) are formed. Is formed. The upper bent portion (51) is an engagement portion formed between the refrigerant inlet header portion (5) and the refrigerant outlet header portion (6), that is, two substantially arcuate shapes at the upper edge of the right cap (19). Engaging part (52) formed between the two parts, and engaging part (53) formed between the two connecting walls (28) of the second member (17) of the refrigerant inlet / outlet tank (2). Match. The lower bent portion (54) is an engagement portion formed between the refrigerant inlet header portion (5) and the refrigerant outlet header portion (6), that is, two substantially circles at the lower edge of the right cap (19). The engaging portion (55) formed between the arc-shaped portions and formed by the flat portion, and the engaging portion (56) formed by the flat portion (24) of the first member (16) of the refrigerant inlet / outlet tank (2). Is engaged. Further, engaging claws (57) protruding leftward are integrally formed at both front and rear ends of the lower edge of the joint plate (21). The engaging claw (57) is engaged with the right cap (19) in a state of being fitted in a recess (19a) formed at the lower edge of the right cap (19).

ジョイントプレート(21)の冷媒流入口(45)に、冷媒入口管(7)の一端部に形成された縮径部(7a)が差し込まれてろう付され、同じく冷媒流出口(46)(46)に、冷媒出口管(8)の一端部に形成された縮径部(8a)が差し込まれてろう付されている。図示は省略したが、冷媒入口管(7)および冷媒出口管(8)の他端部には、両管(7)(8)に跨るように膨張弁取付部材が接合されている。   The reduced diameter portion (7a) formed at one end of the refrigerant inlet pipe (7) is inserted into the refrigerant inlet (45) of the joint plate (21) and brazed, and the refrigerant outlet (46) (46 ), A reduced diameter portion (8a) formed at one end of the refrigerant outlet pipe (8) is inserted and brazed. Although not shown, an expansion valve mounting member is joined to the other ends of the refrigerant inlet pipe (7) and the refrigerant outlet pipe (8) so as to straddle both pipes (7) and (8).

冷媒入出用タンク(2)の第1および第2部材(16)(17)と、両キャップ(18)(19)と、ジョイントプレート(21)とは次のようにしてろう付されている。すなわち、第1および第2部材(16)(17)は、第2部材(17)の突起(27a)が第1部材(16)の貫通穴(25)に挿通されてかしめられることにより、第1部材(16)の前後の立ち上がり壁(22a)の上端部と第2部材(17)の前後両壁(26)の下端部とが係合した状態で、第1部材(16)のろう材層を利用して相互にろう付されている。両キャップ(18)(19)は、前側の突出部(39)(32)が両部材(16)(17)における仕切壁(27)よりも前側の空間内に、後側の上突出部(41)(33)が両部材(16)(17)における仕切壁(27)よりも後側でかつ分流用抵抗板(29)よりも上側の空間内に、および後側の下突出部(42)(34)が仕切壁(27)よりも後側でかつ分流用抵抗板(29)よりも下側の空間内にそれぞれ嵌め入れられ、上側の係合爪(43)(35)が第2部材(17)の連結壁(28)に係合させられ、下側の係合爪(44)(36)が第1部材(16)の湾曲部(22)に係合させられた状態で、両キャップ(18)(19)のろう材層を利用して第1および第2部材(16)(17)にろう付されている。ジョイントプレート(21)は、上側屈曲部(51)が右側キャップ(19)の上側の係合部(52)および第2部材(17)の係合部(53)に係合させられ、下側屈曲部(54)が右側キャップ(19)の下側の係合部(55)および第1部材(16)の係合部(56)に係合させられ、さらに係合爪(57)が右側キャップ(19)の下縁に形成された凹所(19a)内に嵌って右側キャップ(19)に係合した状態で、右側キャップ(19)のろう材層を利用して右側キャップ(19)にろう付されている。   The first and second members (16), (17), the caps (18), (19), and the joint plate (21) of the refrigerant inlet / outlet tank (2) are brazed as follows. That is, the first and second members (16), (17) are inserted into the through holes (25) of the first member (16) by the protrusions (27a) of the second member (17) and caulked. The brazing material of the first member (16) in a state where the upper ends of the rising walls (22a) before and after the one member (16) and the lower ends of both front and rear walls (26) of the second member (17) are engaged. They are brazed together using layers. Both caps (18) and (19) are arranged so that the front protrusions (39) and (32) are in the space on the front side of the partition walls (27) in both members (16) and (17), and the rear upper protrusions ( 41) (33) is located behind the partition wall (27) in both members (16) and (17) and above the shunt resistor plate (29), and the rear lower protrusion (42 ) (34) are respectively fitted in the spaces behind the partition wall (27) and below the shunt resistor plate (29), and the upper engaging claws (43) (35) are second With the lower engaging claws (44) (36) engaged with the curved portion (22) of the first member (16) engaged with the connecting wall (28) of the member (17), The first and second members 16 and 17 are brazed using the brazing material layers of both caps 18 and 19. In the joint plate (21), the upper bent portion (51) is engaged with the upper engaging portion (52) of the right cap (19) and the engaging portion (53) of the second member (17). The bent portion (54) is engaged with the lower engaging portion (55) of the right cap (19) and the engaging portion (56) of the first member (16), and the engaging claw (57) is on the right side. The right side cap (19) using the brazing filler metal layer of the right side cap (19) in a state of fitting in the recess (19a) formed on the lower edge of the cap (19) and engaging the right side cap (19). It is brazed.

こうして、冷媒入出用タンク(2)が形成されており、第2部材(17)の仕切壁(27)よりも前側が冷媒入口ヘッダ部(5)、同じく仕切壁(27)よりも後側が冷媒出口ヘッダ部(6)となっている。また、冷媒出口ヘッダ部(6)は分流用抵抗板(29)により上下両空間(6a)(6b)に区画されており、これらの空間(6a)(6b)は冷媒通過穴(31A)(31B)により連通させられている。右側キャップ(19)の冷媒出口(38)は冷媒出口ヘッダ部(6)の上部空間(6a)内に通じている。さらに、ジョイントプレート(21)の冷媒流入口(45)が冷媒入口(37)に、冷媒流出口(46)が冷媒出口(38)にそれぞれ連通させられている。   Thus, the refrigerant inlet / outlet tank (2) is formed, the refrigerant inlet header portion (5) on the front side of the partition wall (27) of the second member (17) and the refrigerant on the rear side of the partition wall (27). It is the exit header (6). The refrigerant outlet header (6) is divided into upper and lower spaces (6a) and (6b) by a shunt resistor plate (29), and these spaces (6a) and (6b) are formed in the refrigerant passage holes (31A) ( 31B). The refrigerant outlet (38) of the right cap (19) communicates with the upper space (6a) of the refrigerant outlet header (6). Further, the refrigerant inlet (45) of the joint plate (21) is communicated with the refrigerant inlet (37), and the refrigerant outlet (46) is communicated with the refrigerant outlet (38).

図4および図10に示すように、冷媒ターン用タンク(3)は、両面にろう材層を有するアルミニウムブレージングシートから形成されかつ熱交換管(12)が接続されたプレート状の第1部材(70)と、アルミニウム押出形材から形成されたベア材よりなりかつ第1部材(70)の下側を覆う第2部材(71)と、両面にろう材層を有するアルミニウムブレージングシートから形成されかつ左右両端開口を閉鎖するアルミニウム製キャップ(72)とよりなる。   As shown in FIGS. 4 and 10, the refrigerant turn tank (3) is formed of an aluminum brazing sheet having a brazing filler metal layer on both sides and is connected to a plate-shaped first member (12) connected to a heat exchange pipe (12). 70), a second member (71) made of a bare material formed from an aluminum extruded profile and covering the lower side of the first member (70), and an aluminum brazing sheet having a brazing filler metal layer on both sides; It consists of an aluminum cap (72) that closes the left and right opening.

冷媒ターン用タンク(3)の頂面(3a)は、前後方向の中央部が最高位部(73)となるとともに、最高位部(73)から前後両側に向かって徐々に低くなるように全体に横断面円弧状に形成されている。冷媒ターン用タンク(3)の前後両側部分に、頂面(3a)における最高位部(73)の前後両側から前後両側面(3b)まで伸びる溝(74)が、左右方向に間隔をおいて複数形成されている。   The top surface (3a) of the refrigerant turn tank (3) has a central part in the front-rear direction as the highest part (73) and gradually decreases from the highest part (73) toward the front and rear sides. The cross section is formed in a circular arc shape. Grooves (74) extending from the front and rear sides of the highest portion (73) on the top surface (3a) to the front and rear sides (3b) are spaced at the left and right sides of the refrigerant turn tank (3). A plurality are formed.

第1部材(70)は、前後方向の中央部が上方に突出した横断面円弧状であり、その前後両側縁に垂下壁(70a)が全長にわたって一体に形成されている。そして、第1部材(70)の上面が冷媒ターン用タンク(3)の頂面(3a)となり、垂下壁(70a)の外面が冷媒ターン用タンク(3)の前後両側面(3b)となっている。第1部材(70)の前後両側において、前後方向中央の最高位部(73)から垂下壁(70a)の下端にかけて溝(74)が形成されている。第1部材(70)の最高位部(73)を除いた前後両側部分における隣接する溝(74)どうしの間に、それぞれ前後方向に長い管挿通穴(75)が形成されている。前後の管挿通穴(75)は左右方向に関して同一位置にある。第1部材(70)の最高位部(73)に、複数の貫通穴(76)が左右方向に間隔をおいて形成されている。第1部材(70)は、アルミニウムブレージングシートにプレス加工を施すことによって、垂下壁(70a)、溝(74)、管挿通穴(75)および貫通穴(76)を同時に形成することによりつくられる。   The first member (70) has a cross-sectional arc shape in which a central portion in the front-rear direction protrudes upward, and a hanging wall (70a) is integrally formed over the entire length on both front and rear edges. The upper surface of the first member (70) is the top surface (3a) of the refrigerant turn tank (3), and the outer surface of the hanging wall (70a) is the front and rear side surfaces (3b) of the refrigerant turn tank (3). ing. On both the front and rear sides of the first member (70), a groove (74) is formed from the highest position (73) at the center in the front-rear direction to the lower end of the hanging wall (70a). A long tube insertion hole (75) is formed in the front-rear direction between adjacent grooves (74) in the front and rear side portions excluding the highest portion (73) of the first member (70). The front and rear pipe insertion holes (75) are at the same position in the left-right direction. A plurality of through holes (76) are formed at intervals in the left-right direction in the highest position (73) of the first member (70). The first member (70) is formed by simultaneously forming the hanging wall (70a), the groove (74), the tube insertion hole (75), and the through hole (76) by pressing the aluminum brazing sheet. .

第2部材(71)は上方に開口した横断面略w字状であり、前後方向外側に向かって上方に湾曲した左右方向に伸びる前後両壁(77)と、前後両壁(77)間の中央部に設けられかつ左右方向に伸びるとともに冷媒ターン用タンク(3)内を前後2つの空間に仕切る仕切手段としての垂直状仕切壁(78)と、前後両壁(77)および仕切壁(78)の下端どうしをそれぞれ一体に連結する2つの連結壁(79)とを備えている。仕切壁(78)の上端は前後両壁(77)の上端よりも上方に突出しており、その上縁に、上方に突出しかつ第1部材(70)の貫通穴(76)に嵌め入れられる複数の突起(78a)が左右方向に間隔をおいて一体に形成されている。また、仕切壁(78)における隣り合う突起(78a)間には、それぞれその上縁から冷媒通過用切り欠き(78b)が形成されている。突起(78a)および切り欠き(78b)は、仕切壁(78)の所定部分を切除することにより形成されている。   The second member (71) has a substantially w-shaped cross section opened upward, and extends between the front and rear walls (77) and the front and rear walls (77) extending in the left-right direction curved upward toward the outer side in the front-rear direction. A vertical partition wall (78) as a partition means provided in the center and extending in the left-right direction and partitioning the refrigerant turn tank (3) into two front and rear spaces, both front and rear walls (77) and partition walls (78 ) And two connecting walls (79) for connecting the lower ends of the two together. The upper end of the partition wall (78) protrudes upward from the upper ends of the front and rear walls (77), and a plurality of upper walls protrude upward and are fitted into the through holes (76) of the first member (70). The protrusions (78a) are integrally formed at intervals in the left-right direction. Further, a coolant passage notch (78b) is formed between adjacent protrusions (78a) on the partition wall (78) from the upper edge thereof. The protrusion (78a) and the notch (78b) are formed by cutting a predetermined portion of the partition wall (78).

第2部材(71)は、前後両壁(77)、仕切壁(78)および連結壁(79)を一体に押出成形した後、仕切壁(78)を切除して突起(78a)および切り欠き(78b)を形成することにより製造される。   The second member (71) is formed by integrally extruding both the front and rear walls (77), the partition wall (78), and the connecting wall (79), and then cutting the partition wall (78) to form protrusions (78a) and notches Manufactured by forming (78b).

各キャップ(72)の前側には、冷媒流入ヘッダ部(9)内に嵌め入れられる左右方向内方への突出部(81)が一体に形成され、同じく後側には、冷媒流出ヘッダ部(11)内に嵌め入れられる左右方向内方への突出部(82)が一体に形成されている。また、各キャップ(72)の前後両側縁と下縁との間の円弧状部に、それぞれ左右方向内方に突出した係合爪(83)が一体に形成され、同じく上縁に左右方向内方に突出した複数の係合爪(84)が前後方向に間隔をおいて一体に形成されている。   On the front side of each cap (72), a leftward and rightward projecting portion (81) that is fitted into the refrigerant inflow header portion (9) is integrally formed, and on the rear side, the refrigerant outflow header portion ( 11) A projecting portion (82) inward in the left-right direction that is fitted into the inside is integrally formed. In addition, an engaging claw (83) projecting inward in the left-right direction is integrally formed on the arc-shaped portion between the front and rear side edges and the lower edge of each cap (72), and is also formed in the left-right direction at the upper edge. A plurality of engaging claws (84) projecting in the direction are integrally formed at intervals in the front-rear direction.

冷媒ターン用タンク(3)の第1および第2部材(70)(71)と、両キャップ(72)とは次のようにしてろう付されている。第1および第2部材(70)(71)が、第2部材(71)の突起(78a)が貫通穴(76)に挿通されてかしめられることにより、第1部材(70)の前後の垂下壁(70a)の下端部と、第2部材(71)の前後両壁(77)の上端部とが係合した状態で、第1部材(70)のろう材層を利用して相互にろう付されている。両キャップ(72)は、前側の突出部(81)が両部材(70)(71)における仕切壁(78)よりも前側の空間内に、後側の突出部(82)が両部材(70)(71)における仕切壁(78)よりも後側の空間内にそれぞれ嵌め入れられ、上側の係合爪(84)が第1部材(70)に係合させられ、下側の係合爪(83)が第2部材(71)の前後両壁(77)に係合させられた状態で、各キャップ(72)のろう材層を利用して第1および第2部材(70)(71)にろう付されている。こうして、冷媒ターン用タンク(3)が形成されており、第2部材(71)の仕切壁(78)よりも前側が冷媒流入ヘッダ部(9)、同じく仕切壁(78)よりも後側が冷媒流出ヘッダ部(11)となっている。第2部材(71)の仕切壁(78)の切り欠き(78b)の上端開口は第1部材(70)によって閉じられ、これにより冷媒通過穴(85)が形成されている。そして、冷媒流入ヘッダ部(9)と冷媒流出ヘッダ部(11)とが冷媒通過穴(85)を介して連通させられている。   The first and second members (70) and (71) of the refrigerant turn tank (3) and the caps (72) are brazed as follows. The first and second members (70) and (71) are drooped before and after the first member (70) when the projection (78a) of the second member (71) is inserted into the through hole (76) and caulked. With the lower end of the wall (70a) and the upper end of both front and rear walls (77) of the second member (71) engaged, the brazing material layer of the first member (70) is used to braze each other. It is attached. Both caps (72) have front protrusions (81) in the space in front of the partition walls (78) of both members (70) (71), and rear protrusions (82) have both members (70 ) (71) are respectively fitted into the spaces behind the partition wall (78), and the upper engaging claw (84) is engaged with the first member (70), so that the lower engaging claw is engaged. With the (83) engaged with the front and rear walls (77) of the second member (71), the first and second members (70), (71) are utilized using the brazing material layer of each cap (72). ) Is brazed. Thus, the refrigerant turn tank (3) is formed, the refrigerant inflow header portion (9) on the front side of the partition wall (78) of the second member (71) and the refrigerant on the rear side of the partition wall (78). It is an outflow header (11). The upper end opening of the notch (78b) of the partition wall (78) of the second member (71) is closed by the first member (70), thereby forming a refrigerant passage hole (85). The refrigerant inflow header portion (9) and the refrigerant outflow header portion (11) are communicated with each other through the refrigerant passage hole (85).

前後の熱交換管群(13)を構成する熱交換管(12)はアルミニウム押出形材からなり、前後方向に幅広の偏平状で、その内部に長さ方向に伸びる複数の冷媒通路(12a)が並列状に形成されている(図6参照)。熱交換管(12)の上端部は冷媒入出用タンク(2)の第1部材(16)の管挿通穴(23)に挿通された状態で、第1部材(16)のろう材層を利用して第1部材(16)にろう付され、同じく下端部は冷媒ターン用タンク(3)の第1部材(70)の管挿通穴(75)に挿通された状態で、第1部材(70)のろう材層を利用して第1部材(70)にろう付されている。   The heat exchange pipe (12) constituting the front and rear heat exchange pipe group (13) is made of an aluminum extruded profile, and has a wide flat shape in the front and rear direction, and a plurality of refrigerant passages (12a) extending in the length direction therein. Are formed in parallel (see FIG. 6). The upper end of the heat exchange pipe (12) is inserted into the pipe insertion hole (23) of the first member (16) of the refrigerant inlet / outlet tank (2), and the brazing material layer of the first member (16) is used. The first member (16) is brazed to the first member (70), and the lower end of the first member (70) is inserted into the pipe insertion hole (75) of the first member (70) of the refrigerant turn tank (3). ) Is brazed to the first member (70) using the brazing material layer.

ここで、熱交換管(12)の左右方向の厚みである管高さは0.75〜1.5mm、前後方向の幅である管幅は12〜18mm、周壁の肉厚は0.175〜0.275mm、冷媒通路どうしを仕切る仕切壁の厚さは0.175〜0.275mm、仕切壁のピッチは0.5〜3.0mm、前後両端壁の外面の曲率半径は0.35〜0.75mmであることが好ましい。   Here, the tube height which is the thickness in the left-right direction of the heat exchange tube (12) is 0.75 to 1.5 mm, the tube width which is the width in the front-rear direction is 12 to 18 mm, and the wall thickness of the peripheral wall is 0.175 to 0.275 mm, the thickness of the partition wall partitioning the refrigerant passages is 0.175 to 0.275 mm, the pitch of the partition walls is 0.5 to 3.0 mm, and the curvature radius of the outer surfaces of the front and rear end walls is 0.35 to 0 .75 mm is preferable.

なお、熱交換管(12)としては、アルミニウム押出形材製のものに代えて、アルミニウム製電縫管の内部にインナーフィンを挿入することにより複数の冷媒通路を形成したものを用いてもよい。また、片面にろう材層を有するアルミニウムブレージングシートのろう材層側に圧延加工を施すことにより形成され、かつ連結部を介して連なった2つの平坦壁形成部と、各平坦壁形成部における連結部とは反対側の側縁より隆起状に一体成形された側壁形成部と、平坦壁形成部の幅方向に所定間隔をおいて両平坦壁形成部よりそれぞれ隆起状に一体成形された複数の仕切壁形成部とを備えた板を、連結部においてヘアピン状に曲げて側壁形成部どうしを突き合わせて相互にろう付し、仕切壁形成部により仕切壁を形成したものを用いてもよい。   As the heat exchange pipe (12), instead of one made of an aluminum extruded shape, a pipe in which a plurality of refrigerant passages are formed by inserting inner fins into an aluminum electric sewing pipe may be used. . Also, two flat wall forming portions formed by rolling on the brazing filler metal layer side of an aluminum brazing sheet having a brazing filler metal layer on one side and connected via a connecting portion, and connection in each flat wall forming portion A side wall forming portion integrally formed in a raised shape from the side edge opposite to the portion, and a plurality of integrally formed in a raised shape from both flat wall forming portions at a predetermined interval in the width direction of the flat wall forming portion. A plate provided with a partition wall forming portion may be bent into a hairpin shape at the connecting portion, the side wall forming portions are brought into contact with each other and brazed to each other, and a partition wall is formed by the partition wall forming portion.

コルゲートフィン(14)は両面にろう材層を有するアルミニウムブレージングシートを用いて波状に形成されたものであり、その波頭部と波底部を連結する連結部に、前後方向に並列状に複数のルーバが形成されている。コルゲートフィン(14)は前後両熱交換管群(13)に共有されており、その前後方向の幅は前側熱交換管群(13)の熱交換管(12)の前側縁と後側熱交換管群(13)の熱交換管(12)の後側縁との間隔をほぼ等しくなっている。ここで、コルゲートフィン(14)のフィン高さである波頭部と波底部との直線距離は7.0mm〜10.0mm、同じくフィンピッチである連結部のピッチは1.3〜1.8mmであることが好ましい。なお、1つのコルゲートフィンが前後両熱交換管群(13)に共有される代わりに、両熱交換管群(13)の隣り合う熱交換管(12)どうしの間にそれぞれコルゲートフィンが配置されていてもよい。   The corrugated fin (14) is formed in a wave shape using an aluminum brazing sheet having a brazing filler metal layer on both sides, and a plurality of the corrugated fins (14) are connected in parallel in the front-rear direction to the connecting portion connecting the wave head and the wave bottom. A louver is formed. The corrugated fin (14) is shared by both the front and rear heat exchange tube group (13), and the width in the front and rear direction is the heat exchange tube (12) front edge of the front heat exchange tube group (13) and the rear heat exchange. The distance between the rear edge of the heat exchanger tube (12) of the tube group (13) is substantially equal. Here, the linear distance between the wave head and the wave bottom, which is the fin height of the corrugated fin (14), is 7.0 mm to 10.0 mm, and the pitch of the connecting portion which is also the fin pitch is 1.3 to 1.8 mm. It is preferable that In addition, instead of sharing one corrugated fin between the front and rear heat exchange tube groups (13), corrugated fins are respectively arranged between adjacent heat exchange tubes (12) of both heat exchange tube groups (13). It may be.

エバポレータ(1)は、冷媒入口管(7)および冷媒出口管(8)を除く各構成部材を組み合わせて仮止めし、すべての構成部材を一括してろう付することにより製造される。   The evaporator (1) is manufactured by temporarily fixing a combination of the constituent members excluding the refrigerant inlet pipe (7) and the refrigerant outlet pipe (8), and brazing all the constituent members together.

エバポレータ(1)は、圧縮機およびコンデンサとともに冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。   The evaporator (1) constitutes a refrigeration cycle together with a compressor and a condenser, and is mounted on a vehicle such as an automobile as a car air conditioner.

上述したエバポレータ(1)において、図11に示すように、圧縮機、コンデンサおよび膨張弁を通過した気液混相の2層冷媒が、冷媒入口管(7)からジョイントプレート(21)の冷媒流入口(45)および右側キャップ(19)の冷媒入口(37)を通って冷媒入出用タンク(2)の冷媒入口ヘッダ部(5)内に入り、分流して前側熱交換管群(13)のすべての熱交換管(12)の冷媒通路(12a)内に流入する。   In the above-described evaporator (1), as shown in FIG. 11, the gas-liquid mixed phase two-layer refrigerant that has passed through the compressor, the condenser, and the expansion valve flows from the refrigerant inlet pipe (7) to the refrigerant inlet of the joint plate (21). (45) and the refrigerant inlet (37) of the right side cap (19) through the refrigerant inlet / outlet section (5) of the refrigerant inlet / outlet tank (2) to be divided into all the front heat exchange pipe groups (13). Into the refrigerant passage (12a) of the heat exchange pipe (12).

このとき、冷媒入口(37)が冷媒流入口(45)よりも上方に偏心していることによって、冷媒は冷媒流入口(45)から冷媒入口(37)に向かって左斜め上方に流れ、さらにガイド(40)に案内されて左斜め上方に流れることになり、冷媒は、冷媒入口ヘッダ部(5)内を左端部まで流れやすくなって前側熱交換管群(13)のすべての熱交換管(12)内へ均一に流入する。また、冷媒入口管(7)の縮径部(7a)の内径が3〜8.5mmになっていると、冷媒入口管(7)から送り込まれる冷媒の流速が高速になるので、冷媒は、冷媒入口ヘッダ部(5)内を左端部まで流れやすくなって前側熱交換管群(13)のすべての熱交換管(12)内へ均一に流入する。したがって、冷媒入口ヘッダ部(5)に接続されている前側熱交換管群(13)のすべての熱交換管(12)内の冷媒流量が均一化される。   At this time, since the refrigerant inlet (37) is eccentric above the refrigerant inlet (45), the refrigerant flows obliquely upward to the left from the refrigerant inlet (45) toward the refrigerant inlet (37). (40) is guided to flow obliquely upward to the left, and the refrigerant becomes easy to flow to the left end portion in the refrigerant inlet header (5), and all the heat exchange tubes (13) of the front heat exchange tube group (13) ( 12) Evenly flows into. Further, when the inner diameter of the reduced diameter portion (7a) of the refrigerant inlet pipe (7) is 3 to 8.5 mm, the flow rate of the refrigerant sent from the refrigerant inlet pipe (7) becomes high, so that the refrigerant is It becomes easy to flow in the refrigerant inlet header part (5) to the left end part, and flows uniformly into all the heat exchange pipes (12) of the front heat exchange pipe group (13). Therefore, the refrigerant flow rates in all the heat exchange tubes (12) of the front heat exchange tube group (13) connected to the refrigerant inlet header (5) are made uniform.

すべての熱交換管(12)の冷媒通路(12a)内に流入した冷媒は、冷媒通路(12a)内を下方に流れて冷媒ターン用タンク(3)の冷媒流入ヘッダ部(9)内に入る。冷媒流入ヘッダ部(9)内に入った冷媒は、仕切壁(78)の冷媒通過穴(85)を通って冷媒流出ヘッダ部(11)内に入る。   The refrigerant that has flowed into the refrigerant passages (12a) of all the heat exchange tubes (12) flows downward in the refrigerant passages (12a) and enters the refrigerant inflow header portion (9) of the refrigerant turn tank (3). . The refrigerant that has entered the refrigerant inflow header portion (9) enters the refrigerant outflow header portion (11) through the refrigerant passage hole (85) of the partition wall (78).

冷媒流出ヘッダ部(11)内に入った冷媒は、分流して後側熱交換管群(13)のすべての熱交換管(12)の冷媒通路(12a)内に流入し、流れ方向を変えて冷媒通路(12a)内を上方に流れて冷媒出口ヘッダ部(6)の下空間(6b)内に入る。ここで、冷媒入口ヘッダ部(5)に接続されている前側熱交換管群(13)のすべての熱交換管(12)内の冷媒流量が均一化されていることにより、冷媒出口ヘッダ部(6)に接続されている後側熱交換管群(13)のすべての熱交換管(12)内の冷媒流量も均一化される。さらに、分流用抵抗板(29)によって冷媒の流れに抵抗が付与されるので、冷媒流出ヘッダ部(11)から後側熱交換管群(13)のすべての熱交換管(12)への分流が均一化されるとともに、冷媒入口ヘッダ部(5)から前側熱交換管群(13)のすべての熱交換管(12)への分流も一層均一化される。その結果、両熱交換管群(13)のすべての熱交換管(12)の冷媒流通量が均一化される。   The refrigerant that has entered the refrigerant outflow header section (11) is divided and flows into the refrigerant passages (12a) of all the heat exchange pipes (12) in the rear heat exchange pipe group (13), changing the flow direction. Then, it flows upward in the refrigerant passage (12a) and enters the lower space (6b) of the refrigerant outlet header (6). Here, the refrigerant flow rate in the heat exchange pipes (12) of the front heat exchange pipe group (13) connected to the refrigerant inlet header part (5) is made uniform, so that the refrigerant outlet header part ( The refrigerant flow rates in all the heat exchange tubes (12) of the rear heat exchange tube group (13) connected to 6) are also equalized. Further, since resistance is imparted to the refrigerant flow by the shunt resistor plate (29), the shunt flow from the refrigerant outflow header (11) to all the heat exchange pipes (12) in the rear heat exchange pipe group (13) Is made uniform, and the branch flow from the refrigerant inlet header portion (5) to all the heat exchange tubes (12) of the front heat exchange tube group (13) is further uniformized. As a result, the refrigerant flow rate of all the heat exchange tubes (12) in both heat exchange tube groups (13) is made uniform.

ついで、冷媒は分流用抵抗板(29)の冷媒通過穴(31A)(31B)を通って冷媒出口ヘッダ部(6)の上部空間(6a)内に入り、右側キャップ(19)の冷媒出口(38)およびジョイントプレート(21)の冷媒流出口(46)を通り、冷媒出口管(8)に流出する。そして、冷媒が前側熱交換管群(13)の熱交換管(12)の冷媒通路(12a)、および後側熱交換管群(13)の熱交換管(12)の冷媒通路(12a)を流れる間に、通風間隙を図1に矢印Xで示す方向に流れる空気と熱交換をし、気相となって流出する。   Next, the refrigerant enters the upper space (6a) of the refrigerant outlet header (6) through the refrigerant passage holes (31A) and (31B) of the shunt resistor plate (29), and enters the refrigerant outlet of the right cap (19) ( 38) and the refrigerant outlet (46) of the joint plate (21), and flows out to the refrigerant outlet pipe (8). The refrigerant passes through the refrigerant passage (12a) of the heat exchange tube (12) of the front heat exchange tube group (13) and the refrigerant passage (12a) of the heat exchange tube (12) of the rear heat exchange tube group (13). During the flow, the ventilation gap exchanges heat with the air flowing in the direction indicated by the arrow X in FIG.

ここで、冷媒入口ヘッダ部(5)に接続されている前側熱交換管群(13)のすべての熱交換管(12)内の冷媒流量が均一化されるとともに、冷媒出口ヘッダ部(6)に接続されている後側熱交換管群(13)のすべての熱交換管(12)内の冷媒流量も均一化されている結果、熱交換に寄与する冷媒量が熱交換コア部(4)の左右方向に関して均一化され、熱交換コア部(4)を通過して来た空気の温度も全体的に均一化されてエバポレータ(1)の熱交換性能が著しく向上する。特に、冷媒の流量が少ない場合にも、熱交換性能の低下が防止される。   Here, the refrigerant flow rate in all the heat exchange pipes (12) of the front heat exchange pipe group (13) connected to the refrigerant inlet header part (5) is made uniform, and the refrigerant outlet header part (6) As a result of the uniform flow rate of the refrigerant in all the heat exchange tubes (12) of the rear heat exchange tube group (13) connected to the heat exchange core portion (4) The temperature of the air that has passed through the heat exchange core section (4) is made uniform as a whole, and the heat exchange performance of the evaporator (1) is remarkably improved. In particular, even when the flow rate of the refrigerant is small, a decrease in heat exchange performance is prevented.

また、冷媒が前側熱交換管群(13)の熱交換管(12)の冷媒通路(12a)、および後側熱交換管群(13)の熱交換管(12)の冷媒通路(12a)を流れる間に、通風間隙を図1に矢印Xで示す方向に流れる空気と熱交換をする際に、コルゲートフィン(14)の表面に凝縮水が発生し、この凝縮水が冷媒ターン用タンク(3)の頂面(3a)に流下する。冷媒ターン用タンク(3)の頂面(3a)に流下した凝縮水は、キャピラリ効果により溝(74)内に入り、溝(74)内を流れて前後方向外側の端部から冷媒ターン用タンク(3)の下方へ落下する。こうして、冷媒ターン用タンク(3)の頂面(3a)とコルゲートフィン(14)の下端との間に多くの凝縮水が溜まることに起因する凝縮水の氷結が防止され、その結果エバポレータ(1)の性能低下が防止される。   Further, the refrigerant passes through the refrigerant passage (12a) of the heat exchange pipe (12) of the front heat exchange pipe group (13) and the refrigerant passage (12a) of the heat exchange pipe (12) of the rear heat exchange pipe group (13). When the heat exchange with the air flowing through the ventilation gap in the direction indicated by the arrow X in FIG. 1 occurs during the flow, condensed water is generated on the surface of the corrugated fin (14), and this condensed water is stored in the refrigerant turn tank (3 ) Flows down to the top surface (3a). The condensed water flowing down to the top surface (3a) of the refrigerant turn tank (3) enters the groove (74) by the capillary effect, flows in the groove (74), and flows from the outer end in the front-rear direction to the refrigerant turn tank. Drop down (3). In this way, freezing of condensed water caused by accumulation of a large amount of condensed water between the top surface (3a) of the refrigerant turn tank (3) and the lower end of the corrugated fin (14) is prevented, and as a result, the evaporator (1 ) Performance degradation is prevented.

上記実施形態においては、両タンク(2)(3)の冷媒入口ヘッダ部(5)と冷媒流入ヘッダ部(9)との間、および冷媒出口ヘッダ部(6)と冷媒流出ヘッダ部(11)との間にそれぞれ1つの熱交換管群(13)が設けられているが、これに限るものではなく、両タンク(2)(3)の冷媒入口ヘッダ部(5)と冷媒流入ヘッダ部(9)との間、および冷媒出口ヘッダ部(6)と冷媒流出ヘッダ部(11)との間にそれぞれ1または2以上の熱交換管群(13)が設けられていてもよい。   In the above embodiment, between the refrigerant inlet header portion (5) and the refrigerant inflow header portion (9) of both tanks (2) and (3), and the refrigerant outlet header portion (6) and the refrigerant outflow header portion (11). However, the present invention is not limited to this, and the refrigerant inlet header portion (5) and the refrigerant inflow header portion of both tanks (2) and (3) are not limited to this. One or two or more heat exchange pipe groups (13) may be provided between the refrigerant outlet header section (6) and the refrigerant outlet header section (11).

上記実施形態においては、ジョイントプレート(21)の冷媒流入口(45)に冷媒入口管(7)が、冷媒流出口(46)に冷媒出口管(8)がそれぞれ接続され、冷媒入口管(7)および冷媒出口管(8)の先端部に跨って膨張弁取付部材が固定されているが、これに代えて、ジョイントプレート(21)に直接膨張弁取付部材を接合してもよい。   In the above embodiment, the refrigerant inlet pipe (7) is connected to the refrigerant inlet (45) of the joint plate (21), the refrigerant outlet pipe (8) is connected to the refrigerant outlet (46), and the refrigerant inlet pipe (7 ) And the refrigerant outlet pipe (8), and the expansion valve mounting member is fixed across the tip of the refrigerant outlet pipe (8). Alternatively, the expansion valve mounting member may be joined directly to the joint plate (21).

さらに、上記実施形態においては、この発明による熱交換器がエバポレータに適用されているが、これに限定されるものではなく、他の種々の熱交換器にも適用可能である。   Furthermore, in the said embodiment, although the heat exchanger by this invention is applied to the evaporator, it is not limited to this, It can apply also to other various heat exchangers.

この発明による熱交換器を適用したエバポレータの全体構成を示す一部切り欠き斜視図である。1 is a partially cutaway perspective view showing an overall configuration of an evaporator to which a heat exchanger according to the present invention is applied. 図1に示すエバポレータの中間部を省略した垂直断面図である。It is the vertical sectional view which omitted the intermediate part of the evaporator shown in FIG. 冷媒入出用タンクの部分の分解斜視図である。It is a disassembled perspective view of the part of the refrigerant | coolant in / out tank. 一部を省略した図2のA−A線拡大断面図である。It is the AA line expanded sectional view of Drawing 2 which omitted some. 一部を省略した図2のB−B線拡大断面図である。It is the BB expanded sectional view of FIG. 2 which abbreviate | omitted one part. 図2のC−C線断面図である。It is CC sectional view taken on the line of FIG. 冷媒入出用タンク、右側キャップおよびジョイントプレートを拡大して示す分解斜視図である。It is a disassembled perspective view which expands and shows the tank for a refrigerant | coolant in / out, a right side cap, and a joint plate. 右側キャップの斜視図である。It is a perspective view of a right side cap. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 冷媒ターン用タンクの部分の分解斜視図である。It is a disassembled perspective view of the part of the tank for refrigerant | coolant turns. 図1に示すエバポレータにおける冷媒の流れ方を示す図である。It is a figure which shows how the refrigerant | coolant flows in the evaporator shown in FIG.

符号の説明Explanation of symbols

(1):エバポレータ(熱交換器)
(2):冷媒入出用タンク
(3):冷媒ターン用タンク
(4):熱交換コア部
(5):冷媒入口ヘッダ部
(6):冷媒出口ヘッダ部
(7):冷媒入口管
(7a):縮径部
(8):冷媒出口管
(8a):縮径部
(9):冷媒流入ヘッダ部
(11):冷媒流出ヘッダ部
(12):熱交換管
(13):熱交換管群
(16):第1部材
(17):第2部材
(19):キャップ(閉鎖部材)
(19A):第1閉鎖部
(19B):第2閉鎖部
(21):ジョイントプレート
(27):仕切壁(仕切手段)
(29):分流用抵抗板(区画手段)
(32):左方突出部
(32a):底壁
(37):冷媒入口
(38):冷媒出口
(40):ガイド
(40a):突出端面
(45):冷媒流入口
(46):冷媒流出口
(F):傾斜面
P:偏心量
α:角度
(1): Evaporator (heat exchanger)
(2): Refrigerant tank
(3): Refrigerant turn tank
(4): Heat exchange core
(5): Refrigerant inlet header
(6): Refrigerant outlet header
(7): Refrigerant inlet pipe
(7a): Reduced diameter part
(8): Refrigerant outlet pipe
(8a): Reduced diameter part
(9): Refrigerant inflow header
(11): Refrigerant outflow header
(12): Heat exchange pipe
(13): Heat exchange tube group
(16): First member
(17): Second member
(19): Cap (closing member)
(19A): First closure
(19B): Second closure
(21): Joint plate
(27): Partition wall (partitioning means)
(29): Resistive plate for shunting (compartment means)
(32): Left protrusion
(32a): Bottom wall
(37): Refrigerant inlet
(38): Refrigerant outlet
(40): Guide
(40a): Projected end face
(45): Refrigerant inlet
(46): Refrigerant outlet
(F): Inclined surface P: Eccentricity α: Angle

Claims (22)

上端部において前後方向に並んで配置された冷媒入口ヘッダ部および冷媒出口ヘッダ部と、両ヘッダ部を通じさせる冷媒循環経路とを備えており、冷媒入口ヘッダ部の一端に冷媒入口が形成されるとともに、冷媒出口ヘッダ部における冷媒入口と同一端に冷媒出口が形成され、冷媒入口から冷媒入口ヘッダ部内に流入した冷媒が、冷媒循環経路を通って冷媒出口ヘッダ部に戻り、冷媒出口から送り出されるようになっている熱交換器において、
冷媒入口ヘッダ部の一端開口を閉鎖する閉鎖部材に冷媒入口が形成され、閉鎖部材における冷媒入口の下側縁部に、冷媒入口ヘッダ部内方に向かって上方に傾斜したガイドが設けられている熱交換器。
A refrigerant inlet header portion and a refrigerant outlet header portion arranged side by side in the front-rear direction at the upper end portion, and a refrigerant circulation path passing through both header portions, and a refrigerant inlet is formed at one end of the refrigerant inlet header portion The refrigerant outlet is formed at the same end as the refrigerant inlet in the refrigerant outlet header, and the refrigerant flowing into the refrigerant inlet header from the refrigerant inlet returns to the refrigerant outlet header through the refrigerant circulation path and is sent out from the refrigerant outlet. In the heat exchanger
The refrigerant inlet is formed in a closing member that closes one end opening of the refrigerant inlet header portion, and a guide that is inclined upward toward the inside of the refrigerant inlet header portion is provided at a lower edge of the refrigerant inlet in the closing member. Exchanger.
ガイドが部分球面体である請求項1記載の熱交換器。 The heat exchanger according to claim 1, wherein the guide is a partial spherical body. 冷媒入口ヘッダ部の冷媒入口が円形であり、その内径が3〜8.5mmである請求項1または2記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the refrigerant inlet of the refrigerant inlet header is circular, and the inner diameter thereof is 3 to 8.5 mm. ガイドの突出端面が、閉鎖部材の垂直な内面に対して傾斜した傾斜面上に位置している請求項1〜3のうちのいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein the protruding end surface of the guide is located on an inclined surface inclined with respect to a vertical inner surface of the closing member. ガイドの突出端面が位置する傾斜面と、閉鎖部材の垂直な内面とがなす劣角の傾斜角度が15〜60度である請求項4記載の熱交換器。 The heat exchanger according to claim 4, wherein an inferior inclination angle formed by the inclined surface on which the protruding end surface of the guide is located and the vertical inner surface of the closing member is 15 to 60 degrees. 閉鎖部材が、冷媒入口ヘッダ部の一端開口を閉鎖する第1閉鎖部と、冷媒出口ヘッダ部における冷媒入口と同一端の開口を閉鎖する第2閉鎖部とを有しており、第1閉鎖部に冷媒入口が形成されるとともにガイドが設けられ、第2閉鎖部に冷媒出口が形成されている請求項1〜5のうちのいずれかに記載の熱交換器。 The closing member has a first closing portion that closes one end opening of the refrigerant inlet header portion, and a second closing portion that closes an opening at the same end as the refrigerant inlet in the refrigerant outlet header portion, and the first closing portion The heat exchanger according to any one of claims 1 to 5, wherein a refrigerant inlet is formed in the first guide, a guide is provided, and a refrigerant outlet is formed in the second closing portion. 冷媒入口ヘッダ部の一端部に、閉鎖部材の冷媒入口に通じる冷媒流入口を有するジョイントプレートが接合され、冷媒入口ヘッダ部の冷媒入口が、ジョイントプレートの冷媒流入口よりも上方に偏心している請求項1〜6のうちのいずれかに記載の熱交換器。 A joint plate having a refrigerant inlet leading to the refrigerant inlet of the closing member is joined to one end of the refrigerant inlet header, and the refrigerant inlet of the refrigerant inlet header is eccentric above the refrigerant inlet of the joint plate. Item 7. The heat exchanger according to any one of Items 1 to 6. ジョイントプレートの冷媒流入口に対する冷媒入口ヘッダ部の冷媒入口の偏心量が0.5〜3mmである請求項7記載の熱交換器。 The heat exchanger according to claim 7, wherein an eccentric amount of the refrigerant inlet of the refrigerant inlet header portion with respect to the refrigerant inlet of the joint plate is 0.5 to 3 mm. 冷媒入口ヘッダ部と冷媒出口ヘッダ部とに跨ってジョイントプレートが接合され、ジョイントプレートに、冷媒入口に通じる冷媒流入口に加えて冷媒出口に通じる冷媒流出口が形成されている請求項7または8記載の熱交換器。 The joint plate is joined across the refrigerant inlet header portion and the refrigerant outlet header portion, and a refrigerant outlet port leading to the refrigerant outlet is formed in the joint plate in addition to the refrigerant inlet port leading to the refrigerant inlet. The described heat exchanger. ジョイントプレートの冷媒流入口に冷媒入口管が接続されるとともに、冷媒流出口に冷媒出口管が接続されている請求項9記載の熱交換器。 The heat exchanger according to claim 9, wherein a refrigerant inlet pipe is connected to the refrigerant inlet of the joint plate, and a refrigerant outlet pipe is connected to the refrigerant outlet. ジョイントプレートの冷媒流入口に冷媒入口管の端部に形成された縮径部が挿入されるとともに、冷媒流出口に冷媒出口管の端部に形成された縮径部が挿入され、冷媒入口管および冷媒出口管がそれぞれジョイントプレートに接合されている請求項10記載の熱交換器。 A reduced diameter portion formed at the end of the refrigerant inlet pipe is inserted into the refrigerant inlet of the joint plate, and a reduced diameter portion formed at the end of the refrigerant outlet pipe is inserted into the refrigerant outlet, and the refrigerant inlet pipe The heat exchanger according to claim 10, wherein the refrigerant outlet pipe and the refrigerant outlet pipe are respectively joined to the joint plate. ジョイントプレートに、冷媒流入口および冷媒流出口に通じる2つの冷媒流通部を有する膨張弁取付部材が接合されている請求項9記載の熱交換器。 The heat exchanger according to claim 9, wherein an expansion valve mounting member having two refrigerant circulation portions communicating with the refrigerant inlet and the refrigerant outlet is joined to the joint plate. 冷媒循環経路が、複数の中間ヘッダ部および複数の熱交換管を備えている請求項1〜12のうちのいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 12, wherein the refrigerant circulation path includes a plurality of intermediate header portions and a plurality of heat exchange tubes. 冷媒入口ヘッダ部の後側に冷媒出口ヘッダ部が配置され、冷媒循環経路が、冷媒入口ヘッダ部の下方にこれと対向するように配置された冷媒流入側中間ヘッダ部、冷媒出口ヘッダ部の下方にこれと対向するように配置された冷媒流出側中間ヘッダ部および複数の熱交換管により構成されており、冷媒流入側中間ヘッダ部と冷媒流出側中間ヘッダ部とが連通させられ、冷媒入口ヘッダ部と冷媒流入側中間ヘッダ部との間、および冷媒出口ヘッダ部と冷媒流出側中間ヘッダ部との間に、それぞれ間隔をおいて配置された複数の熱交換管からなる熱交換管群が少なくとも1列配置されて熱交換コア部が形成され、これらの熱交換管群を構成する熱交換管の両端部が互いに対向するヘッダ部に接続されている請求項1〜13のうちのいずれかに記載の熱交換器。 A refrigerant outlet header portion is disposed behind the refrigerant inlet header portion, and a refrigerant circulation path is disposed below the refrigerant inlet header portion so as to face the refrigerant inlet header portion, below the refrigerant inlet header portion and the refrigerant outlet header portion. The refrigerant outflow side intermediate header portion and the plurality of heat exchange pipes are arranged so as to face each other, and the refrigerant inflow side intermediate header portion and the refrigerant outflow side intermediate header portion are communicated with each other, and the refrigerant inlet header At least a heat exchange tube group composed of a plurality of heat exchange tubes arranged with a space between the first portion and the refrigerant inflow side intermediate header portion, and between the refrigerant outlet header portion and the refrigerant outflow side intermediate header portion. The heat exchange core part is formed by being arranged in a row, and both end parts of the heat exchange pipes constituting these heat exchange pipe groups are connected to header parts facing each other. Described Exchanger. 冷媒出口ヘッダ部内が区画手段により高さ方向に2つの空間に区画されるとともに、第1の空間に臨むように熱交換管が接続され、区画手段に冷媒通過穴が形成され、冷媒出口ヘッダ部の第2の空間が冷媒出口に通じている請求項1〜14のうちのいずれかに記載の熱交換器。 The refrigerant outlet header is partitioned into two spaces in the height direction by the partitioning means, and a heat exchange pipe is connected so as to face the first space, a refrigerant passage hole is formed in the partitioning means, and the refrigerant outlet header part The heat exchanger according to claim 1, wherein the second space communicates with the refrigerant outlet. 冷媒入口ヘッダ部と冷媒出口ヘッダ部とが、1つの冷媒入出用タンク内を仕切手段によって前後に区画することにより設けられている請求項1〜15のうちのいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 15, wherein the refrigerant inlet header portion and the refrigerant outlet header portion are provided by dividing the inside of one refrigerant inlet / outlet tank forward and backward by partition means. 冷媒入出用タンクが、熱交換管が接続された第1部材と、第1部材における熱交換管とは反対側の部分にろう付された第2部材と、第1および第2部材の両端にろう付された閉鎖部材とよりなり、仕切手段および区画手段が第2部材に一体に形成されている請求項16記載の熱交換器。 The refrigerant inlet / outlet tank includes a first member connected to the heat exchange pipe, a second member brazed to a portion of the first member opposite to the heat exchange pipe, and both ends of the first and second members. The heat exchanger according to claim 16, comprising a brazed closure member, wherein the partition means and the partition means are formed integrally with the second member. 第1部材が少なくとも片面にろう材層を有するアルミニウムブレージングシートよりなる請求項17記載の熱交換器。 The heat exchanger according to claim 17, wherein the first member is made of an aluminum brazing sheet having a brazing filler metal layer on at least one side. 第2部材がアルミニウム押出形材よりなる請求項17または18記載の熱交換器。 The heat exchanger according to claim 17 or 18, wherein the second member is made of an aluminum extruded profile. 閉鎖部材が両面にろう材層を有するアルミニウムブレージングシートよりなる請求項17〜19のうちのいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 17 to 19, wherein the closing member is made of an aluminum brazing sheet having a brazing filler metal layer on both sides. 圧縮機、コンデンサおよびエバポレータを備えており、エバポレータが、請求項1〜20のうちのいずれかに記載の熱交換器からなる冷凍サイクル。 A refrigeration cycle comprising a heat exchanger according to any one of claims 1 to 20, comprising a compressor, a condenser, and an evaporator. 請求項21記載の冷凍サイクルが、カーエアコンとして搭載されている車両。 A vehicle in which the refrigeration cycle according to claim 21 is mounted as a car air conditioner.
JP2005072696A 2004-03-23 2005-03-15 Heat exchanger Expired - Fee Related JP4686220B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005072696A JP4686220B2 (en) 2004-03-23 2005-03-15 Heat exchanger
DE112005000423T DE112005000423T5 (en) 2004-03-23 2005-03-23 heat exchangers
US10/586,594 US8002024B2 (en) 2004-03-23 2005-03-23 Heat exchanger with inlet having a guide
PCT/JP2005/006000 WO2005090891A1 (en) 2004-03-23 2005-03-23 Heat exchanger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004084608 2004-03-23
JP2004084608 2004-03-23
JP2005072696A JP4686220B2 (en) 2004-03-23 2005-03-15 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2005308386A true JP2005308386A (en) 2005-11-04
JP4686220B2 JP4686220B2 (en) 2011-05-25

Family

ID=35437348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005072696A Expired - Fee Related JP4686220B2 (en) 2004-03-23 2005-03-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4686220B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139413A (en) * 2005-11-22 2007-06-07 Linde Ag Heat exchanger
JP2007327654A (en) * 2006-06-06 2007-12-20 Showa Denko Kk Heat exchanger and its manufacturing method
JP2008064362A (en) * 2006-09-06 2008-03-21 Showa Denko Kk Stacked heat exchanger
CN100460783C (en) * 2005-11-20 2009-02-11 陈苏红 Combined type collecting pipe for automobile air conditioner
JP2015143606A (en) * 2013-12-26 2015-08-06 カルソニックカンセイ株式会社 heat exchanger
WO2020149107A1 (en) * 2019-01-15 2020-07-23 株式会社デンソー Heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241614A (en) * 1993-02-12 1994-09-02 Sharp Corp Heat exchanger
JP2002340495A (en) * 2001-03-14 2002-11-27 Showa Denko Kk Lamination type heat exchanger, lamination type evaporator for car air-conditioner and refrigerating system
JP2003075024A (en) * 2001-06-18 2003-03-12 Showa Denko Kk Evaporator, its manufacturing method, header member for the vaporizer and refrigerating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241614A (en) * 1993-02-12 1994-09-02 Sharp Corp Heat exchanger
JP2002340495A (en) * 2001-03-14 2002-11-27 Showa Denko Kk Lamination type heat exchanger, lamination type evaporator for car air-conditioner and refrigerating system
JP2003075024A (en) * 2001-06-18 2003-03-12 Showa Denko Kk Evaporator, its manufacturing method, header member for the vaporizer and refrigerating system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460783C (en) * 2005-11-20 2009-02-11 陈苏红 Combined type collecting pipe for automobile air conditioner
JP2007139413A (en) * 2005-11-22 2007-06-07 Linde Ag Heat exchanger
JP2007327654A (en) * 2006-06-06 2007-12-20 Showa Denko Kk Heat exchanger and its manufacturing method
JP2008064362A (en) * 2006-09-06 2008-03-21 Showa Denko Kk Stacked heat exchanger
JP2015143606A (en) * 2013-12-26 2015-08-06 カルソニックカンセイ株式会社 heat exchanger
WO2020149107A1 (en) * 2019-01-15 2020-07-23 株式会社デンソー Heat exchanger

Also Published As

Publication number Publication date
JP4686220B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4734021B2 (en) Heat exchanger
JP4667077B2 (en) Semi-finished joint plate, joint plate, joint plate manufacturing method, and heat exchanger
JP2006132920A (en) Heat exchanger
JP4810203B2 (en) Heat exchanger
WO2008041698A1 (en) Heat exchanger
JP2005326135A (en) Heat exchanger
JP4625687B2 (en) Heat exchanger
KR20060125775A (en) Heat exchanger
JP4786234B2 (en) Heat exchanger
JP4686220B2 (en) Heat exchanger
JP4533726B2 (en) Evaporator and manufacturing method thereof
JP2006170601A (en) Evaporator
US7918266B2 (en) Heat exchanger
JP4617148B2 (en) Heat exchanger
JP4759297B2 (en) Heat exchanger
JP4663262B2 (en) Heat exchanger
JP4630591B2 (en) Heat exchanger
JP4574321B2 (en) Heat exchanger
JP2005069670A (en) Heat exchanger and evaporator
JP2005195318A (en) Evaporator
JP4663272B2 (en) Heat exchangers and evaporators
JP4613083B2 (en) Heat exchanger
JP2006226668A (en) Heat exchanger
JP2007071432A (en) Heat exchanger and its manufacturing method
JP2005090946A (en) Heat exchanger and evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4686220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees