JP2005308384A5 - - Google Patents

Download PDF

Info

Publication number
JP2005308384A5
JP2005308384A5 JP2005037645A JP2005037645A JP2005308384A5 JP 2005308384 A5 JP2005308384 A5 JP 2005308384A5 JP 2005037645 A JP2005037645 A JP 2005037645A JP 2005037645 A JP2005037645 A JP 2005037645A JP 2005308384 A5 JP2005308384 A5 JP 2005308384A5
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
ejector
heat exchange
exchange core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005037645A
Other languages
Japanese (ja)
Other versions
JP4259478B2 (en
JP2005308384A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2005037645A external-priority patent/JP4259478B2/en
Priority to JP2005037645A priority Critical patent/JP4259478B2/en
Priority to US11/204,220 priority patent/US7254961B2/en
Priority to DE102005038858.2A priority patent/DE102005038858B4/en
Priority to FR0508578A priority patent/FR2882133B1/en
Priority to CNB2005100915317A priority patent/CN100416180C/en
Priority to CN2008101301439A priority patent/CN101329115B/en
Publication of JP2005308384A publication Critical patent/JP2005308384A/en
Publication of JP2005308384A5 publication Critical patent/JP2005308384A5/ja
Priority to FR0805388A priority patent/FR2923585B1/en
Publication of JP4259478B2 publication Critical patent/JP4259478B2/en
Application granted granted Critical
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (10)

媒を減圧膨張させるノズル部(14a)、前記ノズル部(14a)から噴射する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(14b)、前記高い速度の冷媒流と前記冷媒吸引口(14b)の吸引冷媒とを混合する混合部(14c)、および前記混合部(14c)で混合した冷媒流の速度エネルギーを圧力エネルギーに変換する昇圧部(14d)を有するエジェクタ(14)と、
前記エジェクタ(14)の下流側に接続される第1蒸発器(15)と、
前記冷媒吸引口(14b)に接続される第2蒸発器(18)とを備え、
前記第1蒸発器(15)および前記第2蒸発器(18)は一体に構成され、共通の冷却対象空間(21)に向かって送風される空気流れを冷却するようになっており、
前記第1蒸発器(15)および前記第2蒸発器(18)は、それぞれ、前記空気流れと複数の冷媒通路を流れる冷媒との間で熱交換を行う熱交換コア部(15a、18a)と、前記熱交換コア部(15a、18a)の複数の冷媒通路に対する冷媒の分配、集合の役割を果たすタンク部(15b、15c、18b、18c)とを有し、
前記エジェクタ(14)の長手方向を前記タンク部(15b、15c、18b、18c)の長手方向と平行にして、前記エジェクタ(14)を前記タンク部(15b、15c、18b、18c)に配置したことを特徴とする蒸発器構造。
Nozzle portion for decompressing and expanding the refrigerant (14a), said nozzle portion (14a) refrigerant suction port which the refrigerant is sucked into the refrigerant flow of high injection speed from (14b), the said high velocity coolant flow of the coolant Ejector (14) having a mixing section (14c) for mixing with the suction refrigerant at the suction port (14b), and a boosting section (14d) for converting the velocity energy of the refrigerant flow mixed in the mixing section (14c) into pressure energy. When,
A first evaporator (15) connected downstream of the ejector (14);
A second evaporator (18) connected to the refrigerant suction port (14b),
The first evaporator (15) and the second evaporator (18) are integrally configured to cool the air flow blown toward the common cooling target space (21) ,
Each of the first evaporator (15) and the second evaporator (18) includes a heat exchange core (15a, 18a) for exchanging heat between the air flow and the refrigerant flowing through the plurality of refrigerant passages. A tank part (15b, 15c, 18b, 18c) that plays a role of distributing and collecting refrigerant to the plurality of refrigerant passages of the heat exchange core part (15a, 18a),
The ejector (14) is arranged in the tank part (15b, 15c, 18b, 18c) with the longitudinal direction of the ejector (14) parallel to the longitudinal direction of the tank part (15b, 15c, 18b, 18c). An evaporator structure characterized by that .
媒を減圧膨張させるノズル部(14a)、前記ノズル部(14a)から噴射する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(14b)、前記高い速度の冷媒流と前記冷媒吸引口(14b)の吸引冷媒とを混合する混合部(14c)、および前記混合部(14c)で混合した冷媒流の速度エネルギーを圧力エネルギーに変換する昇圧部(14d)を有するエジェクタ(14)と、
前記エジェクタ(14)の下流側に接続される第1蒸発器(15)と、
前記冷媒吸引口(14b)に接続される第2蒸発器(18)とを備え、
前記第1蒸発器(15)および前記第2蒸発器(18)は一体に構成され、共通の冷却対象空間(21)に向かって送風される空気流れを冷却するようになっており、
前記第1蒸発器(15)および前記第2蒸発器(18)は、それぞれ、前記空気流れと複数の冷媒通路を流れる冷媒との間で熱交換を行う熱交換コア部(15a、18a)と、前記熱交換コア部(15a、18a)の複数の冷媒通路に対する冷媒の分配、集合の役割を果たすタンク部(15b、15c、18b、18c)とを有し、
前記熱交換コア部(15a、18a)は、前記空気流れの上流側に位置する空気上流側面と、前記空気流れの下流側に位置する空気下流側面と、前記空気上流側面および前記空気下流側面と直交する側面であって、前記タンク部(15b、15c、18b、18c)が配置されていない側面とを有し、
前記エジェクタ(14)の長手方向を前記熱交換コア部(15a、18a)の前記側面の長手方向と平行にして、前記エジェクタ(14)を前記熱交換コア部(15a、18a)の前記側面に配置したことを特徴とする蒸発器構造。
Nozzle portion for decompressing and expanding the refrigerant (14a), said nozzle portion (14a) refrigerant suction port which the refrigerant is sucked into the refrigerant flow of high injection speed from (14b), the said high velocity coolant flow of the coolant Ejector (14) having a mixing section (14c) for mixing with the suction refrigerant at the suction port (14b), and a boosting section (14d) for converting the velocity energy of the refrigerant flow mixed in the mixing section (14c) into pressure energy. When,
A first evaporator (15) connected downstream of the ejector (14);
A second evaporator (18) connected to the refrigerant suction port (14b),
The first evaporator (15) and the second evaporator (18) are integrally configured to cool the air flow blown toward the common cooling target space (21) ,
Each of the first evaporator (15) and the second evaporator (18) includes a heat exchange core (15a, 18a) for exchanging heat between the air flow and the refrigerant flowing through the plurality of refrigerant passages. A tank part (15b, 15c, 18b, 18c) that plays a role of distributing and collecting refrigerant to the plurality of refrigerant passages of the heat exchange core part (15a, 18a),
The heat exchange core portion (15a, 18a) includes an air upstream side surface located upstream of the air flow, an air downstream side surface located downstream of the air flow, the air upstream side surface and the air downstream side surface. A side surface orthogonal to the tank portion (15b, 15c, 18b, 18c) is not disposed,
With the longitudinal direction of the ejector (14) parallel to the longitudinal direction of the side surface of the heat exchange core part (15a, 18a), the ejector (14) is placed on the side surface of the heat exchange core part (15a, 18a). An evaporator structure characterized by the arrangement .
媒を減圧膨張させるノズル部(14a)、前記ノズル部(14a)から噴射する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(14b)、前記高い速度の冷媒流と前記冷媒吸引口(14b)の吸引冷媒とを混合する混合部(14c)、および前記混合部(14c)で混合した冷媒流の速度エネルギーを圧力エネルギーに変換する昇圧部(14d)を有するエジェクタ(14)と、
前記エジェクタ(14)の下流側に接続される第1蒸発器(15)と、
前記冷媒吸引口(14b)に接続される第2蒸発器(18)とを備え、
前記第1蒸発器(15)および前記第2蒸発器(18)は一体に構成され、共通の冷却対象空間(21)に向かって送風される空気流れを冷却するようになっており、
前記第1蒸発器(15)および前記第2蒸発器(18)は、それぞれ、前記空気流れと複数の冷媒通路を流れる冷媒との間で熱交換を行う熱交換コア部(15a、18a)と、前記熱交換コア部(15a、18a)の複数の冷媒通路に対する冷媒の分配、集合の役割を果たすタンク部(15b、15c、18b、18c)とを有し、
前記第1蒸発器(15)の前記熱交換コア部(15a)のうち前記タンク部(15b、15c)の長手方向の一方側に位置する第1領域に、前記エジェクタ(14)から流出した冷媒が流れる上流側冷媒通路(a、i)が形成され、
前記第1蒸発器(15)の前記熱交換コア部(15a)のうち前記タンク部(15b、15c)の長手方向の他方側に位置する第2領域に、前記上流側冷媒通路(a、i)を通過した冷媒が前記上流側冷媒通路(a、i)と逆方向に流れる下流側冷媒通路(c、m)が形成され、
前記第2蒸発器(18)の前記熱交換コア部(18a)のうち前記タンク部(18b、18c)の長手方向の一方側に位置する第1領域に、前記冷媒吸引口(14b)へ吸引される冷媒が流れる上流側冷媒通路(e、p)が形成され、
前記第2蒸発器(18)の前記熱交換コア部(18a)のうち前記タンク部(18b、18c)の長手方向の他方側に位置する第2領域に、前記上流側冷媒通路(e、p)を通過した冷媒が前記上流側冷媒通路(e、p)と逆方向に流れる下流側冷媒通路(g、r)が形成されることを特徴とする蒸発器構造。
Nozzle portion for decompressing and expanding the refrigerant (14a), said nozzle portion (14a) refrigerant suction port which the refrigerant is sucked into the refrigerant flow of high injection speed from (14b), the said high velocity coolant flow of the coolant Ejector (14) having a mixing section (14c) for mixing with the suction refrigerant at the suction port (14b), and a boosting section (14d) for converting the velocity energy of the refrigerant flow mixed in the mixing section (14c) into pressure energy. When,
A first evaporator (15) connected downstream of the ejector (14);
A second evaporator (18) connected to the refrigerant suction port (14b),
The first evaporator (15) and the second evaporator (18) are integrally configured to cool the air flow blown toward the common cooling target space (21) ,
Each of the first evaporator (15) and the second evaporator (18) includes a heat exchange core (15a, 18a) for exchanging heat between the air flow and the refrigerant flowing through the plurality of refrigerant passages. A tank part (15b, 15c, 18b, 18c) that plays a role of distributing and collecting refrigerant to the plurality of refrigerant passages of the heat exchange core part (15a, 18a),
Refrigerant flowing out from the ejector (14) in the first region located on one side in the longitudinal direction of the tank portions (15b, 15c) in the heat exchange core portion (15a) of the first evaporator (15) An upstream refrigerant passage (a, i) through which the
In the second region located on the other side in the longitudinal direction of the tank parts (15b, 15c) in the heat exchange core part (15a) of the first evaporator (15), the upstream refrigerant passage (a, i ) Is formed downstream refrigerant passages (c, m) in which the refrigerant passing through the upstream refrigerant passages (a, i) flows in the opposite direction,
Suction to the refrigerant suction port (14b) in the first region located on one side in the longitudinal direction of the tank portions (18b, 18c) of the heat exchange core portion (18a) of the second evaporator (18). An upstream refrigerant passage (e, p) through which the refrigerant to be flowed is formed,
In the second region located on the other side in the longitudinal direction of the tank portion (18b, 18c) in the heat exchange core portion (18a) of the second evaporator (18), the upstream refrigerant passage (e, p The evaporator structure is characterized in that a downstream refrigerant passage (g, r) in which the refrigerant that has passed through) flows in the opposite direction to the upstream refrigerant passage (e, p) is formed .
媒を減圧膨張させるノズル部(14a)、前記ノズル部(14a)から噴射する高い速度の冷媒流により冷媒が内部に吸引される冷媒吸引口(14b)、前記高い速度の冷媒流と前記冷媒吸引口(14b)の吸引冷媒とを混合する混合部(14c)、および前記混合部(14c)で混合した冷媒流の速度エネルギーを圧力エネルギーに変換する昇圧部(14d)を有するエジェクタ(14)と、
前記エジェクタ(14)の下流側に接続される第1蒸発器(15)と、
前記冷媒吸引口(14b)に接続される第2蒸発器(18)とを備え、
前記第1蒸発器(15)および前記第2蒸発器(18)は、互いに密着せず、所定の空隙を介して配置され、
前記第1蒸発器(15)および前記第2蒸発器(18)は、前記エジェクタ(14)を経由する冷媒配管(140)によって接合された状態で一体に構成され、これにより、前記第1蒸発器(15)および前記第2蒸発器(18)は共通の冷却対象空間(21)に向かって送風される空気流れを冷却するようになっていることを特徴とする蒸発器構造。
Nozzle portion for decompressing and expanding the refrigerant (14a), said nozzle portion (14a) refrigerant suction port which the refrigerant is sucked into the refrigerant flow of high injection speed from (14b), the said high velocity coolant flow of the coolant Ejector (14) having a mixing section (14c) for mixing with the suction refrigerant at the suction port (14b), and a boosting section (14d) for converting the velocity energy of the refrigerant flow mixed in the mixing section (14c) into pressure energy. When,
A first evaporator (15) connected downstream of the ejector (14);
A second evaporator (18) connected to the refrigerant suction port (14b),
The first evaporator (15) and the second evaporator (18) are not in close contact with each other and are disposed through a predetermined gap,
The first evaporator (15) and the second evaporator (18) are integrally formed in a state of being joined by a refrigerant pipe (140) passing through the ejector (14), whereby the first evaporator The evaporator structure characterized in that the vessel (15) and the second evaporator (18) cool the air flow blown toward the common cooling target space (21) .
前記第1蒸発器(15)および前記第2蒸発器(18)は、それぞれ、前記空気流れと複数の冷媒通路を流れる冷媒との間で熱交換を行う熱交換コア部(15a、18a)と、前記熱交換コア部(15a、18a)の複数の冷媒通路に対する冷媒の分配、集合の役割を果たすタンク部(15b、15c、18b、18c)とを有していることを特徴とする請求項に記載の蒸発器構造。 Each of the first evaporator (15) and the second evaporator (18) includes a heat exchange core (15a, 18a) for exchanging heat between the air flow and the refrigerant flowing through the plurality of refrigerant passages. And a tank portion (15b, 15c, 18b, 18c) that plays a role of distributing and collecting refrigerant to a plurality of refrigerant passages of the heat exchange core portion (15a, 18a). 5. The evaporator structure according to 4 . 前記第1蒸発器(15)および前記第2蒸発器(18)の前記熱交換コア部(15a、18a)は、それぞれ前記冷媒通路を構成する複数のチューブ(22)と前記複数のチューブ(22)の外面側に接合され空気側伝熱面積を拡大する複数のフィン(23)との積層構造からなり、
前記第1蒸発器(15)および前記第2蒸発器(18)の前記タンク部(15b、15c、18b、18c)は、それぞれ前記複数のチューブ(22)の端部に接合され、前記複数のチューブ(22)に対する冷媒の分配、集合の役割を果たすように構成され、
前記第1蒸発器(15)および前記第2蒸発器(18)の前記複数のチューブ(22)、前記複数のフィン(23)および前記タンク部(15b、15c、18b、18c)をろう付けにて一体構造に組み付けることを特徴とする請求項1、2、3、5のいずれか1つに記載の蒸発器構造。
The first evaporator (15) and the heat exchange core section (15a, 18a) of the second evaporator (18) has a plurality of tubes constituting the refrigerant passage respectively (22) said plurality of tubes (22 ) Ri Do a laminated structure of a plurality of fins (23) which is joined to the outer surface side to enlarge the air-side heat transfer area,
The tank portions (15b, 15c, 18b, 18c) of the first evaporator (15) and the second evaporator (18) are respectively joined to ends of the plurality of tubes (22), It is configured to serve as a distribution and collection of refrigerant to the tube (22) ,
Brazing the plurality of tubes (22), the plurality of fins (23) and the tank portions (15b, 15c, 18b, 18c) of the first evaporator (15) and the second evaporator (18) The evaporator structure according to any one of claims 1, 2 , 3, and 5 , wherein the evaporator structure is assembled into an integral structure.
前記第1蒸発器(15)および前記第2蒸発器(18)は、前記空気流れ中に直列に配置され、前記空気流れの上流側に前記第1蒸発器(15)が配置され、前記空気流れの下流側に前記第2蒸発器(18)が配置されることを特徴とする請求項1ないし6のいずれか1つに記載の蒸発器構造。 The first evaporator (15) and the second evaporator (18) are arranged in series in the air flow, the first evaporator (15) is arranged upstream of the air flow, and the air The evaporator structure according to any one of claims 1 to 6 , wherein the second evaporator (18) is arranged downstream of the flow . 前記エジェクタ(14)は、前記ノズル部(14a)、前記混合部(14c)および前記昇圧部(14d)が一直線上に並んだ細長形状であることを特徴とする請求項1ないし7のいずれか1つに記載の蒸発器構造。 The said ejector (14) is the elongate shape by which the said nozzle part (14a), the said mixing part (14c), and the said pressure | voltage rise part (14d) were located on a straight line, The one of Claim 1 thru | or 7 characterized by the above-mentioned. evaporator structure according to one. 冷媒を吸入し圧縮する圧縮機(11)と、
前記圧縮機(11)から吐出された高圧冷媒の放熱を行う放熱器(13)と、
請求項1ないし8のいずれか1つに記載の蒸発器構造とを備えるエジェクタサイクルであって、
前記放熱器(13)の冷媒流れ下流側に前記蒸発器構造のエジェクタ(14)が設けられ、
前記エジェクタ(14)の上流部から分岐され前記冷媒吸引口(14b)に至る冷媒分岐通路(16)を有し、
前記冷媒分岐通路(16)に絞り機構(17)が設けられ、この絞り機構(17)の下流側に前記第2蒸発器(18)が設けられていることを特徴とするエジェクタサイクル。
A compressor (11) for sucking and compressing refrigerant;
A radiator (13) that radiates heat of the high-pressure refrigerant discharged from the compressor (11);
An ejector cycle comprising the evaporator structure according to any one of claims 1 to 8,
An ejector (14) having the evaporator structure is provided on the downstream side of the refrigerant flow of the radiator (13),
A refrigerant branch passage (16) branched from an upstream portion of the ejector (14) and reaching the refrigerant suction port (14b);
An ejector cycle, wherein a throttle mechanism (17) is provided in the refrigerant branch passage (16), and the second evaporator (18) is provided downstream of the throttle mechanism (17).
冷媒を吸入し圧縮する圧縮機(11)と、
前記圧縮機(11)から吐出された高圧冷媒の放熱を行う放熱器(13)と、
請求項1ないし8のいずれか1つに記載の蒸発器構造とを備えるエジェクタサイクルであって、
前記放熱器(13)の冷媒流れ下流側に前記蒸発器構造のエジェクタ(14)が設けられ、
前記第1蒸発器(15)の冷媒流れ下流側に冷媒の気液を分離する気液分離器(30)が設けられ、
前記気液分離器(30)の気相冷媒出口側は前記圧縮機(11)の吸入側に接続され、
前記気液分離器(30)の液相冷媒出口側は冷媒分岐通路(31)により前記冷媒吸引口(14b)に接続され、
前記冷媒分岐通路(31)に絞り機構(17)が設けられ、この絞り機構(17)の下流側に前記第2蒸発器(18)が設けられていることを特徴とするエジェクタサイクル。
A compressor (11) for sucking and compressing refrigerant;
A radiator (13) for radiating heat of the high-pressure refrigerant discharged from the compressor (11);
An ejector cycle comprising the evaporator structure according to any one of claims 1 to 8,
An ejector (14) having the evaporator structure is provided on the downstream side of the refrigerant flow of the radiator (13),
A gas-liquid separator (30) for separating the gas-liquid refrigerant is provided on the downstream side of the refrigerant flow of the first evaporator (15),
A gas-phase refrigerant outlet side of the gas-liquid separator (30) is connected to a suction side of the compressor (11),
The liquid-phase refrigerant outlet side of the gas-liquid separator (30) is connected to the refrigerant suction port (14b) by a refrigerant branch passage (31),
An ejector cycle, wherein a throttle mechanism (17) is provided in the refrigerant branch passage (31), and the second evaporator (18) is provided downstream of the throttle mechanism (17).
JP2005037645A 2004-02-18 2005-02-15 Evaporator structure and ejector cycle Expired - Fee Related JP4259478B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005037645A JP4259478B2 (en) 2004-02-18 2005-02-15 Evaporator structure and ejector cycle
US11/204,220 US7254961B2 (en) 2004-02-18 2005-08-15 Vapor compression cycle having ejector
DE102005038858.2A DE102005038858B4 (en) 2004-02-18 2005-08-17 Steam compression circuit with ejector pump
FR0508578A FR2882133B1 (en) 2004-02-18 2005-08-17 VAPOR COMPRESSION CYCLE COMPRISING AN EJECTOR
CNB2005100915317A CN100416180C (en) 2004-02-18 2005-08-18 Vapor compression cycle having ejector
CN2008101301439A CN101329115B (en) 2005-02-15 2005-08-18 Evaporator having ejector
FR0805388A FR2923585B1 (en) 2005-02-15 2008-09-30 VAPOR COMPRESSION SYSTEM

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004041163 2004-02-18
JP2004087066 2004-03-24
JP2005037645A JP4259478B2 (en) 2004-02-18 2005-02-15 Evaporator structure and ejector cycle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008220125A Division JP2008281338A (en) 2004-02-18 2008-08-28 Ejector cycle

Publications (3)

Publication Number Publication Date
JP2005308384A JP2005308384A (en) 2005-11-04
JP2005308384A5 true JP2005308384A5 (en) 2008-09-04
JP4259478B2 JP4259478B2 (en) 2009-04-30

Family

ID=35437346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037645A Expired - Fee Related JP4259478B2 (en) 2004-02-18 2005-02-15 Evaporator structure and ejector cycle

Country Status (1)

Country Link
JP (1) JP4259478B2 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770474B2 (en) * 2006-01-20 2011-09-14 株式会社デンソー Ejector type refrigeration cycle unit and method for manufacturing the same
JP4259531B2 (en) * 2005-04-05 2009-04-30 株式会社デンソー Ejector type refrigeration cycle unit
CN100580344C (en) * 2005-04-05 2010-01-13 株式会社电装 Ejector type refrigerating cycle unit
JP2007051833A (en) * 2005-08-18 2007-03-01 Denso Corp Ejector type refrigeration cycle
JP4737001B2 (en) * 2006-01-13 2011-07-27 株式会社デンソー Ejector refrigeration cycle
JP4692295B2 (en) * 2006-01-19 2011-06-01 株式会社デンソー Evaporator unit and ejector refrigeration cycle
JP4548350B2 (en) * 2006-01-20 2010-09-22 株式会社デンソー Ejector type refrigeration cycle unit
WO2007094422A1 (en) * 2006-02-15 2007-08-23 Gac Corporation Heat exchanger
JP4522962B2 (en) * 2006-03-24 2010-08-11 三菱電機株式会社 Refrigeration cycle equipment
JP5017925B2 (en) * 2006-05-19 2012-09-05 株式会社デンソー Ejector, evaporator unit and ejector refrigeration cycle
JP2007333292A (en) * 2006-06-14 2007-12-27 Denso Corp Ejector type refrigeration cycle
JP2008008505A (en) * 2006-06-27 2008-01-17 Denso Corp Ejector type refrigerating cycle
JP4529954B2 (en) * 2006-06-30 2010-08-25 株式会社デンソー Vapor compression refrigeration cycle
JP4765829B2 (en) * 2006-08-11 2011-09-07 株式会社デンソー Ejector refrigeration cycle unit
JP4910567B2 (en) * 2006-08-24 2012-04-04 株式会社デンソー Ejector refrigeration cycle
JP4375412B2 (en) 2007-02-19 2009-12-02 株式会社デンソー Evaporator unit
JP5050563B2 (en) 2007-02-27 2012-10-17 株式会社デンソー Ejector and ejector type refrigeration cycle unit
JP2008224047A (en) * 2007-03-08 2008-09-25 Denso Corp Ejector type refrigerating cycle
JP4265677B2 (en) 2007-06-20 2009-05-20 株式会社デンソー Ejector type refrigeration cycle unit
DE102007057307B4 (en) 2007-11-28 2019-03-28 Denso Corporation Ejector refrigeration cycle device and decompression device
JP2009156538A (en) * 2007-12-27 2009-07-16 Toshiba Carrier Corp Outdoor unit of air conditioner
JP4645681B2 (en) 2008-05-19 2011-03-09 株式会社デンソー Evaporator unit
JP2010065953A (en) * 2008-09-11 2010-03-25 Denso Corp Vehicular air conditioner
JP2010117092A (en) * 2008-11-13 2010-05-27 Denso Corp Refrigerating cycle device
JP2010117091A (en) * 2008-11-13 2010-05-27 Denso Corp Heat exchanger
JP4998445B2 (en) * 2008-12-03 2012-08-15 株式会社デンソー Evaporator and refrigeration cycle equipment
EP2314957B1 (en) 2009-05-14 2016-06-29 Hanon Systems Multi-evaporation system
KR101200273B1 (en) 2009-12-09 2012-11-12 한라공조주식회사 Refrigerant apparatus of air conditioner for vehicles
KR101202257B1 (en) 2009-12-09 2012-11-16 한라공조주식회사 Refrigerant apparatus of air conditioner for vehicles
KR101658030B1 (en) * 2010-05-26 2016-09-30 한온시스템 주식회사 Refrigerant cycle of air conditioner for vehicles
JP2012097733A (en) 2010-10-08 2012-05-24 Calsonic Kansei Corp Jet pump and air conditioning device
KR101409196B1 (en) 2012-05-22 2014-06-19 한라비스테온공조 주식회사 Evaporator
KR101877355B1 (en) * 2012-05-22 2018-07-13 한온시스템 주식회사 Evaporator
KR101457585B1 (en) 2012-05-22 2014-11-03 한라비스테온공조 주식회사 Evaporator
KR101878317B1 (en) 2012-05-22 2018-07-16 한온시스템 주식회사 Evaporator
JP6299495B2 (en) * 2013-08-29 2018-03-28 株式会社デンソー Ejector refrigeration cycle
JP6323313B2 (en) * 2014-11-27 2018-05-16 株式会社デンソー Evaporator unit
KR102202418B1 (en) * 2015-03-19 2021-01-13 한온시스템 주식회사 Evaporator of air conditioner for vehicle
TWI565920B (en) * 2015-06-25 2017-01-11 Multi-cavity evaporator for multiple refrigeration systems
US9845979B2 (en) 2015-12-15 2017-12-19 WinWay Tech. Co., Ltd. Evaporator for a cascade refrigeration system
KR102477283B1 (en) 2017-04-04 2022-12-14 한온시스템 주식회사 Evaporator
US10760837B2 (en) 2017-04-04 2020-09-01 Hanon Systems Evaporator
KR20230067519A (en) 2021-11-09 2023-05-16 한온시스템 주식회사 Heat exchanger
WO2023085693A1 (en) 2021-11-09 2023-05-19 한온시스템 주식회사 Heat exchanger

Similar Documents

Publication Publication Date Title
JP2005308384A5 (en)
JP2007057222A5 (en)
CN103225926B (en) Evaporator unit
AU2005326694B2 (en) Tube inset and bi-flow arrangement for a header of a heat pump
JP6281467B2 (en) Intercooler
CN100575813C (en) Multi-part heat exchanger
CN105765333A (en) Dual duty microchannel heat exchanger
CN104364599A (en) Compressed gas cooling apparatus
CN103363816A (en) Gas-to-liquid heat exchanger
JP2005331233A5 (en)
JP6458680B2 (en) Heat exchanger
JP5316465B2 (en) Evaporator unit
TWI551837B (en) Air conditioner
JP2012202609A (en) Water heat exchanger
JP5381875B2 (en) Evaporator unit
EP2031334B1 (en) Heat exchanger
EP2982924A1 (en) Heat exchanger
US11060801B2 (en) Microtube heat exchanger
WO2017135442A1 (en) Heat exchanger
JP2008298391A (en) Heat exchanger core, heat exchanger and evaporator for refrigeration cycle device
US20080184734A1 (en) Flat Tube Single Serpentine Co2 Heat Exchanger
WO2017169666A1 (en) Intercooler
US20170045299A1 (en) Improved heat exchanger
WO2016125437A1 (en) Ejector-integrated heat exchanger
JP2010107130A (en) Heat exchanger unit and indoor unit of air conditioner using the same