JP2005304929A - Magnetic field generator and thermotherapy apparatus - Google Patents

Magnetic field generator and thermotherapy apparatus Download PDF

Info

Publication number
JP2005304929A
JP2005304929A JP2004128413A JP2004128413A JP2005304929A JP 2005304929 A JP2005304929 A JP 2005304929A JP 2004128413 A JP2004128413 A JP 2004128413A JP 2004128413 A JP2004128413 A JP 2004128413A JP 2005304929 A JP2005304929 A JP 2005304929A
Authority
JP
Japan
Prior art keywords
circuit
magnetic field
transformer
pulse
zero cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004128413A
Other languages
Japanese (ja)
Other versions
JP4621844B2 (en
Inventor
Koichi Igarashi
功一 五十嵐
Hiroshi Yamada
博志 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOMATSU POWERTRON KK
Original Assignee
KOMATSU POWERTRON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOMATSU POWERTRON KK filed Critical KOMATSU POWERTRON KK
Priority to JP2004128413A priority Critical patent/JP4621844B2/en
Publication of JP2005304929A publication Critical patent/JP2005304929A/en
Application granted granted Critical
Publication of JP4621844B2 publication Critical patent/JP4621844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic field generator and a thermotherapy apparatus, capable of automatically following the variation of the resonant frequency of a resonance circuit on the secondary side of a transformer. <P>SOLUTION: The magnetic field generator comprises an invertor circuit 2 connected to the primary side of the transformer 1 and a resonance load circuit 5 connected to the secondary side of the transformer comprising a magnetic field generating coil 3 and a resonance capacitor 4. The AC output of the invertor circuit is transmitted to the circuit on the secondary side of the transformer to generate a magnetic field from the magnetic field generating coil. The magnetic field generator also comprises a current detecting means 17 for detecting an electric current running in the circuit on the secondary side of the transformer, a zero cross detecting circuit 20 for detecting the zero cross of the detected current, a pulse generating circuit 30 for generating pulses synchronized with the detected zero cross, and a driving signal generating circuit 40 for generating a driving signal of the invertor circuit based on the pulse train outputted from the pulse generating circuit. As a result, the magnetic field generator can automatically follow the variation of the resonant frequency without using the PLL control. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は磁界発生装置、特にトランスの二次側に接続した共振負荷回路の共振周波数が変化しても、インバータ回路のスイッチング周波数を二次側共振周波数の変化に自動的に追従させることができる磁界発生装置に関するものである。
また、本発明は、上記磁界発生装置から発生した磁界を患者の患部に向けて照射し、患部だけを選択的に加温する温熱治療装置にも関するものである。
The present invention can automatically make the switching frequency of the inverter circuit follow the change of the secondary side resonance frequency even if the resonance frequency of the resonance load circuit connected to the secondary side of the magnetic field generator, particularly the transformer, changes. The present invention relates to a magnetic field generator.
The present invention also relates to a thermotherapy device that irradiates the affected area of a patient with a magnetic field generated from the magnetic field generator and selectively heats only the affected area.

癌の治療方法として、温熱療法(ハイパーサーミア法)が注目されている。この温熱治療方法は、癌細胞又は癌組織が正常細胞よりも熱に対して弱い性質を利用したものであり、癌の患部を例えば43℃前後で一定時間加加温することにより、癌細胞だけを壊死させる治療方法である。この治療方法では、デキストラン又はその誘導体と磁性酸化鉄との復号体である磁性流体、例えばデキストランマグネタイトを水性ゾルを患部に注入し、外部から強力な磁場を与えて癌の病巣だけを選択的に加熱している。   Hyperthermia (hyperthermia method) has attracted attention as a method for treating cancer. This hyperthermia treatment method utilizes the property that cancer cells or cancer tissues are more susceptible to heat than normal cells, and only the cancer cells are heated by heating the affected part of the cancer at, for example, around 43 ° C. for a certain period of time. Is a necrotic treatment method. In this treatment method, a magnetic fluid that is a decryption body of dextran or a derivative thereof and magnetic iron oxide, for example, dextran magnetite is injected into an affected area, and a strong magnetic field is applied from the outside to selectively select only a cancer lesion. Heating.

患者の患部に注入された磁性流体を加熱するためには、磁界発生装置を用いて外部から患部に向けて強力な磁界を発生する必要がある。この誘導加熱に好適な磁界発生装置として、トランスの一次側にインバータ回路を接続し二次側に磁界発生用のコイルと共振コンデンサとの共振負荷回路を接続し、磁界発生用コイルに高周波数の大電流を流す装置が用いられている。この既知の磁界発生では、この既知の磁界発生装置では、トランスの一次側に接続した一次側回路の駆動周波数を二次側に接続した共振負荷回路の共振周波数に等しくなるように設定し、電磁誘導により二次側の共振負荷回路に高周波数の大電流を供給している(例えば、トランス文献1参照)。
特開2002−360712号公報
In order to heat the magnetic fluid injected into the affected area of the patient, it is necessary to generate a strong magnetic field from the outside toward the affected area using a magnetic field generator. As a magnetic field generator suitable for this induction heating, an inverter circuit is connected to the primary side of the transformer, a resonant load circuit of a magnetic field generating coil and a resonant capacitor is connected to the secondary side, and a high frequency is connected to the magnetic field generating coil. A device for passing a large current is used. In this known magnetic field generation, in this known magnetic field generator, the drive frequency of the primary circuit connected to the primary side of the transformer is set to be equal to the resonance frequency of the resonant load circuit connected to the secondary side. A high-frequency large current is supplied to the secondary resonant load circuit by induction (see, for example, Transformer Document 1).
JP 2002-360712 A

トランスの一次側のインバータ回路の交流出力を二次側の共振負荷回路に伝達するエネルギー供給方法においては、インバータ回路のスイッチング周波数が二次側共振回路の共振周波数から変移すると、二次側回路のインピダンスが急激に増大し、二次側回路に伝達されるエネルギーが急激に低下してしまう。一方、トランスの二次側の共振負荷回路の共振周波数は、当該負荷回路を変更又は交換した場合個々の負荷回路毎に相違する。このような場合、負荷回路を変更する毎にインバータ回路のスイッチング周波数を設定し直す必要があり、設定作業が煩雑になる不具合がある。   In the energy supply method in which the AC output of the inverter circuit on the primary side of the transformer is transmitted to the resonant load circuit on the secondary side, when the switching frequency of the inverter circuit changes from the resonance frequency of the secondary side resonant circuit, The impedance increases rapidly, and the energy transmitted to the secondary circuit decreases rapidly. On the other hand, the resonance frequency of the resonant load circuit on the secondary side of the transformer differs for each load circuit when the load circuit is changed or replaced. In such a case, it is necessary to reset the switching frequency of the inverter circuit every time the load circuit is changed, and there is a problem that the setting work becomes complicated.

また、温熱療法に用いられる磁界発生装置においては、共振負荷の磁界発生用コイル及び共振コンデンサは動作温度や外部雰囲気温度と共にインダクタンス値及び容量値が変化するため、動作中にこれらの値の変化に応じて二次側回路の共振周波数が変化し、この結果二次側の負荷回路に伝達されるエネルギーが急激に低下してしまう。さらに、患者の患部の位置及び大きさによっても二次側回路のインピダンスが変化することが判明している。一方、治療中に共振周波数が変化すると、二次側に伝達されるべきエネルギーが急激に低下し、治療に必要な強度の磁界が発生できなくなってしまう。   In addition, in the magnetic field generator used for thermotherapy, the inductance value and the capacitance value of the magnetic field generating coil and the resonant capacitor of the resonant load change together with the operating temperature and the external ambient temperature. Accordingly, the resonance frequency of the secondary side circuit changes, and as a result, the energy transmitted to the load circuit on the secondary side rapidly decreases. Furthermore, it has been found that the impedance of the secondary circuit changes depending on the position and size of the affected area of the patient. On the other hand, if the resonance frequency changes during the treatment, the energy to be transmitted to the secondary side is abruptly reduced, and a magnetic field having a strength necessary for the treatment cannot be generated.

二次側回路のインピダンス値の変化に対応して制御する方法として、PLLを用いてフィードバック制御する方法が想定される。しかし、PLL制御を行うためには特定の周波数をターゲットとする発振器や高周波増幅器が必要であり、製造コストが高価になる欠点がある。   As a method for controlling in response to a change in the impedance value of the secondary circuit, a feedback control method using a PLL is assumed. However, in order to perform the PLL control, an oscillator or a high-frequency amplifier that targets a specific frequency is required, which has a drawback that the manufacturing cost is high.

従って、本発明の目的は、エネルギー供給されるべき共振負荷回路の構成要素を交換又は変更して二次側回路の共振周波数が変化しても共振周波数の変更に対して自動的に共振周波数に追従する磁界発生装置及び温熱治療装置を実現することにある。
また、本発明の別の目的は、装置の動作中にトランスの二次側の共振負荷回路の共振周波数が変化しても自動的に追従できる磁界発生装置及び及び治療システムを提供することにある。
Therefore, an object of the present invention is to automatically change the resonance frequency to the resonance frequency even if the resonance frequency of the secondary circuit changes by changing or changing the components of the resonance load circuit to be supplied with energy. The object is to realize a magnetic field generator and a thermal therapy device that follow.
Another object of the present invention is to provide a magnetic field generator and a treatment system that can automatically follow even if the resonant frequency of the resonant load circuit on the secondary side of the transformer changes during operation of the device. .

本発明による磁界発生装置は、トランスの一次側に接続したインバータ回路と、トランスの二次側に接続され、磁界発生用コイルと共振コンデンサを含む共振負荷回路とを具え、前記インバータ回路の交流出力を前記トランスの二次側回路に伝達して前記磁界発生用コイルから磁界を発生させる磁界発生装置において、
前記トランスの二次側回路を流れる電流を検出する電流検出手段と、検出した電流の零クロスを検出する零クロス検出回路と、検出された零クロスに同期したパルスを発生するパルス発生回路と、パルス発生回路から出力されるパルス列に基づいて前記インバータ回路の駆動信号を生成する駆動信号生成回路とを具えることを特徴とする。
A magnetic field generator according to the present invention comprises an inverter circuit connected to a primary side of a transformer and a resonant load circuit connected to a secondary side of the transformer and including a magnetic field generating coil and a resonant capacitor, and an AC output of the inverter circuit In a magnetic field generator for generating a magnetic field from the magnetic field generating coil by transmitting to the secondary side circuit of the transformer,
Current detecting means for detecting a current flowing through the secondary side circuit of the transformer, a zero cross detecting circuit for detecting a zero cross of the detected current, a pulse generating circuit for generating a pulse synchronized with the detected zero cross, And a drive signal generation circuit that generates a drive signal for the inverter circuit based on a pulse train output from the pulse generation circuit.

共振負荷回路の磁界発生用コイルから生ずる磁界の強度は、コイルに流れる電流の大きさ及びその周波数に対して比例関係にある。従って、共振電流の大電流化及び高周波化により被加熱物に発生する熱量を多くすることができる。一方、単純に大電流化しただけでは共振回路全体の損失も電流の2乗に比例して増大するため効率が低下してしまう。この効率低下に対してはQ値を高くして損失低減することにより抑制することができるが、Q値の高い共振回路では被加熱物の位置や周囲温度等の要因により共振周波数が設計値から変移した場合、その減衰特性から共振電流が急激に減少し、十分な強度の磁界を発生することができなくなってしまう。特に、癌治療に有効な温熱治療システムにおいては、周囲雰囲気の温度変化だけでなく、患者の患部の位置及び大きさ等の要因により二次側共振回路の共振周波数が大幅に変化する。この共振周波数の変化に対して、従来方法として、周波数スィープ等を利用して共振周波数を検出し、検出した共振周波数を中心周波数としたPLL方式による周波数追従制御方式が想定される。しかし、PLL制御を用いた場合、その追従性及び安定性を確保する観点より、共振周波数に対する減衰帯域が広くとれる範囲、すなわち、共振周波数<100kHz、Q<100程度の共振回路において数10A以下の共振電流を流すのが限界である。従って、PLL制御を用いるシステムにおいても、温熱治療方法に用いることができる程の強磁界を発生するための大電流化及び高周波化を図る場合、共振回路のQ値を一層高くして損失を抑制する必要がある。しかしながら、その結果として、共振周波数からの変位の許容範囲は数100分の1程度と極めて狭くなり、逆に、被加熱物すなわち患者の位置や患部の大きさ等による共振周波数の変動による影響を受け易く、PLLによる追従では限界があった。   The strength of the magnetic field generated from the magnetic field generating coil of the resonant load circuit is proportional to the magnitude of the current flowing through the coil and its frequency. Therefore, the amount of heat generated in the object to be heated can be increased by increasing the resonance current and increasing the frequency. On the other hand, simply increasing the current causes the loss of the entire resonance circuit to increase in proportion to the square of the current, resulting in a reduction in efficiency. This reduction in efficiency can be suppressed by increasing the Q value to reduce the loss, but in a resonance circuit with a high Q value, the resonance frequency can be reduced from the design value due to factors such as the position of the object to be heated and the ambient temperature. In the case of the change, the resonance current rapidly decreases due to the attenuation characteristic, and a magnetic field with sufficient strength cannot be generated. In particular, in a thermotherapy system that is effective for cancer treatment, the resonance frequency of the secondary resonance circuit changes significantly due to factors such as the position and size of the affected area of the patient as well as the temperature change of the surrounding atmosphere. For this change in resonance frequency, as a conventional method, a frequency tracking control method using a PLL method in which the resonance frequency is detected using a frequency sweep or the like and the detected resonance frequency is used as a center frequency is assumed. However, when PLL control is used, from the viewpoint of ensuring followability and stability, a range in which the attenuation band with respect to the resonance frequency can be widened, that is, a resonance circuit of about several tens A or less in a resonance circuit with a resonance frequency <100 kHz and Q <100. The limit is to pass the resonance current. Therefore, even in a system using PLL control, when a large current and a high frequency are generated to generate a strong magnetic field that can be used in a thermotherapy method, the Q value of the resonance circuit is further increased to suppress loss. There is a need to. However, as a result, the allowable range of displacement from the resonance frequency becomes extremely narrow, about 1/100, and conversely, the influence of the fluctuation of the resonance frequency due to the object to be heated, that is, the position of the patient, the size of the affected part, etc. It is easy to receive, and there is a limit in tracking by PLL.

これに対して、本発明は、共振周波数の変化は、共振電流の零クロスの発生瞬時の変化として捉えることができるという認識に基づいている。すなわち、共振周波数が高くなれば、共振電流の零クロスの発生間隔が短くなり、共振周波数が低くなるにしたがって零クロスの発生間隔が長くなる。従って、零クロスに同期したパルスを発生し、当該パルスに基づいてインバータ回路のスイッチング素子を駆動すれば、共振周波数を直接検出することなく、共振周波数の変化に自動的に追従することができる。本発明による制御方式を採用すれば、共振周波数=数100kHz、Q=数100程度の共振回路であっても十分な追従が可能である。ただし、インバータの出力電圧と電流との間に原理的に起こる位相差のために高周波側において無効電力が発生するが、商用電源側から見た場合、インバータとの間に直流変換回路が存在し、当該直流変換回路が無効電力を吸収するため殆ど影響を受けることはない。また、主回路のスイッチング素子や制御回路応答によって共振周波数がMHzとなる共振回路への適用は困難であるが、この周波数帯域では電界の影響による誘電加熱の要素が強くなり、誘導加熱による選択的加温の目的には適しないため問題とはならない。電磁波の発生効率としてとらえた場合、本発明により一層少ない損失での強磁場化が可能になる。   On the other hand, the present invention is based on the recognition that the change in the resonance frequency can be regarded as a change in the occurrence instant of the zero cross of the resonance current. That is, when the resonance frequency is increased, the generation interval of the zero cross of the resonance current is shortened, and the generation interval of the zero cross is increased as the resonance frequency is decreased. Therefore, by generating a pulse synchronized with the zero cross and driving the switching element of the inverter circuit based on the pulse, it is possible to automatically follow the change in the resonance frequency without directly detecting the resonance frequency. If the control system according to the present invention is employed, sufficient follow-up is possible even with a resonance circuit having a resonance frequency of several hundred kHz and Q = several hundred. However, reactive power is generated on the high frequency side due to the phase difference that occurs in principle between the output voltage and current of the inverter, but when viewed from the commercial power supply side, there is a DC conversion circuit between the inverter and the inverter. The DC conversion circuit absorbs reactive power and is hardly affected. In addition, it is difficult to apply to the resonance circuit whose resonance frequency is MHz due to the switching element of the main circuit and the response of the control circuit. However, in this frequency band, the element of dielectric heating due to the influence of the electric field becomes strong and selective by induction heating. It is not a problem because it is not suitable for the purpose of heating. When viewed as the generation efficiency of electromagnetic waves, the present invention enables a strong magnetic field with even less loss.

本発明による温熱治療システムは、 トランスの一次側に接続したインバータ回路と、トランスに二次側に接続され、磁界発生用コイルと共振コンデンサとの共振負荷回路とを具え、前記インバータ回路の交流出力を前記トランスの二次側回路に伝達して磁界発生用コイルから患者の患部に向けて磁界を発生し、患者の患部を選択的に加温する温熱治療装置において、
前記トランスの二次側回路を流れる電流を検出する電流検出手段と、検出された電流の零クロスを検出する零クロス検出回路と、検出された零クロスに同期したパルスを順次発生するパルス発生回路と、前記パルスに基づいて前記インバータ回路の駆動信号を生成する駆動信号生成回路とを具え、
前記磁界発生用コイルを電流路がコイル面内でスパイラル状に延在するパン型コイルとし、前記インバータ回路を、前記共振負荷回路の共振周波数にほぼ等しい周波数で駆動することを特徴とする。
A thermal treatment system according to the present invention includes an inverter circuit connected to a primary side of a transformer and a resonant load circuit connected to a secondary side of the transformer and including a magnetic field generating coil and a resonant capacitor, and the AC output of the inverter circuit In the thermotherapy device that transmits the magnetic field to the affected part of the patient from the coil for generating the magnetic field to the secondary side circuit of the transformer, and selectively heats the affected part of the patient,
Current detecting means for detecting a current flowing through the secondary circuit of the transformer, a zero cross detecting circuit for detecting a zero cross of the detected current, and a pulse generating circuit for sequentially generating a pulse synchronized with the detected zero cross And a drive signal generation circuit that generates a drive signal of the inverter circuit based on the pulse,
The magnetic field generating coil is a pan-type coil whose current path extends spirally in the coil surface, and the inverter circuit is driven at a frequency substantially equal to the resonance frequency of the resonance load circuit.

本発明による磁界発生装置及び温熱治療装置の作用効果を要約すると以下の通りである。
(1) PLL制御を用いることなく、二次側回路の共振周波数の変化に自動的に追従することができる。従って、高いQ値を有する共振回路の制御に極めて好適である。
(2) 二次側回路の構成要素、例えば磁界発生用のコイルを患者に応じて交換したり又は変更した場合であっても、制御系になんら変更することなく、対応することができる。
(3) 動作中に、雰囲気温度の変化や患者の位置等の変化に起因して共振周波数が変化しても自動的に追従することができ、治療に必要な十分な磁界エネルギーを発生することができる。
The effects of the magnetic field generator and the thermotherapy device according to the present invention are summarized as follows.
(1) It is possible to automatically follow changes in the resonance frequency of the secondary circuit without using PLL control. Therefore, it is extremely suitable for controlling a resonance circuit having a high Q value.
(2) Even when the components of the secondary circuit, for example, the coil for generating a magnetic field is exchanged or changed depending on the patient, it can be handled without changing the control system.
(3) During operation, even if the resonance frequency changes due to changes in ambient temperature, patient position, etc., it can automatically follow and generate sufficient magnetic field energy necessary for treatment Can do.

図1は本発明による磁界発生装置の磁界発生部分の一例を示す線図であり、図2は制御系の回路構成を示す線図であり、図3及び図4は動作を説明するための信号波形図である。本例では、温熱治療法に用いられる磁界発生装置について説明する。図1を参照するに、トランス1の入力側にインバータ回路2を接続し、トランスの二次側には磁界発生コイル3と共振コンデンサ4との共振負荷回路5を接続する。インバータ回路2は、スイッチング素子として動作する4個のトランジスタ11〜14を有するH型のインバータ回路とする。4個のトランジスタ11〜14のベースにはドライバ回路11a〜14aをそれぞれ接続し、これらドライバ回路に駆動信号A及びBを供給して対角駆動させる。インバータ回路2には、入力端子15a及び15b介して直流変換回路16を接続し、直流変換回路の入力側に例えば3相200Vの商用電源を接続する。直流変換回路16は、整流平滑回路、昇圧コンバータ及び定電流コンバータを含み、例えばDC500Vの直流電力を入力端子15a及び15bに供給する。   FIG. 1 is a diagram showing an example of a magnetic field generating portion of a magnetic field generator according to the present invention, FIG. 2 is a diagram showing a circuit configuration of a control system, and FIGS. 3 and 4 are signals for explaining the operation. It is a waveform diagram. In this example, a magnetic field generator used for a thermal therapy will be described. Referring to FIG. 1, an inverter circuit 2 is connected to the input side of a transformer 1, and a resonant load circuit 5 including a magnetic field generating coil 3 and a resonant capacitor 4 is connected to a secondary side of the transformer. The inverter circuit 2 is an H-type inverter circuit having four transistors 11 to 14 that operate as switching elements. Driver circuits 11a to 14a are connected to the bases of the four transistors 11 to 14, respectively, and drive signals A and B are supplied to these driver circuits for diagonal driving. A DC conversion circuit 16 is connected to the inverter circuit 2 via input terminals 15a and 15b, and a commercial power source of, for example, three phases 200V is connected to the input side of the DC conversion circuit. The DC conversion circuit 16 includes a rectifying / smoothing circuit, a boost converter, and a constant current converter, and supplies DC power of, for example, DC 500V to the input terminals 15a and 15b.

トランス1の二次側回路に接続した共振負荷回路5の磁界発生用コイル3は、平面内に電流路がスパイラル状に延在するパン型コイルとし、このパン型コイルから患者の患部に向けて磁界を発生する。さらに、トランス1の二次側回路には電流検出手段である電流プローブ17を接続し、この電流プローブにより二次側回路を流れる電流CTを検出する。本発明では、検出した共振電流の零クロスを用いてインバータ回路2の駆動信号を生成する。   The magnetic field generating coil 3 of the resonant load circuit 5 connected to the secondary side circuit of the transformer 1 is a pan-type coil whose current path extends in a spiral shape in a plane, and from this pan-type coil toward the affected part of the patient. Generate a magnetic field. Further, a current probe 17 serving as a current detecting means is connected to the secondary side circuit of the transformer 1, and the current CT flowing through the secondary side circuit is detected by this current probe. In the present invention, a drive signal for the inverter circuit 2 is generated using a zero cross of the detected resonance current.

図2を参照するに、電流プローブ17により検出した電流CTは、二次側回路を流れる電流の零クロスを検出する零クロス検出回路20に供給する。零クロス検出回路20は、互いに反対向きに並列接続した2個のダイオード21及び22と、これらダイオードに並列接続した抵抗23と、比較器24とにより構成する。比較器24から立ち上がり縁及び立ち下がり縁が零クロスに同期したu/v信号が交互に出力する。このu/v信号は、零クロスに同期したパルスを順次発生するパルス発生回路30に供給する。パルス発生回路30は、遅延回路31と排他的OR回路32により構成する。u/v信号は遅延回路31及び排他的OR回路32にそれぞれ供給する。排他的ORから共振電流CTの零クロスに同期したパルス幅500msのパルス列Zccが発生する。尚、遅延回路31による遅延時間は、用途に応じて適宜設定することができ、例えば一例として癌治療の温熱治療システムに適用する場合500nsとすることができる。   Referring to FIG. 2, the current CT detected by the current probe 17 is supplied to the zero cross detection circuit 20 that detects the zero cross of the current flowing through the secondary side circuit. The zero-cross detection circuit 20 includes two diodes 21 and 22 connected in parallel in opposite directions, a resistor 23 connected in parallel to these diodes, and a comparator 24. The comparator 24 alternately outputs u / v signals whose rising edges and falling edges are synchronized with a zero cross. The u / v signal is supplied to a pulse generation circuit 30 that sequentially generates pulses synchronized with zero crossing. The pulse generation circuit 30 includes a delay circuit 31 and an exclusive OR circuit 32. The u / v signal is supplied to the delay circuit 31 and the exclusive OR circuit 32, respectively. A pulse train Zcc having a pulse width of 500 ms synchronized with the zero crossing of the resonance current CT is generated from the exclusive OR. Note that the delay time by the delay circuit 31 can be set as appropriate according to the application, and can be set to 500 ns, for example, when applied to a thermal treatment system for cancer treatment.

共振電流の零クロスに同期したパルス列Zccは、インバータ回路を駆動するための駆動信号を生成する駆動信号発生回路40に供給する。また、動作の開始を指示するリセット信号を保護回路50を介して駆動信号発生回路40にも供給する。リセット信号は、保護回路50の3入力ORゲート51及び別のORゲート52に入力する。3入力ORゲート51の出力はカウンタ53のリセット入力に接続し、カウンタの別の入力には発振器54を接続する。カウンタ53の出力はデコーダ55に接続し、デコーダ55の出力をORゲート52の別の入力に接続する。   The pulse train Zcc synchronized with the zero crossing of the resonance current is supplied to a drive signal generation circuit 40 that generates a drive signal for driving the inverter circuit. In addition, a reset signal instructing the start of operation is also supplied to the drive signal generation circuit 40 via the protection circuit 50. The reset signal is input to the 3-input OR gate 51 and another OR gate 52 of the protection circuit 50. The output of the 3-input OR gate 51 is connected to the reset input of the counter 53, and the oscillator 54 is connected to the other input of the counter. The output of the counter 53 is connected to the decoder 55, and the output of the decoder 55 is connected to another input of the OR gate 52.

ORゲート52からの出力信号は駆動信号発生回路40に供給する。駆動信号発生回路40は、分周器を構成するフリップフロップ41、2つのANDゲート42及び43、並びにANDゲート42及び43の出力側にそれぞれ接続したデッドタイム生成回路(DT回路)44及び45を含む。パルス発生回路30からの出力信号Zccは、保護回路50の3入力ORゲート51及び駆動信号発生回路40の分周器41にそれぞれ供給する。分周器41のCLR入力には、ORゲート52を経てリセット信号が入力してイネーブルされ、このリセット信号はANDゲート42及び43にも入力する。従って、デッドタイム生成回路44及び45からパルス信号Zccが入力する毎に符号が反転した信号がANDゲート42及び43に入力し、デッドタイム生成回路44及び45から符号が互いに反転しインバータ回路を対角動作させる駆動信号A及びBをそれぞれ出力する。   An output signal from the OR gate 52 is supplied to the drive signal generation circuit 40. The drive signal generation circuit 40 includes flip-flops 41, two AND gates 42 and 43 constituting a frequency divider, and dead time generation circuits (DT circuits) 44 and 45 connected to output sides of the AND gates 42 and 43, respectively. Including. The output signal Zcc from the pulse generation circuit 30 is supplied to the 3-input OR gate 51 of the protection circuit 50 and the frequency divider 41 of the drive signal generation circuit 40, respectively. The CLR input of the frequency divider 41 is enabled by inputting a reset signal via the OR gate 52, and this reset signal is also input to the AND gates 42 and 43. Therefore, every time the pulse signal Zcc is input from the dead time generation circuits 44 and 45, a signal whose sign is inverted is input to the AND gates 42 and 43, and the signs are inverted from each other by the dead time generation circuits 44 and 45, and the inverter circuit is connected. Drive signals A and B for angular operation are output.

次に、零クロスの検出に失敗した場合について説明する。零クロスの検出に失敗すると、トランジスタの直流励起による発熱及び破損の問題が発生するおそれがあるため、一定周期で分周器41に対して強制的にクロック信号を供給する回路が必要となる。そのため、本例では、発振器54から2MHzのクロック信号をカウンタ53に供給し、当該カウンタにおいて周期50KPPS/パルス幅500nsのパルスであるタイムアウト信号(Tout)を生成し、システムリセットを生成するORゲート52に供給する。ORゲートの出力は分周器41にCLR入力に供給されるので、分周器41は常時特定の初期状態からスタートすることになる。さらに、ORゲート52の出力はANDゲート42及び43にも供給されるので、タイムアウト期間中に各A及びB出力は共にLレベルとなる。この結果、インバータ回路のトランジスタ11〜14はタイムアウト期間中オフとなり、タイムアウト信号ToutがHに戻った時点で再度特定の対角トランジスタがオンし、共振回路へ再びステップ電圧が印加される。尚、二次側回路の零クロスが正常に検出されている場合はクロス信号の供給は不要であるため、零クロス信号によりカウンタのリセットを行う。このように構成することにより、零クロス検出が正常な場合は零クロス同期での他励発振となり、零クロス検出が行われない場合には50kHzでの自励発振となる。   Next, a case where the zero cross detection fails will be described. If the detection of the zero cross fails, a problem of heat generation and damage due to direct current excitation of the transistor may occur. Therefore, a circuit for forcibly supplying a clock signal to the frequency divider 41 at a constant period is required. Therefore, in this example, a clock signal of 2 MHz is supplied from the oscillator 54 to the counter 53, and the counter 53 generates a timeout signal (Tout) that is a pulse with a period of 50 KPPS / pulse width 500 ns, and generates a system reset. To supply. Since the output of the OR gate is supplied to the CLR input to the frequency divider 41, the frequency divider 41 always starts from a specific initial state. Further, since the output of the OR gate 52 is also supplied to the AND gates 42 and 43, both the A and B outputs become L level during the timeout period. As a result, the transistors 11 to 14 of the inverter circuit are turned off during the timeout period. When the timeout signal Tout returns to H, the specific diagonal transistor is turned on again, and the step voltage is applied to the resonance circuit again. Note that when the zero cross of the secondary side circuit is normally detected, the supply of the cross signal is unnecessary, so the counter is reset by the zero cross signal. With this configuration, when the zero-cross detection is normal, the self-excited oscillation is performed at 50 kHz when the zero-cross detection is not performed.

本発明は、ハードウェアとしてだけでなく、コンピュータを用いてソフトウェアとしても制御することができる。ソフトウェアで制御する場合の工程は以下の通りである。
(ステップ1) インバータ回路の第1の電流路をオンすると共に他方の第2の電流路をオフし、トランスにステップ電圧を印加する。
(ステップ2) 電流検出手段により検出した共振電流をA/D変換してコンピュータに取り入れ、零クロスを検出する。
(ステップ3) 所定の時間期間内に零クロスを検出できない場合、ステップ1に戻る。
(ステップ4) 零クロスを検出した場合、第1の電流路をオフすると共に第2の電流路をオンし、所定のステップ電圧を印加する。
(ステップ5) 上記工程を繰り返す。
The present invention can be controlled not only as hardware but also as software using a computer. The process for controlling by software is as follows.
(Step 1) The first current path of the inverter circuit is turned on, the other second current path is turned off, and a step voltage is applied to the transformer.
(Step 2) The resonance current detected by the current detection means is A / D converted and taken into a computer to detect a zero cross.
(Step 3) If a zero cross cannot be detected within a predetermined time period, the process returns to Step 1.
(Step 4) When a zero cross is detected, the first current path is turned off and the second current path is turned on, and a predetermined step voltage is applied.
(Step 5) The above process is repeated.

本発明は上述した実施例だけに限定されず種々の変形や変更が可能である。例えば、上述した実施例では、トランスの二次側回路の電流を検出する手段として電流プローブを用いたが、分流器を用いて電圧に変換された信号を用いることもできる。また、共振コイルやコンデンサの両端電圧を用いて電流値に換算した値を用いることも可能である。
さらに、上述した実施例では、共振負荷回路として共振コイルと共振コンデンサとの直列共振回路を用いたが、勿論共振コイルとコンデンサとの並列共振回路を負荷回路とすることもできる。
The present invention is not limited to the above-described embodiments, and various modifications and changes can be made. For example, in the above-described embodiment, the current probe is used as a means for detecting the current in the secondary circuit of the transformer. However, a signal converted into a voltage using a shunt can be used. It is also possible to use a value converted into a current value using the voltage across the resonance coil or capacitor.
Further, in the above-described embodiment, a series resonance circuit of a resonance coil and a resonance capacitor is used as the resonance load circuit. Of course, a parallel resonance circuit of a resonance coil and a capacitor can be used as the load circuit.

本発明による磁界発生装置の一例としての回路構成を示す線図である。It is a diagram which shows the circuit structure as an example of the magnetic field generator by this invention. 磁界発生装置の制御系の構成を示す線図である。It is a diagram which shows the structure of the control system of a magnetic field generator. 正常動作時の各回路部分の信号波形を示す図である。It is a figure which shows the signal waveform of each circuit part at the time of normal operation. 零クロスを検出できなかった場合の各回路部分の信号波形を示す図である。It is a figure which shows the signal waveform of each circuit part when a zero cross cannot be detected.

符号説明Reference explanation

1 トランス
2 インバータ回路
3 磁界発生用コイル
4 共振コンデンサ
5 共振負荷回路
11〜14 トランジスタ
15a〜15b 入力端子
16 電圧変換器
17 電流プローブ
20 零クロス検出回路
30 パルス発生回路
40 駆動信号発生回路
50 保護回路
DESCRIPTION OF SYMBOLS 1 Transformer 2 Inverter circuit 3 Magnetic field generation coil 4 Resonance capacitor 5 Resonance load circuit 11-14 Transistors 15a-15b Input terminal 16 Voltage converter 17 Current probe 20 Zero cross detection circuit 30 Pulse generation circuit 40 Drive signal generation circuit 50 Protection circuit

Claims (5)

トランスの一次側に接続したインバータ回路と、トランスの二次側に接続され、磁界発生用コイルと共振コンデンサを含む共振負荷回路とを具え、前記インバータ回路の交流出力を前記トランスの二次側回路に伝達して前記磁界発生用コイルから磁界を発生させる磁界発生装置において、
前記トランスの二次側回路を流れる電流を検出する電流検出手段と、検出した電流の零クロスを検出する零クロス検出回路と、検出された零クロスに同期したパルスを発生するパルス発生回路と、パルス発生回路から出力されるパルス列に基づいて前記インバータ回路の駆動信号を生成する駆動信号生成回路とを具えることを特徴とする磁界発生装置。
An inverter circuit connected to the primary side of the transformer and a resonant load circuit connected to the secondary side of the transformer and including a magnetic field generating coil and a resonant capacitor, and the AC output of the inverter circuit is a secondary side circuit of the transformer In a magnetic field generator for generating a magnetic field from the magnetic field generating coil transmitted to
Current detecting means for detecting a current flowing through the secondary side circuit of the transformer, a zero cross detecting circuit for detecting a zero cross of the detected current, a pulse generating circuit for generating a pulse synchronized with the detected zero cross, A magnetic field generation device comprising: a drive signal generation circuit that generates a drive signal for the inverter circuit based on a pulse train output from a pulse generation circuit.
請求項1に記載の磁界発生装置において、前記駆動信号生成回路は、発生したパルス列の周波数を1/2に分周する分周器と、当該分周器の出力信号とパルス生成回路からの出力信号とに基づいて互いに符号が反対の駆動信号をそれぞれ出力する2つのANDゲートとを含むことを特徴とする磁界発生装置。   2. The magnetic field generation device according to claim 1, wherein the drive signal generation circuit divides the frequency of the generated pulse train by half, an output signal of the frequency divider, and an output from the pulse generation circuit. A magnetic field generator comprising: two AND gates each outputting a drive signal having a sign opposite to each other based on the signal. 前記インバータ回路の入力側には、商用電源を高圧直流電圧に変換する直流変換回路が接続されていることを特徴とする請求項1又は2に記載の磁界発生装置。   The magnetic field generator according to claim 1, wherein a DC conversion circuit that converts a commercial power source into a high-voltage DC voltage is connected to an input side of the inverter circuit. 請求項1から3までのいずれか1項に記載の磁界発生装置において、前記磁界発生コイルを電流路がコイル面内でスパイラル状に形成されたパン型コイルとし、当該パン型コイルから発生した磁界を患者の患部に向けて照射する温熱治療方法に用いることを特徴とする磁界発生装置。   The magnetic field generator according to any one of claims 1 to 3, wherein the magnetic field generating coil is a pan-type coil in which a current path is formed in a spiral shape in the coil surface, and a magnetic field generated from the pan-type coil. A magnetic field generator characterized in that it is used in a thermotherapy method that irradiates the affected area of the patient toward the affected area. トランスの一次側に接続したインバータ回路と、トランスに二次側に接続され、磁界発生用コイルと共振コンデンサとの共振負荷回路とを具え、前記インバータ回路の交流出力を前記トランスの二次側回路に伝達して磁界発生用コイルから患者の患部に向けて磁界を発生し、患者の患部を選択的に加温する温熱治療装置において、
前記トランスの二次側回路を流れる電流を検出する電流検出手段と、検出された電流の零クロスを検出する零クロス検出回路と、検出された零クロスに同期したパルスを順次発生するパルス発生回路と、前記パルスに基づいて前記インバータ回路の駆動信号を生成する駆動信号生成回路とを具え、
前記磁界発生用コイルを電流路がコイル面内でスパイラル状に延在するパン型コイルとし、前記インバータ回路を、前記共振負荷回路の共振周波数にほぼ等しい周波数で駆動することを特徴とする温熱治療装置。
An inverter circuit connected to the primary side of the transformer, and a resonant load circuit connected to the secondary side of the transformer and including a magnetic field generating coil and a resonant capacitor, and the AC output of the inverter circuit is a secondary side circuit of the transformer In a thermotherapy device that transmits a magnetic field to a patient's affected area from a magnetic field generating coil and selectively heats the patient's affected area,
Current detecting means for detecting a current flowing through the secondary circuit of the transformer, a zero cross detecting circuit for detecting a zero cross of the detected current, and a pulse generating circuit for sequentially generating a pulse synchronized with the detected zero cross And a drive signal generation circuit that generates a drive signal of the inverter circuit based on the pulse,
A thermal treatment characterized in that the magnetic field generating coil is a pan coil whose current path extends spirally in the coil surface, and the inverter circuit is driven at a frequency substantially equal to the resonance frequency of the resonance load circuit. apparatus.
JP2004128413A 2004-04-23 2004-04-23 Magnetic field generator and thermotherapy device Expired - Fee Related JP4621844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004128413A JP4621844B2 (en) 2004-04-23 2004-04-23 Magnetic field generator and thermotherapy device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128413A JP4621844B2 (en) 2004-04-23 2004-04-23 Magnetic field generator and thermotherapy device

Publications (2)

Publication Number Publication Date
JP2005304929A true JP2005304929A (en) 2005-11-04
JP4621844B2 JP4621844B2 (en) 2011-01-26

Family

ID=35434352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128413A Expired - Fee Related JP4621844B2 (en) 2004-04-23 2004-04-23 Magnetic field generator and thermotherapy device

Country Status (1)

Country Link
JP (1) JP4621844B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021112568A (en) * 2020-01-20 2021-08-05 シュアン−フア, チウHsuan−Hua Chiu Magnetic stimulation device with planar coil structure
CN114844362A (en) * 2022-04-26 2022-08-02 深圳信息职业技术学院 Control circuit and method of resonant converter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937894U (en) * 1982-08-31 1984-03-09 株式会社明電舎 Inverter control device
JPH03216989A (en) * 1990-01-22 1991-09-24 Sekisui Chem Co Ltd High-frequency induction heating device
JPH08251926A (en) * 1995-03-14 1996-09-27 Tamura Seisakusho Co Ltd Inverter circuit
JP2000116140A (en) * 1998-10-05 2000-04-21 Toshiba Corp High frequency power supply and ultrasonic wave generator
JP2002260833A (en) * 2000-12-27 2002-09-13 Mitsui Eng & Shipbuild Co Ltd Induction heating method and device
JP2002360712A (en) * 2001-06-06 2002-12-17 Komatsu Powertron Kk Induction heating method for living body and apparatus therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937894U (en) * 1982-08-31 1984-03-09 株式会社明電舎 Inverter control device
JPH03216989A (en) * 1990-01-22 1991-09-24 Sekisui Chem Co Ltd High-frequency induction heating device
JPH08251926A (en) * 1995-03-14 1996-09-27 Tamura Seisakusho Co Ltd Inverter circuit
JP2000116140A (en) * 1998-10-05 2000-04-21 Toshiba Corp High frequency power supply and ultrasonic wave generator
JP2002260833A (en) * 2000-12-27 2002-09-13 Mitsui Eng & Shipbuild Co Ltd Induction heating method and device
JP2002360712A (en) * 2001-06-06 2002-12-17 Komatsu Powertron Kk Induction heating method for living body and apparatus therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021112568A (en) * 2020-01-20 2021-08-05 シュアン−フア, チウHsuan−Hua Chiu Magnetic stimulation device with planar coil structure
JP7186347B2 (en) 2020-01-20 2022-12-09 シュアン-フア,チウ Magnetic stimulator with planar coil structure
CN114844362A (en) * 2022-04-26 2022-08-02 深圳信息职业技术学院 Control circuit and method of resonant converter
CN114844362B (en) * 2022-04-26 2023-02-03 深圳信息职业技术学院 Control circuit and method of resonant converter

Also Published As

Publication number Publication date
JP4621844B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
US5504309A (en) Induction heater having feedback control responsive to heat output
JP4815549B2 (en) Thermotherapy device
JP6073059B2 (en) High frequency current provider and method for surgical instruments
TWI525956B (en) Wireless power receiving and supplying apparatus, wireless power supply system and auto-adjusting assistant circuit
KR101134419B1 (en) Simultaneous dual frequency inverter system
TWI565182B (en) Wireless power receiving and supplying apparatus, and wireless power supplying system
JP6450766B2 (en) Resonant power supply with self-tuning
JP6985577B2 (en) Resonant rectifier circuit with capacitor sensing
JP6356416B2 (en) Control circuit for inverter circuit, inverter device provided with this control circuit, induction heating device provided with this inverter device, and control method
EP2784924B1 (en) Ac conversion circuit
TW201345104A (en) Wireless power supplying apparatus and wireless power supplying system
US9844099B2 (en) Induction heating apparatus
Leung et al. Pulse density modulated control patterns for inductively powered implantable devices based on energy injection control
WO2024046503A1 (en) Electric field generation device for inhibiting tumor cells and system
KR20140088324A (en) Induction heat cooking apparatus and method for controlling of output level the same
AU2018346513A1 (en) Magnetic field generation with magneto-caloric cooling
JP6313080B2 (en) High frequency power supply
JP4621844B2 (en) Magnetic field generator and thermotherapy device
US9648716B2 (en) Direct three phase parallel resonant inverter for reactive gas generator applications
JP2002017090A (en) Method and apparatus for driving piezoelectric transformer
JP2001128462A (en) Inverter device control method
JP6301112B2 (en) High frequency power supply
US20120019316A1 (en) Apparatus for driving a resonant circuit
JP4625881B2 (en) Resonance frequency detection method and magnetic field generator
JP2000116140A (en) High frequency power supply and ultrasonic wave generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070516

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees