JP2005307777A - Pump - Google Patents

Pump Download PDF

Info

Publication number
JP2005307777A
JP2005307777A JP2004122910A JP2004122910A JP2005307777A JP 2005307777 A JP2005307777 A JP 2005307777A JP 2004122910 A JP2004122910 A JP 2004122910A JP 2004122910 A JP2004122910 A JP 2004122910A JP 2005307777 A JP2005307777 A JP 2005307777A
Authority
JP
Japan
Prior art keywords
pump
pump chamber
working fluid
flow path
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004122910A
Other languages
Japanese (ja)
Other versions
JP4791702B2 (en
Inventor
Kunihiko Takagi
邦彦 高城
Takeshi Seto
毅 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004122910A priority Critical patent/JP4791702B2/en
Publication of JP2005307777A publication Critical patent/JP2005307777A/en
Application granted granted Critical
Publication of JP4791702B2 publication Critical patent/JP4791702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pump to increase a discharge flow rate and improve an output in a range of a load pressure lower than a load pressure to give a maximum output, in a micropump wherein a pipe line element to generate an inertia effect of fluid is situated right behind the discharge side of a pump chamber instead of a check valve. <P>SOLUTION: The pump 10 is provided with a pump chamber 90 formed that a volume is variable by a diaphragm 50; an inlet flow passage 32 through which operating fluid flows in the pump chamber 90; an outlet flow passage 22 through which operating fluid flows out from the pump chamber 90; and a first fluid resistance element 40 situated between the inlet flow passage 30 and the pump chamber 90. A connection flow passage 28 to guide operating fluid not through the first fluid resistance element 40 is situated in a manner to join with the outlet flow passage 22. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ダイアフラムによりポンプ室の容積を変更して動作流体の移動を行うポンプに関し、特に、小型高出力のポンプに関する。   The present invention relates to a pump that moves a working fluid by changing the volume of a pump chamber using a diaphragm, and more particularly to a small high-power pump.

従来、ダイアフラムによりポンプ室の容積を変更して動作流体の移動を行う小型ポンプにおいて、逆止弁の代わりに流体の慣性効果を発生する管路要素をポンプ室の吐出側の直後に設けた高出力マイクロポンプが開発されている。(非特許文献1、特許文献1参照)また、エネルギーを与えられた噴出する流体によって、他のエネルギーの低い流体を汲み上げる噴流ポンプが一般的に知られている。   Conventionally, in a small pump that moves the working fluid by changing the volume of the pump chamber by means of a diaphragm, a pipe element that generates an inertia effect of the fluid is provided immediately after the discharge side of the pump chamber instead of a check valve. Output micropumps have been developed. (See Non-Patent Document 1 and Patent Document 1) Further, a jet pump that pumps up another low-energy fluid by a fluid jetted with energy is generally known.

特開2002−322986号公報JP 2002-322986 A 「流体の慣性効果を用いたマイクロポンプの高出力化」 日本機械学会 ロボティクス・メカトロニクス講演会‘03講演論文集 2A1−2F−E4“High output of micropump using inertial effect of fluid” The Japan Society of Mechanical Engineers Robotics Mechatronics Lecture '03 Proceedings 2A1-2F-E4

ダイアフラムによりポンプ室の容積を変更して動作流体の移動を行う小型ポンプにおいて、逆止弁の代わりに流体の慣性効果を発生する管路要素をポンプ室の吐出側の直後に設けたマイクロポンプの出力特性は、非特許文献1に示されているように、負荷圧力が低下しても吐出流量があまり増加せず、負荷圧力400kPa以上に最大出力点がある。そのため、最大出力を与える負荷圧力よりも低い負荷圧力で本ポンプを運転した場合、最大出力と比較して小さい出力しか得ることができないという課題がある。   In a small pump that moves the working fluid by changing the volume of the pump chamber by a diaphragm, a micropump in which a pipe element that generates an inertia effect of the fluid is provided immediately after the discharge side of the pump chamber instead of a check valve. As shown in Non-Patent Document 1, the output flow rate does not increase so much even if the load pressure decreases, and there is a maximum output point at a load pressure of 400 kPa or more. Therefore, when this pump is operated at a load pressure lower than the load pressure that gives the maximum output, there is a problem that only a smaller output than the maximum output can be obtained.

本発明の目的は、逆止弁の代わりに流体の慣性効果を発生する管路要素をポンプ室の吐出側の直後に設けたマイクロポンプにおいて、最大出力を与える負荷圧力よりも低い負荷圧力の範囲で、吐出流量を増加させ出力を改善したポンプを提供することである。   An object of the present invention is to provide a range of a load pressure lower than a load pressure that gives a maximum output in a micropump in which a pipe element that generates an inertia effect of a fluid is provided immediately after the discharge side of a pump chamber instead of a check valve. Thus, it is an object to provide a pump with an improved output by increasing the discharge flow rate.

本発明のポンプは、ダイアフラムにより、容積が変更可能なポンプ室と、該ポンプ室へ動作流体を流入させる入口流路と、前記ポンプ室から動作流体を流出させる出口流路と、前記入口流路と前記ポンプ室との間に第一の流体抵抗要素と、を備え、前記第一の流体抵抗要素を通さずに動作流体を導く接続流路が、前記出口流路に合流するよう設けられていることを特徴とする。   The pump according to the present invention includes a pump chamber whose volume can be changed by a diaphragm, an inlet flow path for flowing the working fluid into the pump chamber, an outlet flow path for flowing the working fluid from the pump chamber, and the inlet flow path And a first fluid resistance element between the pump chamber and a connection flow path that guides the working fluid without passing through the first fluid resistance element. It is characterized by being.

この発明によれば、第一の流体抵抗要素を通さずに動作流体を導く接続流路が、出口流路に合流するよう設けられているので、ポンプ室から出口流路を通過して流出する動作流体の高いエネルギーを利用して、接続流路から作動流体をポンプ吐出側に導入することができ、負荷圧力が低い場合に吐出流量が増加する。   According to the present invention, the connection flow path that guides the working fluid without passing through the first fluid resistance element is provided so as to merge with the outlet flow path, and thus flows out from the pump chamber through the outlet flow path. Using the high energy of the working fluid, the working fluid can be introduced into the pump discharge side from the connection flow path, and the discharge flow rate increases when the load pressure is low.

また、上述の構造では、前記接続流路の途中に第二の流体抵抗要素が備えられていることが好ましい。   In the above-described structure, it is preferable that a second fluid resistance element is provided in the middle of the connection flow path.

この構造によれば、負荷圧力が比較的高い場合に、接続流路内を吐出側から吸入側へ逆流する流量を減少できる。そのため、ポンプ室から出口流路を通過して流出する動作流体の高いエネルギーを利用して、接続流路からポンプ吐出側に作動流体を導入することで増加させた流量を、逆流で失うことなく吐出できる。   According to this structure, when the load pressure is relatively high, it is possible to reduce the flow rate that flows backward in the connection flow path from the discharge side to the suction side. Therefore, the flow rate increased by introducing the working fluid from the connection flow path to the pump discharge side using the high energy of the working fluid flowing out from the pump chamber through the outlet flow path without being lost by the backflow. Can be discharged.

また、上述の構造では、前記接続流路の内部に前記出口流路と接続されたノズルが設けられていることが好ましい。   In the above structure, it is preferable that a nozzle connected to the outlet channel is provided inside the connection channel.

この構造によれば、ポンプ室から出口流路を通過する動作流体を噴出させることができ、その高いエネルギーをノズル周囲に存在する作動流体に有効に受け渡すことができるため、接続流路から導入される流量がより増加する。   According to this structure, the working fluid passing through the outlet channel can be ejected from the pump chamber, and the high energy can be effectively transferred to the working fluid existing around the nozzle. The flow rate is increased.

また、上述の構造では、前記接続流路の片端は前記入口流路と接続されていることが好ましい。   In the above-described structure, it is preferable that one end of the connection channel is connected to the inlet channel.

この構造によれば、上記の吐出流量増加効果を得ながらポンプを小形に構成することができる。   According to this structure, the pump can be configured in a small size while obtaining the above-described discharge flow rate increasing effect.

また、上述の構造では、前記第一の流体抵抗要素は逆止弁であることが好ましい。   In the above structure, the first fluid resistance element is preferably a check valve.

この構造によれば、ポンプ室内部の圧力を十分上昇させることができるので、ポンプ室から出口流路を通過して流出する動作流体のエネルギーをより一層高くすることができ、そのエネルギーを利用して、接続流路からの作動流体をポンプ吐出側により多く導入できる。   According to this structure, since the pressure in the pump chamber can be sufficiently increased, the energy of the working fluid flowing out from the pump chamber through the outlet channel can be further increased, and the energy can be utilized. Thus, more working fluid from the connection channel can be introduced to the pump discharge side.

また、上述の構造では、前記第二の流体抵抗要素は逆止弁であることが好ましい。   In the above structure, the second fluid resistance element is preferably a check valve.

この構造によれば、負荷圧力が高い場合に、接続流路内を吐出側から吸入側への逆流を防げる。そのため、ポンプ室から出口流路を通過して流出する動作流体の高いエネルギーを利用して、接続流路からポンプ吐出側に作動流体を導入することで増加させた流量を、逆流で失うことなく確実に吐出できる。   According to this structure, when the load pressure is high, the back flow from the discharge side to the suction side can be prevented in the connection flow path. Therefore, the flow rate increased by introducing the working fluid from the connection flow path to the pump discharge side using the high energy of the working fluid flowing out from the pump chamber through the outlet flow path without being lost by the backflow. Can discharge reliably.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図2は本発明の実施例のポンプが示されている。   1 to 2 show a pump according to an embodiment of the present invention.

図1は実施例1のポンプの縦断面図が示されている。図中左方向を示している矢印の方向がポンプ動作時に動作流体を流す方向である。図1において、このポンプ10は、基本構成として、アクチュエータ60の伸縮によってポンプ室90の容積を変更するダイアフラム50と、動作流体が流出される出口流路22と接続流路28の一部とが形成されるポンプ室体20と、ポンプ室体20の出口流路22開口部に圧入固定される出口流路ノズル21と、動作流体が流入する入口流路32が形成された流入接続管31と、内部に接続流路28の一部が形成された流出接続管35と、アクチュエータ60が備えられたアクチュエータ筐体80とから構成される。   FIG. 1 is a longitudinal sectional view of the pump of the first embodiment. The direction of the arrow indicating the left direction in the figure is the direction in which the working fluid flows during pump operation. In FIG. 1, the pump 10 includes, as a basic configuration, a diaphragm 50 that changes the volume of a pump chamber 90 by expansion and contraction of an actuator 60, an outlet channel 22 through which a working fluid flows out, and a part of a connection channel 28. The pump chamber body 20 formed, the outlet channel nozzle 21 press-fitted into the opening of the outlet channel 22 of the pump chamber body 20, and the inlet connection pipe 31 formed with the inlet channel 32 into which the working fluid flows The outflow connection pipe 35 in which a part of the connection flow path 28 is formed, and the actuator housing 80 provided with the actuator 60.

ポンプ室体20は、中央部にポンプ室90と、逆止弁40とポンプ室90と出口流路22とが交差して構成された空間である弁座室23と、が形成されている。その弁座室23から図中左側に出口流路22が設けられている。また、この弁座室23とポンプ室90との接続部はポンプ室90の弁座室側の開口部24であり、出口流路22と開口部24の交差部25は、動作流体の流体抵抗を少なくするために丸められている。   The pump chamber body 20 includes a pump chamber 90 and a valve seat chamber 23 that is a space formed by intersecting the check valve 40, the pump chamber 90, and the outlet channel 22 in the center. An outlet channel 22 is provided on the left side of the valve seat chamber 23 in the figure. The connecting portion between the valve seat chamber 23 and the pump chamber 90 is an opening 24 on the valve seat chamber side of the pump chamber 90, and the intersection 25 between the outlet flow path 22 and the opening 24 is a fluid resistance of the working fluid. It is rounded to reduce.

また、弁座室23の図中右側には、入口流路32との接続を開閉する逆止弁40(第一の流体抵抗要素)が圧入固定されている。この逆止弁40は、開閉部材として板状のリードや、ボールを用いたもの等を採用できる。特にボールを用いたボール弁とすることで、ボール弁内を動作流体が通過する際に、流れが曲げられることによる動作流体への抵抗が発生しにくく、動作流体を円滑に流動できる。そして、流入接続管31との接続部と逆止弁40との間に、接続流路28の一端が開口している。また、ポンプ室体20における接続流路28の他の開口部には、第二の流体抵抗要素である逆止弁41が圧入固定されている。ここで、逆止弁41としては、逆止弁40と同様のものを使用できる。   A check valve 40 (first fluid resistance element) that opens and closes the connection with the inlet channel 32 is press-fitted and fixed to the right side of the valve seat chamber 23 in the drawing. The check valve 40 may employ a plate-like lead, a ball, or the like as an opening / closing member. In particular, by using a ball valve using a ball, when the working fluid passes through the ball valve, resistance to the working fluid due to bending of the flow hardly occurs, and the working fluid can flow smoothly. One end of the connection flow path 28 is opened between the connection portion with the inflow connection pipe 31 and the check valve 40. Further, a check valve 41 as a second fluid resistance element is press-fitted and fixed to the other opening of the connection flow path 28 in the pump chamber body 20. Here, the check valve 41 can be the same as the check valve 40.

ポンプ室体20の出口流路22開口部には、動作流体の流速を速めるための縮径部を内部に形成した出口流路ノズル21が出口流路22と接続しながら圧入固定される。出口流路ノズル21の外形は先端に向かうほど細くなるように形成され、先端部の肉厚は200μm以下になっている。   An outlet channel nozzle 21 formed therein with a reduced diameter portion for increasing the flow velocity of the working fluid is press-fitted and fixed to the outlet channel 22 opening of the pump chamber body 20 while being connected to the outlet channel 22. The outer shape of the outlet channel nozzle 21 is formed so as to become thinner toward the tip, and the thickness of the tip is 200 μm or less.

さらに、流出接続管35の内面が出口流路ノズル21の外面とほぼ同軸となるようにして、出口流路ノズル21を囲む位置関係で、流出接続管35がポンプ室体20に圧入固定される。また、流出接続管35の内部には接続流路28の一部が設けられており、ポンプ室体20に圧入固定されることで、ポンプ室体20側の接続流路28と流出接続管35側の接続流路28とが逆止弁41を介して接続される。また、出口流路ノズル21の外面と流出接続管35の内面との間は0.5mm以下の狭い隙間が保持されており、接続流路28から流入した動作流体は、その隙間を通過して流出接続管35から流出可能になっている。さらに、流出接続管35の内面は、出口流路ノズル先端付近で縮径しており、それから下流方向に向かって緩やかに拡大している。   Further, the outflow connection pipe 35 is press-fitted and fixed to the pump chamber body 20 so as to surround the outlet flow path nozzle 21 so that the inner surface of the outflow connection pipe 35 is substantially coaxial with the outer surface of the outlet flow path nozzle 21. . In addition, a part of the connection flow path 28 is provided inside the outflow connection pipe 35 and is press-fitted and fixed to the pump chamber body 20, whereby the connection flow path 28 and the outflow connection pipe 35 on the pump chamber body 20 side. The connection channel 28 on the side is connected via a check valve 41. Further, a narrow gap of 0.5 mm or less is maintained between the outer surface of the outlet channel nozzle 21 and the inner surface of the outflow connection pipe 35, and the working fluid flowing in from the connection channel 28 passes through the gap. It is possible to flow out from the outflow connection pipe 35. Furthermore, the inner surface of the outflow connection pipe 35 is reduced in diameter near the tip of the outlet channel nozzle, and then gradually increases in the downstream direction.

ポンプ室体20のポンプ室90の開口部は、ステンレス鋼等で形成された薄い円盤状のダイアフラム50が、ポンプ室90の周縁に設けられた凹部26内に密着固定されている。この凹部26に、アクチュエータ筐体80に設けられた凸部81が圧入され、ダイアフラム50を押圧しながらポンプ室体20とアクチュエータ筐体80とが一体化されている。   In the opening of the pump chamber 90 of the pump chamber body 20, a thin disk-like diaphragm 50 formed of stainless steel or the like is closely fixed in a recess 26 provided at the periphery of the pump chamber 90. A convex portion 81 provided in the actuator housing 80 is press-fitted into the concave portion 26, and the pump chamber body 20 and the actuator housing 80 are integrated while pressing the diaphragm 50.

アクチュエータ筐体80は、一方が開口された容器状の形態をしており、他方の封止された内部底面にアクチュエータ60の一方の端部が固着されている。アクチュエータ60は、圧電素子であり図示しない外部の制御回路から駆動電圧が与えられて伸縮振動する。アクチュエータ60の他方の端部には、アクチュエータ台座70が固着され、アクチュエータ台座70がダイアフラム50に密着している。   The actuator housing 80 has a container-like shape with one open, and one end of the actuator 60 is fixed to the other sealed inner bottom surface. The actuator 60 is a piezoelectric element, and expands and contracts by receiving a drive voltage from an external control circuit (not shown). An actuator base 70 is fixed to the other end of the actuator 60, and the actuator base 70 is in close contact with the diaphragm 50.

なお、図示しないが流入接続管31は外部接続パイプに接続され、動作流体を導入し、流出接続管35も図示しない外部接続パイプに接続され、動作流体を吐出する。   Although not shown, the inflow connection pipe 31 is connected to an external connection pipe to introduce a working fluid, and the outflow connection pipe 35 is also connected to an external connection pipe (not shown) to discharge the working fluid.

次に本発明のポンプの動作について説明する。   Next, the operation of the pump of the present invention will be described.

まず、ダイアフラム50がポンプ室90の容積を小さくする方向に動作すると、動作流体の圧縮率に従ってポンプ室90及び弁座室23内の圧力が高まる。すると、逆止弁40は閉鎖し、流体抵抗が大きくなるため、逆止弁40から入口流路32への動作流体の流出は微少、若しくは、ゼロとなる。   First, when the diaphragm 50 operates in a direction to reduce the volume of the pump chamber 90, the pressure in the pump chamber 90 and the valve seat chamber 23 increases according to the compressibility of the working fluid. Then, the check valve 40 is closed and the fluid resistance increases, so that the working fluid flows out from the check valve 40 into the inlet flow path 32 to be minute or zero.

一方、出口流路ノズル21を含む出口流路22においては、弁座室23内の圧力と負荷圧力との圧力差に従って動作流体が弁座室23から流出する流量が増加する。このとき、出口流路22及び出口流路ノズル21の内部の流路を細く形成してあり、その内部の動作流体が加速しにくいため、最大出力を与える高い負荷圧力でポンプを運転している時のように、弁座室23内の圧力を十分に高めることができる。そして、その上昇した圧力により出口流路ノズル21の端面から高い運動エネルギーを持つ動作流体が噴出する。   On the other hand, in the outlet channel 22 including the outlet channel nozzle 21, the flow rate at which the working fluid flows out from the valve seat chamber 23 increases according to the pressure difference between the pressure in the valve seat chamber 23 and the load pressure. At this time, since the flow paths inside the outlet flow path 22 and the outlet flow path nozzle 21 are formed narrowly and the working fluid inside thereof is difficult to accelerate, the pump is operated at a high load pressure that gives the maximum output. Like time, the pressure in the valve seat chamber 23 can be sufficiently increased. The working fluid having high kinetic energy is ejected from the end face of the outlet channel nozzle 21 by the increased pressure.

その噴出した動作流体は、出口流路ノズル21の端面周囲の動作流体に運動エネルギーを与え、出口流路ノズル21の端面周囲の動作流体を吐出方向に加速しながら流出接続管35の流出側へ流れる。このとき、出口流路ノズル21の周方向全ての動作流体に運動エネルギーを与えられるので、本実施例の構造はエネルギー伝達効率が良い。また、その結果、出口流路ノズル21と流出接続管35との間には低圧領域が発生し、それまで閉じていた逆止弁41が開いて流体抵抗が小さくなるため、入口流路32から接続流路28を通して動作流体が流出接続管35へ流入する。以上の結果、出口流路ノズル21からの噴出流量以上の動作流体を流出接続管35から吐出することができる。   The ejected working fluid gives kinetic energy to the working fluid around the end face of the outlet channel nozzle 21 and accelerates the working fluid around the end face of the outlet channel nozzle 21 in the discharge direction to the outflow side of the outflow connection pipe 35. Flowing. At this time, since kinetic energy is given to all the working fluids in the circumferential direction of the outlet channel nozzle 21, the structure of this embodiment has good energy transmission efficiency. As a result, a low pressure region is generated between the outlet channel nozzle 21 and the outflow connection pipe 35, and the check valve 41 that has been closed is opened to reduce the fluid resistance. The working fluid flows into the outflow connection pipe 35 through the connection flow path 28. As a result, a working fluid having a flow rate greater than or equal to the ejection flow rate from the outlet channel nozzle 21 can be discharged from the outflow connection pipe 35.

次に、出口流路22内の動作流体に保存された運動エネルギーによる慣性効果によって出口流路ノズル21からの噴出流量がダイアフラム50の変位によって排除される動作流体の体積(以下、排除体積という)よりも多くなり、入口流路32の圧力よりもポンプ室90及び弁座室23内の動作流体の圧力が低下すると、逆止弁40は開放して流体抵抗が小さくなり、入口流路32から弁座室23へ動作流体が流入する。   Next, the volume of the working fluid in which the ejection flow rate from the outlet channel nozzle 21 is excluded by the displacement of the diaphragm 50 due to the inertia effect due to the kinetic energy stored in the working fluid in the outlet channel 22 (hereinafter referred to as the excluded volume). When the pressure of the working fluid in the pump chamber 90 and the valve seat chamber 23 is lower than the pressure in the inlet flow path 32, the check valve 40 is opened to reduce the fluid resistance, and from the inlet flow path 32. The working fluid flows into the valve seat chamber 23.

次に、ダイアフラム50がポンプ室90の容積を大きくする方向に動作すると、すでに開放している逆止弁40から弁座室23へ流入する動作流体が増加し、弁座室23及びポンプ室90内部を動作流体で十分に満たす。   Next, when the diaphragm 50 operates in the direction of increasing the volume of the pump chamber 90, the working fluid flowing into the valve seat chamber 23 from the already opened check valve 40 increases, and the valve seat chamber 23 and the pump chamber 90 are increased. Fully fill the interior with working fluid.

また、出口流路ノズル21から噴出する動作流体の流速が減速し、運動エネルギーが減少して微少になると、出口流路ノズル21の端面周囲の動作流体への作用が弱くなり、出口流路ノズル21と流出接続管35との間の低圧領域が消滅する。その結果、逆止弁41は閉鎖し、流体抵抗が増加するため、逆止弁41から入口流路32側への動作流体の流出は微少、若しくは、ゼロとなる。従って、負荷圧力が高い場合でも、増加させた流量を、逆流で失うことなく確実に吐出できる。   Further, when the flow velocity of the working fluid ejected from the outlet channel nozzle 21 is reduced and the kinetic energy is decreased and becomes minute, the action on the working fluid around the end surface of the outlet channel nozzle 21 becomes weak, and the outlet channel nozzle The low pressure region between 21 and the outflow connection pipe 35 disappears. As a result, the check valve 41 is closed and the fluid resistance is increased, so that the working fluid flows out from the check valve 41 to the inlet flow path 32 side to be minute or zero. Therefore, even when the load pressure is high, the increased flow rate can be reliably discharged without losing the reverse flow.

以上、本実施例のポンプによると、最大出力を与える高い負荷圧力で従来の流体の慣性効果を利用するポンプを運転している時のように、弁座室23内の圧力を十分に高めることができる。そしてその上昇した圧力によって、高い運動エネルギーを与えられた動作流体を出口流路ノズル21から噴出させることができ、その噴出流体の運動エネルギーを利用して、噴出流量以上の流量の動作流体を流出接続管35より吐出することができる。従って、従来よりも吐出流量を多くできる。また、負荷圧力が低いほど流量増加の効果が大きくなる。   As described above, according to the pump of this embodiment, the pressure in the valve seat chamber 23 is sufficiently increased as when operating a pump that uses the inertial effect of a conventional fluid at a high load pressure that gives a maximum output. Can do. Then, the working pressure given high kinetic energy can be ejected from the outlet flow channel nozzle 21 by the increased pressure, and the kinetic energy of the ejected fluid is used to flow out the working fluid at a flow rate higher than the ejection flow rate. It can be discharged from the connecting pipe 35. Therefore, the discharge flow rate can be increased more than before. Also, the lower the load pressure, the greater the effect of increasing the flow rate.

以上の実施例において、第一の流体抵抗要素、及び第二の流体抵抗要素として逆止弁を用いているが、ポンプへの負荷圧力によって他のものに変更できる。負荷圧力が低ければ流れの方向によって流体抵抗の異なるディフューザー型の流体抵抗要素を用いても良いし、特に、負荷圧力が微小であれば、第二の流体抵抗要素は省略しても、同様の効果を得ることができる。   In the above embodiment, the check valve is used as the first fluid resistance element and the second fluid resistance element. However, the check valve can be changed depending on the load pressure to the pump. If the load pressure is low, a diffuser type fluid resistance element having a different fluid resistance depending on the flow direction may be used. In particular, if the load pressure is very small, the second fluid resistance element may be omitted. An effect can be obtained.

次に、本発明のポンプの実施例2について図2に基づき説明する。実施例2は、実施例1(図1、参照)の構造を基本とし、出口流路と接続された流路の管壁の一部に接続流路の開口部を設けていることを特徴としている。なお、前述の実施例1と同一機能部分には同番号を割り振ってあり、実施例1との共通部分の説明は以下では省略する。   Next, a second embodiment of the pump of the present invention will be described with reference to FIG. Example 2 is based on the structure of Example 1 (see FIG. 1), and is characterized in that an opening of a connection channel is provided in a part of the tube wall of the channel connected to the outlet channel. Yes. The same functional parts as those in the first embodiment are assigned the same numbers, and the description of the common parts with the first embodiment is omitted below.

図2は、実施例2のポンプ10の縦断面図が示されている。図2において、流出接続管350はポンプ室体20に圧入固定される。流出接続管350の内部には、出口流路22と接続され、流速を速めるために徐々に縮径する縮径部351と、速めた流速を減速し圧力を回復させる拡大径部352と、逆止弁41と接続する接続流路28の一部が設けられており、縮径部351において径がほぼ最小となる付近に、接続流路28の開口部が設けられている。   FIG. 2 is a longitudinal sectional view of the pump 10 of the second embodiment. In FIG. 2, the outflow connection pipe 350 is press-fitted and fixed to the pump chamber body 20. Inside the outflow connection pipe 350, connected to the outlet flow path 22, is a diameter-reduced portion 351 that gradually reduces the diameter to increase the flow velocity, an enlarged diameter portion 352 that decelerates the increased flow velocity and restores pressure, A part of the connection flow path 28 connected to the stop valve 41 is provided, and the opening of the connection flow path 28 is provided in the vicinity of the diameter of the reduced diameter portion 351 that is substantially the smallest.

本実施例2のポンプ動作において、実施例1と異なる部分を説明する。   In the pump operation of the second embodiment, a portion different from the first embodiment will be described.

ダイアフラム50がポンプ室90の容積を小さくする方向に動作し、逆止弁40が閉鎖し、最大出力を与える高い負荷圧力でポンプを運転している時のような十分高い圧力に弁座室23内の圧力を上昇させると、縮径部351を高い運動エネルギーを持つ動作流体が吐出方向へ流れる。   The diaphragm 50 operates in a direction to reduce the volume of the pump chamber 90, the check valve 40 is closed, and the valve seat chamber 23 is at a sufficiently high pressure as when the pump is operated at a high load pressure that gives a maximum output. When the internal pressure is increased, the working fluid having high kinetic energy flows through the reduced diameter portion 351 in the discharge direction.

すると、その縮径部351を吐出方向へ流れる動作流体は、接続流路28の開口部で接続流路28内の動作流体に運動エネルギーを与え、接続流路28内の動作流体を吐出方向へ流す。そして、それらの動作流体は拡大径部352を通過して圧力回復して吐出方向へ流れる。   Then, the working fluid that flows in the discharge direction through the reduced diameter portion 351 gives kinetic energy to the working fluid in the connection flow path 28 at the opening of the connection flow path 28, and the working fluid in the connection flow path 28 in the discharge direction. Shed. These working fluids pass through the enlarged diameter portion 352, recover pressure, and flow in the discharge direction.

また、その結果、逆止弁41の流出接続管350側には低圧領域が発生し、それまで閉じていた逆止弁41が開いて、入口流路32から接続流路28を通して動作流体が流出接続管350へ流入する。以上の結果、縮径部351の流量以上の動作流体を流出接続管350から吐出することができる。   As a result, a low-pressure region is generated on the outflow connection pipe 350 side of the check valve 41, the check valve 41 that has been closed is opened, and the working fluid flows out from the inlet channel 32 through the connection channel 28. It flows into the connecting pipe 350. As a result, a working fluid having a flow rate greater than that of the reduced diameter portion 351 can be discharged from the outflow connection pipe 350.

また、縮径部351を流れる動作流体の流速が減速し、運動エネルギーが減少して微少になると、接続流路28の開口部で接続流路28の動作流体への作用が弱くなり、その結果、逆止弁41は閉鎖する。従って、負荷圧力が高い場合でも、増加させた流量を、逆流で失うことなく確実に吐出できる。   Further, when the flow velocity of the working fluid flowing through the reduced diameter portion 351 is reduced and the kinetic energy is decreased and becomes minute, the action of the connection channel 28 on the working fluid becomes weak at the opening of the connection channel 28, and as a result. The check valve 41 is closed. Therefore, even when the load pressure is high, the increased flow rate can be reliably discharged without losing the reverse flow.

以上、本実施例のポンプによると、最大出力を与える高い負荷圧力で従来の流体の慣性効果を利用するポンプを運転している時のように、弁座室23内の圧力を十分に高めることができる。そして、その上昇した圧力によって、縮径部351を流れる動作流体に高い運動エネルギーを与え、その運動エネルギーを利用して、縮径部351を流れる動作流体の流量より多い動作流体を流出接続管35より吐出することができる。従って、従来よりも吐出流量を多くできる。また、負荷圧力が低いほど流量増加の効果が大きくなる。   As described above, according to the pump of this embodiment, the pressure in the valve seat chamber 23 is sufficiently increased as when operating a pump that uses the inertial effect of a conventional fluid at a high load pressure that gives a maximum output. Can do. The increased pressure gives high kinetic energy to the working fluid flowing through the reduced diameter portion 351, and uses the kinetic energy to supply a larger amount of working fluid than the flow rate of the working fluid flowing through the reduced diameter portion 351 to the outflow connection pipe 35. It is possible to discharge more. Therefore, the discharge flow rate can be increased more than before. Also, the lower the load pressure, the greater the effect of increasing the flow rate.

以上の実施例において、第一の流体抵抗要素、及び第二の流体抵抗要素として逆止弁を用いているが、ポンプへの負荷圧力によって他のものに変更できる。負荷圧力が低ければ流れの方向によって流体抵抗の異なるディフューザー型の流体抵抗要素を用いても良いし、特に、負荷圧力が微小であれば、第二の流体抵抗要素は省略しても、同様の効果を得ることができる。   In the above embodiment, the check valve is used as the first fluid resistance element and the second fluid resistance element. However, the check valve can be changed depending on the load pressure to the pump. If the load pressure is low, a diffuser type fluid resistance element having a different fluid resistance depending on the flow direction may be used. In particular, if the load pressure is very small, the second fluid resistance element may be omitted. An effect can be obtained.

なお、本発明は前述の実施例1及び実施例2に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   The present invention is not limited to the first and second embodiments described above, but includes modifications and improvements as long as the object of the present invention can be achieved.

例えば、前述の実施例1及び実施例2では、ダイアフラム50によってポンプ室90の容積を変更しているが、ダイアフラムだけではなくピストンを採用することができる。   For example, in the above-described first and second embodiments, the volume of the pump chamber 90 is changed by the diaphragm 50, but not only the diaphragm but also a piston can be employed.

以上、前述の実施例1及び実施例2によれば、出口流路から流出する動作流体の運動エネルギーを利用して、出口流路からの流出量以上の動作流体を吐出させることができるポンプを提供できる。   As described above, according to Example 1 and Example 2 described above, the pump that can discharge the working fluid more than the outflow amount from the outlet channel by using the kinetic energy of the working fluid flowing out from the outlet channel. Can be provided.

本発明のポンプ10は、プロジェクタ等の電子機器の冷却装置、ウォータージェットメス、流体アクチュエータ、マイクロ液圧プレスのピストンの動力源等に利用することができる。   The pump 10 of the present invention can be used as a cooling device for electronic equipment such as a projector, a water jet knife, a fluid actuator, a power source for a piston of a micro hydraulic press, and the like.

本発明の実施例1に係るポンプの縦断面図。1 is a longitudinal sectional view of a pump according to Embodiment 1 of the present invention. 本発明の実施例2に係るポンプの縦断面図。The longitudinal cross-sectional view of the pump which concerns on Example 2 of this invention.

符号の説明Explanation of symbols

10…ポンプ、20…ポンプ室体、21…出口流路ノズル(ノズル)、22…出口流路、28…接続流路、32…入口流路、35、350…流出接続管、40…逆止弁(第一の流体抵抗要素)、41…逆止弁(第二の流体抵抗要素)、50…ダイアフラム、90…ポンプ室。
DESCRIPTION OF SYMBOLS 10 ... Pump, 20 ... Pump chamber body, 21 ... Outlet flow path nozzle (nozzle), 22 ... Outlet flow path, 28 ... Connection flow path, 32 ... Inlet flow path, 35, 350 ... Outflow connection pipe, 40 ... Check Valve (first fluid resistance element), 41 ... Check valve (second fluid resistance element), 50 ... Diaphragm, 90 ... Pump chamber.

Claims (6)

ダイアフラムにより、容積が変更可能なポンプ室と、
該ポンプ室へ動作流体を流入させる入口流路と、
前記ポンプ室から動作流体を流出させる出口流路と、
前記入口流路と前記ポンプ室との間に第一の流体抵抗要素と、を備え、
前記第一の流体抵抗要素を通さずに動作流体を導く接続流路が、前記出口流路に合流するよう設けられていることを特徴とするポンプ。
A pump chamber whose volume can be changed by a diaphragm,
An inlet channel for flowing a working fluid into the pump chamber;
An outlet channel for allowing the working fluid to flow out of the pump chamber;
A first fluid resistance element between the inlet channel and the pump chamber;
A pump characterized in that a connection flow path for guiding the working fluid without passing through the first fluid resistance element is provided so as to join the outlet flow path.
請求項1の記載のポンプにおいて、
前記接続流路の途中に第二の流体抵抗要素が備えられていることを特徴とするポンプ。
The pump according to claim 1, wherein
A pump characterized in that a second fluid resistance element is provided in the middle of the connection flow path.
請求項1乃至請求項2のいずれかに記載のポンプにおいて、
前記接続流路の内部に前記出口流路と接続されたノズルが設けられていることを特徴とするポンプ。
The pump according to any one of claims 1 to 2,
A pump characterized in that a nozzle connected to the outlet channel is provided inside the connection channel.
請求項1乃至請求項3のいずれかに記載のポンプにおいて、
前記接続流路の片端は前記入口流路と接続されていることを特徴とするポンプ。
The pump according to any one of claims 1 to 3,
One end of the connection flow path is connected to the inlet flow path.
請求項1乃至請求項4のいずれかに記載のポンプにおいて、
前記第一の流体抵抗要素は逆止弁であることを特徴とするポンプ。
The pump according to any one of claims 1 to 4,
The pump according to claim 1, wherein the first fluid resistance element is a check valve.
請求項1乃至請求項5のいずれかに記載のポンプにおいて、
前記第二の流体抵抗要素は逆止弁であることを特徴とするポンプ。
The pump according to any one of claims 1 to 5,
The pump according to claim 2, wherein the second fluid resistance element is a check valve.
JP2004122910A 2004-04-19 2004-04-19 pump Expired - Lifetime JP4791702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122910A JP4791702B2 (en) 2004-04-19 2004-04-19 pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122910A JP4791702B2 (en) 2004-04-19 2004-04-19 pump

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010184788A Division JP2010281331A (en) 2010-08-20 2010-08-20 Pump and cooling device

Publications (2)

Publication Number Publication Date
JP2005307777A true JP2005307777A (en) 2005-11-04
JP4791702B2 JP4791702B2 (en) 2011-10-12

Family

ID=35436841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122910A Expired - Lifetime JP4791702B2 (en) 2004-04-19 2004-04-19 pump

Country Status (1)

Country Link
JP (1) JP4791702B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278236A (en) * 2006-04-11 2007-10-25 Murata Mfg Co Ltd Micropump
US8308745B2 (en) 2007-08-10 2012-11-13 Seiko Epson Corporation Fluid jet device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322986A (en) * 2001-02-21 2002-11-08 Seiko Epson Corp Pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322986A (en) * 2001-02-21 2002-11-08 Seiko Epson Corp Pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278236A (en) * 2006-04-11 2007-10-25 Murata Mfg Co Ltd Micropump
US8308745B2 (en) 2007-08-10 2012-11-13 Seiko Epson Corporation Fluid jet device
EP2022418A3 (en) * 2007-08-10 2013-03-20 Seiko Epson Corporation Fluid jet device

Also Published As

Publication number Publication date
JP4791702B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
US7654283B2 (en) Check valve and pump including check valve
JP4677933B2 (en) Pump and fluid system
US6623256B2 (en) Pump with inertance value of the entrance passage being smaller than an inertance value of the exit passage
KR102510781B1 (en) Metering valve and jet pump unit for controlling gaseous media
TW201700865A (en) Piezoelectric pump and operating method thereof
JP2007120441A (en) Fuel cell system and ejector device
JP2005172206A (en) Check valve
CN106762509B (en) Liquid pump and liquid jettison system
JP2015169212A (en) fluid control valve
JP4445238B2 (en) Fluid control valve
JP4544114B2 (en) Diaphragm pump liquid discharge control device
JP2010281331A (en) Pump and cooling device
JP4791702B2 (en) pump
JP2002322986A (en) Pump
JP2008115894A (en) Fluid control valve
JP2019183890A (en) Injector device
JP5210135B2 (en) Reciprocating pump with degassing mechanism
KR20210114033A (en) Jet pump unit for controlling gaseous media
JP2004162547A (en) Pump
JP2005188420A (en) Compressor
JP6144854B1 (en) Ejecta
JP4479306B2 (en) pump
JPH11242925A (en) Hydraulic operation device
JP3870847B2 (en) pump
JP2007309205A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101021

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4791702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350