JP2005307237A - Method for producing thin film pigment - Google Patents

Method for producing thin film pigment Download PDF

Info

Publication number
JP2005307237A
JP2005307237A JP2004122826A JP2004122826A JP2005307237A JP 2005307237 A JP2005307237 A JP 2005307237A JP 2004122826 A JP2004122826 A JP 2004122826A JP 2004122826 A JP2004122826 A JP 2004122826A JP 2005307237 A JP2005307237 A JP 2005307237A
Authority
JP
Japan
Prior art keywords
thin film
pigment
film
film pigment
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004122826A
Other languages
Japanese (ja)
Inventor
Tadashi Masuda
忠 増田
Hiroaki Kawamura
裕明 川村
Koji Kondo
晃次 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Ulvac Inc
Original Assignee
Toyota Motor Corp
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Ulvac Inc filed Critical Toyota Motor Corp
Priority to JP2004122826A priority Critical patent/JP2005307237A/en
Publication of JP2005307237A publication Critical patent/JP2005307237A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide sharp thin film pigment composed of multilayer films and having high reflectivity. <P>SOLUTION: In the method for producing thin film pigment where thin film pigment in which two or more kinds of dielectric thin films having different refractive indexes are stacked is obtained, the thin film pigment is separated from an object for film deposition, and is thereafter fired in an oxidizing gas atmosphere such as oxygen and air, and a part having an insufficient oxygen content is replenished with oxygen. Thus, the thinned dielectric films have low absorbency and high reflectivity. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は薄膜顔料の製造方法にかかり、特に、多層膜から成る薄膜顔料を製造する技術に関する。   The present invention relates to a method for producing a thin film pigment, and more particularly to a technique for producing a thin film pigment comprising a multilayer film.

従来の誘電体膜の作成方法としては、化合物系の蒸発材料を電子ビーム等の方法で蒸着する方法や、あるいはRFスパッタリング等で成膜する方法がある。これらの方法では、蒸発の途中で化合物が乖離し、蒸着物質と異なる組成の膜になってしまい、薄膜化した誘電体膜は光学的吸収を持った膜となり、積層した際に高い反射率を持った設計通りの発色を呈さない。   As a conventional method for forming a dielectric film, there are a method of depositing a compound-based evaporation material by a method such as an electron beam, or a method of forming a film by RF sputtering or the like. In these methods, the compounds dissociate during evaporation, resulting in a film having a composition different from that of the deposited material, and the thinned dielectric film becomes a film having optical absorption, and has a high reflectance when laminated. Does not exhibit the color as designed.

他方、金属膜の作成方法としては、金属を蒸発材料として用いた蒸着またはスパッタリング、イオンプレーティング、アークイオンプレーティング等の方法があるが、金属を蒸発材として用いて誘電体膜を作成するためには、蒸発時に同時に酸素分子やイオン化した酸素を導入して反応させる必要がある。   On the other hand, as a method for producing a metal film, there are methods such as vapor deposition or sputtering using a metal as an evaporation material, ion plating, arc ion plating, etc., because a dielectric film is produced using a metal as an evaporation material. In this case, it is necessary to introduce oxygen molecules and ionized oxygen at the same time during evaporation to react.

その際に充分な量の酸素が存在しないか、反応が不十分な場合には、薄膜化した誘電体膜は光学的吸収を持った膜となってしまい積層した際に高い反射率を持った設計通りの発色を呈さない。   In this case, if a sufficient amount of oxygen is not present or the reaction is insufficient, the thinned dielectric film becomes a film having optical absorption and has a high reflectance when laminated. Does not exhibit the color as designed.

例えば、本来透明である高屈折率を有する二酸化チタン(TiO2)は、TiO(2-X)となってしまい、五酸化ニオブ(Nb25)は、Nb2(5-X)、低屈折率を有するシリカ(SiO2)は、SiO(2-X)となり、これらの膜中に光学的吸収が残ってしまう。 For example, titanium dioxide (TiO 2 ) having a high refractive index that is inherently transparent becomes TiO (2-X), and niobium pentoxide (Nb 2 O 5 ) is converted to Nb 2 O (5-X) , Silica (SiO 2 ) having a low refractive index becomes SiO 2 (2-X) , and optical absorption remains in these films.

屈折率の異なる薄膜を積層させ、膜間の界面の反射によって発色させる場合、膜中に吸収が残ると界面で反射する光の量が低減してしまい、発色する際の色の鮮やかさが低下すると同時に反射率も低下してしまう。   When thin films with different refractive indexes are stacked and colored by reflection at the interface between the films, the amount of light reflected at the interface decreases if absorption remains in the film, and the vividness of the color at the time of coloring decreases. At the same time, the reflectance also decreases.

薄膜顔料としては、90%以上の反射率を持つ膜を必要とするが、膜内に吸収の残った積層膜では、任意の色で90%以上の反射率を持った膜が作成できない。   As a thin film pigment, a film having a reflectivity of 90% or more is required. However, a film having a reflectivity of 90% or more in an arbitrary color cannot be formed with a laminated film in which absorption remains in the film.

以下は、屈折率の異なる薄膜を積層させて着色剤を製造する発明が記載された文献である。
特開2003−344647号
The following is a document describing an invention for producing a colorant by laminating thin films having different refractive indexes.
JP 2003-344647 A

本発明は反射率が高く、鮮やかな薄膜顔料を提供することにある。   It is an object of the present invention to provide a thin film pigment having high reflectivity and vividness.

上記課題を解決するため、請求項1記載の発明は、屈折率が異なる二種類以上の酸化物薄膜を成膜対象物上に積層させて薄膜顔料を形成する薄膜形成工程と、前記薄膜顔料を前記成膜対象物から剥離する剥離工程と、前記剥離された薄膜顔料を粉末化し、薄膜顔料を得る粉末化工程とを有する薄膜顔料製造方法であって、前記剥離工程と前記粉末化工程の間に、前記薄膜顔料を加熱して酸化する酸化工程を有する薄膜顔料製造方法である。
請求項2記載の発明は、前記成膜対象物上に剥離層を形成する剥離層形成工程を有し、前記薄膜顔料を前記剥離層表面に形成する請求項1記載の薄膜顔料製造方法である。
In order to solve the above-mentioned problems, the invention according to claim 1 includes a thin film forming step of forming a thin film pigment by laminating two or more types of oxide thin films having different refractive indexes on a film formation target, and the thin film pigment. A method for producing a thin film pigment, comprising: a peeling step for peeling from the film-forming target; and a powdering step for obtaining a thin film pigment by pulverizing the peeled thin film pigment, between the peeling step and the powdering step And a method for producing a thin film pigment comprising an oxidation step of heating and oxidizing the thin film pigment.
Invention of Claim 2 has a peeling layer formation process which forms a peeling layer on the said film-forming target object, It is a thin film pigment manufacturing method of Claim 1 which forms the said thin film pigment on the said peeling layer surface. .

本発明は上記のように構成されており、基板から薄膜顔料を剥離した後、焼成し、薄膜顔料を酸化することで、薄膜薄膜中の酸素不足の部分に酸素を補充しており、その結果、吸収率が小さく、反射率の大きな薄膜顔料を得ることができる。   The present invention is configured as described above, and after peeling the thin film pigment from the substrate, firing and oxidizing the thin film pigment replenish oxygen to the oxygen-deficient portion in the thin film, and as a result A thin film pigment having a low absorption rate and a high reflectance can be obtained.

薄膜顔料の酸化は、大気や酸素等の酸化性ガス雰囲気中で薄膜顔料の細片を加熱する焼成によって行うことができる。   The oxidation of the thin film pigment can be carried out by baking the thin pieces of the thin film pigment in an oxidizing gas atmosphere such as air or oxygen.

不足酸素を焼成によって補充できるので、吸収率が小さくなり、黒色下地の上に塗布した際鮮やかに発色した薄膜顔料を得ることができる。   Since deficient oxygen can be replenished by firing, the absorptance is reduced, and a thin-film pigment that is vividly colored when applied on a black base can be obtained.

図1の符号Aは、本発明の薄膜顔料の製造に用いられる成膜装置を示している。
この成膜装置Aは真空室1を有しており、その内部の天井側には成膜対象物を保持するホルダ2が配置され、底壁側には、1個の剥離剤用蒸発ルツボ4と、複数個(ここでは2個)の誘電体用蒸発ルツボ5、6が配置されている。
A symbol A in FIG. 1 indicates a film forming apparatus used for manufacturing the thin film pigment of the present invention.
This film-forming apparatus A has a vacuum chamber 1, a holder 2 for holding a film-forming object is arranged on the ceiling side, and a stripping agent evaporating crucible 4 on the bottom wall side. A plurality (two in this case) of dielectric evaporation crucibles 5 and 6 are arranged.

剥離剤用蒸発ルツボ4の内部には剥離剤が配置されており、他の蒸発ルツボ5、6の内部には、二種類の顔料原料がそれぞれ一種類ずつ配置されている。ここでは、剥離剤としてカーボングラファイトが配置されており、また、一方の蒸発ルツボ5にはチタンが配置され、他方の蒸発ルツボ6にはシリコンが配置されている。   A release agent is arranged inside the evaporation crucible 4 for the release agent, and two types of pigment raw materials are arranged inside the other evaporation crucibles 5 and 6, respectively. Here, carbon graphite is disposed as a release agent, titanium is disposed in one evaporation crucible 5, and silicon is disposed in the other evaporation crucible 6.

ホルダ2に成膜対象物3を配置し、真空室1内を真空排気する(真空室1内を真空排気した後、真空雰囲気を維持しながら成膜対象物3を搬入してもよい。)。成膜対象物3には、ここではガラス基板を用いた。
真空室1内の圧力が低下し、所定圧力の真空雰囲気になった後、電子銃7から剥離剤用蒸発ルツボ4内の剥離剤に電子線を照射し、剥離剤の蒸気を発生させる。
The film formation target 3 is placed in the holder 2 and the vacuum chamber 1 is evacuated (the vacuum chamber 1 may be evacuated and then the film formation target 3 may be carried in while maintaining a vacuum atmosphere). . Here, a glass substrate was used as the film formation target 3.
After the pressure in the vacuum chamber 1 is reduced and the vacuum atmosphere is set to a predetermined pressure, the release agent in the release agent evaporation crucible 4 is irradiated with an electron beam from the electron gun 7 to generate release agent vapor.

剥離剤蒸気の発生が安定したところで、ルツボ4〜6と成膜対象物3との間に位置するシャッター9を開けると剥離剤蒸気は成膜対象物3に到達し、その表面に剥離層が形成される。剥離剤がカーボングラフィトであるから、この剥離層はカーボン薄膜である。   When the generation of the release agent vapor is stable, when the shutter 9 located between the crucibles 4 to 6 and the film formation target 3 is opened, the release agent vapor reaches the film formation target 3 and a release layer is formed on the surface thereof. It is formed. Since the release agent is carbon graphite, this release layer is a carbon thin film.

剥離層が所定膜厚に形成されたところでシャッター9を閉じ、電子線の照射を、剥離剤用蒸発ルツボ4から最初に形成する薄膜の材料が配置されているルツボ5へ切換える。   When the release layer is formed to a predetermined thickness, the shutter 9 is closed, and the irradiation of the electron beam is switched from the release agent evaporation crucible 4 to the crucible 5 in which the thin film material to be formed first is disposed.

これにより、剥離材料蒸発ルツボ4の温度が低下し、剥離剤の蒸気が放出されなくなると共に、最初のルツボ5内の原料が加熱され、原料の蒸気が放出され始める。   As a result, the temperature of the release material evaporation crucible 4 decreases, and the release agent vapor is not released, and the raw material in the first crucible 5 is heated, and the raw material vapor begins to be released.

真空室1には酸化ガス導入パイプ8が接続されており、原料の蒸気の発生と共にその酸化ガス導入パイプ8から真空室1内に酸化ガスの導入を開始する。酸化ガスの導入により、蒸発蒸気と酸化ガスとが反応し、それらの反応生成物が生成される。
原料の蒸気放出が安定したところでシャッター9を開けると、原料の蒸気と酸化ガスとの反応生成物が成膜対象物3の剥離層表面に付着し、第1の薄膜が成長する。
An oxidant gas introduction pipe 8 is connected to the vacuum chamber 1, and introduction of the oxidant gas from the oxidant gas introduction pipe 8 into the vacuum chamber 1 is started as the raw material vapor is generated. By introducing the oxidizing gas, the vaporized vapor and the oxidizing gas react with each other, and a reaction product thereof is generated.
When the shutter 9 is opened when the release of the raw material vapor is stable, a reaction product of the raw material vapor and the oxidizing gas adheres to the surface of the release layer of the film formation target 3, and the first thin film grows.

第1の薄膜が所定膜厚に形成されたところでシャッター9を閉じ、電子線の照射を最初のルツボ5から次のルツボ6に切り換えると、最初のルツボ5の温度が低下し、それからの原料の蒸気の放出が停止すると共に、次のルツボ6が加熱され、原料の蒸気放出が開始される。   When the first thin film is formed to a predetermined thickness, the shutter 9 is closed, and the electron beam irradiation is switched from the first crucible 5 to the next crucible 6. While the release of the steam is stopped, the next crucible 6 is heated and the release of the steam of the raw material is started.

その原料の蒸気が安定して放出されるようになったところで、シャッター9を開けると、原料の蒸気と酸化ガスとの反応生成物が成膜対象物3の第1の薄膜表面に付着し、第2の薄膜が形成される。   When the raw material vapor is stably released, when the shutter 9 is opened, the reaction product of the raw material vapor and the oxidizing gas adheres to the surface of the first thin film of the film formation target 3, A second thin film is formed.

ここでは酸化ガスには酸素ガスが用いられており、チタン又はシリコンから成る原料が酸化される結果、第1の薄膜は酸化チタンで構成され、第2の薄膜は酸化シリコンで構成される。   Here, oxygen gas is used as the oxidizing gas. As a result of oxidation of the raw material made of titanium or silicon, the first thin film is made of titanium oxide and the second thin film is made of silicon oxide.

第2の薄膜が所定膜厚に形成されたところで、シャッター9を閉じ、電子線の照射を他のルツボに切り替え、第3の薄膜を形成する。
ここでは、電子線の照射を最初のルツボ5に戻すことになり、第2の薄膜の表面には、第1の薄膜と同じ組成の第3の薄膜が形成される。
When the second thin film is formed to a predetermined film thickness, the shutter 9 is closed, the electron beam irradiation is switched to another crucible, and the third thin film is formed.
Here, the irradiation of the electron beam is returned to the first crucible 5, and a third thin film having the same composition as the first thin film is formed on the surface of the second thin film.

このように、二個のルツボ5、6に交互に電子線を照射し、剥離剤層表面に第1〜第14の薄膜を形成し、積層された第1〜第14の薄膜から成る薄膜顔料を形成した。奇数番目の薄膜は酸化チタン(TiO2)であり、偶数番目の薄膜は酸化シリコン(SiO2)であり、ここでは各酸化チタン薄膜はすべて膜厚50nmに形成し、各酸化シリコン薄膜は、全て膜厚75nmに形成した。
図3は、剥離層50表面に第1〜第14の薄膜51〜64が形成された状態を示している。
In this way, the two crucibles 5 and 6 are alternately irradiated with an electron beam, the first to fourteenth thin films are formed on the surface of the release agent layer, and the thin film pigment is formed of the laminated first to fourteenth thin films. Formed. The odd-numbered thin film is titanium oxide (TiO 2 ), and the even-numbered thin film is silicon oxide (SiO 2 ). Here, each titanium oxide thin film is formed to a thickness of 50 nm, and each silicon oxide thin film is all The film thickness was 75 nm.
FIG. 3 shows a state in which the first to fourteenth thin films 51 to 64 are formed on the surface of the release layer 50.

次に、この薄膜顔料が形成された成膜対象物3を真空室1から取り出し、液体中に浸漬し、超音波を印加すると、剥離層から薄膜顔料が細片となって剥離し、液体中に遊離する。   Next, the film formation target 3 on which the thin film pigment is formed is taken out from the vacuum chamber 1 and immersed in a liquid, and when an ultrasonic wave is applied, the thin film pigment is peeled off as a fine piece from the peeling layer. To free.

このとき、薄膜顔料側に付着した剥離層も超音波によって薄膜顔料から分離し、剥離層が付着していない薄膜顔料が細片となって液体中に分離され、液体中から取り出される。   At this time, the peeling layer attached to the thin film pigment side is also separated from the thin film pigment by ultrasonic waves, and the thin film pigment to which the peeling layer is not attached is separated into the liquid as fine pieces and taken out from the liquid.

液体の一例として温度50℃の温水を用いた。この場合の超音波の印加時間は30分である。
液体中から取り出した状態では、上記第1〜第14の薄膜51〜64は酸素不足の状態であり、これを乾燥した後、大気中や酸素ガス中で500℃以上で加熱し、焼成すると、薄膜顔料中の酸素不足の物質が酸化される。
As an example of the liquid, hot water having a temperature of 50 ° C. was used. In this case, the application time of the ultrasonic wave is 30 minutes.
In the state taken out from the liquid, the first to fourteenth thin films 51 to 64 are in an oxygen-deficient state, and after drying, heating at 500 ° C. or higher in the atmosphere or oxygen gas and baking, Oxygen-deficient material in the thin film pigment is oxidized.

次いで、破砕し、粉末化し、所望の範囲の粒径の粉末を分離すると薄膜顔料が得られる。
得られた酸化チタン薄膜の屈折率は2.3であり、酸化シリコン薄膜の屈折率は1.46であった。
The thin film pigment is then obtained by crushing and pulverizing and separating the powder in the desired range of particle size.
The obtained titanium oxide thin film had a refractive index of 2.3, and the silicon oxide thin film had a refractive index of 1.46.

得られた薄膜顔料の光学特性図を図4に示す。この薄膜顔料は黒色下地の上に塗布すると青色を呈する。
上記実施例では二種類の薄膜を積層して薄膜顔料を構成させたが、三種類以上の薄膜を積層して薄膜顔料を構成させてもよい。
The optical characteristic diagram of the obtained thin film pigment is shown in FIG. This thin pigment exhibits a blue color when applied on a black substrate.
In the above embodiment, two types of thin films are laminated to form a thin film pigment, but three or more types of thin films may be laminated to form a thin film pigment.

また、上記実施例では電子線蒸着法によって薄膜顔料を製造したが、スパッタリング法やアークイオンプレーティング法等の成膜方法も用いることも可能である。   In the above embodiment, the thin film pigment is manufactured by the electron beam evaporation method, but a film forming method such as a sputtering method or an arc ion plating method can also be used.

その例を示すと、図2の符号Bは、本発明に用いることができる他の成膜装置を示している。
この成膜装置Bは、真空室11を有しており、真空室11内には円筒状の成膜対象物13が中心軸線を水平にして配置されている。
For example, reference numeral B in FIG. 2 shows another film forming apparatus that can be used in the present invention.
This film forming apparatus B has a vacuum chamber 11, and a cylindrical film forming target 13 is arranged in the vacuum chamber 11 with the central axis line being horizontal.

真空室11の底壁と成膜対象物13の側面との間には、剥離剤用蒸発ルツボ14が配置され、真空室11の天井と成膜対象物13との間には、異なる材料から成るターゲット15、16が配置されている。   A stripping agent evaporation crucible 14 is disposed between the bottom wall of the vacuum chamber 11 and the side surface of the film formation target 13, and different materials are used between the ceiling of the vacuum chamber 11 and the film formation target 13. Targets 15 and 16 are arranged.

剥離剤用ルツボ14と成膜対象物13の間、及び各ターゲット15、16と成膜対象物13の間にはそれぞれシャッター191〜193が1個ずつ配置されている。 One shutter 19 1 to 19 3 is disposed between the release agent crucible 14 and the film formation target 13 and between each of the targets 15 and 16 and the film formation target 13.

真空室11内を真空排気した後、電子銃17から剥離剤用ルツボ14内に配置された剥離剤に電子線を照射し、蒸発させ、シャッター191を開けて成膜対象物13表面に剥離剤層を形成する。 After evacuating the inside of the vacuum chamber 11, the release agent disposed in the release agent crucible 14 is irradiated with an electron beam from the electron gun 17 to evaporate, and the shutter 19 1 is opened to release the release agent 13 on the surface. An agent layer is formed.

次に、電子線を停止すると共にシャッター191を閉じ、剥離剤の蒸気が成膜対象物13に到達しないようにした状態で、スパッタリングガスと酸化性ガスを真空室11内に導入し、第1のスパッタリング電源19により、最初のターゲット15に電圧を印加し、ターゲット15表面にプラズマを形成し、ターゲット15をスパッタリングする。 Then, closing the shutter 19 1 stops the electron beam, with the vapor of the release agent is prevented from reaching the film-forming target 13, by introducing a sputtering gas and the oxidizing gas into the vacuum chamber 11, the The first sputtering power source 19 applies a voltage to the first target 15 to form plasma on the surface of the target 15, and the target 15 is sputtered.

放電が安定したところで、そのターゲット15と成膜対象物13との間のシャッター192を開けると、ターゲット15表面から飛び出したスパッタリング粒子と酸化性ガスとの反応生成物が剥離層表面に堆積し、第1の薄膜が形成される。 When the discharge has stabilized, the opened shutter 19 2 between the target 15 and the film-forming object 13, the reaction product of sputtered particles jumped out from the target 15 surface and the oxidizing gas is deposited on the peeling layer surface A first thin film is formed.

次に、シャッター192を閉じ、第1のスパッタリング電源19を停止させた後、第2のスパッタリング電源20によって次のターゲット16に電圧を印加してスパッタリングを開始し、そのターゲット16と成膜対象物13の間のシャッター193を開け、そのターゲット16を構成するスパッタリング粒子と酸化性ガスの反応生成物から成る第2の薄膜を第1の薄膜表面に形成する。 Then, closing the shutter 19 2, after stopping the first sputtering power supply 19, the second sputtering power supply 20 to begin sputtering voltage is applied to the next target 16, the film-forming target and that target 16 opening the shutter 19 3 between the object 13 to form a second thin film made of the reaction product of sputtered particles and the oxidizing gas constituting the target 16 to the first thin film surface.

そして、二個のターゲット15、16を交互にスパッタリングすると、多層薄膜から成る薄膜顔料が剥離層表面に形成される。
ここでも、剥離層としてはカーボン薄膜が形成されており、また、二個のターゲットは、それぞれチタンとシリコンで構成されたものが用いられている。酸化性ガスには酸素ガスが用いられ、第1の薄膜は酸化チタン薄膜、第2の薄膜は酸化シリコン薄膜が形成される。
When the two targets 15 and 16 are alternately sputtered, a thin film pigment composed of a multilayer thin film is formed on the surface of the release layer.
Again, a carbon thin film is formed as the release layer, and the two targets are made of titanium and silicon, respectively. Oxygen gas is used as the oxidizing gas, and a titanium oxide thin film is formed as the first thin film and a silicon oxide thin film is formed as the second thin film.

成膜対象物に剥離層と多層膜である薄膜顔料が形成されると、成膜対象物13は真空室11の外部に搬出され、上記と同じ手順によって薄膜顔料の剥離、乾燥と、加熱による酸化が行われる。また、粉末や粒径による分別も行われる。
なお、図2の符号21は防着板であり、剥離剤用ルツボ14やターゲット15、16等の蒸気が相互に混入することを防止している。
When the release layer and the thin film pigment that is a multilayer film are formed on the film formation target, the film formation target 13 is carried out of the vacuum chamber 11 and is peeled off, dried, and heated by the same procedure as described above. Oxidation takes place. In addition, sorting by powder and particle size is also performed.
Reference numeral 21 in FIG. 2 denotes an adhesion-preventing plate that prevents vapors from the release agent crucible 14 and the targets 15 and 16 from being mixed with each other.

上記実施例では、酸化チタン薄膜と酸化シリコン薄膜を交互に積層させて薄膜顔料を形成したが、薄膜顔料はそれに限定されるものではなく、透明であり、屈折率が異なる少なくとも二種類の誘電体薄膜を積層させたものであれば本発明に含まれる。   In the above embodiment, the thin film pigment is formed by alternately laminating the titanium oxide thin film and the silicon oxide thin film. However, the thin film pigment is not limited thereto, and is at least two kinds of dielectrics that are transparent and have different refractive indexes. Any thin film may be included in the present invention.

本発明方法によって得られた粉末状の薄膜顔料は、液体中に分散してインクにしてもよいし、ペースト状の樹脂に分散させ、塗料としてもよい。
なお、上記例では焼成した後、粉末化したが、粉末化した後、焼成して薄膜顔料を得てもよい。
The powdery thin film pigment obtained by the method of the present invention may be dispersed in a liquid to form an ink, or may be dispersed in a paste-like resin to form a paint.
In the above example, the powder is baked and then pulverized. However, the powder may be baked and then fired to obtain a thin film pigment.

また、上記は高屈折率の誘電体薄膜として酸化チタン(TiO2)の薄膜を用いたが、他に、ZrO2、Y23、HfO2、Nb25、ZnO、Ta25等の薄膜を一種又は二種以上組合わせて用いることができる。 In the above, a thin film of titanium oxide (TiO 2 ) is used as the dielectric thin film having a high refractive index, but in addition, ZrO 2 , Y 2 O 3 , HfO 2 , Nb 2 O 5 , ZnO, Ta 2 O 5 are used. These thin films can be used singly or in combination of two or more.

低屈折率の誘電体薄膜としては、酸化シリコン(SiO2)の他、Al23等の誘電体薄膜を用いることができる。 As the dielectric thin film having a low refractive index, a dielectric thin film such as Al 2 O 3 can be used in addition to silicon oxide (SiO 2 ).

本発明に用いることができる成膜装置の一例An example of a film forming apparatus that can be used in the present invention 本発明に用いることができる成膜装置の他の例Other examples of film forming apparatuses that can be used in the present invention 薄膜顔料の断面を説明するための図Diagram for explaining the cross section of thin film pigment 薄膜顔料の光学的特性を示すグラフ(横軸は波長nm、縦軸は反射率%)Graph showing optical properties of thin film pigments (horizontal axis is wavelength nm, vertical axis is reflectance%)

符号の説明Explanation of symbols

A、B……成膜装置
51〜64……屈折率が異なる二種類以上の誘電体薄膜
3、13……成膜対象物
A, B: Film formation apparatus 51-64: Two or more kinds of dielectric thin films having different refractive indexes 3, 13, ... Film formation target

Claims (2)

屈折率が異なる二種類以上の誘電体薄膜を成膜対象物上に積層させて薄膜顔料を形成する薄膜形成工程と、
前記薄膜顔料を前記成膜対象物から剥離する剥離工程と、
前記剥離された薄膜顔料を粉末化し、薄膜顔料を得る粉末化工程とを有する薄膜顔料製造方法であって、
前記剥離工程と前記粉末化工程の間に、前記薄膜顔料を加熱して酸化する酸化工程を有する薄膜顔料製造方法。
A thin film forming step of forming a thin film pigment by laminating two or more kinds of dielectric thin films having different refractive indexes on a film formation target; and
A peeling step of peeling the thin film pigment from the film formation target;
A method for producing a thin film pigment comprising powdering the peeled thin film pigment to obtain a thin film pigment,
The thin film pigment manufacturing method which has the oxidation process which heats and oxidizes the said thin film pigment between the said peeling process and the said powdering process.
前記成膜対象物上に剥離層を形成する剥離層形成工程を有し、
前記薄膜顔料を前記剥離層表面に形成する請求項1記載の薄膜顔料製造方法。
Having a release layer forming step of forming a release layer on the film formation target,
The method for producing a thin film pigment according to claim 1, wherein the thin film pigment is formed on a surface of the release layer.
JP2004122826A 2004-04-19 2004-04-19 Method for producing thin film pigment Pending JP2005307237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122826A JP2005307237A (en) 2004-04-19 2004-04-19 Method for producing thin film pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122826A JP2005307237A (en) 2004-04-19 2004-04-19 Method for producing thin film pigment

Publications (1)

Publication Number Publication Date
JP2005307237A true JP2005307237A (en) 2005-11-04

Family

ID=35436337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122826A Pending JP2005307237A (en) 2004-04-19 2004-04-19 Method for producing thin film pigment

Country Status (1)

Country Link
JP (1) JP2005307237A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081599A (en) * 2006-09-27 2008-04-10 Ulvac Japan Ltd Method for producing thin film pigment
WO2009057678A1 (en) * 2007-10-31 2009-05-07 Ebara-Udylite Co., Ltd. Film forming apparatus and film forming method
CN111103638A (en) * 2018-10-26 2020-05-05 深圳市融光纳米科技有限公司 Optical film with protective layer, nano-structure color crystal and preparation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081599A (en) * 2006-09-27 2008-04-10 Ulvac Japan Ltd Method for producing thin film pigment
WO2009057678A1 (en) * 2007-10-31 2009-05-07 Ebara-Udylite Co., Ltd. Film forming apparatus and film forming method
JP2009108381A (en) * 2007-10-31 2009-05-21 Raiku:Kk Film-forming apparatus and film-forming method
CN111103638A (en) * 2018-10-26 2020-05-05 深圳市融光纳米科技有限公司 Optical film with protective layer, nano-structure color crystal and preparation method

Similar Documents

Publication Publication Date Title
TWI538817B (en) Strongly absorbing layer system, method for producing said layer system and suitable sputtering target for said layer system
JP4178190B2 (en) Optical element having multilayer film and method for producing the same
Loquai et al. HiPIMS-deposited thermochromic VO2 films on polymeric substrates
Ishii et al. Low-temperature preparation of high-n TiO2 thin film on glass by pulsed laser deposition
WO2015097898A1 (en) Process for forming multilayer antireflection film
TW200907088A (en) Method and sputter-deposition system for depositing a layer composed of a mixture of materials and having a predetermined refractive index
TWI317384B (en) Process for the fabrication of a multiplayer and device to practising this process
JP4753973B2 (en) Film forming method and film forming apparatus
CN108351124A (en) A method of functional layer of the deposition suitable for heated absorption tube
TW200928460A (en) Optical filter, method for production of the same, and optical device equipped with the same
Shakoury et al. Optical and structural properties of TiO2 thin films deposited by RF magnetron sputtering
JP2005307237A (en) Method for producing thin film pigment
Rademacher et al. Sputtering of dielectric single layers by metallic mode reactive sputtering and conventional reactive sputtering from cylindrical cathodes in a sputter-up configuration
JP4538269B2 (en) Thin film pigment manufacturing method
CN111221057A (en) Optical member and method for manufacturing optical member
Suhail et al. Studies on the properties of zirconia films prepared by direct current reactive magnetron sputtering
JP5123785B2 (en) Method for forming antireflection film and antireflection film
JP4478497B2 (en) Deposition equipment
US20190169739A1 (en) An interference coating or its part consisting layers with different porosity
EP1680527B1 (en) Apparatus and process for high rate deposition of rutile titanium dioxide
JP5104273B2 (en) Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and manufacturing method thereof, gas barrier sheet and manufacturing method thereof
Vlček et al. Detailed pathway for a fast low-temperature synthesis of strongly thermochromic W-doped VO2 films with a low transition temperature
JP5253426B2 (en) Thin film pigment manufacturing method
JP4895897B2 (en) Thin film structure and manufacturing method thereof
JP2019020721A (en) Nd filter, and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061121

A977 Report on retrieval

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309