JP2005304115A - Metal graphite brush - Google Patents

Metal graphite brush Download PDF

Info

Publication number
JP2005304115A
JP2005304115A JP2004113043A JP2004113043A JP2005304115A JP 2005304115 A JP2005304115 A JP 2005304115A JP 2004113043 A JP2004113043 A JP 2004113043A JP 2004113043 A JP2004113043 A JP 2004113043A JP 2005304115 A JP2005304115 A JP 2005304115A
Authority
JP
Japan
Prior art keywords
resistance layer
graphite
powder
lead wire
low resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004113043A
Other languages
Japanese (ja)
Inventor
Yuji Saito
雄次 斉藤
Nobushi Inada
信史 稲田
Yoshihiro Koike
吉弘 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004113043A priority Critical patent/JP2005304115A/en
Publication of JP2005304115A publication Critical patent/JP2005304115A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Current Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal graphite brush capable of reducing an electric loss without increasing electric resistance at a lead wire burying part and without impairing sliding characteristics. <P>SOLUTION: In the metal graphite brush having a three-layer structure of a high resistance layer principally composed of copper and graphite, an intermediate resistance layer and a low resistance layer with a lead wire buried in the low resistance layer, the low resistance layer contains 1-10 wt% of zinc. It is preferably satisfied in resistivities of the three layers that: the high-resistance layer > the intermediate resistance layer > the low-resistance layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電動機、発電機等に使用される回転電機用電刷子、特に自動車用スタータモータの金属黒鉛質電刷子に関する。   The present invention relates to an electric brush for a rotating electrical machine used for an electric motor, a generator, and the like, and more particularly, to a metal-graphite electric brush for an automobile starter motor.

回転電機などに用いられる電刷子の電気的損失は、回転電機全体の効率に大きな影響を及ぼす。そのため、高出力、高効率が求められる回転電機においては、電刷子の電気的損失は極力低いほうが望ましいとされている。   The electrical loss of an electric brush used for a rotating electrical machine greatly affects the efficiency of the entire rotating electrical machine. For this reason, in a rotating electrical machine that requires high output and high efficiency, it is desirable that the electrical loss of the electric brush is as low as possible.

電刷子の電気的損失を低減する手段としては、電刷子中に金属を含有させ、その金属含有量を増加し、電刷子本体の抵抗率を下げることが有効である。ところが、電刷子は摺動材料であるため潤滑性が乏しい金属の含有量を増加すると摺動特性が悪化し、摩耗量が増大するため、回転電機の寿命が短くなるという問題がある。また、回転電機の運転によって電刷子が高温となり、リード線埋め込み部の電気抵抗が増加し、電気的損失が増加するという問題がある。   As a means for reducing the electrical loss of the electric brush, it is effective to contain a metal in the electric brush, increase the metal content, and lower the resistivity of the electric brush body. However, since the electric brush is a sliding material, increasing the content of a metal having poor lubricity deteriorates the sliding characteristics and increases the amount of wear, resulting in a problem that the life of the rotating electrical machine is shortened. In addition, there is a problem that the electric brush becomes high temperature due to the operation of the rotating electric machine, the electrical resistance of the lead wire embedded portion increases, and the electrical loss increases.

この電気的損失の低減と摩耗量の低減という相反する要求特性を両立する手段としては、特許文献1に記載されているように、電刷子を高抵抗層と低抵抗層の電気抵抗が異なる複数の層で構成することで整流性能を向上させ、かつ火花発生量を減らし、整流子との接触電圧降下を増大させることなく摩耗量を低減させるか又は特許文献2に記載されているように、電刷子を高抵抗層と低抵抗層の層から構成し、そしてリード線を高抵抗層に触れることなく低抵抗層に埋設することで、リード線埋め込み部の電気的損失を低減する方法がある。   As a means for satisfying the conflicting required characteristics of reducing the electrical loss and reducing the amount of wear, as described in Patent Document 1, a plurality of electric resistances of the high resistance layer and the low resistance layer are different. As described in Patent Document 2, the commutation performance is improved by configuring the layers of the above, and the amount of spark generation is reduced, and the amount of wear is reduced without increasing the contact voltage drop with the commutator. There is a method of reducing the electrical loss of the lead wire embedded portion by constructing the electric brush from the high resistance layer and the low resistance layer and embedding the lead wire in the low resistance layer without touching the high resistance layer. .

特開平09−049478号公報JP 09-049478 A 特開平04−500580号公報Japanese Patent Laid-Open No. 04-500580

しかしながら上記に記載されているような方法では、電刷子の摺動特性を向上させるために黒鉛量を増加させると電気的損失も増加し、摺動特性とのバランスに制約を受けるという点では本質的には変わっていない。   However, in the method as described above, if the amount of graphite is increased in order to improve the sliding characteristics of the electrobrush, the electrical loss also increases, which is essential in that the balance with the sliding characteristics is limited. It has not changed.

本発明は、リード線埋め込み部の電気抵抗が増加せず、かつ摺動特性を損なうことなく電気的損失を低減できる金属黒鉛質電刷子を提供するものである。   The present invention provides a metal graphite electric brush that can reduce electrical loss without increasing the electrical resistance of the lead wire embedded portion and without impairing the sliding characteristics.

本発明は、銅及び黒鉛を主成分とした高抵抗層、中抵抗層及び低抵抗層を含む3層構造からなり、かつ低抵抗層にリード線を埋設してなる金属黒鉛質電刷子において、低抵抗層に亜鉛を1〜10重量%含有してなる金属黒鉛質電刷子に関する。   The present invention has a three-layer structure including a high resistance layer mainly composed of copper and graphite, a medium resistance layer, and a low resistance layer, and a metal graphite electrobrush in which lead wires are embedded in the low resistance layer. The present invention relates to a metal graphite electrobrush comprising 1 to 10% by weight of zinc in a low resistance layer.

本発明の電刷子は、リード線埋め込み部の電気抵抗が増加せず、かつ摺動特性を損なうことなく電気的損失を低減でき、工業的に極めて好適である。   The electric brush of the present invention is extremely industrially preferable because the electric resistance of the lead wire embedded portion does not increase and the electric loss can be reduced without impairing the sliding characteristics.

本発明になる電刷子は、図1に示されるように高抵抗層1、中抵抗層2、低抵抗層3及びリード線4から構成されており、リード線4を埋設する低抵抗層3には亜鉛を含有した材料が用いられる。   As shown in FIG. 1, the electroprinter according to the present invention includes a high resistance layer 1, a medium resistance layer 2, a low resistance layer 3 and a lead wire 4, and the low resistance layer 3 in which the lead wire 4 is embedded. A material containing zinc is used.

亜鉛含有量は、低抵抗層3を構成する全組成物中に1〜10重量%の範囲、好ましくは2〜8重量%の範囲とされ、亜鉛含有量が1重量%未満であるとリード線埋め込み部の電気抵抗が高く変化し易くなり電気的損失が増加する。一方、10重量%を超えるとリード線埋め込み部の初期における電気抵抗の値が高くなり電気的損失が増加する。   The zinc content is in the range of 1 to 10% by weight, preferably in the range of 2 to 8% by weight in the total composition constituting the low resistance layer 3, and the lead wire with the zinc content of less than 1% by weight. The electrical resistance of the buried portion is easily changed and electric loss increases. On the other hand, if it exceeds 10% by weight, the electrical resistance value at the initial stage of the lead wire embedded portion becomes high and the electrical loss increases.

高抵抗層1、中抵抗層2及び低抵抗層3それぞれの抵抗率は高抵抗層1>中抵抗層2>低抵抗層3の関係を満足していれば特に制限はないが、これらの抵抗率の関係を満足するためには、例えば、高抵抗層1の抵抗率は中抵抗層2の抵抗率の2〜20倍程度が好ましく、4〜16倍程度がより好ましく、8〜12倍程度がさらに好ましい。   The resistivity of each of the high resistance layer 1, the medium resistance layer 2 and the low resistance layer 3 is not particularly limited as long as the relationship of high resistance layer 1> medium resistance layer 2> low resistance layer 3 is satisfied. In order to satisfy the relationship of the rate, for example, the resistivity of the high resistance layer 1 is preferably about 2 to 20 times, more preferably about 4 to 16 times, more preferably about 8 to 12 times that of the middle resistance layer 2. Is more preferable.

また、低抵抗層3の抵抗率は中抵抗層2の抵抗率の2/3以下が好ましく、1/2以下がより好ましく、1/3以下がさらに好ましい。なお、中抵抗層2は電刷子の性能の大部分を決定する部位であるため、抵抗率は使用される回転電機の要求特性に合せて設定されるが、一般的には0.1〜30μΩ・m程度の値である。これらの各層の抵抗率は主に黒鉛を主成分とした電刷子に含有させる銅粉の量を調整して適宜選定する。   Further, the resistivity of the low resistance layer 3 is preferably 2/3 or less, more preferably 1/2 or less, and further preferably 1/3 or less of the resistivity of the medium resistance layer 2. In addition, since the middle resistance layer 2 is a part that determines most of the performance of the electric brush, the resistivity is set in accordance with the required characteristics of the rotating electric machine to be used, but generally 0.1 to 30 μΩ. -The value is about m. The resistivity of each of these layers is appropriately selected by adjusting the amount of copper powder to be contained in an electric brush mainly composed of graphite.

以下、本発明の実施例を説明する。
実施例1
平均粒径が50μmの天然黒鉛(日本黒鉛工業(株)製、商品名CB−150)80重量%及びレゾール型フェノール樹脂(日立化成工業(株)製、商品名VP−11N)20重量%を混練した後、65℃で16時間乾燥し、その後粉砕して平均粒径が150μmの樹脂処理黒鉛粉を得た。
Examples of the present invention will be described below.
Example 1
80% by weight of natural graphite having an average particle size of 50 μm (trade name CB-150, manufactured by Nippon Graphite Industries Co., Ltd.) and 20% by weight of resol type phenol resin (trade name VP-11N, manufactured by Hitachi Chemical Co., Ltd.) After kneading, it was dried at 65 ° C. for 16 hours and then pulverized to obtain a resin-treated graphite powder having an average particle size of 150 μm.

次に、この樹脂処理黒鉛粉45重量%及び平均粒径が35μmの電解銅粉(福田金属箔工業(株)製、商品名CE−25)55重量%を混合機で30分間混合して中抵抗層用の配合粉を得た。一方、上記で得た樹脂処理黒鉛粉65重量%及び上記で用いた電解銅粉35重量%を混合機で30分間混合して高抵抗層の配合粉を得た。
また、上記で得た樹脂処理黒鉛粉、上記で用いた電解銅粉及び平均粒径が30μmの亜鉛粉を表1に示す割合に秤量し、混合機で30分間混合して低抵抗層の配合粉を得た。
Next, 45% by weight of the resin-treated graphite powder and 55% by weight of electrolytic copper powder having an average particle size of 35 μm (trade name CE-25, manufactured by Fukuda Metal Foil Industry Co., Ltd.) are mixed for 30 minutes with a mixer. A blended powder for the resistance layer was obtained. On the other hand, 65% by weight of the resin-treated graphite powder obtained above and 35% by weight of the electrolytic copper powder used above were mixed with a mixer for 30 minutes to obtain a blended powder of a high resistance layer.
In addition, the resin-treated graphite powder obtained above, the electrolytic copper powder used above, and the zinc powder having an average particle size of 30 μm are weighed in the proportions shown in Table 1, and mixed for 30 minutes with a mixer to mix the low resistance layer. I got a powder.

次に、上記で得た各々の配合粉を金型の所定の位置にそれぞれ別々に充填し、さらに低抵抗層となる箇所にリード線を設置した後、成形プレスで392MPaの圧力で一体成形し、その後還元雰囲気中で700℃まで3時間で昇温し、700℃で1時間焼結し、次いで所定の形状、即ち、中抵抗層の部分が16×8×厚さ5.4mm、高抵抗層の部分が16×8×厚さ1.6mm及び低抵抗層の部分が16×7×厚さ7mmの寸法になるように機械加工して図1に示す形状の金属黒鉛質電刷子を得た。得られた金属黒鉛質電刷子の抵抗率を測定したところ高抵抗層は3.5μΩ・m、中抵抗層は0.4μΩ・m及び低抵抗層3は0.1μΩ・mであった。   Next, each blended powder obtained above is filled separately in predetermined positions of the mold, and further, lead wires are installed at the locations to become the low resistance layer, and then integrally molded with a molding press at a pressure of 392 MPa. Then, the temperature was raised to 700 ° C. in a reducing atmosphere in 3 hours, sintered at 700 ° C. for 1 hour, and then the predetermined shape, that is, the middle resistance layer portion was 16 × 8 × thickness 5.4 mm, high resistance 1 is obtained by machining so that the layer portion is 16 × 8 × 1.6 mm thick and the low resistance layer portion is 16 × 7 × 7 mm thick. It was. When the resistivity of the obtained metal graphite electric brush was measured, the high resistance layer was 3.5 μΩ · m, the middle resistance layer was 0.4 μΩ · m, and the low resistance layer 3 was 0.1 μΩ · m.

なお、抵抗率の測定は、各々の配合粉を単独で上記と同様の条件で成形、焼結後、機械加工して5×5×20mmの寸法の試験片を作製し、20mmの方向に1Aの電流を流した際の10mm間の電圧降下を測定し、次式により算出した。ここで、測定用試験片は20mm方向を成形加圧直角方向とした。   In addition, the resistivity is measured by molding each compounded powder under the same conditions as described above, sintering, and machining to prepare a test piece having a size of 5 × 5 × 20 mm, and 1A in the direction of 20 mm. The voltage drop between 10 mm when the current was passed was measured and calculated by the following formula. Here, in the test specimen for measurement, the 20 mm direction was set to the direction perpendicular to the molding pressure.

Figure 2005304115
Figure 2005304115

実施例2〜6
実施例1で得た樹脂処理黒鉛粉、実施例1で用いた電解銅粉及び平均粒径が30μmの亜鉛粉を表1に示す割合に秤量し、混合機で30分間混合して低抵抗層の配合粉を得た。その後、得られた低抵抗層の配合粉及び実施例1で得た中抵抗層用の配合粉と高抵抗層の配合粉を金型の所定の位置にそれぞれ別々に充填し、以下実施例1と同様の工程を経て実施例1と同形状の金属黒鉛質電刷子を得た。
Examples 2-6
The resin-treated graphite powder obtained in Example 1, the electrolytic copper powder used in Example 1 and the zinc powder having an average particle size of 30 μm are weighed in the proportions shown in Table 1, and mixed in a mixer for 30 minutes to form a low resistance layer Of powder was obtained. Thereafter, the obtained mixed powder for the low resistance layer and the mixed powder for the medium resistance layer and the mixed powder for the high resistance layer obtained in Example 1 were separately filled in predetermined positions of the mold, respectively. Through the same steps as in Example 1, a metal graphite electrobrush having the same shape as in Example 1 was obtained.

比較例1
実施例1で得た樹脂処理黒鉛粉及び実施例1で用いた電解銅粉を表1に示す割合に秤量し、混合機で30分間混合して亜鉛を含有しない低抵抗層の配合粉を得た。その後、得られた低抵抗層の配合粉及び実施例1で得た中抵抗層用の配合粉と高抵抗層の配合粉を金型の所定の位置にそれぞれ別々に充填し、以下実施例1と同様の工程を経て実施例1と同形状の金属黒鉛質電刷子を得た。
Comparative Example 1
The resin-treated graphite powder obtained in Example 1 and the electrolytic copper powder used in Example 1 are weighed in the proportions shown in Table 1, and mixed with a mixer for 30 minutes to obtain a low-resistance layer-containing powder containing no zinc. It was. Thereafter, the obtained mixed powder for the low resistance layer and the mixed powder for the medium resistance layer and the mixed powder for the high resistance layer obtained in Example 1 were separately filled in predetermined positions of the mold, respectively. Through the same steps as in Example 1, a metal graphite electrobrush having the same shape as in Example 1 was obtained.

比較例2
実施例1で得た樹脂処理黒鉛粉、実施例1で用いた電解銅粉及び平均粒径が30μmの亜鉛粉を表1に示す割合に秤量し、混合機で30分間混合して亜鉛の含有量が1重量%未満の低抵抗層の配合粉を得た。その後、得られた低抵抗層の配合粉及び実施例1で得た中抵抗層用の配合粉と高抵抗層の配合粉を金型の所定の位置にそれぞれ別々に充填し、以下実施例1と同様の工程を経て実施例1と同形状の金属黒鉛質電刷子を得た。
Comparative Example 2
The resin-treated graphite powder obtained in Example 1, the electrolytic copper powder used in Example 1 and the zinc powder having an average particle size of 30 μm are weighed in the proportions shown in Table 1, and mixed with a mixer for 30 minutes to contain zinc. A blended powder of a low resistance layer having an amount of less than 1% by weight was obtained. Thereafter, the obtained mixed powder for the low resistance layer and the mixed powder for the medium resistance layer and the mixed powder for the high resistance layer obtained in Example 1 were separately filled in predetermined positions of the mold, respectively. Through the same steps as in Example 1, a metal graphite electrobrush having the same shape as in Example 1 was obtained.

比較例3
実施例1で得た樹脂処理黒鉛粉、実施例1で用いた電解銅粉及び平均粒径が30μmの亜鉛粉を表1に示す割合に秤量し、混合機で30分間混合して亜鉛の含有量が10重量%を超える低抵抗層の配合粉を得た。その後、得られた低抵抗層の配合粉及び実施例1で得た中抵抗層用の配合粉と高抵抗層の配合粉を金型の所定の位置にそれぞれ別々に充填し、以下実施例1と同様の工程を経て実施例1と同形状の金属黒鉛質電刷子を得た。
Comparative Example 3
The resin-treated graphite powder obtained in Example 1, the electrolytic copper powder used in Example 1 and the zinc powder having an average particle size of 30 μm are weighed in the proportions shown in Table 1, and mixed with a mixer for 30 minutes to contain zinc. A blended powder of a low resistance layer with an amount exceeding 10% by weight was obtained. Thereafter, the obtained mixed powder for the low resistance layer and the mixed powder for the medium resistance layer and the mixed powder for the high resistance layer obtained in Example 1 were separately filled in predetermined positions of the mold, respectively. Through the same steps as in Example 1, a metal graphite electrobrush having the same shape as in Example 1 was obtained.

Figure 2005304115
Figure 2005304115

次に、実施例1〜6及び比較例1〜3で得られた金属黒鉛質電刷子について、製造直後(0時間のとき)のリード線埋め込み部の電圧降下値及び温度80℃、湿度90%の条件で100時間後、200時間後並びに250時間後におけるリード線埋め込み部の電圧降下値の経時変化を調べた。その結果を図2に示す。なお、リード線埋め込み部の電圧降下値は図3に示すように、A−B間に200Aの電流を流したときのC−D間の電圧降下を測定した値である。   Next, with respect to the metal graphite electrobrushes obtained in Examples 1 to 6 and Comparative Examples 1 to 3, the voltage drop value of the lead wire embedded portion immediately after production (at 0 hour), the temperature is 80 ° C., and the humidity is 90%. Under these conditions, the change over time in the voltage drop value of the lead wire embedded portion after 100 hours, 200 hours and 250 hours was examined. The result is shown in FIG. As shown in FIG. 3, the voltage drop value of the lead wire embedded portion is a value obtained by measuring the voltage drop between CD when a current of 200 A is passed between AB.

図2に示されるように、本発明になる実施例1〜6の金属黒鉛質電刷子は、比較例1〜3の金属黒鉛質電刷子に比較してリード線埋め込み部の電圧降下値の経時変化が小さいことが明らかである。なお、実施例1〜6の金属黒鉛質電刷子と比較例1〜3の金属黒鉛質電刷子は、リード線を埋設する低抵抗層を構成する成分が異なるだけで、中抵抗層と高低抗層の摺動部は同一成分であることから摺動特性に差はなく、これにより本発明の金属黒鉛質電刷子は比較例の金属黒鉛質電刷子に比較し、摺動特性を損なわずに電気的損失が低減されることが明らかである。   As shown in FIG. 2, the metal graphite electric brushes of Examples 1 to 6 according to the present invention have a time-dependent voltage drop value at the lead wire embedded portion as compared with the metal graphite electric brushes of Comparative Examples 1 to 3. It is clear that the change is small. In addition, the metal graphite electric brushes of Examples 1 to 6 and the metal graphite electric brushes of Comparative Examples 1 to 3 differ only in the components constituting the low resistance layer in which the lead wires are embedded, and the medium resistance layer and the high resistance film. Since the sliding parts of the layers are the same component, there is no difference in the sliding characteristics, so that the metal graphite electric brush of the present invention does not impair the sliding characteristics as compared with the metal graphite electric brush of the comparative example. It is clear that the electrical loss is reduced.

金属黒鉛質電刷子の構造を示す断面図である。It is sectional drawing which shows the structure of a metal graphite electrobrush. 放置時間とリード線埋め込み部の電圧降下との関係を示すグラフである。It is a graph which shows the relationship between leaving time and the voltage drop of a lead wire embedding part. リード線埋め込み部の電圧降下の測定方法を示す概略図である。It is the schematic which shows the measuring method of the voltage drop of a lead wire embedding part.

符号の説明Explanation of symbols

1 高抵抗層
2 中抵抗層
3 低抵抗層
4 リード線
1 High resistance layer 2 Middle resistance layer 3 Low resistance layer 4 Lead wire

Claims (1)

銅及び黒鉛を主成分とした高抵抗層、中抵抗層及び低抵抗層を含む3層構造からなり、かつ低抵抗層にリード線を埋設してなる金属黒鉛質電刷子において、低抵抗層に亜鉛を1〜10重量%含有してなる金属黒鉛質電刷子。
In a metal-graphite electric brush having a three-layer structure including a high-resistance layer mainly composed of copper and graphite, a medium-resistance layer, and a low-resistance layer, and a lead wire embedded in the low-resistance layer, A metallic graphite electrobrush comprising 1 to 10% by weight of zinc.
JP2004113043A 2004-04-07 2004-04-07 Metal graphite brush Pending JP2005304115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113043A JP2005304115A (en) 2004-04-07 2004-04-07 Metal graphite brush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113043A JP2005304115A (en) 2004-04-07 2004-04-07 Metal graphite brush

Publications (1)

Publication Number Publication Date
JP2005304115A true JP2005304115A (en) 2005-10-27

Family

ID=35335004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113043A Pending JP2005304115A (en) 2004-04-07 2004-04-07 Metal graphite brush

Country Status (1)

Country Link
JP (1) JP2005304115A (en)

Similar Documents

Publication Publication Date Title
WO2002001700A1 (en) Carbon brush for electric machine
KR20160145638A (en) Resin-bonded carbonaceous brush and method for manufacturing same
JP4802558B2 (en) Laminated resin brush
JP3797662B2 (en) Copper graphite brush
JP3929746B2 (en) Metal graphite brush
JP2017118620A (en) Slide member formation material and slide member
KR101990756B1 (en) Laminate carbon brush for fuel pump motor
JP2005304115A (en) Metal graphite brush
JP2009138141A (en) Method for producing electroconductive rubber, and electroconductive rubber
JP2009148034A (en) Brush for dynamo-electric machine, and dynamo-electric machine
JP2005302512A (en) Electric brush
JP2005198477A (en) Electric commutator brush
US7094366B2 (en) Resin-bonded graphite material, method for the production of a resin bonded graphite material and use thereof
JP2007325401A (en) Carbon brush and manufacturing method therefor
US20170085047A1 (en) Sliding member, rotary device, and method for manufacturing sliding member
JP4678478B2 (en) Electric brush
JP2007174732A (en) Electric brush
JP5136841B2 (en) Brush for rotating electrical machine and rotating electrical machine
JP2007060859A (en) Brush
JP4789220B2 (en) Carbon brush for electric machine
JP4588392B2 (en) Carbon brush for electric machine
JP2007049827A (en) Electric brush
JP2007028840A (en) Brush
JP2005176492A (en) Brush for dc motor
EP1306936B1 (en) Metal-graphite brush