JP2005307867A - Compressor, compressor drive control device, and drive control method for compressor - Google Patents

Compressor, compressor drive control device, and drive control method for compressor Download PDF

Info

Publication number
JP2005307867A
JP2005307867A JP2004126618A JP2004126618A JP2005307867A JP 2005307867 A JP2005307867 A JP 2005307867A JP 2004126618 A JP2004126618 A JP 2004126618A JP 2004126618 A JP2004126618 A JP 2004126618A JP 2005307867 A JP2005307867 A JP 2005307867A
Authority
JP
Japan
Prior art keywords
compressor
stator
voltage application
application terminal
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004126618A
Other languages
Japanese (ja)
Other versions
JP4595372B2 (en
Inventor
Yasushi Jinno
寧 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004126618A priority Critical patent/JP4595372B2/en
Publication of JP2005307867A publication Critical patent/JP2005307867A/en
Application granted granted Critical
Publication of JP4595372B2 publication Critical patent/JP4595372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor, in which the maximum speed is secured, while high efficiency with rated ability is achieved. <P>SOLUTION: This compressor is driven by a motor 3 comprising a stator 11 and a rotor 13. It is provided with a stator winding 12 wound around the stator 11, and voltage applying terminals 16 to supply power to the stator winding 12. The stator winding 12 is connected to the voltage applying terminals 16 at positions of different winding numbers in the stator winding 12 for respective phases. For example, when the compressor is driven at the maximum speed, voltage is applied to the voltage applying terminal A16a connected at the position of the least winding number in the stator winding 12, so that necessary motor torque for driving at the maximum speed is sufficiently secured. When it is driven with the rated ability, voltage is applied to the voltage applying terminal B16b connected at the position with the most winding number, so that driving at a high motor efficiency point is achieved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空気調和機等に用いられる圧縮機、圧縮機駆動制御装置および圧縮機の駆動制御方法に関するものである。   The present invention relates to a compressor used in an air conditioner or the like, a compressor drive control device, and a compressor drive control method.

一般的な空気調和機は、圧縮機にて冷媒を熱交換器に循環させることで熱搬送を行う。この圧縮機には多くの場合、密閉形圧縮機が用いられる。図3は、家庭用小型空気調和機に用いられている従来のスクロール方式の密閉形の圧縮機の断面図を示すもので、圧縮機容器1は金属で形成され、内部にはスクロール方式の圧縮機構2と、圧縮機構2を駆動するモーター3が配置され、モーター3に電力を供給するための電圧印加端子(ターミナル)4が圧縮機頭部に設けられている。5は吸入管であり、6は吐出管である。   A general air conditioner performs heat transfer by circulating a refrigerant through a heat exchanger in a compressor. In many cases, a hermetic compressor is used as the compressor. FIG. 3 shows a cross-sectional view of a conventional scroll-type hermetic compressor used in a small domestic air conditioner. The compressor container 1 is made of metal and has a scroll-type compression inside. A mechanism 2 and a motor 3 for driving the compression mechanism 2 are arranged, and a voltage application terminal (terminal) 4 for supplying electric power to the motor 3 is provided on the compressor head. 5 is a suction pipe, and 6 is a discharge pipe.

圧縮方式には、スクロール方式以外にもロータリー方式などがあるが、圧縮機構2とモーター3が配置される構成は同じである。この圧縮機をインバーターにて速度を変えて能力制御を行なうのが、現在の家庭用空気調和機の一般的な構成である。   The compression method includes a rotary method in addition to the scroll method, but the configuration in which the compression mechanism 2 and the motor 3 are arranged is the same. The general configuration of the current home air conditioner is to perform capacity control by changing the speed of the compressor with an inverter.

近年、空気調和機には、地球環境保護の観点から運転効率の高効率化が必須となっており、そのためには圧縮機のシリンダー容積を最適に設計する必要がある。例えば、セパレート型の家庭用小型空気調和機を例に取れば、超省エネ型の場合、圧縮機のシリンダー容積は2.2〜4.0kWクラスで約11cc、5.6〜6.3kWクラスで約13ccとなっている。このシリンダー容積は、年間を通じて運転時間の長い定格能力での冷凍サイクルに合わせて圧縮機の圧縮効率が最高になるようにシリンダー容積を決定している(冷房と暖房の両方の冷凍サイクルに対して最も好ましい折衷点で設計される)。   In recent years, air conditioners are required to have high operating efficiency from the viewpoint of protecting the global environment. To that end, it is necessary to optimally design the cylinder volume of the compressor. For example, taking a separate type small air conditioner for home use as an example, in the case of the super energy saving type, the cylinder volume of the compressor is about 11 cc in the 2.2 to 4.0 kW class, and in the 5.6 to 6.3 kW class. About 13cc. The cylinder volume is determined so that the compression efficiency of the compressor is maximized in accordance with the refrigeration cycle at the rated capacity with long operating hours throughout the year (for both cooling and heating refrigeration cycles). Designed with the most favorable compromise).

一方で、圧縮機構2を駆動するモーター3も高効率化が図られている。モーター3には希土類磁石を用いた高効率DCブラシレスモーターとしてIPM(埋め込み磁石モーター)を用い、これをインバーター電源にて速度可変して空調能力調整を行なうのが主流となってきている。   On the other hand, the motor 3 that drives the compression mechanism 2 is also highly efficient. As the motor 3, an IPM (embedded magnet motor) is used as a high-efficiency DC brushless motor using a rare earth magnet, and the speed of the motor 3 is varied by an inverter power source to adjust the air conditioning capacity.

図4は、DCブラシレスモーター(IPM)の構成図である。モーター3は、U、V、Wの各相毎に、ステーター11に銅製の巻線12が幾重にも巻きつけられ、これに電流を流すことにより界磁が作られる。ローター13は、鉄芯14と、そこに埋め込まれた永久磁石15から構成され、界磁によってマグネットトルクとリラクタンストルクが発生して回転力を受ける。巻線12は圧縮機頭部に設けられた電圧印加端子16(=図3での電圧印加端子4)に接続され、この端子間にインバーター電源からの電圧を印加して巻線12に電流を流す。図5はU相巻線図であり、図4のうちU相巻線部分のみを記載したものである。矢印はUV相間に電圧を印加した場合の電流の流れを示している。   FIG. 4 is a configuration diagram of a DC brushless motor (IPM). In the motor 3, copper windings 12 are wound around the stator 11 for each of the U, V, and W phases, and a field is created by causing current to flow therethrough. The rotor 13 is composed of an iron core 14 and a permanent magnet 15 embedded therein, and a magnet torque and a reluctance torque are generated by the field to receive a rotational force. The winding 12 is connected to a voltage application terminal 16 (= voltage application terminal 4 in FIG. 3) provided at the head of the compressor, and a voltage from the inverter power source is applied between the terminals to supply a current to the winding 12. Shed. FIG. 5 is a U-phase winding diagram, and only the U-phase winding portion in FIG. 4 is described. Arrows indicate the flow of current when a voltage is applied between the UV phases.

DCモーターの場合、ステーター巻線12の線径が同じであれば、巻き数を多くすれば効率が向上するので、本来であれば出来るだけステーター巻線12の巻き数を多くして、定格能力でのモーター効率を最高にする仕様とするのが好ましい。   In the case of a DC motor, if the diameter of the stator winding 12 is the same, increasing the number of turns will improve the efficiency. Therefore, if the number of turns of the stator winding 12 is increased as much as possible, the rated capacity It is preferable to make the specification that maximizes the motor efficiency.

しかしながら、圧縮機のシリンダー容積が前述の通り、圧縮効率で決定されるため、空気調和機に大能力が必要とされる場合、すなわち設定温度と室温の差が大きい時(特に立上げ時)には圧縮機速度を上げることにより空調能力を増大させなければならない。一般的には暖房で必要とされる最高速の方が冷房で必要とされる最高速より高く、機種にもよるが暖房の定格能力での圧縮機速度に対し、2倍近くの圧縮機速度が必要とされる。したがって、圧縮機のモーターは暖房の最高速が確保できる仕様に設計する必要がある。DCモーターでは、巻線の線径が同じ場合、ステーター巻き数を多くすれば効率は向上するが、高速のトルクが低下して最高速が低下するため、巻き数は暖房の最高速が確保できる巻き数に設計しなければならない。   However, since the cylinder volume of the compressor is determined by the compression efficiency as described above, when a large capacity is required for the air conditioner, that is, when the difference between the set temperature and room temperature is large (particularly at startup). The air conditioning capacity must be increased by increasing the compressor speed. In general, the maximum speed required for heating is higher than the maximum speed required for cooling, and depending on the model, the compressor speed is nearly twice the compressor speed at the rated capacity of heating. Is needed. Therefore, it is necessary to design the motor of the compressor so that the maximum heating speed can be secured. In DC motors, if the winding wire diameter is the same, increasing the number of stator turns will improve efficiency, but since the high-speed torque is reduced and the maximum speed is reduced, the maximum number of turns can be secured for heating. Must be designed with the number of turns.

このことは、最高速を確保するがために定格能力での効率を犠牲にしたモーター設計にならざるを得ないことを意味する。   This means that the motor design must be at the expense of efficiency at rated capacity to ensure maximum speed.

この課題に対しての一つの対応策(すなわち、出来るだけステーター巻線の巻き数を多くしながら、高速でのトルクを確保する方策)として、DCモーターのインバーター制御で弱め界磁制御がよく用いられる。弱め界磁制御とはステーター巻き線とローターの位置関係を進み位相で通電する制御で、これにより高速域でのトルクを増大させることができるが、それでも最高速度の向上度合いは10〜20Hz程度である。   As one countermeasure against this problem (that is, a measure for securing a high-speed torque while increasing the number of windings of the stator winding as much as possible), field-weakening control is often used in DC motor inverter control. The field weakening control is a control in which the positional relationship between the stator winding and the rotor is advanced and energized in phase. This can increase the torque in the high speed range, but the improvement rate of the maximum speed is still about 10 to 20 Hz.

2.8kWクラスの空気調和機を例にあげると、定格能力での速度が60Hz程度であり、この動作点の効率だけを考えた場合、巻線の巻き数は250ターン程度まで巻き込むのが効率が最も高くなる。しかしながら、この巻き数では最高速が弱め界磁制御を用いても80〜90Hz程度でトルク限界に達してしまい、必要な120Hzまでは駆動できない。定格能力でのモーター効率を犠牲にして、最高速が120Hz駆動できる150ターン程度の巻き数にせざるを得なかった(図5)。このように、従来の圧縮機においては、最高速を確保するがゆえに、定格能力でのモーター効率を最高にする巻き数にすることができない、という課題があった。   Taking an air conditioner of the 2.8 kW class as an example, the speed at the rated capacity is about 60 Hz, and considering only the efficiency at this operating point, it is efficient to wind up the winding to about 250 turns. Is the highest. However, even if the maximum speed is weakened and field control is used with this number of turns, the torque limit is reached at about 80 to 90 Hz, and the required 120 Hz cannot be driven. At the expense of motor efficiency at the rated capacity, the number of turns was about 150 turns that could be driven at a maximum speed of 120 Hz (FIG. 5). As described above, in the conventional compressor, there is a problem that the number of turns that maximizes the motor efficiency at the rated capacity cannot be achieved because the maximum speed is ensured.

本発明は前記従来の課題を解決するもので、最高速の確保と、定格能力での高効率を両立させた圧縮機を提供することを目的とするものである。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide a compressor that achieves both maximum speed and high efficiency at rated capacity.

前記従来の課題を解決するために、本発明の圧縮機は、ステーターとローターからなるモーターで駆動される圧縮機において、前記ステーターに巻かれたステーター巻線と、前記ステーター巻線に電源を供給する電圧印加端子とを備え、各相の前記ステーター巻線の異なる巻き数の個所と前記電圧印加端子とを接続したもので、例えば、圧縮機を最高速で運転する時は、ステーター巻線の巻き数の少ない箇所に接続した電圧印加端子に電圧を印加するようにすれば、最高速駆動に必要なモータートルクが十分確保され、また、定格能力で運転する時は、巻き数の多い箇所に接続した電圧印加端子に電圧を印加するようにすれば、高いモーター効率点での駆動を行なうことができる。   In order to solve the above-described conventional problems, the compressor of the present invention is a compressor driven by a motor including a stator and a rotor, and supplies power to the stator winding and the stator winding wound around the stator. A voltage application terminal that connects the voltage application terminal with a different number of turns of the stator winding of each phase.For example, when operating the compressor at the highest speed, If a voltage is applied to the voltage application terminal connected to a place with a small number of turns, the motor torque necessary for the highest speed drive can be secured sufficiently. If a voltage is applied to the connected voltage application terminal, driving at a high motor efficiency point can be performed.

また、本発明の圧縮機駆動制御装置は、ステーターとローターからなり圧縮機を駆動するモーターを制御する圧縮機駆動制御装置において、前記ステーターに巻かれたステーター巻線と、前記ステーター巻線に電源を供給する電圧印加端子とを備え、各相の前記ステーター巻線の異なる巻き数の個所と前記電圧印加端子とを接続し、前記圧縮機の駆動条件に応じて、電圧を印加する前記電圧印加端子を切り替えて、通電される前記ステーター巻線の巻き数を変えるようにしたもので、例えば、圧縮機を最高速で運転する時は、ステーター巻線の巻き数の少ない箇所に接続した電圧印加端子に電圧を印加するようにすれば、最高速駆動に必要なモータートルクが十分確保され、また、定格能力で運転する時は、巻き数の多い箇所に接続した電圧印加端子に電圧を印加するようにすれば、高いモーター効率点での駆動を行なうことができる。   The compressor drive control device according to the present invention is a compressor drive control device that controls a motor including a stator and a rotor to drive the compressor, and a stator winding wound around the stator, and a power supply to the stator winding. A voltage application terminal for supplying the voltage, and connecting the voltage application terminal with a portion having a different number of turns of the stator winding of each phase, and applying the voltage according to the driving condition of the compressor By switching the terminal and changing the number of turns of the stator winding to be energized, for example, when operating the compressor at the highest speed, voltage application connected to a place where the number of turns of the stator winding is small If voltage is applied to the terminals, the motor torque necessary for maximum speed drive is sufficiently secured, and when operating at the rated capacity, the voltage connected to a place with a large number of turns. If to apply a voltage to the pressurizing pin, it is possible to perform drive at a high motor efficiency point.

さらに、本発明の圧縮機の駆動制御方法は、ステーターとローターからなり圧縮機を駆動するモーターを制御する圧縮機の駆動制御方法において、前記ステーターに巻かれたステーター巻線と、前記ステーター巻線に電源を供給する電圧印加端子とを備え、各相の前記ステーター巻線の異なる巻き数の個所と前記電圧印加端子とを接続し、前記圧縮機の駆動条件に応じて、電圧を印加する前記電圧印加端子を切り替えて、通電される前記ステーター巻線の巻き数を変えるように制御するもので、例えば、圧縮機を最高速で運転する時は、ステーター巻線の巻き数の少ない箇所に接続した電圧印加端子に電圧を印加するようにすれば、最高速駆動に必要なモータートルクが十分確保され、また、定格能力で運転する場合、巻き数の多い箇所に接続した電圧印加端子に電圧を印加するようにすれば、高いモーター効率点での駆動を行なうことができる。   Further, the compressor drive control method of the present invention is a compressor drive control method for controlling a motor comprising a stator and a rotor to drive the compressor. The stator winding wound around the stator, and the stator winding A voltage application terminal for supplying power to the power source, connecting the voltage application terminal with a different number of turns of the stator winding of each phase, and applying the voltage according to the driving condition of the compressor Switch the voltage application terminal and control to change the number of turns of the stator winding that is energized. For example, when operating the compressor at the highest speed, connect it to a place with a small number of turns of the stator winding. If voltage is applied to the applied voltage application terminal, the motor torque necessary for maximum speed driving can be secured sufficiently. If the the voltage application terminal to apply a voltage, it is possible to perform driving at a high motor efficiency point.

本発明の圧縮機、圧縮機駆動制御装置及び圧縮機の駆動制御方法によれば、圧縮機の最高速の確保と、定格能力での高効率を両立させることができる。   According to the compressor, compressor drive control device, and compressor drive control method of the present invention, it is possible to achieve both the highest speed of the compressor and the high efficiency at the rated capacity.

第1の発明は、ステーターとローターからなるモーターで駆動される圧縮機において、前記ステーターに巻かれたステーター巻線と、前記ステーター巻線に電源を供給する電圧印加端子とを備え、各相の前記ステーター巻線の異なる巻き数の個所と前記電圧印加端子とを接続したもので、例えば、圧縮機を最高速で運転する時は、ステーター巻線の巻き数の少ない箇所に接続した電圧印加端子に電圧を印加するようにすれば、最高速駆動に必要なモータートルクが十分確保され、また、定格能力で運転する時は、巻き数の多い箇所に接続した電圧印加端子に電圧を印加するようにすれば、高いモーター効率点での駆動を行なうことができる。   A first invention is a compressor driven by a motor composed of a stator and a rotor, comprising: a stator winding wound around the stator; and a voltage application terminal for supplying power to the stator winding; The voltage application terminal is connected to a portion having a different number of turns of the stator winding and the voltage application terminal, for example, when operating the compressor at the highest speed, to a location where the number of turns of the stator winding is small. If the voltage is applied to the motor, the motor torque necessary for the highest speed drive is sufficiently secured, and when operating at the rated capacity, the voltage should be applied to the voltage application terminal connected to the place with a large number of turns. If so, it is possible to drive at a high motor efficiency point.

第2の発明は、特に、第1の発明の各相のステーター巻線において、途中から線径を変えたもので、例えば効率重視の定格能力で運転する際に用いる巻線部分の線径を太くすれば、巻線の抵抗による損失が低減され、より定格能力で高効率を得ることができる。   In particular, the second aspect of the invention is the stator winding of each phase of the first aspect of the present invention, in which the wire diameter is changed from the middle. If the thickness is increased, loss due to the resistance of the winding is reduced, and higher efficiency can be obtained with a higher rated capacity.

第3の発明は、ステーターとローターからなり圧縮機を駆動するモーターを制御する圧縮機駆動制御装置において、前記ステーターに巻かれたステーター巻線と、前記ステーター巻線に電源を供給する電圧印加端子とを備え、各相の前記ステーター巻線の異なる巻き数の個所と前記電圧印加端子とを接続し、前記圧縮機の駆動条件に応じて、電圧を印加する前記電圧印加端子を切り替えて、通電される前記ステーター巻線の巻き数を変えるようにしたもので、例えば、圧縮機を最高速で運転する時は、ステーター巻線の巻き数の少ない箇所に接続した電圧印加端子に電圧を印加するようにすれば、最高速駆動に必要なモータートルクが十分確保され、また、定格能力で運転する時は、巻き数の多い箇所に接続した電圧印加端子に電圧を印加するようにすれば、高いモーター効率点での駆動を行なうことができる。   According to a third aspect of the present invention, there is provided a compressor drive control device for controlling a motor including a stator and a rotor for driving a compressor, a stator winding wound around the stator, and a voltage application terminal for supplying power to the stator winding. And connecting the voltage application terminal with a different number of turns of the stator winding of each phase, and switching the voltage application terminal to apply voltage according to the driving condition of the compressor, For example, when the compressor is operated at the highest speed, a voltage is applied to a voltage application terminal connected to a portion with a small number of turns of the stator winding. In this way, the motor torque necessary for maximum speed drive is sufficiently secured, and when operating at the rated capacity, voltage is applied to the voltage application terminal connected to the place with a large number of turns. If so, it is possible to perform driving at a high motor efficiency point.

第4の発明は、特に、第3の発明の各相のステーター巻線において、途中から線径を変えたもので、例えば効率重視の定格能力で運転する際に用いる巻線部分の線径を太くすれば、巻線の抵抗による損失が低減され、より定格能力での高効率を得ることができる。   In the fourth aspect of the invention, in particular, in the stator winding of each phase of the third aspect of the invention, the wire diameter is changed from the middle. If the thickness is increased, the loss due to the resistance of the winding is reduced, and higher efficiency at the rated capacity can be obtained.

第5の発明は、ステーターとローターからなり圧縮機を駆動するモーターを制御する圧縮機の駆動制御方法において、前記ステーターに巻かれたステーター巻線と、前記ステーター巻線に電源を供給する電圧印加端子とを備え、各相の前記ステーター巻線の異なる巻き数の個所と前記電圧印加端子とを接続し、前記圧縮機の駆動条件に応じて、電圧を印加する前記電圧印加端子を切り替えて、通電される前記ステーター巻線の巻き数を変えるように制御するもので、例えば、圧縮機を最高速で運転する時は、ステーター巻線の巻き数の少ない箇所に接続した電圧印加端子に電圧を印加するようにすれば、最高速駆動に必要なモータートルクが十分確保され、また、定格能力で運転する場合、巻き数の多い箇所に接続した電圧印加端子に電圧を印加するようにすれば、高いモーター効率点での駆動を行なうことができる。   According to a fifth aspect of the present invention, there is provided a compressor drive control method for controlling a motor including a stator and a rotor to drive a compressor. A stator winding wound around the stator, and a voltage application for supplying power to the stator winding. A terminal, and connecting the voltage application terminal with a different number of turns of the stator winding of each phase, and switching the voltage application terminal to apply a voltage according to the driving conditions of the compressor, For example, when operating the compressor at the highest speed, a voltage is applied to a voltage application terminal connected to a portion where the number of turns of the stator winding is small. If it is applied, the motor torque necessary for maximum speed drive is sufficiently secured, and when operating at the rated capacity, the voltage is applied to the voltage application terminal connected to the place with many windings. If to pressure, it is possible to perform driving at a high motor efficiency point.

第6の発明は、特に、第5の発明の各相のステーター巻線において、途中から線径を変えたもので、例えば効率重視の定格能力で運転する際に用いる巻線部分の線径を太くすれば、巻線の抵抗による損失が低減され、より定格能力での高効率を得ることができる。   In the sixth aspect of the invention, in particular, in the stator winding of each phase of the fifth aspect of the invention, the wire diameter is changed from the middle. If the thickness is increased, the loss due to the resistance of the winding is reduced, and higher efficiency at the rated capacity can be obtained.

第7の発明は、特に、第5又は第6の発明の圧縮機を高速で運転する時に、各相のステーター巻線の最も巻き数が少ない巻線に接続された電圧印加端子に電圧を印加するもので、最高速を確保しながらも、多様な駆動条件の時々に応じて最も効率の良い運転を行なうことができる。   In the seventh aspect of the invention, in particular, when the compressor of the fifth or sixth aspect is operated at a high speed, a voltage is applied to the voltage application terminal connected to the winding having the smallest number of stator windings of each phase. Therefore, it is possible to perform the most efficient operation according to the time of various driving conditions while securing the maximum speed.

第8の発明は、特に、第5〜7のいずれか1つの発明の圧縮機の起動時に、各相のステーター巻線の最も巻き数が多い巻線に接続された電圧印加端子に電圧を印加するもので、起動時のトルクを最大にして安定的かつ確実な圧縮機起動が行なえるものである。   In the eighth aspect of the invention, in particular, when the compressor according to any one of the fifth to seventh aspects is started, a voltage is applied to the voltage application terminal connected to the winding having the largest number of windings of the stator windings of each phase. Therefore, the compressor can be started stably and reliably by maximizing the starting torque.

第9の発明は、特に、第5〜8のいずれか1つの発明の電圧印加端子を切り替える際に、圧縮機の駆動を一時的に停止するもので、電圧を印加する巻線の切替によってモーター特性が急変して(モーターの脱調などで)、圧縮機が異常停止することを防止することができるものである。   The ninth aspect of the invention temporarily stops the driving of the compressor when switching the voltage application terminal of any one of the fifth to eighth aspects of the invention. It is possible to prevent the compressor from stopping abnormally due to sudden changes in characteristics (due to motor step-out, etc.).

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における圧縮機を駆動するモーターのU相巻線図である。なお、従来例と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 1)
FIG. 1 is a U-phase winding diagram of a motor that drives a compressor according to a first embodiment of the present invention. In addition, about the same part as a prior art example, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図1において、ステーター11とローター13は従来例(図5)と同様である。ステーター11に巻かれるステーター巻線12は、従来例では、2.8kWクラス用で線径φ0.85の銅線を150ターン巻いていたが、本実施の形態においては、線径φ0.70で100ターン巻いた巻線17と、線径φ0.90で150ターン巻かれた巻線18とに分けられており、双方の巻線は同一ステータースロットに重ねて、もしくは直列に巻き込まれている。   In FIG. 1, the stator 11 and the rotor 13 are the same as those of the conventional example (FIG. 5). In the conventional example, the stator winding 12 wound around the stator 11 is for a 2.8 kW class copper wire having a wire diameter of φ0.85 and is wound for 150 turns. In the present embodiment, the stator winding 12 has a wire diameter of φ0.70. The winding 17 is divided into a winding 17 wound for 100 turns and a winding 18 wound for 150 turns with a wire diameter of φ0.90. Both windings are overlapped in the same stator slot or wound in series.

各相の電圧印加端子16は、巻線の終端に接続された電圧印加端子B16bと、巻線17と巻線18の結合点が接続された電圧印加端子A16aの2つが設けられている。図中の矢印はUV相間に電圧を印加した場合の電流の流れを示している。図1ではU相のみ示しているが、他のV相、W相も同様の構成になっており、モーター3を形成する。   The voltage application terminal 16 for each phase is provided with two terminals: a voltage application terminal B16b connected to the end of the winding, and a voltage application terminal A16a to which the coupling point of the winding 17 and the winding 18 is connected. The arrows in the figure indicate the current flow when a voltage is applied between the UV phases. Although only the U phase is shown in FIG. 1, the other V and W phases have the same configuration and form the motor 3.

圧縮機を定格能力で高効率で運転する場合は、電圧印加端子B16bに電圧を印加する。この時、電流は図中の黒矢印のように、150ターン巻かれた巻線18を流れ、その後、100ターン巻かれた巻線17を流れて、中性点を経てV相の巻線に流れている。   When the compressor is operated at a rated capacity and with high efficiency, a voltage is applied to the voltage application terminal B16b. At this time, as indicated by the black arrow in the figure, the current flows through the winding 18 wound by 150 turns, and then flows through the winding 17 wound by 100 turns, passing through the neutral point to the V-phase winding. Flowing.

巻線17と巻線18は同一のステータースロットに巻かれているので、双方の巻線で発生した磁束が重畳され、モーター3としては両方の巻き数を足した250ターン相当の特性とすることができ、定格能力での運転効率が最高になる圧縮機とすることが出来る。もちろん、電圧印加端子B16bを用いたままでは、最高速で運転しようとしても高速でのトルクが不足し、駆動することはできないのは先に述べたとおりである。   Since the winding 17 and the winding 18 are wound in the same stator slot, the magnetic flux generated in both windings is superposed, and the motor 3 has a characteristic equivalent to 250 turns by adding both windings. Therefore, it is possible to obtain a compressor that maximizes the operation efficiency at the rated capacity. Of course, as described above, the voltage application terminal B16b can be used for driving at the maximum speed, and the torque at the high speed is insufficient and cannot be driven even if the voltage application terminal B16b is used.

そこで、モーター効率は低下しても高速でのトルクを確保したい場合には、電圧印加端子A16aに電圧を印加する。すると、巻線の終端は開放状態で絶縁されているので、図中の白矢印のように巻線18には電流は流れず、巻線17のみに電流が流れる。この場合、巻線17は100ターンしか巻いていないので、モーターとしては100ターン相当の特性とすることが出来、すなわち高速のトルクを確保することが出来るので、圧縮機を必要な最高速で運転することが出来る。   Therefore, when it is desired to secure a high-speed torque even if the motor efficiency is reduced, a voltage is applied to the voltage application terminal A16a. Then, since the end of the winding is insulated in an open state, no current flows through the winding 18 as indicated by the white arrow in the figure, and a current flows only through the winding 17. In this case, since the winding 17 is wound only by 100 turns, the motor can have characteristics equivalent to 100 turns, that is, a high speed torque can be secured, so that the compressor is operated at the required maximum speed. I can do it.

また、従来例(図5)では巻線の線径はφ0.85としていたが、本実施の形態ではφ0.90とφ0.70とを組合わせている。モーター3の効率を考えた場合、モーター巻線の線径は太い方が銅損が少なくなり効率は向上するが、太い線径の巻線を多く巻き込むためにはそれだけ巻線の占有する体積が大きくなるので、ステーター11を大きくしなければならず、圧縮機の大型化、コストの増大につながる。   In the conventional example (FIG. 5), the wire diameter of the winding is φ0.85, but in this embodiment, φ0.90 and φ0.70 are combined. Considering the efficiency of the motor 3, the larger the wire diameter of the motor winding is, the less copper loss is reduced and the efficiency is improved. However, in order to wind a large number of windings with a large wire diameter, the volume occupied by the winding is so much Since it becomes large, the stator 11 must be enlarged, leading to an increase in size and cost of the compressor.

そこで、本実施の形態では、定格能力での運転時に高効率を得るために必要な巻線18の線径をφ0.85からφ0.90へと太くし、効率は低下してもトルクさえ得られればよい高速運転時に用いる巻線17を必要最低限の線径であるφ0.70にしたものである。こうすることで、モーター3の大型化を抑制しながらも、より目的に適したモーター特性を使い分けができる。   Therefore, in this embodiment, the wire diameter of the winding 18 necessary for obtaining high efficiency during operation at the rated capacity is increased from φ0.85 to φ0.90, and even torque is obtained even if efficiency is reduced. The winding 17 used at the time of high-speed operation that can be used is φ0.70, which is the minimum wire diameter. By doing so, it is possible to selectively use motor characteristics more suitable for the purpose while suppressing the increase in size of the motor 3.

さらに本実施の形態においては巻線を2つに分けることで、2つのモーター特性を得ているが、巻線を3つ以上に分けて、3つ以上のモーター特性を得ることも可能で、圧縮機の運転する条件に合わせてきめ細かく使い分けてもよいのは言うまでもない。その場合、圧縮機の起動を行なう際には、低速で高トルクが必要ためモーター3としての巻線の巻き数が最も多くなる電圧印加端子を用いるのが好ましく、起動して安定的に駆動するようになってから目的に応じた電圧印加端子に切り替えるのが良い。   Furthermore, in this embodiment, two motor characteristics are obtained by dividing the winding into two, but it is also possible to obtain three or more motor characteristics by dividing the winding into three or more. Needless to say, it may be used in detail according to the operating conditions of the compressor. In that case, when starting up the compressor, it is preferable to use a voltage application terminal with the largest number of windings as the motor 3 because high speed and low torque are required. After that, it is preferable to switch to a voltage application terminal according to the purpose.

一方、3以上に分ける場合も、最高速で駆動する場合は高速でのトルクを大きくする必要があるため、モーター3としての巻線の巻き数が最も少なくなる電圧印加端子16を用いると良い。   On the other hand, even when dividing into three or more, since it is necessary to increase the torque at high speed when driving at the maximum speed, it is preferable to use the voltage application terminal 16 that minimizes the number of windings as the motor 3.

図2は、本実施の形態における圧縮機を駆動制御する駆動制御装置の配線図である。圧縮機モーター19には各相毎に電圧印加端子A16aと電圧印加端子B16bが共に圧縮機頭部に配置した電圧印加端子16に設けられ、電圧印加端子切替え装置20を経てインバーター電源21に接続される。電圧印加端子切替え装置20の切り替えスイッチには電気リレーを用いているが、もちろん半導体スイッチを用いても良い。   FIG. 2 is a wiring diagram of a drive control device that drives and controls the compressor in the present embodiment. The compressor motor 19 is provided with a voltage application terminal A16a and a voltage application terminal B16b for each phase at the voltage application terminal 16 arranged at the head of the compressor, and is connected to the inverter power supply 21 via the voltage application terminal switching device 20. The Although the electrical relay is used for the change-over switch of the voltage application terminal change-over device 20, of course, a semiconductor switch may be used.

ところで、電圧印加端子A16aと電圧印加端子B16bを切り替えると、瞬時にしてモーター特性が大きく変化し、モーター電流やモーター誘起電圧が変化する。密閉形圧縮機を駆動するモーターは、磁極位置検出のための位置センサーを用いることができないので、モーター電流の検出手段や、モーター誘起電圧を検出手段による磁極位置推定を行なうセンサレス駆動が行なわれる。   By the way, when the voltage application terminal A16a and the voltage application terminal B16b are switched, the motor characteristics change instantaneously, and the motor current and the motor induced voltage change. Since the motor for driving the hermetic compressor cannot use a position sensor for detecting the magnetic pole position, the sensorless drive for estimating the magnetic pole position by the motor current detecting means and the motor induced voltage is performed.

従って、電圧印加端子A、B16a、16bを切替える時には、この磁極位置推定の制御係数なども同時に切りかえる必要があるが、モーター駆動を継続したまま切り替える場合は、切替えの瞬間にセンサレス駆動が不安定になり、最悪の場合、脱調して異常停止することがあり得る。このことを防止するために、電圧印加端子A、B16a、16bを切替える時は、圧縮機を一旦停止し、切替えたのち再起動することで異常停止のリスクを排除することが出来る。   Therefore, when switching the voltage application terminals A, B16a, and 16b, it is necessary to simultaneously switch the control coefficient for estimating the magnetic pole position. However, when the motor drive is continued, the sensorless drive becomes unstable at the moment of switching. In the worst case, it is possible to step out and stop abnormally. In order to prevent this, when switching the voltage application terminals A, B16a and 16b, the risk of abnormal stop can be eliminated by temporarily stopping the compressor and restarting it after switching.

本発明の圧縮機は、最高速の確保と、定格能力での高効率を両立することができ、運転条件に応じた最適なモーター特性で圧縮機を運転することができるので、家庭用、業務用の空気調和機、車載用空気調和機等の高効率化、省エネルギー化に広く利用できるものである。   The compressor of the present invention can achieve both maximum speed and high efficiency at the rated capacity, and can operate the compressor with the optimum motor characteristics according to the operating conditions. It can be widely used for improving the efficiency and energy saving of air conditioners for vehicles and air conditioners for vehicles.

本発明の実施の形態1における圧縮機に搭載されたモーターの巻線図(U相のみを図示)Winding diagram of motor mounted on compressor in embodiment 1 of the present invention (only U phase is shown) 同圧縮機を駆動制御する圧縮機駆動制御装置の配線図Wiring diagram of the compressor drive control device that drives and controls the compressor 従来のスクロール方式の密閉形圧縮機の断面図Sectional view of a conventional scroll type hermetic compressor 同圧縮機に搭載されたモーターの構成図Configuration diagram of the motor mounted on the compressor 同モーターのU相巻線図U-phase winding diagram of the motor

符号の説明Explanation of symbols

3 モーター
11 ステーター
12 ステーター巻線
13 ローター
16 電圧印加端子
16a 電圧印加端子A
16b 電圧印加端子B
17、18 巻線
19 圧縮機モーター
20 電圧印加端子切替え装置
21 インバーター電源
3 Motor 11 Stator 12 Stator winding 13 Rotor 16 Voltage application terminal 16a Voltage application terminal A
16b Voltage application terminal B
17, 18 Winding 19 Compressor motor 20 Voltage application terminal switching device 21 Inverter power supply

Claims (9)

ステーターとローターからなるモーターで駆動される圧縮機において、前記ステーターに巻かれたステーター巻線と、前記ステーター巻線に電源を供給する電圧印加端子とを備え、各相の前記ステーター巻線の異なる巻き数の個所と前記電圧印加端子とを接続したことを特徴とする圧縮機。 In a compressor driven by a motor including a stator and a rotor, the compressor includes a stator winding wound around the stator and a voltage application terminal for supplying power to the stator winding, and the stator windings of each phase are different. A compressor characterized in that the number of turns and the voltage application terminal are connected. 各相のステーター巻線において、途中から線径を変えたことを特徴とする請求項1記載の圧縮機。 The compressor according to claim 1, wherein the diameter of the stator winding of each phase is changed from the middle. ステーターとローターからなり圧縮機を駆動するモーターを制御する圧縮機駆動制御装置
において、前記ステーターに巻かれたステーター巻線と、前記ステーター巻線に電源を供給する電圧印加端子とを備え、各相の前記ステーター巻線の異なる巻き数の個所と前記電圧印加端子とを接続し、前記圧縮機の駆動条件に応じて、電圧を印加する前記電圧印加端子を切り替えて、通電される前記ステーター巻線の巻き数を変えるようにしたことを特徴とする圧縮機駆動制御装置。
In a compressor drive control device that controls a motor that includes a stator and a rotor and drives a compressor, the compressor drive control device includes: a stator winding wound around the stator; and a voltage application terminal that supplies power to the stator winding. The stator winding that is energized by connecting the voltage application terminal with a portion having a different number of windings of the stator winding and switching the voltage application terminal to apply a voltage according to the driving condition of the compressor A compressor drive control device characterized in that the number of turns of the compressor is changed.
各相のステーター巻線において、途中から線径を変えたことを特徴とする請求項3記載の圧縮機駆動制御装置。 4. The compressor drive control device according to claim 3, wherein the diameter of the stator winding of each phase is changed in the middle. ステーターとローターからなり圧縮機を駆動するモーターを制御する圧縮機駆動制御方法において、前記ステーターに巻かれたステーター巻線と、前記ステーター巻線に電源を供給する電圧印加端子とを備え、各相の前記ステーター巻線の異なる巻き数の個所と前記電圧印加端子とを接続し、前記圧縮機の駆動条件に応じて、電圧を印加する前記電圧印加端子を切り替えて、通電される前記ステーター巻線の巻き数を変えるように制御することを特徴とする圧縮機の駆動制御方法。 A compressor drive control method for controlling a motor including a stator and a rotor to drive a compressor, comprising: a stator winding wound around the stator; and a voltage application terminal for supplying power to the stator winding, The stator winding that is energized by connecting the voltage application terminal with a portion having a different number of windings of the stator winding and switching the voltage application terminal to apply a voltage according to the driving condition of the compressor A control method for driving a compressor, wherein the number of turns is controlled to be changed. 各相のステーター巻線において、途中から線径を変えたことを特徴とする請求項5記載の圧縮機の駆動制御方法。 6. The compressor drive control method according to claim 5, wherein the diameter of the stator winding of each phase is changed in the middle. 圧縮機を高速で運転する時に、各相のステーター巻線の最も巻き数が少ない巻線に接続された電圧印加端子に電圧を印加する請求項5又は6に記載の圧縮機の駆動制御方法。 The compressor drive control method according to claim 5 or 6, wherein when the compressor is operated at a high speed, a voltage is applied to a voltage application terminal connected to a winding having the smallest number of stator windings of each phase. 圧縮機の起動時に、各相のステーター巻線の最も巻き数が多い巻線に接続された電圧印加端子に電圧を印加する請求項5〜7のいずれか1項に記載の圧縮機の駆動制御方法。 The drive control of the compressor according to any one of claims 5 to 7, wherein a voltage is applied to a voltage application terminal connected to a winding having the largest number of stator windings of each phase when the compressor is started. Method. 電圧印加端子を切り替える際に、圧縮機の駆動を一時的に停止することを特徴とする請求項5〜8のいずれか1項に記載の圧縮機の駆動制御方法。 The compressor drive control method according to any one of claims 5 to 8, wherein when the voltage application terminal is switched, the drive of the compressor is temporarily stopped.
JP2004126618A 2004-04-22 2004-04-22 Compressor, compressor drive control device, and compressor drive control method Expired - Fee Related JP4595372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126618A JP4595372B2 (en) 2004-04-22 2004-04-22 Compressor, compressor drive control device, and compressor drive control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126618A JP4595372B2 (en) 2004-04-22 2004-04-22 Compressor, compressor drive control device, and compressor drive control method

Publications (2)

Publication Number Publication Date
JP2005307867A true JP2005307867A (en) 2005-11-04
JP4595372B2 JP4595372B2 (en) 2010-12-08

Family

ID=35436921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126618A Expired - Fee Related JP4595372B2 (en) 2004-04-22 2004-04-22 Compressor, compressor drive control device, and compressor drive control method

Country Status (1)

Country Link
JP (1) JP4595372B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237266A (en) * 2011-05-13 2012-12-06 Hitachi Appliances Inc Hermetic electric compressor
JP2012244726A (en) * 2011-05-18 2012-12-10 Yaskawa Electric Corp Armature for rotary electric machine and rotary electric machine
JP2013036388A (en) * 2011-08-08 2013-02-21 Mitsubishi Electric Corp Hermetic electric compressor
JP2013121222A (en) * 2011-12-07 2013-06-17 Hitachi Appliances Inc Motor drive, and apparatus using the same
JP2013192374A (en) * 2012-03-14 2013-09-26 Yaskawa Electric Corp Motor drive device and vehicle
JP2017112676A (en) * 2015-12-15 2017-06-22 三菱重工業株式会社 Motor drive control device with motor coil changeover switch, motor, compressor and motor coil changeover control method
CN107465279A (en) * 2017-08-31 2017-12-12 广东美芝制冷设备有限公司 Motor and compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134110A (en) * 1976-05-06 1977-11-10 Matsushita Electric Ind Co Ltd Change control device of pole change compressor
JPS5986384U (en) * 1982-12-02 1984-06-11 松下冷機株式会社 Hermetic electric compressor starting device
JPH04125096A (en) * 1990-09-14 1992-04-24 Kito Corp Operation controller for brake motor
JP2000209801A (en) * 1999-01-11 2000-07-28 Tamagawa Seiki Co Ltd Structure of brushless motor coil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134110A (en) * 1976-05-06 1977-11-10 Matsushita Electric Ind Co Ltd Change control device of pole change compressor
JPS5986384U (en) * 1982-12-02 1984-06-11 松下冷機株式会社 Hermetic electric compressor starting device
JPH04125096A (en) * 1990-09-14 1992-04-24 Kito Corp Operation controller for brake motor
JP2000209801A (en) * 1999-01-11 2000-07-28 Tamagawa Seiki Co Ltd Structure of brushless motor coil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237266A (en) * 2011-05-13 2012-12-06 Hitachi Appliances Inc Hermetic electric compressor
JP2012244726A (en) * 2011-05-18 2012-12-10 Yaskawa Electric Corp Armature for rotary electric machine and rotary electric machine
JP2013036388A (en) * 2011-08-08 2013-02-21 Mitsubishi Electric Corp Hermetic electric compressor
JP2013121222A (en) * 2011-12-07 2013-06-17 Hitachi Appliances Inc Motor drive, and apparatus using the same
JP2013192374A (en) * 2012-03-14 2013-09-26 Yaskawa Electric Corp Motor drive device and vehicle
JP2017112676A (en) * 2015-12-15 2017-06-22 三菱重工業株式会社 Motor drive control device with motor coil changeover switch, motor, compressor and motor coil changeover control method
CN107465279A (en) * 2017-08-31 2017-12-12 广东美芝制冷设备有限公司 Motor and compressor

Also Published As

Publication number Publication date
JP4595372B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP6530174B2 (en) Refrigeration cycle device
WO2018078835A1 (en) Air conditioner and air-conditioner control method
WO2018078840A1 (en) Drive device, air conditioner and drive method of electric motor
WO2018078845A1 (en) Drive device, air conditioner and electric motor drive method
KR102311216B1 (en) Electric motor drive and air conditioner
WO2004084401A1 (en) Electrically powered compressor
CN109863689B (en) Motor drive device and air conditioner
JP6719577B2 (en) Drive device, air conditioner, and compressor control method
EP3661046B1 (en) Drive device, compressor, air conditioner, and drive method
CN110073591B (en) Motor drive device and air conditioner
JPWO2019021374A1 (en) Driving device, air conditioner, and driving method
JP2008206386A (en) Inverter apparatus
JP2008160950A (en) Motor driver and refrigerator possessing it
US20230231456A1 (en) Electric motor, driving device, compressor, and air conditioner
JP6235381B2 (en) Compressor
JP4595372B2 (en) Compressor, compressor drive control device, and compressor drive control method
WO2018207275A1 (en) Air conditioner and method for controlling operation of air conditioner
CN113811723A (en) Outdoor unit, air-conditioning apparatus, and operation control method for air-conditioning apparatus
JP7270841B2 (en) Motor drive device and air conditioner
JP2011072091A (en) Driving device for permanent-magnet motors, hermetic-type compressor, and refrigeration cycle device
JP2009240147A (en) Inverter apparatus
WO2023214453A1 (en) Drive device and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees