JP2005307277A - Method for surface-treating metallic material - Google Patents

Method for surface-treating metallic material Download PDF

Info

Publication number
JP2005307277A
JP2005307277A JP2004126184A JP2004126184A JP2005307277A JP 2005307277 A JP2005307277 A JP 2005307277A JP 2004126184 A JP2004126184 A JP 2004126184A JP 2004126184 A JP2004126184 A JP 2004126184A JP 2005307277 A JP2005307277 A JP 2005307277A
Authority
JP
Japan
Prior art keywords
fine particles
oxide
temperature
titanium
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004126184A
Other languages
Japanese (ja)
Other versions
JP4453103B2 (en
Inventor
Masahiro Akimoto
政弘 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKA HIMAKU KOGYO KK
Original Assignee
DENKA HIMAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKA HIMAKU KOGYO KK filed Critical DENKA HIMAKU KOGYO KK
Priority to JP2004126184A priority Critical patent/JP4453103B2/en
Publication of JP2005307277A publication Critical patent/JP2005307277A/en
Application granted granted Critical
Publication of JP4453103B2 publication Critical patent/JP4453103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for making the surface of a metal such as aluminum and titanium or an alloy material thereof electroconductive. <P>SOLUTION: A surface treatment method comprises the steps of: dispersing indium-oxide-based, antimony-oxide-based or zinc-oxide-based electroconductive fine particles in water or an other solvent; making the dispersion into mist by applying an ultrasonic wave thereto; introducing the mist into a high-temperature furnace of 200°C or higher; heating the fine particles to 150 to 600°C; contacting the high-temperature fine particles with the alloy material of aluminum or titanium, of which the surface is made non-electroconductive, for 0.5 second or longer; and at the same time, applying a voltage of 1 to 100 KV between the fine particles and the surface of the alloy to form an electroconductive coating on the material surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸化物表面を持つ金属材料に導電性の透明皮膜を常圧で形成する表面処理法に関するものである。 The present invention relates to a surface treatment method for forming a conductive transparent film on a metal material having an oxide surface at normal pressure.

アルミニウム合金は軽量で熱の伝導性がよく、耐食性があり、塑性加工性が優れているなどの諸特性から構造材料、建築材料など広い分野で多量に使用されている。しかしながら、耐食性付与のため表面に酸化物層を形成するために表面の電導性は殆どない。表面の電導性が無いことが良い場合も多いが一方で導電性を要望される場合も多い。 Aluminum alloys are used in large quantities in a wide range of fields such as structural materials and building materials because of their light weight, good thermal conductivity, corrosion resistance, and excellent plastic workability. However, since the oxide layer is formed on the surface for imparting corrosion resistance, there is almost no surface conductivity. In many cases, it is good that there is no electrical conductivity on the surface, but on the other hand, electrical conductivity is often required.

従来の表面処理で非導電性の金属材料表面に導電性を付与する方法としては導電塗料を付与することが知られているが、アルミニウム材料にこれを適用すると材料の回収再利用が難しくなる欠点がある。またこれら塗料のバインダーとしては殆ど有機物が用いたれるため耐熱性が低い欠点があり、金属光沢がなく、更には導電性が充分でなく、例えばモバイル関係製品の外装材として電磁波シールドなどの用途には使用できない。又ガラスなど非導電性の材料にITOなどの導電性材料を真空蒸着法やイオンプレーティング法などで薄膜状に形成させる方法なども良く知られている。この方法は真空下で行うことが必要で装置に多大の費用が掛かってしまう欠点がある。 As a method of imparting conductivity to the surface of a non-conductive metal material by conventional surface treatment, it is known to apply a conductive paint, but if this is applied to an aluminum material, it becomes difficult to recover and reuse the material. There is. In addition, since organic substances are almost used as binders for these paints, there is a disadvantage that heat resistance is low, there is no metallic luster, and conductivity is not sufficient. For example, as an exterior material for mobile products, it is used for electromagnetic shielding etc. Cannot be used. In addition, a method of forming a conductive material such as ITO into a thin film by a vacuum vapor deposition method or an ion plating method on a nonconductive material such as glass is well known. This method has the disadvantage that it is necessary to carry out under vacuum and the apparatus is very expensive.

チタン合金は剛性があり薄物成形、軽量、高耐食性材料として広く使われている。この表面に陽極酸化などで酸化物皮膜を形成する目的は、干渉色からブラウン系の色調を装飾性に利用する事で、建築のインテリア、モバイル製品の外装品、小物類、腐食性の強い薬品容器に使用されている。しかし、この皮膜は手で触れると指紋が残り、このままの状態では使用が不可能で、通常は表面に透明な無機又は有機のコーティングを行っている。この為に導電性が満足に取れず、電磁波シールド効果や電圧降下対策に不向きである。 Titanium alloys are rigid and widely used as thin material molding, lightweight, and high corrosion resistance materials. The purpose of forming an oxide film on this surface by anodic oxidation is to use the color of brown to brown for decoration, so that it can be used for interior decoration of buildings, exterior parts of mobile products, small items, and highly corrosive chemicals. Used in containers. However, when this film is touched with a hand, a fingerprint remains and cannot be used in this state, and usually a transparent inorganic or organic coating is applied on the surface. For this reason, the electrical conductivity cannot be satisfactorily taken, and it is not suitable for an electromagnetic wave shielding effect and a voltage drop countermeasure.

一方、特許文献1には金属酸化物微粒子を常圧で霧化状にし、これを加熱してプラスチック等の基板表面に噴射し、結晶皮膜を形成する方法が提案されている。この方法によると基板表面への均一な薄膜形成が難しく、特に三次元的な表面を持つ製品化された材料の全表面に導電性の皮膜を形成できない欠点がある。また、噴射口よりの流速変化で均一性を保つ事が難しい。
特開2001−335922号公報。
On the other hand, Patent Document 1 proposes a method in which metal oxide fine particles are atomized at normal pressure, heated and sprayed onto the surface of a substrate such as plastic to form a crystal film. According to this method, it is difficult to form a uniform thin film on the surface of the substrate, and in particular, there is a defect that a conductive film cannot be formed on the entire surface of a commercialized material having a three-dimensional surface. In addition, it is difficult to maintain uniformity by changing the flow velocity from the injection port.
JP 2001-335922 A.

本発明は従来技術では陽極酸化によって表面に防食性と導電性を同時に付与することが困難であったアルミニウム又はチタン材などにこれら性能を付与する表面処理法の提供を目的とする。 An object of the present invention is to provide a surface treatment method for imparting these performances to an aluminum or titanium material which has been difficult to impart corrosion resistance and conductivity to the surface simultaneously by anodization in the prior art.

本発明は、酸化インジウム系、酸化アンチモン系、酸化亜鉛系及び/又は酸化錫系の導電性微粒子を水又はその他の溶媒に分散させ、これに超音波を適用して霧状物とし、該霧状物を200℃以上に加熱された導管又は高温炉に導き、該微粒子を150〜600℃の温度とし、この高温微粒子を表面に非導電性の皮膜を有するアルミニウム又はチタニウム或いはこれらの合金材料と常圧にて1回以上接触させ、1回の時間は0.5秒〜30分間とする。その際、微粒子と被処理材料との間に1〜100KVの電圧を掛ける事を特徴とする、該材料表面に導電性の皮膜を形成する表面処理法である。 In the present invention, indium oxide-based, antimony oxide-based, zinc oxide-based and / or tin oxide-based conductive fine particles are dispersed in water or other solvent, and ultrasonic waves are applied thereto to form a mist. Aluminum or titanium having a non-conductive film on the surface thereof, or an alloy material thereof is introduced into a conduit or a high temperature furnace heated to 200 ° C. or higher, and the fine particles are set to a temperature of 150 to 600 ° C. The contact is performed at least once at normal pressure, and the time for one time is 0.5 seconds to 30 minutes. In this case, a surface treatment method for forming a conductive film on the surface of the material is characterized by applying a voltage of 1 to 100 KV between the fine particles and the material to be treated.

本発明で用いる導電性微粒子としては酸化インジウム、酸化アンチモン、酸化亜鉛及び/又は酸化錫に対して錫、亜鉛、パラジウム、インジウム、アンチモン、セリウム、チタニウム、バナジウム、クロム、マンガン、ジルコニウム、モリブデン及び/又はヨウ素或いはその化合物をドープしたものが用いられ、特に酸化インジウムもしくは酸化アンチモンに錫をドープしたITO、ATOなどが好ましく用いられる。また、原料資源供給の問題点などからみて酸化錫、酸化亜鉛又はこれらにアンチモン又はチタンをドープした微粒子も好ましく用いられる。 The conductive fine particles used in the present invention include tin, zinc, palladium, indium, antimony, cerium, titanium, vanadium, chromium, manganese, zirconium, molybdenum and / or indium oxide, antimony oxide, zinc oxide and / or tin oxide. Or what doped iodine or its compound is used, and especially ITO, ATO, etc. which doped indium oxide or antimony oxide with tin are used preferably. From the viewpoint of supply of raw material resources, tin oxide, zinc oxide, or fine particles doped with antimony or titanium are also preferably used.

導電性微粒子の大きさは加熱導管内や高温炉内で速やかに昇温し、またアルミニウム、チタンなどの合金材料表面で速やかに結晶成長して均一な透明皮膜を形成させるために平均径が10〜500nmの超微粒子が好ましい。これらの微粒子は水その他の溶媒中に分散させ、これに周波数25KHz〜2MHzの超音波を適用して溶媒を微粒子と共に霧化する。原料微粒子の供給量の調整はこの超音波発信器出力を調節することによって行うことが出来るし、或いは溶媒中に分散させる微粒子の量を調整することによってもできる。 The size of the conductive fine particles is such that the average diameter is 10 in order to quickly raise the temperature in a heating conduit or a high temperature furnace, and to quickly grow crystals on the surface of an alloy material such as aluminum or titanium to form a uniform transparent film. Ultrafine particles of ˜500 nm are preferred. These fine particles are dispersed in water or another solvent, and an ultrasonic wave having a frequency of 25 kHz to 2 MHz is applied thereto to atomize the solvent together with the fine particles. The supply amount of the raw material fine particles can be adjusted by adjusting the output of the ultrasonic transmitter, or can be adjusted by adjusting the amount of fine particles dispersed in the solvent.

霧化された微粒子分散体は高温炉に導かれるが、ここで使用する炉は200℃以上に加熱できればどんな形式のものでも良い。またこの炉は大気圧下で使用するので特別厳密な密封手段は必要ない。微粒子はこの高温炉に導く導管内或いは炉内で約150〜600℃程度に昇温され、被処理材料と接触させる。接触時間は被処理材料が高温炉内に在るときには常圧にて1回以上接触させ、1回の時間は0.5秒〜30分が好ましく、高温炉外に在るときには常圧にて1回以上接触させ、1回の時間は0.5秒〜30分とすることが好ましい。接触させる際には微粒子と被処理材料との間に1〜100KV、好ましくは50〜80KVの電圧を掛けて行う。電圧を掛けることによって微粒子と被処理材料との間に吸引関係が生じ、微粒子の付着率が大幅に向上する。また三次元構造の被処理材料に対しても全表面に微粒子を付着させることが可能となる。 The atomized fine particle dispersion is guided to a high-temperature furnace, and the furnace used here may be of any type as long as it can be heated to 200 ° C. or higher. Moreover, since this furnace is used under atmospheric pressure, no special strict sealing means is required. The fine particles are heated to about 150 to 600 ° C. in a conduit leading to the high temperature furnace or in the furnace, and are brought into contact with the material to be processed. The contact time is at least one contact at normal pressure when the material to be treated is in the high-temperature furnace, and one time is preferably 0.5 seconds to 30 minutes, and at normal pressure when outside the high-temperature furnace. It is preferable that the contact is performed once or more, and the time for one time is 0.5 seconds to 30 minutes. When contacting, a voltage of 1 to 100 KV, preferably 50 to 80 KV is applied between the fine particles and the material to be treated. By applying a voltage, a suction relationship is generated between the fine particles and the material to be processed, and the adhesion rate of the fine particles is greatly improved. In addition, fine particles can be attached to the entire surface of the material to be processed having a three-dimensional structure.

被処理材料が高温炉外にあるときの接触条件としては炉から出る微粒子の速度が6〜1800cm/分とする事が好ましい。この時の被処理材料の表面温度は常温〜200℃程度にしておくことが好ましく、高温炉から噴射されるガスによってこれより高温になってしまうような場合には合金材料の移動速度を変えたり、冷却したりして温度調整をすることが出来る。被処理材料が高温炉内にあるときは該材料を炉内で回転させたり、或いは板状の材料が炉内を通過出来る様に炉壁にスリットを設けて移動させるようにすることが出来る。 As a contact condition when the material to be treated is outside the high temperature furnace, it is preferable that the speed of the fine particles coming out of the furnace is 6 to 1800 cm / min. The surface temperature of the material to be treated at this time is preferably set to room temperature to about 200 ° C. If the temperature is higher than that due to the gas injected from the high temperature furnace, the moving speed of the alloy material may be changed. The temperature can be adjusted by cooling. When the material to be processed is in a high-temperature furnace, the material can be rotated in the furnace, or a plate-shaped material can be moved by providing a slit in the furnace wall so that the material can pass through the furnace.

本発明に用いるアルミニウム又はチタン合金としては展伸材、鋳造材のいずれもが用いられるが、圧延板、丸棒、押出し加工材等の展伸材であって予め製品化又は半製品化したものが好ましい。この様な製品又は半製品としては、事務関係分野ではプロジェクター、DVD、パソコン、スキャナー、プリンター、マウス、モバイル製品分野ではデジカメ、携帯電話、MD、CD機器、ビデオカメラ、ヘッドホン、ラジオ等、一般家電製品分野ではコンポ、ミニコンポ、冷蔵庫、クーラー、加湿器、固定電話などの本体および付属機器または筐体等に成型された製品等がある。 As the aluminum or titanium alloy used in the present invention, any of wrought material and cast material is used. However, it is a wrought material such as a rolled plate, a round bar, and an extruded material, and has been commercialized or semi-finished. Is preferred. Such products or semi-finished products include projectors, DVDs, personal computers, scanners, printers, mice in the field of office work, digital cameras, mobile phones, MDs, CD devices, video cameras, headphones, radios, etc. in the mobile product field. In the product field, there are components such as components, minicomponents, refrigerators, coolers, humidifiers, fixed telephones, etc., and products molded into accessory devices or cases.

本発明の処理に用いる金属材料は表面に耐食性、装飾性を付与するために陽極酸化処理を施してあるものが好ましい。陽極酸化によって材料表面には材料金属の酸化物、場合によっては酸化物と水酸化物を主体とする皮膜が形成され、これらは非導電性の皮膜となっている。 The metal material used for the treatment of the present invention is preferably one that has been subjected to an anodizing treatment in order to impart corrosion resistance and decorative properties to the surface. By anodic oxidation, a film mainly composed of an oxide of a material metal, and in some cases, an oxide and a hydroxide is formed on the surface of the material, and these are non-conductive films.

陽極酸化の処理法は公知の方法が用いられ、例えば電解液として硫酸、リン酸、又は芳香族もしくは脂肪族の、1個以上のカルボキシル基又はスルホン基を有する有機酸、あるいはこれら有機酸と硫酸もしくはリン酸または両者との混酸等が用いられる。陽極酸化は濃度0.5〜10モル/Lの電解液中で電流密度0.6〜5A/デシ平方メートル、電圧10〜80Vで行うことが好ましい。この様に調整された電解液中での陽極酸化処理は、浴温を−5〜30℃で行うのが特に好ましい。 A known method is used for the anodizing treatment. For example, sulfuric acid, phosphoric acid, an aromatic or aliphatic organic acid having one or more carboxyl group or sulfone group, or these organic acid and sulfuric acid are used as an electrolytic solution. Alternatively, phosphoric acid or a mixed acid with both is used. Anodization is preferably performed in an electrolyte solution having a concentration of 0.5 to 10 mol / L at a current density of 0.6 to 5 A / dec square meter and a voltage of 10 to 80V. The anodizing treatment in the electrolytic solution adjusted in this way is particularly preferably performed at a bath temperature of -5 to 30 ° C.

本発明のアルミニウム材料では染色、着色しておくことによりカラーバリエイションを持った製品とする事も可能である。これらは陽極酸化を行った後に電解着色または染色処理を施すことにより装飾性、審美性の高い製品とすることができる。
本発明の方法でアルミニウム又はチタン材料の表面に形成される導電材料皮膜の厚さは10〜1000nm程度の薄いもので、処理するアルミニウム又はチタン材料表面に凹凸や微少空洞などが存在している場合はそれらの内部表面まで導電性の薄い膜を形成することができる。この様な処理で得られたアルミニウム又はチタン材料は、それらが板状であるときには曲げ加工、絞り加工またはプレス加工などにより、各種電気部品の筐体等に成形して利用される。
The aluminum material of the present invention can be dyed and colored to produce a product with color variation. These can be made into products with high decorativeness and aesthetics by performing electrolytic coloring or dyeing treatment after anodizing.
The thickness of the conductive material film formed on the surface of the aluminum or titanium material by the method of the present invention is as thin as about 10 to 1000 nm, and the surface of the aluminum or titanium material to be processed has irregularities or minute cavities. Can form a thin conductive film up to their inner surface. The aluminum or titanium material obtained by such treatment is used after being formed into a casing or the like of various electric parts by bending, drawing or pressing when they are plate-like.

本発明の方法で得られた金属材料の表面は導電性となっており、電磁波シールド、電圧降下対策に優れた特性をもつ材料または製品として利用できる。 The surface of the metal material obtained by the method of the present invention is conductive, and can be used as a material or product having excellent characteristics for electromagnetic wave shielding and voltage drop countermeasures.

次に実施例をもって本発明を具体的に説明する。実施例中の%は別の記載がない限り重量%を示す。 Next, the present invention will be specifically described with reference to examples. In the examples, “%” means “% by weight” unless otherwise specified.

アルミニウムJIS−A1050P材料2枚を、脱脂後先ずエッチング処理、中和処理後にワークを硫酸1.6モル/Lの陽極酸化電解液を用いて浴温21℃、電流密度1A/デシ平方メートル、電圧13.5Vで30分陽極酸化した。
2枚のサンプルのうち1枚について平均径が50nmのITO微粒子を15%の割合で水に分散し、これを100KHz超音波発信器を用いて霧化し、外から導入した空気を用いて温度約400℃の高温炉に導いた。霧状物の内、微粒子は炉壁に衝突して直ぐにおよそ300℃となる。この高温微粒子を空気と共に常圧で、固定化されている前記の陽極酸化処理したアルミニウム表面に12cm/分の速度で、3分間ずつ5回吹き付けた。アルミニウム材料の温度は90℃以下となるように冷却した。この処理の際に微粒子とアルミニウム表面との間に70KVの電圧を掛けた。この処理でアルミニウム表面に約60nmのITO膜が形成され、その抵抗値は2Ω/□であった。
なお、同じ陽極酸化処理したもう一枚のサンプルについて電圧を掛けずに同じ処理を行ったところ、抵抗値は均一性に欠けたが平均値としては約100Ω/□を示した。なお、陽極酸化のみを施したアルミニウムの抵抗値は6MΩ/□であった。
After degreasing, two aluminum JIS-A1050P materials were first etched and neutralized, and the workpiece was anodized with 1.6 mol / L sulfuric acid, bath temperature 21 ° C., current density 1 A / dec square meter, voltage 13 Anodized at 5 V for 30 minutes.
For one of the two samples, ITO fine particles with an average diameter of 50 nm are dispersed in water at a rate of 15%, atomized using a 100 KHz ultrasonic transmitter, and the temperature is reduced using air introduced from the outside. It led to a 400 degreeC high temperature furnace. Of the mist, the fine particles collide with the furnace wall and immediately reach about 300 ° C. The high-temperature fine particles were sprayed 5 times at a rate of 12 cm / min for 3 minutes on the anodized aluminum surface fixed with air at normal pressure. The temperature of the aluminum material was cooled to 90 ° C. or lower. During this treatment, a voltage of 70 KV was applied between the fine particles and the aluminum surface. By this treatment, an ITO film of about 60 nm was formed on the aluminum surface, and the resistance value was 2Ω / □.
In addition, when the same treatment was performed without applying a voltage to another sample subjected to the same anodizing treatment, the resistance value was not uniform, but the average value was about 100Ω / □. In addition, the resistance value of the anodized aluminum was 6 MΩ / □.

チタン板を脱脂後15%フッ化水素酸溶液にてエッチング処理、超音波水洗にて中和処理後にワークをリン酸1.2モル/リットル+硫酸0.5モル/リットルの陽極酸化電解液を用いて浴温35℃、電流密度1.5A/デシ平方メートル、最終電圧65Vで20分陽極酸化した後実施例1と同様にしてITO微粒子を吹き付けた。この処理で表面に約50nmのITO膜が形成され、その抵抗値は5Ω/□であった。なお陽極酸化処理のみを行ったワークの抵抗値は約2KΩ/□であった。 After degreasing the titanium plate, it was etched with a 15% hydrofluoric acid solution, neutralized with ultrasonic water washing, and then the workpiece was anodized electrolytic solution of phosphoric acid 1.2 mol / liter + sulfuric acid 0.5 mol / liter. Then, after anodizing at a bath temperature of 35 ° C., a current density of 1.5 A / dec square meter, and a final voltage of 65 V for 20 minutes, ITO fine particles were sprayed in the same manner as in Example 1. By this treatment, an ITO film of about 50 nm was formed on the surface, and the resistance value was 5Ω / □. The resistance value of the workpiece subjected to only the anodizing treatment was about 2 KΩ / □.

本発明のアルミニウム材料はモバイル、パソコン、モーターサイクル、産業機器の電気、電子関係等の表面抵抗値が小さいことが有利であるようなあらゆる分野の材料として適用できる。
The aluminum material of the present invention can be applied as a material in various fields where it is advantageous to have a small surface resistance value for mobile, personal computer, motorcycle, industrial equipment such as electrical and electronic devices.

Claims (4)

酸化インジウム系、酸化アンチモン系、酸化亜鉛系及び/又は酸化錫系の導電性微粒子を水又はその他の溶媒に分散させ、これに超音波を適用して霧状物とし、該霧状物を200℃以上に加熱された導管又は高温炉に導き、該微粒子を150〜600℃の温度とし、この高温微粒子を、表面に非導電性の皮膜を有するアルミニウム又はチタニウム或いはこれらの合金材料と常圧にて1回以上接触させ、1回の時間は0.5秒〜30分し、その際、微粒子と被処理材料との間に1〜100KVの電圧を掛ける事を特徴とする、該材料表面に導電性の皮膜を形成する表面処理法。 Indium oxide-based, antimony oxide-based, zinc oxide-based and / or tin oxide-based conductive fine particles are dispersed in water or other solvent, and ultrasonic waves are applied thereto to form a mist. It is led to a conduit or a high-temperature furnace heated to a temperature of not less than ℃, and the fine particles are brought to a temperature of 150 to 600 ° C., and the high-temperature fine particles are brought to normal pressure with aluminum, titanium or an alloy material thereof having a nonconductive film on the surface. The surface of the material is characterized by applying a voltage of 1 to 100 KV between the fine particles and the material to be treated. A surface treatment method for forming a conductive film. 導電性微粒子が酸化インジウム、酸化アンチモン、酸化亜鉛及び/又は酸化錫に対して錫、亜鉛、パラジウム、インジウム、アンチモン、セリウム、チタニウム、バナジウム、クロム、マンガン、ジルコニウム、モリブデン及び/又はヨウ素或いはその化合物をドープしたものであることを特徴とする請求項1の表面処理法。 Conductive fine particles are indium oxide, antimony oxide, zinc oxide and / or tin oxide, tin, zinc, palladium, indium, antimony, cerium, titanium, vanadium, chromium, manganese, zirconium, molybdenum and / or iodine or compounds thereof The surface treatment method according to claim 1, wherein the surface treatment method is performed. 高温微粒子と被処理材料との接触は、被処理材料を移動又は回転させながら高温炉内又は高温炉外において常圧にて1回以上接触させ、1回の時間を0.5秒〜30分とする請求項1又は2の表面処理法。 The contact between the high-temperature fine particles and the material to be treated is performed at least once at normal pressure in the high-temperature furnace or outside the high-temperature furnace while moving or rotating the material to be treated, and the time for one time is 0.5 seconds to 30 minutes. The surface treatment method according to claim 1 or 2. アルミニウム又はチタニウム或いはこれらの合金材料が陽極酸化処理によって表面に防食性及び非導電性の酸化物皮膜が形成されていることを特徴とする請求項1乃至3の表面処理法。
The surface treatment method according to any one of claims 1 to 3, wherein an aluminum or titanium or alloy material thereof has an anti-corrosion and non-conductive oxide film formed on the surface by anodizing treatment.
JP2004126184A 2004-04-22 2004-04-22 Surface treatment method for metal materials Expired - Fee Related JP4453103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126184A JP4453103B2 (en) 2004-04-22 2004-04-22 Surface treatment method for metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126184A JP4453103B2 (en) 2004-04-22 2004-04-22 Surface treatment method for metal materials

Publications (2)

Publication Number Publication Date
JP2005307277A true JP2005307277A (en) 2005-11-04
JP4453103B2 JP4453103B2 (en) 2010-04-21

Family

ID=35436373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126184A Expired - Fee Related JP4453103B2 (en) 2004-04-22 2004-04-22 Surface treatment method for metal materials

Country Status (1)

Country Link
JP (1) JP4453103B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2089165A2 (en) * 2006-10-19 2009-08-19 Nanomech, LLC Methods and apparatus for making coatings using ultrasonic spray deposition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2089165A2 (en) * 2006-10-19 2009-08-19 Nanomech, LLC Methods and apparatus for making coatings using ultrasonic spray deposition
EP2089165A4 (en) * 2006-10-19 2014-07-02 Nanomech Llc Methods and apparatus for making coatings using ultrasonic spray deposition
EP3459645A1 (en) * 2006-10-19 2019-03-27 NanoMech, Inc. Method for making coatings using ultrasonic spray deposition
US10752997B2 (en) 2006-10-19 2020-08-25 P&S Global Holdings Llc Methods and apparatus for making coatings using ultrasonic spray deposition

Also Published As

Publication number Publication date
JP4453103B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
CN100559513C (en) Nesa coating
CN106128564B (en) The preparation method of PET/ nano-silver thread nesa coatings through illumination sintering processes
JP2015008141A (en) Method for manufacturing transparent conductive film and transparent conductive film manufactured by the same
US10165699B2 (en) Oxidied and coated articles and methods of making same
CN107955961B (en) A kind of preparation method of Mg alloy surface conduction corrosion-inhibiting coating
CN102366742B (en) Coating method for non-continuous high-metal-texture film layer
US9819076B2 (en) Intenna manufacturing method having capability to improve plating reliability
CN104384088A (en) Electroplating-free antique metal surface treatment method
CN108834309A (en) A kind of graphene metallization solution and the preparation method and application thereof
JP4730768B2 (en) Method for forming transparent conductive film and transparent conductive film
US8637862B2 (en) Device housing and method for making the same
US20130171446A1 (en) Coated article and method for making same
Múgica-Vidal et al. Atmospheric pressure air plasma treatment of glass substrates for improved silver/glass adhesion in solar mirrors
CN103848428A (en) Silica sol, method for performing surface treatment on metal matrix by applying silica sol as well as product thereof
TW201605754A (en) Method for treating the surface of thin glass substrates
JP4453103B2 (en) Surface treatment method for metal materials
Kim et al. Flexible grid-mesh electrodes fabricated by electroless copper plating on corona-treated PET substrates and coating with graphene for transparent film heaters
CN102719813B (en) Nanometer spray plating technology
CN109943107B (en) Graphene oxide water-based paint and coating process
Mendez et al. A review on atmospheric pressure plasma jet and electrochemical evaluation of corrosion
JP2014037501A (en) Metal oxide particulate dispersion and transparent conductive film using the same
CN106630667A (en) An anti-glare (AG) glass processing process adopting silicon oxide sedimentation
CN105568339B (en) It is a kind of using magnesium/magnesium alloy as the multicoat composite material and preparation method of matrix
CN104496547B (en) The preparation method with the matrix of high temperature resistant hydrophobic conductive coating
US20120183805A1 (en) Coated article and method for making the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees