JP2005308384A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2005308384A5 JP2005308384A5 JP2005037645A JP2005037645A JP2005308384A5 JP 2005308384 A5 JP2005308384 A5 JP 2005308384A5 JP 2005037645 A JP2005037645 A JP 2005037645A JP 2005037645 A JP2005037645 A JP 2005037645A JP 2005308384 A5 JP2005308384 A5 JP 2005308384A5
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- evaporator
- ejector
- heat exchange
- exchange core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Claims (10)
前記エジェクタ(14)の下流側に接続される第1蒸発器(15)と、
前記冷媒吸引口(14b)に接続される第2蒸発器(18)とを備え、
前記第1蒸発器(15)および前記第2蒸発器(18)は一体に構成され、共通の冷却対象空間(21)に向かって送風される空気流れを冷却するようになっており、
前記第1蒸発器(15)および前記第2蒸発器(18)は、それぞれ、前記空気流れと複数の冷媒通路を流れる冷媒との間で熱交換を行う熱交換コア部(15a、18a)と、前記熱交換コア部(15a、18a)の複数の冷媒通路に対する冷媒の分配、集合の役割を果たすタンク部(15b、15c、18b、18c)とを有し、
前記エジェクタ(14)の長手方向を前記タンク部(15b、15c、18b、18c)の長手方向と平行にして、前記エジェクタ(14)を前記タンク部(15b、15c、18b、18c)に配置したことを特徴とする蒸発器構造。 Nozzle portion for decompressing and expanding the refrigerant (14a), said nozzle portion (14a) refrigerant suction port which the refrigerant is sucked into the refrigerant flow of high injection speed from (14b), the said high velocity coolant flow of the coolant Ejector (14) having a mixing section (14c) for mixing with the suction refrigerant at the suction port (14b), and a boosting section (14d) for converting the velocity energy of the refrigerant flow mixed in the mixing section (14c) into pressure energy. When,
A first evaporator (15) connected downstream of the ejector (14);
A second evaporator (18) connected to the refrigerant suction port (14b),
The first evaporator (15) and the second evaporator (18) are integrally configured to cool the air flow blown toward the common cooling target space (21) ,
Each of the first evaporator (15) and the second evaporator (18) includes a heat exchange core (15a, 18a) for exchanging heat between the air flow and the refrigerant flowing through the plurality of refrigerant passages. A tank part (15b, 15c, 18b, 18c) that plays a role of distributing and collecting refrigerant to the plurality of refrigerant passages of the heat exchange core part (15a, 18a),
The ejector (14) is arranged in the tank part (15b, 15c, 18b, 18c) with the longitudinal direction of the ejector (14) parallel to the longitudinal direction of the tank part (15b, 15c, 18b, 18c). An evaporator structure characterized by that .
前記エジェクタ(14)の下流側に接続される第1蒸発器(15)と、
前記冷媒吸引口(14b)に接続される第2蒸発器(18)とを備え、
前記第1蒸発器(15)および前記第2蒸発器(18)は一体に構成され、共通の冷却対象空間(21)に向かって送風される空気流れを冷却するようになっており、
前記第1蒸発器(15)および前記第2蒸発器(18)は、それぞれ、前記空気流れと複数の冷媒通路を流れる冷媒との間で熱交換を行う熱交換コア部(15a、18a)と、前記熱交換コア部(15a、18a)の複数の冷媒通路に対する冷媒の分配、集合の役割を果たすタンク部(15b、15c、18b、18c)とを有し、
前記熱交換コア部(15a、18a)は、前記空気流れの上流側に位置する空気上流側面と、前記空気流れの下流側に位置する空気下流側面と、前記空気上流側面および前記空気下流側面と直交する側面であって、前記タンク部(15b、15c、18b、18c)が配置されていない側面とを有し、
前記エジェクタ(14)の長手方向を前記熱交換コア部(15a、18a)の前記側面の長手方向と平行にして、前記エジェクタ(14)を前記熱交換コア部(15a、18a)の前記側面に配置したことを特徴とする蒸発器構造。 Nozzle portion for decompressing and expanding the refrigerant (14a), said nozzle portion (14a) refrigerant suction port which the refrigerant is sucked into the refrigerant flow of high injection speed from (14b), the said high velocity coolant flow of the coolant Ejector (14) having a mixing section (14c) for mixing with the suction refrigerant at the suction port (14b), and a boosting section (14d) for converting the velocity energy of the refrigerant flow mixed in the mixing section (14c) into pressure energy. When,
A first evaporator (15) connected downstream of the ejector (14);
A second evaporator (18) connected to the refrigerant suction port (14b),
The first evaporator (15) and the second evaporator (18) are integrally configured to cool the air flow blown toward the common cooling target space (21) ,
Each of the first evaporator (15) and the second evaporator (18) includes a heat exchange core (15a, 18a) for exchanging heat between the air flow and the refrigerant flowing through the plurality of refrigerant passages. A tank part (15b, 15c, 18b, 18c) that plays a role of distributing and collecting refrigerant to the plurality of refrigerant passages of the heat exchange core part (15a, 18a),
The heat exchange core portion (15a, 18a) includes an air upstream side surface located upstream of the air flow, an air downstream side surface located downstream of the air flow, the air upstream side surface and the air downstream side surface. A side surface orthogonal to the tank portion (15b, 15c, 18b, 18c) is not disposed,
With the longitudinal direction of the ejector (14) parallel to the longitudinal direction of the side surface of the heat exchange core part (15a, 18a), the ejector (14) is placed on the side surface of the heat exchange core part (15a, 18a). An evaporator structure characterized by the arrangement .
前記エジェクタ(14)の下流側に接続される第1蒸発器(15)と、
前記冷媒吸引口(14b)に接続される第2蒸発器(18)とを備え、
前記第1蒸発器(15)および前記第2蒸発器(18)は一体に構成され、共通の冷却対象空間(21)に向かって送風される空気流れを冷却するようになっており、
前記第1蒸発器(15)および前記第2蒸発器(18)は、それぞれ、前記空気流れと複数の冷媒通路を流れる冷媒との間で熱交換を行う熱交換コア部(15a、18a)と、前記熱交換コア部(15a、18a)の複数の冷媒通路に対する冷媒の分配、集合の役割を果たすタンク部(15b、15c、18b、18c)とを有し、
前記第1蒸発器(15)の前記熱交換コア部(15a)のうち前記タンク部(15b、15c)の長手方向の一方側に位置する第1領域に、前記エジェクタ(14)から流出した冷媒が流れる上流側冷媒通路(a、i)が形成され、
前記第1蒸発器(15)の前記熱交換コア部(15a)のうち前記タンク部(15b、15c)の長手方向の他方側に位置する第2領域に、前記上流側冷媒通路(a、i)を通過した冷媒が前記上流側冷媒通路(a、i)と逆方向に流れる下流側冷媒通路(c、m)が形成され、
前記第2蒸発器(18)の前記熱交換コア部(18a)のうち前記タンク部(18b、18c)の長手方向の一方側に位置する第1領域に、前記冷媒吸引口(14b)へ吸引される冷媒が流れる上流側冷媒通路(e、p)が形成され、
前記第2蒸発器(18)の前記熱交換コア部(18a)のうち前記タンク部(18b、18c)の長手方向の他方側に位置する第2領域に、前記上流側冷媒通路(e、p)を通過した冷媒が前記上流側冷媒通路(e、p)と逆方向に流れる下流側冷媒通路(g、r)が形成されることを特徴とする蒸発器構造。 Nozzle portion for decompressing and expanding the refrigerant (14a), said nozzle portion (14a) refrigerant suction port which the refrigerant is sucked into the refrigerant flow of high injection speed from (14b), the said high velocity coolant flow of the coolant Ejector (14) having a mixing section (14c) for mixing with the suction refrigerant at the suction port (14b), and a boosting section (14d) for converting the velocity energy of the refrigerant flow mixed in the mixing section (14c) into pressure energy. When,
A first evaporator (15) connected downstream of the ejector (14);
A second evaporator (18) connected to the refrigerant suction port (14b),
The first evaporator (15) and the second evaporator (18) are integrally configured to cool the air flow blown toward the common cooling target space (21) ,
Each of the first evaporator (15) and the second evaporator (18) includes a heat exchange core (15a, 18a) for exchanging heat between the air flow and the refrigerant flowing through the plurality of refrigerant passages. A tank part (15b, 15c, 18b, 18c) that plays a role of distributing and collecting refrigerant to the plurality of refrigerant passages of the heat exchange core part (15a, 18a),
Refrigerant flowing out from the ejector (14) in the first region located on one side in the longitudinal direction of the tank portions (15b, 15c) in the heat exchange core portion (15a) of the first evaporator (15) An upstream refrigerant passage (a, i) through which the
In the second region located on the other side in the longitudinal direction of the tank parts (15b, 15c) in the heat exchange core part (15a) of the first evaporator (15), the upstream refrigerant passage (a, i ) Is formed downstream refrigerant passages (c, m) in which the refrigerant passing through the upstream refrigerant passages (a, i) flows in the opposite direction,
Suction to the refrigerant suction port (14b) in the first region located on one side in the longitudinal direction of the tank portions (18b, 18c) of the heat exchange core portion (18a) of the second evaporator (18). An upstream refrigerant passage (e, p) through which the refrigerant to be flowed is formed,
In the second region located on the other side in the longitudinal direction of the tank portion (18b, 18c) in the heat exchange core portion (18a) of the second evaporator (18), the upstream refrigerant passage (e, p The evaporator structure is characterized in that a downstream refrigerant passage (g, r) in which the refrigerant that has passed through) flows in the opposite direction to the upstream refrigerant passage (e, p) is formed .
前記エジェクタ(14)の下流側に接続される第1蒸発器(15)と、
前記冷媒吸引口(14b)に接続される第2蒸発器(18)とを備え、
前記第1蒸発器(15)および前記第2蒸発器(18)は、互いに密着せず、所定の空隙を介して配置され、
前記第1蒸発器(15)および前記第2蒸発器(18)は、前記エジェクタ(14)を経由する冷媒配管(140)によって接合された状態で一体に構成され、これにより、前記第1蒸発器(15)および前記第2蒸発器(18)は共通の冷却対象空間(21)に向かって送風される空気流れを冷却するようになっていることを特徴とする蒸発器構造。 Nozzle portion for decompressing and expanding the refrigerant (14a), said nozzle portion (14a) refrigerant suction port which the refrigerant is sucked into the refrigerant flow of high injection speed from (14b), the said high velocity coolant flow of the coolant Ejector (14) having a mixing section (14c) for mixing with the suction refrigerant at the suction port (14b), and a boosting section (14d) for converting the velocity energy of the refrigerant flow mixed in the mixing section (14c) into pressure energy. When,
A first evaporator (15) connected downstream of the ejector (14);
A second evaporator (18) connected to the refrigerant suction port (14b),
The first evaporator (15) and the second evaporator (18) are not in close contact with each other and are disposed through a predetermined gap,
The first evaporator (15) and the second evaporator (18) are integrally formed in a state of being joined by a refrigerant pipe (140) passing through the ejector (14), whereby the first evaporator The evaporator structure characterized in that the vessel (15) and the second evaporator (18) cool the air flow blown toward the common cooling target space (21) .
前記第1蒸発器(15)および前記第2蒸発器(18)の前記タンク部(15b、15c、18b、18c)は、それぞれ前記複数のチューブ(22)の端部に接合され、前記複数のチューブ(22)に対する冷媒の分配、集合の役割を果たすように構成され、
前記第1蒸発器(15)および前記第2蒸発器(18)の前記複数のチューブ(22)、前記複数のフィン(23)および前記タンク部(15b、15c、18b、18c)をろう付けにて一体構造に組み付けることを特徴とする請求項1、2、3、5のいずれか1つに記載の蒸発器構造。 The first evaporator (15) and the heat exchange core section (15a, 18a) of the second evaporator (18) has a plurality of tubes constituting the refrigerant passage respectively (22) said plurality of tubes (22 ) Ri Do a laminated structure of a plurality of fins (23) which is joined to the outer surface side to enlarge the air-side heat transfer area,
The tank portions (15b, 15c, 18b, 18c) of the first evaporator (15) and the second evaporator (18) are respectively joined to ends of the plurality of tubes (22), It is configured to serve as a distribution and collection of refrigerant to the tube (22) ,
Brazing the plurality of tubes (22), the plurality of fins (23) and the tank portions (15b, 15c, 18b, 18c) of the first evaporator (15) and the second evaporator (18) The evaporator structure according to any one of claims 1, 2 , 3, and 5 , wherein the evaporator structure is assembled into an integral structure.
前記圧縮機(11)から吐出された高圧冷媒の放熱を行う放熱器(13)と、
請求項1ないし8のいずれか1つに記載の蒸発器構造とを備えるエジェクタサイクルであって、
前記放熱器(13)の冷媒流れ下流側に前記蒸発器構造のエジェクタ(14)が設けられ、
前記エジェクタ(14)の上流部から分岐され前記冷媒吸引口(14b)に至る冷媒分岐通路(16)を有し、
前記冷媒分岐通路(16)に絞り機構(17)が設けられ、この絞り機構(17)の下流側に前記第2蒸発器(18)が設けられていることを特徴とするエジェクタサイクル。 A compressor (11) for sucking and compressing refrigerant;
A radiator (13) that radiates heat of the high-pressure refrigerant discharged from the compressor (11);
An ejector cycle comprising the evaporator structure according to any one of claims 1 to 8,
An ejector (14) having the evaporator structure is provided on the downstream side of the refrigerant flow of the radiator (13),
A refrigerant branch passage (16) branched from an upstream portion of the ejector (14) and reaching the refrigerant suction port (14b);
An ejector cycle, wherein a throttle mechanism (17) is provided in the refrigerant branch passage (16), and the second evaporator (18) is provided downstream of the throttle mechanism (17).
前記圧縮機(11)から吐出された高圧冷媒の放熱を行う放熱器(13)と、
請求項1ないし8のいずれか1つに記載の蒸発器構造とを備えるエジェクタサイクルであって、
前記放熱器(13)の冷媒流れ下流側に前記蒸発器構造のエジェクタ(14)が設けられ、
前記第1蒸発器(15)の冷媒流れ下流側に冷媒の気液を分離する気液分離器(30)が設けられ、
前記気液分離器(30)の気相冷媒出口側は前記圧縮機(11)の吸入側に接続され、
前記気液分離器(30)の液相冷媒出口側は冷媒分岐通路(31)により前記冷媒吸引口(14b)に接続され、
前記冷媒分岐通路(31)に絞り機構(17)が設けられ、この絞り機構(17)の下流側に前記第2蒸発器(18)が設けられていることを特徴とするエジェクタサイクル。 A compressor (11) for sucking and compressing refrigerant;
A radiator (13) for radiating heat of the high-pressure refrigerant discharged from the compressor (11);
An ejector cycle comprising the evaporator structure according to any one of claims 1 to 8,
An ejector (14) having the evaporator structure is provided on the downstream side of the refrigerant flow of the radiator (13),
A gas-liquid separator (30) for separating the gas-liquid refrigerant is provided on the downstream side of the refrigerant flow of the first evaporator (15),
A gas-phase refrigerant outlet side of the gas-liquid separator (30) is connected to a suction side of the compressor (11),
The liquid-phase refrigerant outlet side of the gas-liquid separator (30) is connected to the refrigerant suction port (14b) by a refrigerant branch passage (31),
An ejector cycle, wherein a throttle mechanism (17) is provided in the refrigerant branch passage (31), and the second evaporator (18) is provided downstream of the throttle mechanism (17).
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005037645A JP4259478B2 (en) | 2004-02-18 | 2005-02-15 | Evaporator structure and ejector cycle |
US11/204,220 US7254961B2 (en) | 2004-02-18 | 2005-08-15 | Vapor compression cycle having ejector |
DE102005038858.2A DE102005038858B4 (en) | 2004-02-18 | 2005-08-17 | Steam compression circuit with ejector pump |
FR0508578A FR2882133B1 (en) | 2004-02-18 | 2005-08-17 | VAPOR COMPRESSION CYCLE COMPRISING AN EJECTOR |
CNB2005100915317A CN100416180C (en) | 2004-02-18 | 2005-08-18 | Vapor compression cycle having ejector |
CN2008101301439A CN101329115B (en) | 2005-02-15 | 2005-08-18 | Evaporator having ejector |
FR0805388A FR2923585B1 (en) | 2005-02-15 | 2008-09-30 | VAPOR COMPRESSION SYSTEM |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004041163 | 2004-02-18 | ||
JP2004087066 | 2004-03-24 | ||
JP2005037645A JP4259478B2 (en) | 2004-02-18 | 2005-02-15 | Evaporator structure and ejector cycle |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008220125A Division JP2008281338A (en) | 2004-02-18 | 2008-08-28 | Ejector cycle |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2005308384A JP2005308384A (en) | 2005-11-04 |
JP2005308384A5 true JP2005308384A5 (en) | 2008-09-04 |
JP4259478B2 JP4259478B2 (en) | 2009-04-30 |
Family
ID=35437346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005037645A Expired - Fee Related JP4259478B2 (en) | 2004-02-18 | 2005-02-15 | Evaporator structure and ejector cycle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4259478B2 (en) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4770474B2 (en) * | 2006-01-20 | 2011-09-14 | 株式会社デンソー | Ejector type refrigeration cycle unit and method for manufacturing the same |
JP4259531B2 (en) * | 2005-04-05 | 2009-04-30 | 株式会社デンソー | Ejector type refrigeration cycle unit |
CN100580344C (en) * | 2005-04-05 | 2010-01-13 | 株式会社电装 | Ejector type refrigerating cycle unit |
JP2007051833A (en) * | 2005-08-18 | 2007-03-01 | Denso Corp | Ejector type refrigeration cycle |
JP4737001B2 (en) * | 2006-01-13 | 2011-07-27 | 株式会社デンソー | Ejector refrigeration cycle |
JP4692295B2 (en) * | 2006-01-19 | 2011-06-01 | 株式会社デンソー | Evaporator unit and ejector refrigeration cycle |
JP4548350B2 (en) * | 2006-01-20 | 2010-09-22 | 株式会社デンソー | Ejector type refrigeration cycle unit |
WO2007094422A1 (en) * | 2006-02-15 | 2007-08-23 | Gac Corporation | Heat exchanger |
JP4522962B2 (en) * | 2006-03-24 | 2010-08-11 | 三菱電機株式会社 | Refrigeration cycle equipment |
JP5017925B2 (en) * | 2006-05-19 | 2012-09-05 | 株式会社デンソー | Ejector, evaporator unit and ejector refrigeration cycle |
JP2007333292A (en) * | 2006-06-14 | 2007-12-27 | Denso Corp | Ejector type refrigeration cycle |
JP2008008505A (en) * | 2006-06-27 | 2008-01-17 | Denso Corp | Ejector type refrigerating cycle |
JP4529954B2 (en) * | 2006-06-30 | 2010-08-25 | 株式会社デンソー | Vapor compression refrigeration cycle |
JP4765829B2 (en) * | 2006-08-11 | 2011-09-07 | 株式会社デンソー | Ejector refrigeration cycle unit |
JP4910567B2 (en) * | 2006-08-24 | 2012-04-04 | 株式会社デンソー | Ejector refrigeration cycle |
JP4375412B2 (en) | 2007-02-19 | 2009-12-02 | 株式会社デンソー | Evaporator unit |
JP5050563B2 (en) | 2007-02-27 | 2012-10-17 | 株式会社デンソー | Ejector and ejector type refrigeration cycle unit |
JP2008224047A (en) * | 2007-03-08 | 2008-09-25 | Denso Corp | Ejector type refrigerating cycle |
JP4265677B2 (en) | 2007-06-20 | 2009-05-20 | 株式会社デンソー | Ejector type refrigeration cycle unit |
DE102007057307B4 (en) | 2007-11-28 | 2019-03-28 | Denso Corporation | Ejector refrigeration cycle device and decompression device |
JP2009156538A (en) * | 2007-12-27 | 2009-07-16 | Toshiba Carrier Corp | Outdoor unit of air conditioner |
JP4645681B2 (en) | 2008-05-19 | 2011-03-09 | 株式会社デンソー | Evaporator unit |
JP2010065953A (en) * | 2008-09-11 | 2010-03-25 | Denso Corp | Vehicular air conditioner |
JP2010117092A (en) * | 2008-11-13 | 2010-05-27 | Denso Corp | Refrigerating cycle device |
JP2010117091A (en) * | 2008-11-13 | 2010-05-27 | Denso Corp | Heat exchanger |
JP4998445B2 (en) * | 2008-12-03 | 2012-08-15 | 株式会社デンソー | Evaporator and refrigeration cycle equipment |
EP2314957B1 (en) | 2009-05-14 | 2016-06-29 | Hanon Systems | Multi-evaporation system |
KR101200273B1 (en) | 2009-12-09 | 2012-11-12 | 한라공조주식회사 | Refrigerant apparatus of air conditioner for vehicles |
KR101202257B1 (en) | 2009-12-09 | 2012-11-16 | 한라공조주식회사 | Refrigerant apparatus of air conditioner for vehicles |
KR101658030B1 (en) * | 2010-05-26 | 2016-09-30 | 한온시스템 주식회사 | Refrigerant cycle of air conditioner for vehicles |
JP2012097733A (en) | 2010-10-08 | 2012-05-24 | Calsonic Kansei Corp | Jet pump and air conditioning device |
KR101409196B1 (en) | 2012-05-22 | 2014-06-19 | 한라비스테온공조 주식회사 | Evaporator |
KR101877355B1 (en) * | 2012-05-22 | 2018-07-13 | 한온시스템 주식회사 | Evaporator |
KR101457585B1 (en) | 2012-05-22 | 2014-11-03 | 한라비스테온공조 주식회사 | Evaporator |
KR101878317B1 (en) | 2012-05-22 | 2018-07-16 | 한온시스템 주식회사 | Evaporator |
JP6299495B2 (en) * | 2013-08-29 | 2018-03-28 | 株式会社デンソー | Ejector refrigeration cycle |
JP6323313B2 (en) * | 2014-11-27 | 2018-05-16 | 株式会社デンソー | Evaporator unit |
KR102202418B1 (en) * | 2015-03-19 | 2021-01-13 | 한온시스템 주식회사 | Evaporator of air conditioner for vehicle |
TWI565920B (en) * | 2015-06-25 | 2017-01-11 | Multi-cavity evaporator for multiple refrigeration systems | |
US9845979B2 (en) | 2015-12-15 | 2017-12-19 | WinWay Tech. Co., Ltd. | Evaporator for a cascade refrigeration system |
KR102477283B1 (en) | 2017-04-04 | 2022-12-14 | 한온시스템 주식회사 | Evaporator |
US10760837B2 (en) | 2017-04-04 | 2020-09-01 | Hanon Systems | Evaporator |
KR20230067519A (en) | 2021-11-09 | 2023-05-16 | 한온시스템 주식회사 | Heat exchanger |
WO2023085693A1 (en) | 2021-11-09 | 2023-05-19 | 한온시스템 주식회사 | Heat exchanger |
-
2005
- 2005-02-15 JP JP2005037645A patent/JP4259478B2/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005308384A5 (en) | ||
JP2007057222A5 (en) | ||
CN103225926B (en) | Evaporator unit | |
AU2005326694B2 (en) | Tube inset and bi-flow arrangement for a header of a heat pump | |
JP6281467B2 (en) | Intercooler | |
CN100575813C (en) | Multi-part heat exchanger | |
CN105765333A (en) | Dual duty microchannel heat exchanger | |
CN104364599A (en) | Compressed gas cooling apparatus | |
CN103363816A (en) | Gas-to-liquid heat exchanger | |
JP2005331233A5 (en) | ||
JP6458680B2 (en) | Heat exchanger | |
JP5316465B2 (en) | Evaporator unit | |
TWI551837B (en) | Air conditioner | |
JP2012202609A (en) | Water heat exchanger | |
JP5381875B2 (en) | Evaporator unit | |
EP2031334B1 (en) | Heat exchanger | |
EP2982924A1 (en) | Heat exchanger | |
US11060801B2 (en) | Microtube heat exchanger | |
WO2017135442A1 (en) | Heat exchanger | |
JP2008298391A (en) | Heat exchanger core, heat exchanger and evaporator for refrigeration cycle device | |
US20080184734A1 (en) | Flat Tube Single Serpentine Co2 Heat Exchanger | |
WO2017169666A1 (en) | Intercooler | |
US20170045299A1 (en) | Improved heat exchanger | |
WO2016125437A1 (en) | Ejector-integrated heat exchanger | |
JP2010107130A (en) | Heat exchanger unit and indoor unit of air conditioner using the same |