JP2005306668A - Ferrite sintered body - Google Patents

Ferrite sintered body Download PDF

Info

Publication number
JP2005306668A
JP2005306668A JP2004126257A JP2004126257A JP2005306668A JP 2005306668 A JP2005306668 A JP 2005306668A JP 2004126257 A JP2004126257 A JP 2004126257A JP 2004126257 A JP2004126257 A JP 2004126257A JP 2005306668 A JP2005306668 A JP 2005306668A
Authority
JP
Japan
Prior art keywords
αμir
sintered body
less
crystal grain
ferrite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004126257A
Other languages
Japanese (ja)
Other versions
JP4183187B2 (en
Inventor
Kensaku Asakura
健作 朝倉
Takuya Aoki
卓也 青木
Migaku Murase
琢 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004126257A priority Critical patent/JP4183187B2/en
Priority to TW093122124A priority patent/TWI303073B/en
Priority to KR1020040063191A priority patent/KR100617494B1/en
Priority to US10/931,299 priority patent/US7034649B2/en
Priority to CNB2004100751825A priority patent/CN100339335C/en
Priority to DE602004025886T priority patent/DE602004025886D1/en
Priority to EP04020904A priority patent/EP1512668B1/en
Publication of JP2005306668A publication Critical patent/JP2005306668A/en
Application granted granted Critical
Publication of JP4183187B2 publication Critical patent/JP4183187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferrite sintered body having a small absolute value of αμir(a relative temperature coefficient of initial magnetic permeability) in a wide temperature range of -40-140°C. <P>SOLUTION: This ferrite sintered body comprises, as main constituents, Fe<SB>2</SB>O<SB>3</SB>of 45.5-48 mol%, CuO of 5-10 mol%, ZnO of 26-30 mol% and the balance substantially NiO, and further comprises, as an additive, cobalt oxide of 0.005-0.045 wt.% in terms of CoO to the main constituents, and has an average crystal grain diameter of ≤5 μm. The absolute value of αμir can be made small by controlling the main constituents within the above range and by incorporating cobalt oxide by 0.005-0.045 wt.% in terms of CoO. Both the absolute value of αμir<SB>-40-20</SB>and the absolute value of αμir<SB>20-140</SB>can be made ≤3 ppm/°C by controlling the average crystal grain diameter relating to αμir to be ≤5 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、広い温度範囲で透磁率の変化が少なく、温度係数の絶対値が小さいフェライト焼結体に関するものである。   The present invention relates to a sintered ferrite body having a small change in magnetic permeability over a wide temperature range and a small absolute value of a temperature coefficient.

これまで、低温度係数を示すNi−Cu−Zn系フェライト材料として、特許文献1〜3に開示されたものが知られている。特許文献1〜3ではいずれも主組成を制御するとともに、副成分としてBi等を所定量含有させることで低温度係数を実現している。   Until now, what was indicated by patent documents 1-3 as a Ni-Cu-Zn system ferrite material which shows a low temperature coefficient is known. In each of Patent Documents 1 to 3, a low temperature coefficient is realized by controlling the main composition and adding a predetermined amount of Bi or the like as a subcomponent.

具体的には、特許文献1ではFe換算で46.0〜49.0モル%の範囲、酸化銅の含有量がCuO換算で4.0〜11.0モル%の範囲、酸化亜鉛の含有量がZnO換算で30.1〜33.0モル%の範囲、および、残部酸化ニッケルを含有し、これら主成分に対して副成分として酸化コバルトをCoO換算で0.005〜0.03重量%の範囲、酸化ビスマス をBi換算で0.1〜0.5重量%の範囲、酸化ケイ素をSiO換算で0.1〜0.6重量%の範囲、酸化マグネシウムをMgO換算で0.05〜1.0重量%の範囲で含有させている。
特許文献2では酸化鉄の含有量がFe23換算で40〜46モル%の範囲、酸化亜鉛の含有量がZnO換算で25.1〜30モル%の範囲、酸化ニッケルの含有量がNiO換算で10〜25モル%の範囲、および、残部酸化銅を含有し、これら主成分に対して副成分として酸化ビスマスをBi23換算で2重量%未満の範囲、酸化コバルトをCo34換算で0.1重量%以下の範囲で含有させている。
特許文献3ではNi−Cu−Zn系フェライトを主成分とし、NbをNb換算で0.2〜0.8wt%、TaをTa換算で0.3〜1.2wt%、MoをMoO換算で0.15〜1.35wt%の範囲で含有させている。
Specifically, in Patent Document 1, the range of 46.0 to 49.0 mol% in terms of Fe 2 O 3 , the content of copper oxide in the range of 4.0 to 11.0 mol% in terms of CuO, zinc oxide In the range of 30.1 to 33.0 mol% in terms of ZnO and the remaining nickel oxide, and cobalt oxide as a subcomponent with respect to these main components is 0.005 to 0.03 in terms of CoO. In the range of wt%, Bismuth oxide in the range of 0.1 to 0.5 wt% in terms of Bi 2 O 3 , Silicon oxide in the range of 0.1 to 0.6 wt% in terms of SiO 2 , Magnesium oxide in terms of MgO In a range of 0.05 to 1.0% by weight.
Range content of Patent Document 2 iron oxide is 40 to 46 mol% calculated as Fe 2 O 3, ranges the content of zinc oxide is 25.1 to 30 mol% in terms of ZnO, the content of nickel oxide NiO In the range of 10 to 25 mol% in terms of conversion and the remaining copper oxide, bismuth oxide as a minor component with respect to these main components in the range of less than 2% by weight in terms of Bi 2 O 3 , and cobalt oxide in Co 3 O It is contained in the range of 0.1% by weight or less in terms of 4 .
In Patent Document 3, Ni—Cu—Zn ferrite is the main component, Nb is 0.2 to 0.8 wt% in terms of Nb 2 O 3 , Ta is 0.3 to 1.2 wt% in terms of Ta 2 O 5 , Mo is contained in the range of 0.15 to 1.35 wt% in terms of MoO 3 .

特開2002−60224号公報Japanese Patent Laid-Open No. 2002-60224 特開2001−348226号公報JP 2001-348226 A 特開平5−3112号公報JP-A-5-3112

Ni−Cu−Zn系フェライト材料の主成分を制御するとともに上記副成分を含有させることで、上記特許文献1、2では初透磁率の相対温度係数(以下、αμir)の絶対値を5ppm/℃以下、上記特許文献3ではαμirの絶対値を1.3ppm/℃以下という特性を得ている。
しかしながら、特許文献1、2のαμirは20〜60℃における値であり、また特許文献3におけるαμirは−25〜85℃における値である。よって、より広範囲な温度域、例えば−40〜140℃においてαμirの絶対値が小さいフェライト材料が求められている。
本発明は、このような技術的課題に基づいてなされたもので、−40〜140℃という広範囲な温度域においてαμirの絶対値が小さいフェライト材料の提供を課題とする。
By controlling the main component of the Ni—Cu—Zn-based ferrite material and including the subcomponents, in Patent Documents 1 and 2, the absolute value of the relative temperature coefficient of initial permeability (hereinafter referred to as αμir) is 5 ppm / ° C. Hereinafter, in Patent Document 3, the absolute value of αμir is 1.3 ppm / ° C. or less.
However, αμir in Patent Documents 1 and 2 is a value at 20 to 60 ° C., and αμir in Patent Document 3 is a value at −25 to 85 ° C. Therefore, a ferrite material having a small absolute value of αμir in a wider temperature range, for example, −40 to 140 ° C., is demanded.
The present invention has been made based on such a technical problem, and an object thereof is to provide a ferrite material having a small absolute value of αμir in a wide temperature range of −40 to 140 ° C.

かかる目的のもと、本発明者らは、主成分および副成分を制御するとともに、焼結体の結晶粒径を微細なものとするアプローチにより、上記課題を解決した。すなわち、本発明はFe:45.5〜48mol%、CuO:5〜10mol%、ZnO:26〜30mol%、残部実質的にNiOの主成分に対して副成分として酸化コバルトをCoO換算で0.005〜0.045wt%の範囲で含有し、平均結晶粒径が5μm以下であることを特徴とするフェライト焼結体を提供する。主成分を上記した範囲内に制御するとともに、酸化コバルトをCoO換算で0.005〜0.045wt%で含有させることで、αμirの絶対値を小さくすることができる。
それに加え、αμirと相関がある平均結晶粒径を5μm以下に制御することで、αμir−40〜20の絶対値及びαμir20〜140の絶対値をともに3ppm/℃以下とすることができる。なお、αμir−40〜20及びαμir20〜140は、以下に従って求められるものとする。
αμir−40〜20=[(μi20−μi−40)/μi−40 ]×[1/(T20−T−40)]
αμir20〜140=[(μi140−μi20)/μi20 ]×[1/(T140−T20)]
μi−40:−40℃における初透磁率
μi20:20℃における初透磁率
μi140:140℃における初透磁率
Based on this object, the present inventors have solved the above problems by controlling the main component and subcomponents and making the crystal grain size of the sintered body fine. That is, the present invention is Fe 2 O 3: 45.5~48mol%, CuO: 5~10mol%, ZnO: 26~30mol%, balance substantially cobalt oxide CoO terms as a sub-component relative to the main component of the NiO And a ferrite sintered body characterized by having an average crystal grain size of 5 μm or less. The absolute value of αμir can be reduced by controlling the main component within the above-described range and containing cobalt oxide at 0.005 to 0.045 wt% in terms of CoO.
In addition, by controlling the average crystal grain size correlated with αμir to 5 μm or less, both the absolute value of αμir −40 to 20 and the absolute value of αμir 20 to 140 can be set to 3 ppm / ° C. or less. Note that αμir -40 to 20 and αμir 20 to 140 are obtained according to the following.
αμir -40~20 = [(μi 20 -μi -40) / μi -40 2] × [1 / (T 20 -T -40)]
αμir 20~140 = [(μi 140 -μi 20) / μi 20 2] × [1 / (T 140 -T 20)]
μi −40 : initial permeability at −40 ° C. μi 20 : initial permeability at 20 ° C. μi 140 : initial permeability at 140 ° C.

また、本発明者らの検討によると、結晶粒径の標準偏差を2μm以下とすることが、αμirの絶対値を小さくする上で重要である。
本発明のフェライト焼結体は125kHzにおける品質係数(Q値)が170以上、また125kHzにおける初透磁率μiが300以上という特性も有している。つまり、以上の本発明のアプローチによれば、磁気特性等を何ら損なうことなく−40〜140℃という広い温度範囲でαμirの絶対値を小さくすることができる。
Further, according to the study by the present inventors, it is important to make the standard deviation of the crystal grain size 2 μm or less in order to reduce the absolute value of αμir.
The ferrite sintered body of the present invention also has characteristics that the quality factor (Q value) at 125 kHz is 170 or more and the initial permeability μi at 125 kHz is 300 or more. That is, according to the above-described approach of the present invention, the absolute value of αμir can be reduced in a wide temperature range of −40 to 140 ° C. without any loss of magnetic characteristics or the like.

さらに本発明は、Fe:45.5〜48mol%、CuO:5〜10mol%、ZnO:26〜30mol%、残部実質的にNiOからなり、平均結晶粒径が5μm以下、かつ結晶粒径の標準偏差が2μm以下であることを特徴とするフェライト焼結体を提供する。
このフェライト焼結体は酸化コバルトの含有を必須とするものではないが、主成分を上記した範囲内に制御するとともに、平均結晶粒径を5μm以下、かつ結晶粒径の標準偏差を2μm以下とすることによって、αμir−40〜20の絶対値及びαμir20〜140の絶対値をともに3ppm/℃以下とすることができる。
なお、本発明において、副成分として酸化コバルトをCoO換算で0.005〜0.045wt%の範囲で含有することができる。
The present invention further, Fe 2 O 3: 45.5~48mol% , CuO: 5~10mol%, ZnO: 26~30mol%, the balance substantially of NiO, the average grain size of 5μm or less, and the crystal grain Provided is a ferrite sintered body characterized in that the standard deviation of the diameter is 2 μm or less.
This ferrite sintered body does not necessarily contain cobalt oxide, but the main component is controlled within the above range, the average crystal grain size is 5 μm or less, and the standard deviation of the crystal grain size is 2 μm or less. by, it can be less both 3 ppm / ° C. the absolute value of the absolute value and Arufamyuir 20 to 140 of αμir -40~20.
In the present invention, cobalt oxide can be contained in the range of 0.005 to 0.045 wt% in terms of CoO as an auxiliary component.

本発明によれば、高いQ値を有するとともに、−40〜140℃、さらには−40〜160℃という広範囲な温度域においてαμirの絶対値が小さいフェライト焼結体が提供される。   According to the present invention, there is provided a ferrite sintered body having a high Q value and a small absolute value of αμir in a wide temperature range of −40 to 140 ° C., and further −40 to 160 ° C.

<組織>
本発明のフェライト焼結体は、平均結晶粒径が5μm以下であり、結晶粒径の標準偏差が2μm以下であることを特徴としている。
本発明において平均結晶粒径を5μm以下とするのは、αμirと平均結晶粒径の相関が大きく、平均結晶粒径が5μmを超えると−40〜20℃におけるαμir(αμir−40〜20)の絶対値が3ppm/℃を上回ってしまうからである。一方、後述する実施例2で示すように、20〜140℃におけるαμir(αμir20〜140)は平均結晶粒径が小さくなるにつれてその値が小さくなる傾向がある。そこで、本発明では平均結晶粒径を5μm以下、望ましくは2〜5μmとする。これにより、−40〜20℃におけるαμir(αμir−40〜20)および20〜140℃におけるαμir(αμir20〜140)の両者を絶対値で3ppm/℃以下、さらには2.5ppm/℃以下、より望ましくは2ppm/℃以下とすることができる。
<Organization>
The ferrite sintered body of the present invention is characterized in that the average crystal grain size is 5 μm or less and the standard deviation of the crystal grain size is 2 μm or less.
In the present invention, the average crystal grain size is 5 μm or less because the correlation between αμir and the average crystal grain size is large, and when the average crystal grain size exceeds 5 μm, αμir (αμir −40 to 20 ) at −40 to 20 ° C. This is because the absolute value exceeds 3 ppm / ° C. On the other hand, as shown in Example 2 described later, αμir (αμir 20 to 140 ) at 20 to 140 ° C. tends to decrease as the average crystal grain size decreases. Therefore, in the present invention, the average crystal grain size is 5 μm or less, preferably 2 to 5 μm. Thereby, both αμir at −40 to 20 ° C. (αμir −40 to 20 ) and αμir at 20 to 140 ° C. (αμir 20 to 140 ) are absolute values of 3 ppm / ° C. or less, further 2.5 ppm / ° C. or less, More desirably, it can be set to 2 ppm / ° C. or less.

また、本発明において標準偏差を2μm以下とするのは、標準偏差とαμirも相関があるためである。標準偏差を2μm以下とすることで、−40〜20℃におけるαμir(αμir−40〜20)および20〜140℃におけるαμir(αμir20〜140)の両者を絶対値で3ppm/℃以下とすることができる。
平均結晶粒径が5μm以下である場合、結晶粒径の標準偏差を2μm以下とすることが望ましい。この場合における、望ましい標準偏差は1.9μm以下、より望ましくは1.5μm以下である。平均結晶粒径を5μm以下かつ結晶粒径の標準偏差を1.5μm以下とすることにより、−40〜20℃におけるαμir(αμir−40〜20)および20〜140℃におけるαμir(αμir20〜140)の両者を絶対値で2.0ppm/℃以下とすることも可能となる。
なお、標準偏差は平均結晶粒径にある程度依存するものではあるが、後述する手法、すなわち、粉砕時のメディア条件の制御、粉砕時間の調整、単位時間あたりの処理量の調整、焼成条件の制御等により変動させることができる。
In the present invention, the standard deviation is set to 2 μm or less because the standard deviation and αμir are also correlated. By the standard deviation and 2μm or less, to 3 ppm / ° C. or lower in absolute value of both αμir (αμir 20~140) in αμir (αμir -40~20) and 20 to 140 ° C. at -40~20 ° C. Can do.
When the average crystal grain size is 5 μm or less, the standard deviation of the crystal grain size is desirably 2 μm or less. In this case, a desirable standard deviation is 1.9 μm or less, more desirably 1.5 μm or less. By setting the average crystal grain size to 5 μm or less and the standard deviation of crystal grain size to 1.5 μm or less, αμir (αμir -40 to 20 ) at −40 to 20 ° C. and αμir (αμir 20 to 140 at 20 to 140 ° C. ) Both in absolute value can be 2.0 ppm / ° C. or less.
Although the standard deviation depends to some extent on the average crystal grain size, the method described later, that is, control of media conditions during grinding, adjustment of grinding time, adjustment of throughput per unit time, control of firing conditions Etc. can be changed.

<組成>
以下、本発明によるフェライト焼結体の組成限定理由について説明する。
本発明のフェライト焼結体の主成分を構成するFeの含有量が45.5mol%未満だとQ値が低く、キュリー点(以下、Tc)も低くなる。一方、Feの含有量が48mol%を超えるとαμir、特に−40〜20℃におけるαμir(αμir−40〜20)が大きくなり、その絶対値が3ppm/℃を上回ってしまう。したがって、本発明ではFeの含有量を45.5〜48mol%とする。望ましいFeの含有量は45.7〜47.5mol%、さらに望ましいFeの含有量は46.0〜47.0mol%である。
<Composition>
Hereinafter, the reasons for limiting the composition of the ferrite sintered body according to the present invention will be described.
When the content of Fe 2 O 3 constituting the main component of the ferrite sintered body of the present invention is less than 45.5 mol%, the Q value is low and the Curie point (hereinafter, Tc) is also low. On the other hand, if the content of Fe 2 O 3 exceeds 48 mol%, αμir, particularly αμir (αμir −40 to 20 ) at −40 to 20 ° C. increases, and the absolute value thereof exceeds 3 ppm / ° C. Accordingly, the present invention is a 45.5~48Mol% content of Fe 2 O 3. The desirable Fe 2 O 3 content is 45.7 to 47.5 mol%, and the more desirable Fe 2 O 3 content is 46.0 to 47.0 mol%.

本発明のフェライト焼結体の主成分を構成するCuOの含有量が5mol%未満だとQ値が低くなるとともに、抗応力特性が大きくなる。一方、CuOの含有量が10mol%を超えると、αμir、特に−40〜20℃におけるαμir(αμir−40〜20)が大きくなる。したがって、本発明ではCuOの含有量を5〜10mol%とする。望ましいCuOの含有量は5.5〜10mol%、さらに望ましいCuOの含有量は6〜9.5mol%である。 When the content of CuO constituting the main component of the ferrite sintered body of the present invention is less than 5 mol%, the Q value is lowered and the anti-stress characteristic is increased. On the other hand, when the content of CuO exceeds 10 mol%, αμir, particularly αμir (αμir −40 to 20 ) at −40 to 20 ° C. increases. Therefore, in this invention, content of CuO shall be 5-10 mol%. The desirable CuO content is 5.5 to 10 mol%, and the more desirable CuO content is 6 to 9.5 mol%.

本発明のフェライト焼結体の主成分を構成するZnOの含有量が26mol%未満だとαμir、特に−40〜20℃におけるαμir(αμir−40〜20)が大きくなる。一方、ZnOの含有量が30mol%を超えるとTcが低くなる。したがって、本発明ではZnOの含有量を26〜30mol%とする。望ましいZnOの含有量は26.5〜29.5mol%、さらに望ましいZnOの含有量は27〜29mol%である。
本発明のフェライト焼結体の主成分の残部が実質的にNiOである。
When the content of ZnO constituting the main component of the ferrite sintered body of the present invention is less than 26 mol%, αμir, particularly αμir (αμir −40 to 20 ) at −40 to 20 ° C. increases. On the other hand, when the ZnO content exceeds 30 mol%, Tc decreases. Therefore, in this invention, content of ZnO shall be 26-30 mol%. A desirable ZnO content is 26.5 to 29.5 mol%, and a more desirable ZnO content is 27 to 29 mol%.
The balance of the main component of the ferrite sintered body of the present invention is substantially NiO.

本発明のフェライト焼結体は、上記の主成分に対して酸化コバルトをCoO換算で0.005〜0.045wt%含有する。CoOは高いQ値を得る上で、及びαμirの絶対値を小さくする上で重要な成分であり、0.005wt%未満だとQ値が低くなり、0.045wt%を超えるとαμirが大きくなる。望ましいCoOの含有量は0.01〜0.03wt%、さらに望ましいCoOの含有量は0.015〜0.025wt%である。   The ferrite sintered body of the present invention contains 0.005 to 0.045 wt% of cobalt oxide in terms of CoO with respect to the above main component. CoO is an important component for obtaining a high Q value and for reducing the absolute value of αμir, and when it is less than 0.005 wt%, the Q value becomes low, and when it exceeds 0.045 wt%, αμir increases. . The desirable CoO content is 0.01 to 0.03 wt%, and the more desirable CoO content is 0.015 to 0.025 wt%.

以上の組成を有するフェライト焼結体は、125kHzにおける初透磁率μiが300以上、また125kHzにおけるQ値が170以上を示すとともに、αμir−40〜20及びαμir20〜140が3ppm/℃以下という低い値を示す。
ところで、αμirは一般に以下の通り定義される。
αμir=[(μi−μi)/μi ]×[1/(T−T)]
μi:温度Tのときの初透磁率
μi:温度Tのときの初透磁率
本発明は、−40〜140℃の温度範囲においてαμirの絶対値を小さくすることを目的としているが、本発明のフェライト焼結体は室温近傍でμi(初透磁率)にピークが存在している。そのため、μiを−40℃の初透磁率、μiを140℃の初透磁率としてαμirを求めると、当該ピーク位置において初透磁率μiの温度係数が大きくなったとしても、それが反映されないおそれがある。そこで本発明では、−40〜20℃、20℃〜140℃の2つの温度範囲に分けてαμirを求め、その両者の絶対値が3ppm/℃以下であることを要件としている。
The ferrite sintered body having the above composition has an initial permeability μi at 125 kHz of 300 or more, a Q value at 125 kHz of 170 or more, and αμir −40 to 20 and αμir 20 to 140 are as low as 3 ppm / ° C. or less. Indicates the value.
Incidentally, αμir is generally defined as follows.
αμir = [(μi 2 −μi 1 ) / μi 1 2 ] × [1 / (T 2 −T 1 )]
μi 1 : Initial permeability at temperature T 1 μi 2 : Initial permeability at temperature T 2 The present invention aims to reduce the absolute value of αμir in the temperature range of −40 to 140 ° C. The ferrite sintered body of the present invention has a peak in μi (initial permeability) near room temperature. Therefore, when αμir is obtained with μi 1 as the initial permeability of −40 ° C. and μi 2 as the initial permeability of 140 ° C., even if the temperature coefficient of the initial permeability μi increases at the peak position, it is not reflected. There is a fear. Therefore, in the present invention, αμir is obtained by dividing into two temperature ranges of −40 to 20 ° C. and 20 ° C. to 140 ° C., and the absolute value of both is 3 ppm / ° C. or less.

また、本発明のフェライト焼結体は、以上の組成を採用することにより、Tc(キュリー温度)を160℃以上とすることができる。高温度環境下における使用を確保する上でTcが高いことが要求され、本発明では180℃以上、さらには200℃以上のTcを得ることができる。
さらに、本発明のフェライト焼結体は、機械的強度も優れている。具体的には、20kgf/mm以上の3点曲げ強度を有している。なお、3点曲げ強度は角型サンプルを用いてJIS R1601に従って測定される値である。
Moreover, the ferrite sintered compact of this invention can make Tc (Curie temperature) 160 degreeC or more by employ | adopting the above composition. A high Tc is required to ensure use in a high temperature environment, and in the present invention, a Tc of 180 ° C. or higher, or 200 ° C. or higher can be obtained.
Furthermore, the ferrite sintered body of the present invention is also excellent in mechanical strength. Specifically, it has a three-point bending strength of 20 kgf / mm 2 or more. The three-point bending strength is a value measured according to JIS R1601 using a square sample.

さらに、本発明のフェライト焼結体は抗応力特性の絶対値を5%以下にすることができる。ここで、抗応力特性とは、圧縮応力に対するフェライト焼結体のインダクタンス値の変化の程度を言う。樹脂モールドタイプのインダクタ素子ではフェライト焼結体を樹脂モールドするが、樹脂硬化時にフェライト焼結体に圧縮応力が加わる。フェライト焼結体は圧縮応力の大きさに応じてインダクタンス値が変化するため、樹脂モールドタイプのインダクタンス素子では圧縮応力に対してインダクタンスの変化の少ない、抗応力に優れたフェライト焼結体であることが望まれる。絶対値で5%以下の抗応力特性を有している本発明のフェライト焼結体は、この要請に応え樹脂モールドタイプのインダクタ素子用フェライト焼結体として用いることができる。本発明のフェライト焼結体は、抗応力特性の絶対値を4%以下、さらには3%以下とすることができる。抗応力特性の具体的な算出方法は以下の通りである。
角型サンプルにワイヤを20回巻線した後、これに一定速度で一軸圧縮力を印加し、このときのインダクタンス値を連続的に測定し、得られた測定値からインダクタンス変化率を算出する。このときの一軸圧縮応力は1ton/cmとし、インダクタンス変化率は以下の式により求める。
(L−L)/L×100(%)
:一軸圧縮力印加時のインダクタンス値
:一軸圧縮力印加なしのインダクタンス値
Furthermore, the ferrite sintered body of the present invention can make the absolute value of the antistress characteristic 5% or less. Here, the anti-stress characteristic refers to the degree of change in the inductance value of the ferrite sintered body with respect to the compressive stress. In a resin mold type inductor element, a ferrite sintered body is resin-molded, and compressive stress is applied to the ferrite sintered body when the resin is cured. Since the ferrite sintered body has an inductance value that changes according to the magnitude of the compressive stress, the resin-molded type inductance element is a ferrite sintered body that has little change in inductance with respect to the compressive stress and has excellent anti-stress. Is desired. The ferrite sintered body of the present invention having an anti-stress characteristic of 5% or less in absolute value can be used as a resin mold type ferrite sintered body for inductor elements in response to this requirement. In the ferrite sintered body of the present invention, the absolute value of the anti-stress characteristic can be 4% or less, and further 3% or less. A specific calculation method of the anti-stress characteristic is as follows.
After winding a wire around a square sample 20 times, a uniaxial compressive force is applied thereto at a constant speed, the inductance value at this time is continuously measured, and the inductance change rate is calculated from the obtained measurement value. At this time, the uniaxial compressive stress is 1 ton / cm 2 and the inductance change rate is obtained by the following equation.
(L 1 −L 0 ) / L 0 × 100 (%)
L 1 : Inductance value when uniaxial compression force is applied L 0 : Inductance value without application of uniaxial compression force

次に、本発明によるフェライト焼結体の好適な製造方法を各工程順に説明する。上述のように、本発明によるフェライト焼結体は、焼結体の平均結晶粒径が5μm以下であること、ならびに焼結体の結晶粒径の標準偏差が2μm以下であることを特徴としている。このように微細かつばらつきが少ない組織を有するフェライト焼結体を得るためには、例えば仮焼き後の粉砕条件、焼成条件等を制御すればよい。これらの望ましい条件については各工程で説明する。   Next, the suitable manufacturing method of the ferrite sintered compact by this invention is demonstrated in order of each process. As described above, the ferrite sintered body according to the present invention is characterized in that the average crystal grain size of the sintered body is 5 μm or less, and the standard deviation of the crystal grain size of the sintered body is 2 μm or less. . In order to obtain a ferrite sintered body having such a fine structure with little variation, for example, pulverization conditions after calcining, firing conditions, and the like may be controlled. These desirable conditions will be described in each step.

<配合、混合工程>
まず、主成分をなす原料粉末として、例えば、Fe粉末、CuO粉末、ZnO粉末およびNiO粉末を用意する。これらの主成分をなす粉末に加えて、副成分をなすCoO粉末を用意する。用意する各原料粉末の粒径は0.1〜10μm、望ましくは0.1〜5μmの範囲で適宜選択すればよい。また、用意された原料粉末は例えばボールミルを用いて湿式混合する。混合は、ボールミルの運転条件にも左右されるが、20時間程度行なえば均一な混合状態を得ることができる。なお、副成分であるCoOの添加は湿式混合時に限らず、後述する仮焼き粉の粉砕時であっても同様の効果を得ることができる。
<Formulation, mixing process>
First, for example, an Fe 2 O 3 powder, a CuO powder, a ZnO powder, and a NiO powder are prepared as raw material powders that are main components. In addition to these main component powders, a CoO powder component is prepared. What is necessary is just to select suitably the particle size of each raw material powder to prepare in the range of 0.1-10 micrometers, desirably 0.1-5 micrometers. The prepared raw material powder is wet-mixed using, for example, a ball mill. The mixing depends on the operating conditions of the ball mill, but a uniform mixed state can be obtained if it is carried out for about 20 hours. The addition of CoO as a subcomponent is not limited to wet mixing, and the same effect can be obtained even when calcination of a calcined powder described later.

なお、本発明では、上述の主成分の原料に限らず、2種以上の金属を含む複合酸化物の粉末を主成分の原料としてもよい。例えば、塩化鉄、塩化Niを含有する水溶液を酸化焙焼することによりFe、Niを含む複合酸化物の粉末が得られる。この粉末とZnO粉末を混合して主成分原料としてもよい。このような場合には、後述する仮焼きは不要である。   In the present invention, not only the above-mentioned main component materials, but also a composite oxide powder containing two or more metals may be used as the main component materials. For example, a complex oxide powder containing Fe and Ni can be obtained by oxidizing and baking an aqueous solution containing iron chloride and Ni chloride. This powder and ZnO powder may be mixed and used as a main component raw material. In such a case, calcining described later is unnecessary.

<仮焼き工程>
原料粉末を混合した後、仮焼きを行なう。仮焼きは、保持温度を750〜900℃の範囲とし、また、雰囲気を大気とすればよい。また仮焼きの保持時間は2〜4時間とすればよい。
<Calcination process>
After mixing the raw material powder, calcining is performed. The calcining may be performed at a holding temperature in the range of 750 to 900 ° C. and the atmosphere may be air. The holding time for calcining may be 2 to 4 hours.

<粉砕工程>
仮焼き粉は例えばボールミルや気流粉砕機を用いて平均粒径0.5〜2.0μm程度、望ましくは0.5〜1.0μmまで粉砕される。粉砕粉末のサイズの指標として、平均粒径の他に比表面積があるが、比表面積は2.0〜4.0m/g、望ましくは2.5〜3.5m/gとすればよい。
平均結晶粒径が5μm以下、ならびに焼結体の結晶粒径の標準偏差が2μm以下である焼結体を得るには、粒径が小さく、かつ粒度分布の狭い粉末を成形する必要がある。よって、粉砕段階で粒径が小さく、かつ粒度分布の狭い粉末を得ておくことが望ましい。例えば、メディア条件の制御、粉砕時間の調整、単位時間あたりの処理量の調整、湿式粉砕の場合はスラリ濃度の調整等を行なうことにより、粒径が小さく、かつ粒度分布の狭い粉末を得ることができる。
具体的には、ボールミルを用いて粉砕を行う場合には、メディア条件の制御(メディアの量を多くする等)、粉砕時間を長くすることが有効である。メディアの量が少ないと粉砕されにくいため、メディアの量は被処理物200gに対し、600〜1800gとすることが望ましい。また粉砕時間は所定の比表面積が得られる程度に設定すればよい。
また粒径が小さく、かつ粒度分布の狭い粉末を得るためには気流粉砕機を用いて粉砕を行うことも有効である。気流粉砕機としては、分級機付きのものが望ましく、分級機付きの粉砕機を用いることにより、粗粉を除去あるいは再粉砕し目的の粒度分布とすることができる。また、粉砕レートを変更することも有効である。
<Crushing process>
The calcined powder is pulverized to an average particle size of about 0.5 to 2.0 [mu] m, preferably 0.5 to 1.0 [mu] m using, for example, a ball mill or an airflow pulverizer. As an index of the size of the pulverized powder, there is a specific surface area in addition to the average particle diameter, but the specific surface area may be 2.0 to 4.0 m 2 / g, preferably 2.5 to 3.5 m 2 / g. .
In order to obtain a sintered body having an average crystal grain size of 5 μm or less and a standard deviation of the crystal grain size of the sintered body of 2 μm or less, it is necessary to form a powder having a small particle size and a narrow particle size distribution. Therefore, it is desirable to obtain a powder having a small particle size and a narrow particle size distribution at the pulverization stage. For example, by controlling the media conditions, adjusting the grinding time, adjusting the throughput per unit time, and adjusting the slurry concentration in the case of wet grinding, obtain a powder with a small particle size and a narrow particle size distribution. Can do.
Specifically, when pulverization is performed using a ball mill, it is effective to control media conditions (for example, increase the amount of media) and to increase the pulverization time. Since the amount of media is difficult to be crushed when the amount of media is small, the amount of media is desirably 600 to 1800 g with respect to 200 g of the object to be processed. The grinding time may be set to such an extent that a predetermined specific surface area can be obtained.
In order to obtain a powder having a small particle size and a narrow particle size distribution, it is also effective to perform pulverization using an airflow pulverizer. The air pulverizer is desirably equipped with a classifier. By using a pulverizer equipped with a classifier, coarse powder can be removed or re-pulverized to obtain a desired particle size distribution. It is also effective to change the grinding rate.

なお、粒径が小さく、かつ粒度分布の狭い粉末を得る工程は、粉砕工程に限定されない。例えば、粉砕工程後に、粉砕工程で得られた粉砕粉末に対し、粗大粉を除去又は再粉砕する等の操作を行うことによって、粒度分布の狭い粉末を得るようにしてもよい。   The process for obtaining a powder having a small particle size and a narrow particle size distribution is not limited to the pulverization process. For example, after the pulverization step, the pulverized powder obtained in the pulverization step may be subjected to an operation such as removing or re-pulverizing the coarse powder to obtain a powder having a narrow particle size distribution.

主成分および副成分からなる粉砕粉末は、後の成形工程を円滑に実行するために顆粒に造粒することが望ましい。顆粒に造粒することで、粒度分布を狭い範囲に制御することが容易となる。
粉砕粉末に適当な結合材、例えばポリビニルアルコール(PVA)を少量添加し、これをスプレードライヤで噴霧、乾燥することにより顆粒を得ることができる。得られる顆粒の粒径は60〜200μm程度とすることが望ましい。
It is desirable that the pulverized powder composed of the main component and the subcomponent is granulated into granules in order to smoothly perform the subsequent molding process. By granulating into granules, it becomes easy to control the particle size distribution within a narrow range.
Granules can be obtained by adding a small amount of a suitable binder such as polyvinyl alcohol (PVA) to the pulverized powder, and spraying and drying it with a spray dryer. The particle size of the obtained granules is desirably about 60 to 200 μm.

得られた顆粒は、例えば所定形状の金型を有するプレスを用いて所望の形状に成形され、この成形体は焼成工程に供される。焼成における保持温度は、960〜1100℃、望ましくは980〜1060℃の範囲とすればよい。焼成温度が1070℃を超えると、粒成長が進みやすいため、焼結体の平均結晶粒径を5μm以下とすることが困難となる。一方、焼成温度が900℃を下回ると、焼結体の密度が低下し抗応力特性が低下するため望ましくない。
焼成時間は1〜4時間とすればよい。焼成時間が長くなるにつれ粒成長が進み、結晶粒径が大きくなる。それにともない、結晶粒径の標準偏差も大きくなってしまう。よって、平均結晶粒径を5μm以下とするには、焼成温度の制御とともに、焼成時間の制御も重要である。
なお、焼成は大気中で行えばよい。
The obtained granule is formed into a desired shape using, for example, a press having a mold having a predetermined shape, and this formed body is subjected to a firing step. The holding temperature in firing may be 960 to 1100 ° C, preferably 980 to 1060 ° C. When the firing temperature exceeds 1070 ° C., the grain growth is likely to proceed, so that it becomes difficult to make the average crystal grain size of the sintered body 5 μm or less. On the other hand, when the firing temperature is lower than 900 ° C., the density of the sintered body is lowered and the anti-stress characteristic is lowered, which is not desirable.
The firing time may be 1 to 4 hours. As the firing time becomes longer, grain growth proceeds and the crystal grain size becomes larger. As a result, the standard deviation of the crystal grain size also increases. Therefore, in order to make the average crystal grain size 5 μm or less, it is important to control the firing time as well as the firing temperature.
Note that the firing may be performed in the air.

主成分組成としてFe粉末、ZnO粉末、NiO粉末およびCuO粉末を最終組成(mol%)がFe:46.3,NiO:17.1,CuO:8.0,ZnO:28.6(mol%)となるように秤量し、この主成分組成に対してCoOを0.02wt%加えた。
次に、これらの原料を鋼鉄製のボールミルを用いて湿式混合し、得られた混合粉末を900℃で2時間仮焼きした。鋼鉄製のボールミルを使用し、表1に示す各種粉砕条件でこの仮焼き粉200gを粉砕し、4種類の粉砕粉末を得た。得られた粉砕粉末の比表面積および平均粒径を表2に示す。なお、以下で得られた粉砕粉末を適宜「種別Aの粉砕粉末(比表面積:2.86m/g、平均粒径:0.813μm)」、「種別Bの粉砕粉末(比表面積:2.70m/g、平均粒径:0.859μm)」、「種別Cの粉砕粉末(比表面積:3.16m/g、平均粒径:0.782μm)」、「種別Dの粉砕粉末(比表面積:2.56m/g、平均粒径:0.895μm)」という。
Fe 2 O 3 powder, ZnO powder, NiO powder and CuO powder as the main component composition are final compositions (mol%) of Fe 2 O 3 : 46.3, NiO: 17.1, CuO: 8.0, ZnO: 28 0.6 (mol%), and 0.02 wt% of CoO was added to the main component composition.
Next, these raw materials were wet-mixed using a steel ball mill, and the obtained mixed powder was calcined at 900 ° C. for 2 hours. Using a steel ball mill, 200 g of this calcined powder was pulverized under various pulverization conditions shown in Table 1 to obtain four types of pulverized powder. Table 2 shows the specific surface area and average particle size of the pulverized powder obtained. In addition, the pulverized powder obtained below was appropriately classified as “type A pulverized powder (specific surface area: 2.86 m 2 / g, average particle size: 0.813 μm)”, “type B pulverized powder (specific surface area: 2. 70 m 2 / g, average particle size: 0.859 μm) ”,“ type C ground powder (specific surface area: 3.16 m 2 / g, average particle size: 0.782 μm) ”,“ type D ground powder (ratio) Surface area: 2.56 m 2 / g, average particle size: 0.895 μm) ”.

次いで、得られた種別A〜Dの粉砕粉末に、バインダとしてポリビニルアルコール水溶液を添加して造粒した。こうして得られた平均粒径60〜200μmの顆粒を用いて、電磁気特性評価用のトロイダル形状試料(外径20mm、内径10mm、高さ5mm)をプレス成形により得た。なお、成形密度が3.20Mg/mとなるように成形した。
成形体を表1に示す各温度で焼成し、試料No.1〜12を得た。試料No.1〜12の平均結晶粒径を求め、その結果に基づき結晶粒径の標準偏差を求めた。それらの結果を表1に示す。なお、ここでの焼結体の結晶粒径とは、焼結体の断面(磁気配向方向の軸を含む面)を観察し、個々の結晶粒径を画像解析により計測した結果から求めた値である。具体的には鏡面研磨した焼結体断面を光学顕微鏡にて観察し、個々の粒子を認識した後、個々の粒子の面積を画像処理により求め、その値と同面積となる円の直径として算出した値である。1試料あたり、200〜300個の結晶粒について計測を行った。平均結晶粒径は、全測定粒子の結晶粒径の平均値とした。
Next, an aqueous polyvinyl alcohol solution was added as a binder to the obtained pulverized powders of types A to D and granulated. Using the thus-obtained granules having an average particle size of 60 to 200 μm, a toroidal sample (outer diameter 20 mm, inner diameter 10 mm, height 5 mm) for electromagnetic property evaluation was obtained by press molding. In addition, it shape | molded so that a shaping | molding density might be 3.20Mg / m < 3 >.
The molded body was fired at each temperature shown in Table 1. 1-12 were obtained. Sample No. The average crystal grain size of 1 to 12 was obtained, and the standard deviation of the crystal grain size was obtained based on the result. The results are shown in Table 1. The crystal grain size of the sintered body here is a value obtained from the result of observing the cross section of the sintered body (surface including the axis of the magnetic orientation direction) and measuring the individual crystal grain size by image analysis. It is. Specifically, the cross section of the mirror-polished sintered body is observed with an optical microscope, and each particle is recognized. Then, the area of each particle is obtained by image processing and calculated as the diameter of a circle having the same area as that value. It is the value. Measurement was performed on 200 to 300 crystal grains per sample. The average crystal grain size was the average value of the crystal grain sizes of all measured particles.

得られたトロイダル形状の試料にワイヤを20回巻線した後、インピーダンスアナライザ(横河ヒューレットパッカード社製4192A)にて125kHzにおける透磁率を測定した。この測定結果に基づくμi、αμir−40〜20及びαμir20〜140を表1に示してある。なお、図1は試料No.1〜4の焼結体平均結晶粒径とαμir−40〜20との関係を示すグラフ、図2は試料No.1〜4における結晶粒径の標準偏差とαμir−40〜20との関係を示すグラフである。
また、得られたトロイダル形状の試料にワイヤを20回巻線した後、上述のインピーダンスアナライザにて125kHzにおけるR値を測定し、式:R/2πfL=1/QよりQ値を求めた。その結果を表1に示す。
After winding the wire 20 times on the obtained toroidal sample, the permeability at 125 kHz was measured with an impedance analyzer (Yokogawa Hewlett-Packard 4192A). Table 1 shows μi, αμir -40 to 20 and αμir 20 to 140 based on the measurement result. Note that FIG. 1 to 4 are graphs showing the relationship between the average grain size of sintered bodies and αμir −40 to 20, and FIG. It is a graph which shows the relationship between the standard deviation of the crystal grain diameter in 1-4, and ( alpha) microir -40-20 .
Further, after winding the wire 20 times on the obtained toroidal sample, the R value at 125 kHz was measured with the impedance analyzer described above, and the Q value was obtained from the formula: R / 2πfL = 1 / Q. The results are shown in Table 1.

Figure 2005306668
Figure 2005306668

表1に示すように、比表面積および平均粒径が等しい粉砕粉末を用いても、焼成温度を高くすることで、焼結体の平均結晶粒径および標準偏差が大きくなる。
また、例えば種別Aの粉砕粉末を用いた試料No.1〜4と種別Dの粉砕粉末を用いた試料No.9〜12との比較により、焼成条件が等しくても、粉砕条件が異なれば得られる焼結体の平均結晶粒径および標準偏差が相違することがわかる。具体的には、種別Aの粉砕粉末を用いた試料No.1〜4と、種別Bの粉砕粉末を用いた試料No.5、6との比較により、粉砕粉末の粒径が小さく粉砕時間が長いほど、焼結体平均結晶粒径および標準偏差を小さくできることが確認できた。また、試料No.1〜4と、試料No.9〜12との比較により、メディアの量が少ないと粉砕時間を長くしても粉砕粉末の平均粒径が大きく、これを焼成するとやはり焼結体の平均結晶粒径が大きくなる傾向が確認できた。
As shown in Table 1, even when pulverized powder having the same specific surface area and average particle size is used, the average crystal particle size and standard deviation of the sintered body are increased by increasing the firing temperature.
In addition, for example, sample No. Sample Nos. 1 to 4 and type D ground powders were used. Comparison with 9 to 12 reveals that the average crystal grain size and standard deviation of the sintered bodies obtained are different if the pulverization conditions are different even if the firing conditions are the same. Specifically, Sample No. using a pulverized powder of Type A was used. 1 to 4 and sample Nos. 1 and 4 using type B ground powder. By comparison with 5 and 6, it was confirmed that the smaller the pulverized powder particle size and the longer the pulverization time, the smaller the sintered body average crystal particle size and standard deviation. Sample No. 1-4 and Sample No. Comparison with 9 to 12 shows that when the amount of media is small, the average particle size of the pulverized powder is large even if the pulverization time is lengthened, and when this is fired, the average crystal particle size of the sintered body tends to increase. It was.

ここで図1および表1に示すように、試料No.1〜4のいずれにおいても、平均結晶粒径が大きくなるにつれてαμir−40〜20が増加する。そして表1中、平均結晶粒径が5μmを上回る試料No.4、11、12については、−40〜20℃におけるαμir(αμir−40〜20)が3ppm/℃を超えてしまう。一方、平均結晶粒径が5μm以下の本発明による試料(試料No.1〜3、5〜10)によれば、αμir−40〜20およびαμir20〜140の両者について絶対値で3ppm/℃以下の値を得ることができる。 Here, as shown in FIG. In any of 1-4, αμir -40-20 increases as the average crystal grain size increases. In Table 1, Sample No. with an average crystal grain size exceeding 5 μm. About 4, 11, and 12, ( alpha ) microir (( alpha ) micro- 40-20 ) in -40-20 degreeC will exceed 3 ppm / degreeC . On the other hand, according to the samples according to the present invention having an average crystal grain size of 5 μm or less (sample Nos. 1 to 3 and 5 to 10), absolute values of both αμir −40 to 20 and αμir 20 to 140 are 3 ppm / ° C. Can be obtained.

次に、標準偏差とαμirに着目すると、図2に示すように標準偏差とαμirも相関があることがわかる。そして、標準偏差が2μm以下の試料(試料No.1〜3、5〜10)はαμir−40〜20およびαμir20〜140の両者について絶対値で3ppm/℃以下という値を得ることができる。これに対し、標準偏差が2μmを上回る試料(試料No.4、11、12)ではαμir−40〜20が大きいために、絶対値で3ppm/℃以下という低αμirを達成できる温度範囲が狭い。
以上の結果から、平均結晶粒径を5μm以下、さらには標準偏差を2μm以下と本発明が推奨する範囲内とすることにより、−40〜140℃という広い温度範囲で低い温度係数を得ることができることが確認できた。また、本発明による試料は測定周波数125kHzにおける初透磁率μiが300以上、Q値が170以上という特性を兼備している。よって、平均結晶粒径を5μm以下、標準偏差を2μm以下とする本発明による手法は、透磁率やQ値に悪影響を及ぼすものではない。
Next, focusing on the standard deviation and αμir, it can be seen that the standard deviation and αμir are also correlated as shown in FIG. Then, the sample standard deviation is less 2 [mu] m (sample Nanba1~3,5~10) can be obtained a value of 3 ppm / ° C. or lower in absolute value for both αμir -40~20 and αμir 20~140. On the other hand, in samples (sample Nos. 4, 11, and 12) having a standard deviation exceeding 2 μm, αμir −40 to 20 is large, and thus the temperature range in which a low αμir of 3 ppm / ° C. or less in absolute value can be achieved is narrow.
From the above results, it is possible to obtain a low temperature coefficient in a wide temperature range of −40 to 140 ° C. by setting the average crystal grain size to 5 μm or less and further to the standard deviation of 2 μm or less within the range recommended by the present invention. I was able to confirm that it was possible. The sample according to the present invention also has the characteristics that the initial permeability μi at a measurement frequency of 125 kHz is 300 or more and the Q value is 170 or more. Therefore, the method according to the present invention in which the average crystal grain size is 5 μm or less and the standard deviation is 2 μm or less does not adversely affect the magnetic permeability and the Q value.

主成分組成としてFe粉末、ZnO粉末、NiO粉末およびCuO粉末を表2に示される最終組成(mol%)となるように秤量し、この主成分組成に対してCoOを表2に示す量(wt%)だけ加えた。
次に、これらの原料を鋼鉄製のボールミルを用いて湿式混合し、得られた混合粉末を850℃で2時間仮焼きし、この仮焼き粉を鋼鉄製のボールミルにて混合粉砕した。得られた粉砕粉末は、平均粒径が0.5μmであった。
Fe 2 O 3 powder, ZnO powder, NiO powder and CuO powder as the main component composition are weighed to the final composition (mol%) shown in Table 2, and CoO is shown in Table 2 for this main component composition. Only the amount (wt%) was added.
Next, these raw materials were wet-mixed using a steel ball mill, and the obtained mixed powder was calcined at 850 ° C. for 2 hours, and this calcined powder was mixed and ground in a steel ball mill. The obtained pulverized powder had an average particle size of 0.5 μm.

次いで、得られた各仮焼き粉に、バインダとしてポリビニルアルコール水溶液を添加して造粒した。こうして得られた平均粒径70μmの顆粒を用いて、電磁気特性評価用のトロイダル形状試料(外径20mm、内径10mm、高さ5mm)、および、機械的強度評価用の角柱試料(幅5mm、厚さ4mm、長さ50mm)をプレス成形により得た。なお、成形密度が3.20Mg/mとなるように成形した。成形体を大気中、1020℃で2時間焼成し、表2に示す試料No.13〜33を得た。 Subsequently, the obtained calcined powder was granulated by adding an aqueous polyvinyl alcohol solution as a binder. Using the granules having an average particle diameter of 70 μm thus obtained, a toroidal sample for evaluating electromagnetic properties (outer diameter 20 mm, inner diameter 10 mm, height 5 mm) and a prismatic sample for evaluating mechanical strength (width 5 mm, thickness) 4 mm in length and 50 mm in length) was obtained by press molding. In addition, it shape | molded so that a shaping | molding density might be 3.20Mg / m < 3 >. The compact was fired at 1020 ° C. for 2 hours in the air, and sample No. 13-33 were obtained.

得られたトロイダル形状の試料について、125kHzにおける透磁率を測定した。この測定は、実施例1と同様の条件で行なった。この測定結果に基づくμi、αμir−40〜20及びαμir20〜160を表2に示してある。
また、実施例1と同様の条件でQ値を求めた。さらに、得られたトロイダル形状の試料についてTcを測定した。Tcの測定には、熱分析装置(真空理工社製TA7000)を用いた。また実施例1と同様の手順で焼結体の平均結晶粒径および標準偏差を求めた。これらの結果を表2に示す。
The magnetic permeability at 125 kHz was measured for the obtained toroidal sample. This measurement was performed under the same conditions as in Example 1. Table 2 shows μi, αμir -40 to 20 and αμir 20 to 160 based on the measurement result.
Further, the Q value was obtained under the same conditions as in Example 1. Further, Tc was measured for the obtained toroidal sample. For the measurement of Tc, a thermal analyzer (TA7000 manufactured by Vacuum Riko Co., Ltd.) was used. In addition, the average crystal grain size and standard deviation of the sintered body were determined in the same procedure as in Example 1. These results are shown in Table 2.

次に、得られた角柱試料を用いて3点曲げ強度及び抗応力特性を測定した。その結果も表2に示した。   Next, the three-point bending strength and the anti-stress characteristic were measured using the obtained prism sample. The results are also shown in Table 2.

Figure 2005306668
Figure 2005306668

表2に示すように、本発明の組成を有し、かつ焼結体平均結晶粒径が5μm以下である試料(No.14〜16、19〜22、25〜27、30〜32)は、−40〜20℃及び20〜160℃におけるαμirが3ppm/℃以下、Q値が170以上、Tcが160℃以上の特性を有している。加えて、これら試料は、20kgf/mm以上の曲げ強度及び5%以下の抗応力特性を有している。 As shown in Table 2, the samples (Nos. 14-16, 19-22, 25-27, 30-32) having the composition of the present invention and having a sintered body average crystal grain size of 5 μm or less, Αμir at −40 to 20 ° C. and 20 to 160 ° C. is 3 ppm / ° C. or less, Q value is 170 or more, and Tc is 160 ° C. or more. In addition, these samples have a bending strength of 20 kgf / mm 2 or more and an antistress property of 5% or less.

以上を前提にして試料No.13〜17を参照すると、Feが45.4mol%と少ないと品質係数(Q値)が170未満となることがわかる。また逆にFeが48.1mol%と多くなると、αμir−40〜20が3ppm/℃を超えてしまう。
また、試料No.18〜23を参照すると、ZnOが25.5mol%と少ないとαμir−40〜20が3ppm/℃を超えてしまう。逆に、ZnOが30.5mol%と多いとTcが160℃未満と低くなることがわかる。
さらに、試料No.24〜28を参照すると、CuOが4.9mol%と少ないとQ値が170未満と低い値を示すとともに、抗応力特性が−5.1%と低下することがわかる。また逆にCuOが11.0mol%と多くなると、αμir−40〜20が3ppm/℃を超えるとともにQ値が170未満となることがわかる。
さらにまた、試料No.29〜33を参照すると、CoOを添加しないとQ値が170未満の低い値を示す。しかし、CoOの添加量が0.05wt%と多くなるとαμir−40〜20が3ppm/℃を超えることがわかる。
以上の通り、主成分および副成分を制御するとともに、焼結体の結晶粒径を微細なものとするアプローチを採用する本発明によれば、高いQ値及び−40〜160℃という広い温度範囲で温度係数の絶対値を小さくすることが可能となる。
Based on the above, sample no. Referring to FIGS. 13 to 17, it is understood that the quality factor (Q value) is less than 170 when Fe 2 O 3 is as small as 45.4 mol%. Conversely, if Fe 2 O 3 increases to 48.1 mol%, αμir -40 to 20 exceeds 3 ppm / ° C.
Sample No. Referring to 18 to 23, if ZnO is as low as 25.5 mol %, αμir -40 to 20 exceeds 3 ppm / ° C. Conversely, it can be seen that when the ZnO content is as large as 30.5 mol%, the Tc is as low as less than 160 ° C.
Furthermore, sample no. Referring to 24-28, it can be seen that when CuO is as low as 4.9 mol%, the Q value is as low as 170 and the anti-stress characteristic is reduced to -5.1%. On the other hand, when CuO increases to 11.0 mol%, αμir -40 to 20 exceeds 3 ppm / ° C. and the Q value is less than 170.
Furthermore, sample no. When 29-33 are referred, Q value will show the low value of less than 170, without adding CoO. However, it can be seen that αμir −40 to 20 exceeds 3 ppm / ° C. when the amount of CoO added is increased to 0.05 wt%.
As described above, according to the present invention that adopts the approach of controlling the main component and subcomponents and making the crystal grain size of the sintered body fine, a high Q value and a wide temperature range of −40 to 160 ° C. This makes it possible to reduce the absolute value of the temperature coefficient.

試料No.1〜4の焼結体平均結晶粒径とαμir−40〜20との関係を示すグラフである。Sample No. It is a graph which shows the relationship between the sintered compact average crystal grain size of 1-4, and ( alpha) microir -40-20 . 試料No.1〜4における結晶粒径の標準偏差とαμir−40〜20との関係を示すグラフである。Sample No. It is a graph which shows the relationship between the standard deviation of the crystal grain diameter in 1-4, and ( alpha) microir -40-20 .

Claims (8)

Fe:45.5〜48mol%、CuO:5〜10mol%、ZnO:26〜30mol%、残部実質的にNiOの主成分に対して副成分として酸化コバルトをCoO換算で0.005〜0.045wt%の範囲で含有し、
平均結晶粒径が5μm以下であることを特徴とするフェライト焼結体。
Fe 2 O 3: 45.5~48mol%, CuO: 5~10mol%, ZnO: 26~30mol%, as an auxiliary component with respect to the main component of the balance substantially being NiO cobalt oxide in terms of CoO 0.005 Contained in the range of 0.045 wt%,
A ferrite sintered body having an average crystal grain size of 5 μm or less.
結晶粒径の標準偏差が2μm以下であることを特徴とする請求項1に記載のフェライト焼結体。   The ferrite sintered body according to claim 1, wherein the standard deviation of the crystal grain size is 2 μm or less. αμir−40〜20の絶対値及びαμir20〜140の絶対値が3ppm/℃以下であることを特徴とする請求項1または2に記載のフェライト焼結体。
ただし、αμir−40〜20=[(μi20−μi−40)/μi−40 ]×[1/(T20−T−40)]
αμir20〜140=[(μi140−μi20)/μi20 ]×[1/(T140−T20)]
μi−40:−40℃における初透磁率
μi20:20℃における初透磁率
μi140:140℃における初透磁率
3. The ferrite sintered body according to claim 1, wherein an absolute value of αμir −40 to 20 and an absolute value of αμir 20 to 40 are 3 ppm / ° C. or less.
However, αμir -40~20 = [(μi 20 -μi -40) / μi -40 2] × [1 / (T 20 -T -40)]
αμir 20~140 = [(μi 140 -μi 20) / μi 20 2] × [1 / (T 140 -T 20)]
μi −40 : initial permeability at −40 ° C. μi 20 : initial permeability at 20 ° C. μi 140 : initial permeability at 140 ° C.
125kHzにおける品質係数(Q値)が170以上であることを特徴とする請求項1〜3のいずれかに記載のフェライト焼結体。   The ferrite sintered body according to any one of claims 1 to 3, wherein a quality factor (Q value) at 125 kHz is 170 or more. 125kHzにおける初透磁率μiが300以上であることを特徴とする請求項1〜4のいずれかに記載のフェライト焼結体。   5. The ferrite sintered body according to claim 1, wherein initial permeability μi at 125 kHz is 300 or more. Fe:45.5〜48mol%、CuO:5〜10mol%、ZnO:26〜30mol%、残部実質的にNiOからなり、
平均結晶粒径が5μm以下、かつ結晶粒径の標準偏差が2μm以下であることを特徴とするフェライト焼結体。
Fe 2 O 3: 45.5~48mol%, CuO: 5~10mol%, ZnO: 26~30mol%, and the balance substantially NiO,
A ferrite sintered body having an average crystal grain size of 5 μm or less and a standard deviation of crystal grain size of 2 μm or less.
副成分として酸化コバルトをCoO換算で0.005〜0.045wt%の範囲で含有することを特徴とする請求項6に記載のフェライト焼結体。   The ferrite sintered body according to claim 6, wherein cobalt oxide is contained as a subcomponent in a range of 0.005 to 0.045 wt% in terms of CoO. αμir−40〜20の絶対値及びαμir20〜140の絶対値が3ppm/℃以下であることを特徴とする請求項6または7に記載のフェライト焼結体。
ただし、αμir−40〜20=[(μi20−μi−40)/μi−40 ]×[1/(T20−T−40)]
αμir20〜140=[(μi140−μi20)/μi20 ]×[1/(T140−T20)]
μi−40:−40℃における初透磁率
μi20:20℃における初透磁率
μi140:140℃における初透磁率
The ferrite sintered body according to claim 6 or 7, wherein an absolute value of αμir -40 to 20 and an absolute value of αμir 20 to 140 are 3 ppm / ° C or less.
However, αμir -40~20 = [(μi 20 -μi -40) / μi -40 2] × [1 / (T 20 -T -40)]
αμir 20~140 = [(μi 140 -μi 20) / μi 20 2] × [1 / (T 140 -T 20)]
μi −40 : initial permeability at −40 ° C. μi 20 : initial permeability at 20 ° C. μi 140 : initial permeability at 140 ° C.
JP2004126257A 2003-09-03 2004-04-22 Ferrite sintered body Expired - Lifetime JP4183187B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004126257A JP4183187B2 (en) 2004-04-22 2004-04-22 Ferrite sintered body
TW093122124A TWI303073B (en) 2003-09-03 2004-07-23 Ferrite material, ferrite sintered body, and inductor
KR1020040063191A KR100617494B1 (en) 2003-09-03 2004-08-11 Ferrite Material, Ferrite Sintering Material and Inductor Device
US10/931,299 US7034649B2 (en) 2003-09-03 2004-08-31 Ferrite material, ferrite sintered body, and inductor
CNB2004100751825A CN100339335C (en) 2003-09-03 2004-09-02 Ferrite material, ferrite sintered body, and inductor
DE602004025886T DE602004025886D1 (en) 2003-09-03 2004-09-02 Ferritic material, sintered ferritic body and inductor
EP04020904A EP1512668B1 (en) 2003-09-03 2004-09-02 Ferrite material, ferrite sintered body, and inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126257A JP4183187B2 (en) 2004-04-22 2004-04-22 Ferrite sintered body

Publications (2)

Publication Number Publication Date
JP2005306668A true JP2005306668A (en) 2005-11-04
JP4183187B2 JP4183187B2 (en) 2008-11-19

Family

ID=35435845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126257A Expired - Lifetime JP4183187B2 (en) 2003-09-03 2004-04-22 Ferrite sintered body

Country Status (1)

Country Link
JP (1) JP4183187B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147394A (en) * 2012-01-20 2013-08-01 Tdk Corp Ferrite sintered body and electronic component
JP2013147395A (en) * 2012-01-20 2013-08-01 Tdk Corp Ferrite sintered body and electronic component
WO2018168974A1 (en) * 2017-03-15 2018-09-20 日立金属株式会社 Ni-based ferrite sintered body, coil component, and method for manufacturing ni-based ferrite sintered body
CN111362684A (en) * 2019-11-20 2020-07-03 横店集团东磁股份有限公司 Method for improving MnZn power ferrite material Bs by moving valley point
JP2020155553A (en) * 2019-03-19 2020-09-24 日立金属株式会社 Nickel-based ferrite and coil component arranged by use thereof
JP2022070943A (en) * 2017-06-13 2022-05-13 日立金属株式会社 Ni-based ferrite core

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147394A (en) * 2012-01-20 2013-08-01 Tdk Corp Ferrite sintered body and electronic component
JP2013147395A (en) * 2012-01-20 2013-08-01 Tdk Corp Ferrite sintered body and electronic component
WO2018168974A1 (en) * 2017-03-15 2018-09-20 日立金属株式会社 Ni-based ferrite sintered body, coil component, and method for manufacturing ni-based ferrite sintered body
JPWO2018168974A1 (en) * 2017-03-15 2019-04-18 日立金属株式会社 Ni-based ferrite sintered body, coil component, and method of manufacturing Ni-based ferrite sintered body
EP3597617A4 (en) * 2017-03-15 2020-12-30 Hitachi Metals, Ltd. Ni-based ferrite sintered body, coil component, and method for manufacturing ni-based ferrite sintered body
US11242288B2 (en) 2017-03-15 2022-02-08 Hitachi Metals, Ltd. Sintered Ni ferrite body, coil device, and method for producing sintered Ni ferrite body
JP2022070943A (en) * 2017-06-13 2022-05-13 日立金属株式会社 Ni-based ferrite core
JP7255716B2 (en) 2017-06-13 2023-04-11 株式会社プロテリアル Ni-based ferrite core
JP2020155553A (en) * 2019-03-19 2020-09-24 日立金属株式会社 Nickel-based ferrite and coil component arranged by use thereof
JP7338183B2 (en) 2019-03-19 2023-09-05 株式会社プロテリアル Ni-based ferrite and coil parts using the same
CN111362684A (en) * 2019-11-20 2020-07-03 横店集团东磁股份有限公司 Method for improving MnZn power ferrite material Bs by moving valley point
CN111362684B (en) * 2019-11-20 2022-01-18 横店集团东磁股份有限公司 Method for improving MnZn power ferrite material Bs by moving valley point

Also Published As

Publication number Publication date
JP4183187B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
US7524433B2 (en) Ferrite material
JP4685893B2 (en) Manufacturing method of sintered magnet
US7034649B2 (en) Ferrite material, ferrite sintered body, and inductor
KR20160033037A (en) Ferrite composition for radio wave absorber and radio wave absorber
JP2004323283A (en) Ferrite sintered compact and manufacturing method for ferrite sintered compact
JP4183187B2 (en) Ferrite sintered body
JP3418827B2 (en) Mn-Zn ferrite and method for producing the same
KR101714895B1 (en) Ferrite composition for radio wave absorber and radio wave absorber
JP2007269503A (en) Ni-Cu-Zn BASED FERRITE MATERIAL AND METHOD OF MANUFACTURING THE SAME
JP4107667B2 (en) Ferrite material and inductor element
JP3812831B2 (en) Ferrite core manufacturing method and ferrite core
CN116323491A (en) MnZn ferrite and method for producing same
JP2006206420A (en) Ferritic sintered compact, its production method and coil component
JP2010215453A (en) NiCuZn FERRITE
JP2010111545A (en) Ferrite composition and inductor
JP4135869B2 (en) Ferrite sintered member and method for producing ferrite sintered member
JP2003221232A (en) Ferrite material and its production method
JPH09306718A (en) Ferrite magnetic material and method of fabricating the same
JP2006016280A (en) Ni-Cu-Zn FERRITE AND ITS MANUFACTURING METHOD
JP2006232647A (en) Ni-Cu-Zn-BASED FERRITE MATERIAL AND ITS PRODUCTION METHOD
JP3856722B2 (en) Manufacturing method of spinel type ferrite core
JP6413750B2 (en) Ferrite sintered body, electronic component using the same, and power supply device
TWI761757B (en) Manganese-cobalt-zinc-based fertilizer granulated iron and method for producing the same
JP4431944B2 (en) Magnetic ferrite sintered body and method for producing magnetic ferrite sintered body
JP2006160584A (en) Ni-Zn-BASED FERRITE COMPOSITION AND ANTENNA COIL

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4183187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5