JP2005303257A - Balanced-to-unbalanced conversion device for high-frequency plasma generation, plasma surface treatment device constituted of the balanced-to-unbalanced conversion device, and plasma surface treatment method - Google Patents

Balanced-to-unbalanced conversion device for high-frequency plasma generation, plasma surface treatment device constituted of the balanced-to-unbalanced conversion device, and plasma surface treatment method Download PDF

Info

Publication number
JP2005303257A
JP2005303257A JP2004289486A JP2004289486A JP2005303257A JP 2005303257 A JP2005303257 A JP 2005303257A JP 2004289486 A JP2004289486 A JP 2004289486A JP 2004289486 A JP2004289486 A JP 2004289486A JP 2005303257 A JP2005303257 A JP 2005303257A
Authority
JP
Japan
Prior art keywords
coaxial cable
conductor
balance
vacuum
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004289486A
Other languages
Japanese (ja)
Inventor
Masayoshi Murata
村田正義
Yasuko Murata
村田泰子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004289486A priority Critical patent/JP2005303257A/en
Publication of JP2005303257A publication Critical patent/JP2005303257A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment device and a surface treatment method which inhibits a leakage current at an end part of a coaxial cable in ultra high-frequency power supply to an electrode having a large area, thereby uniformly generating plasma of a VHF zone (30 MHz to 300 MHz) between a pair of electrodes in a vacuum container with high reproducibility to ensure uniform plasma surface treatment with respect to substrates having as a large area as 1 m×1 m. <P>SOLUTION: A plasma surface treatment device and method is constituted of a balanced-to-unbalanced conversion device for high-frequency plasma generation which treats, using plasma, a surface of a substrate 12 disposed at one of a pair of electrodes 2, 4 in a vacuum container 1. And in the balanced-to-unbalanced conversion device, a part of the balanced-to-unbalanced converting device 100 is inserted between power supply places 17a, 17b to the electrodes and a second coaxial cable 109a, and the main part of the device 100 is installed on the atmosphere side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プラズマを利用して基板の表面に所定の処理を施す表面処理装置および表面処理方法に関する。本発明は、特に、電子温度が低く、かつ、高密度のプラズマ生成が可能という特徴をもつ超高周波プラズマ、すなわち周波数がVHF帯域(30MHzないし300MHz)の高周波電力により生成するプラズマによる表面処理装置および表面処理方法に関する。   The present invention relates to a surface treatment apparatus and a surface treatment method for performing a predetermined treatment on a surface of a substrate using plasma. In particular, the present invention relates to a surface treatment apparatus using an ultrahigh frequency plasma having a low electron temperature and capable of generating a high density plasma, that is, a plasma generated by a high frequency power having a frequency in the VHF band (30 MHz to 300 MHz) and The present invention relates to a surface treatment method.

プラズマを用いて基板の表面に各種処理を施し、各種電子デバイスを製作することは、LSI(大規模集積回路)、LCD(液晶デイスプレー)用TFT(薄膜トランジスター)、アモルファスSi系太陽電池、薄膜多結晶Si系太陽電池、複写機用感光体、および各種情報記録デバイス等の分野において既に実用化されている。また、ダイヤモンド薄膜および立方晶ボロンナイトライド(C−BN)等の超硬質膜製造分野においても実用化が進みつつある。   Various kinds of processing are performed on the surface of the substrate using plasma to manufacture various electronic devices. LSI (Large Scale Integrated Circuit), LCD (Liquid Crystal Display) TFT (Thin Film Transistor), amorphous Si solar cell, thin film Already put into practical use in the fields of polycrystalline Si solar cells, photoconductors for copying machines, and various information recording devices. In addition, practical application is also progressing in the field of manufacturing ultra-hard films such as diamond thin films and cubic boron nitride (C-BN).

上記技術分野は、薄膜形成、エッチング、表面改質およびコーテイング等多岐に亘るが、いずれも反応性プラズマの化学的および物理的作用を活用したものである。上記反応性プラズマの生成に関する装置および方法には、大別すると2つの代表的技術がある。 The above technical fields cover various fields such as thin film formation, etching, surface modification, and coating, all of which utilize the chemical and physical action of reactive plasma. The apparatus and method relating to the generation of the reactive plasma are roughly classified into two typical techniques.

第1の代表的技術は、例えば、特許文献1及び2に記載されているもので、プラズマ発生に非接地電極と接地電極から成る2枚の平行平板電極を一対として用いることを特徴とする。第2の代表的技術は、例えば特許文献3および4に記載されているもので、プラズマ発生にラダー電極と平板電極を一対として用いることを特徴とする。 The first representative technique is described in, for example, Patent Documents 1 and 2, and is characterized in that two parallel plate electrodes each consisting of a non-ground electrode and a ground electrode are used as a pair for plasma generation. The second representative technique is described in, for example, Patent Documents 3 and 4, and is characterized in that a ladder electrode and a plate electrode are used as a pair for plasma generation.

また、高周波電力供給技術として、平板電極へ位相差180度の電力を供給する平衡不平衡変換回路を用いる技術が特許文献5に記載されている。そして、特許文献6には、無線工学分野におけるアンテナと同軸ケーブル間の電力損失防止のための平衡不平衡変換装置が記載されている。 Further, as a high-frequency power supply technique, Patent Document 5 describes a technique that uses a balance-unbalance conversion circuit that supplies power having a phase difference of 180 degrees to a plate electrode. Patent Document 6 describes a balance-unbalance conversion device for preventing power loss between an antenna and a coaxial cable in the field of wireless engineering.

上記文献記載の技術の特徴は概略次の通りである。特許文献1の技術では、非接地電極は、プラズマが生成される空間に対向した表面の周縁上の任意の二点のうちの最も距離の長い二点間の距離が高周波電力の波長の四分の一よりも長い形状で、かつ、電力供給点は均等な位置に複数設定されることを特徴としている。特許文献2の技術は、非接地電極の電力供給点の位置を、プラズマが生成される空間に接する第1の面と該第1の面の裏側である第2の面との境界の側面に位置することを特徴としている。特許文献3の技術は非接地電極の形状が梯子型(ラダー型)であることを特徴としている。特許文献4の技術は電極上のある1つの給電点に供給される電力の電圧と他の少なくとも1つの給電点に供給される前記電力の電圧の位相差を時間的に変化させることにより、一対の電極間の電界分布を平均化し、結果として、プラズマの強さの空間的分布を一様化することを特徴としている。特許文献5は、平衡不平衡変換装置の2出力の位相を180度異ならしめ、かつ、インピーダンス整合器を介して電極に電力を供給することを特徴としている。特許文献6の技術は、無線工学分野において用いられるアンテナと同軸ケーブル端部との接続部に発生する漏洩電流の防止手段に関し、シュペルトップ型、半波長迂回線路型及びLCブリッジ型等の平衡不平衡変換装置を用いることを特徴としている。 The features of the technique described in the above document are roughly as follows. In the technique of Patent Document 1, the distance between two longest points of any two points on the periphery of the surface facing the space where the plasma is generated is a quarter of the wavelength of the high-frequency power. And a plurality of power supply points are set at equal positions. In the technique of Patent Document 2, the position of the power supply point of the non-grounded electrode is set on the side surface of the boundary between the first surface that is in contact with the space where the plasma is generated and the second surface that is the back side of the first surface. It is characterized by being located. The technique of Patent Document 3 is characterized in that the shape of the non-ground electrode is a ladder type (ladder type). In the technique of Patent Document 4, a phase difference between a voltage of power supplied to one power supply point on an electrode and a voltage of the power supplied to at least one other power supply point is changed by time. The distribution of the electric field between the electrodes is averaged, and as a result, the spatial distribution of the plasma intensity is made uniform. Patent Document 5 is characterized in that the phases of the two outputs of the balun are different by 180 degrees and power is supplied to the electrodes via an impedance matching device. The technique of Patent Document 6 relates to a means for preventing leakage current generated at a connection portion between an antenna and a coaxial cable end used in the field of wireless engineering, and is a balanced type such as a super top type, a half-wavelength detour type, and an LC bridge type. It is characterized by using an unbalance conversion device.

特開平8−325759(第3−9頁、第1−4図)JP-A-8-325759 (page 3-9, Fig. 1-4) 特開平2002−12977(第5−13頁、第1−6図)Japanese Patent Laid-Open No. 2002-12977 (page 5-13, FIG. 1-6) 特開平4−236781(第2−4頁、第1−4図)JP-A-4-236811 (page 2-4, Fig. 1-4) 特開2001−257098(第3−8頁、第1−3図)Japanese Patent Laid-Open No. 2001-257098 (page 3-8, Fig. 1-3) 実願平1−88379号(第1図)No. 1-88379 (Fig. 1) 特開2001−53518号(図38、図39、図43)Japanese Patent Laid-Open No. 2001-53518 (FIGS. 38, 39, and 43)

上記のプラズマ表面処理技術、即ちプラズマ表面処理装置とプラズマ表面処理方法は、LCD,LSI,電子複写機および太陽電池等の産業分野のいずれにおいても、生産性向上に伴う製品コストの低減および大面積壁掛けTVなど性能(仕様)の改善等に関する大面積・均一化および高速処理化のニーズが年々強まっている。 The above-mentioned plasma surface treatment technology, that is, the plasma surface treatment apparatus and the plasma surface treatment method, reduce the product cost and increase the area of the product due to the improvement in productivity in any of the industrial fields such as LCD, LSI, electronic copying machine and solar cell. The need for large area, uniformization, and high-speed processing is increasing year by year for improving performance (specifications) such as wall-mounted TV.

最近では、上記ニーズに対応するため、産業界のみならず、学会でも特に、プラズマCVD(化学蒸着)技術およびプラズマエッチング技術ともに、高密度プラズマで、かつ低電子温度との特徴のあるVHF帯(30MHzないし300MHz)の電源を用いたプラズマCVDの大面積化・高速製膜化およびプラズマエッチングの大面積化・高速化に関する先端的研究開発が盛んになっている。しかしながら、従来技術では、以下に述べるような課題が依然として存在している。 Recently, in order to meet the above needs, not only in industry but also in academic societies, both plasma CVD (chemical vapor deposition) technology and plasma etching technology are characterized by high density plasma and low electron temperature (VHF band) Advanced research and development on plasma CVD using a power source of 30 MHz to 300 MHz and a large area and high speed film formation, and a large area and high speed of plasma etching have become active. However, the following problems still exist in the prior art.

(1)第1の課題は、プラズマ表面処理の大面積化(生産性向上および性能向上)である。プラズマ表面処理の装置および方法としては、前述のいくつかのタイプの技術が用いられている。従来のVHFプラズマ技術により、例えばa−Si膜を製造する場合、再現性の確保を前提条件にすると、基板面積が50cmx50cm程度に関しては、±10〜15%程度の膜厚分布、100cmx100cm程度に関しては、±15〜20%程度の膜厚分布になっている。 (1) The first problem is to increase the area of plasma surface treatment (improvement of productivity and improvement of performance). As an apparatus and method for plasma surface treatment, several types of techniques described above are used. For example, when an a-Si film is manufactured by the conventional VHF plasma technology, assuming that reproducibility is ensured, a film thickness distribution of about ± 10 to 15% and a thickness of about 100 cm × 100 cm are obtained when the substrate area is about 50 cm × 50 cm. The film thickness distribution is about ± 15 to 20%.

一般に、LCD分野では、膜厚分布は再現性を確保して、±5%程度、太陽電池分野では、膜厚分布は再現性を確保して、±10%程度が実用化の一つの指標となっている。したがって、電源周波数がVHF領域(30MHz〜300MHz)でのプラズマ応用として期待されている1mx1m級大面積基板を対象にした製品製造には、従来技術は実用できないという問題がある。 In general, in the LCD field, the film thickness distribution ensures reproducibility of about ± 5%, and in the solar cell field, the film thickness distribution ensures reproducibility of about ± 10%. It has become. Therefore, there is a problem that the prior art cannot be practically used for manufacturing a product with a large area of 1 mx 1 m class, which is expected as a plasma application in a power supply frequency of VHF region (30 MHz to 300 MHz).

(2)第2の課題は、表面処理の高速化(生産性向上)である。製品の品質の確保を前提にして、プラズマ表面処理技術の高速化を図るには、プラズマ発生の電源周波数を、30MHz〜300MHzのVHF帯域まで高くすることが効果的であるいう考え方が一般的になっている。しかしながら、上記電源周波数をVHF帯域まで増加させると、膜厚分布が著しく悪くなるという問題が発生する。 (2) The second problem is speeding up the surface treatment (improving productivity). The premise is that it is effective to increase the power generation frequency of plasma generation to the VHF band of 30 MHz to 300 MHz in order to speed up the plasma surface treatment technology on the premise of ensuring product quality. It has become. However, when the power supply frequency is increased to the VHF band, there arises a problem that the film thickness distribution is remarkably deteriorated.

その理由としては次のことが考えられる。特許文献1,2及び4に指摘されているように、電源高周波数がVHF帯域になると、その電波の波長と電力供給系および電極の伝播路の長さが略等しくなり、波の干渉現象(波の進行波と反射波が干渉する)が発生することから、プラズマ密度の空間的な均一性が確保できなくなると考えられる。また、別の理由として、VHF特有の現象である表皮効果による電力伝播路でのインピーダンスの増大およびその不均一性に起因するものと考えられる。 The reason is considered as follows. As pointed out in Patent Documents 1, 2, and 4, when the high frequency of the power supply is in the VHF band, the wavelength of the radio wave and the length of the power supply system and the propagation path of the electrode become substantially equal, and the wave interference phenomenon ( It is considered that the spatial uniformity of the plasma density cannot be ensured because the traveling wave of the wave and the reflected wave interfere). Another reason is considered to be due to an increase in impedance in the power propagation path due to the skin effect, which is a phenomenon peculiar to VHF, and its non-uniformity.

また、上記従来のVHFプラズマによる大面積化・均一化・高速処理化の困難性に関する本質的な原因として、上記特許文献1,2及び4での指摘事項に加えて、次に示す電力供給系の構造上の問題が関係していると考えられる。 In addition to the matters pointed out in Patent Documents 1, 2, and 4, as an essential cause regarding the difficulty in increasing the area, uniformity, and speeding up by the conventional VHF plasma, the following power supply system It is thought that the structural problem of is related.

従来技術では、給電系の出力回路の構成部材の同軸ケーブルと電極との接続部は、互いに異なる構造の線路が接続された形になっている。即ち、従来技術は、その典型例を図10ないし図12に示すように、電極と同軸ケーブルとの接続部において、同軸ケーブルと負荷である電極との伝送特性の違いに起因する漏洩電流が同軸ケーブルの外部導体の端面に発生する。即ち、同軸ケーブルは不平衡型の伝送路であるが、負荷である電極は2本の平行線路(平衡型)に相当する特性を有している。その結果、その接続部では図10ないし図12に、それぞれ、図示しているように漏洩電流が発生する。この漏洩電流は、目的とする一対の電極間に生成のプラズマ以外に、不必要な場所に異常放電を発生させ、電力損失という問題を起こすのみならず、プラズマによる基板表面処理の均一化を阻む要因であり、問題である。この漏洩電流に関する現象は電源周波数がVHF帯域になることにより、RF(13.56MHz)に比べて問題がより一層、顕著になるものである。 In the prior art, the connection part between the coaxial cable and the electrode of the constituent member of the output circuit of the power feeding system is formed by connecting lines having different structures. That is, in the prior art, as shown in FIGS. 10 to 12, typical leakage currents caused by differences in transmission characteristics between the coaxial cable and the electrode serving as a load are coaxial in the connection portion between the electrode and the coaxial cable. It occurs on the end face of the outer conductor of the cable. That is, the coaxial cable is an unbalanced transmission line, but the electrode serving as a load has characteristics corresponding to two parallel lines (balanced type). As a result, a leakage current is generated at the connecting portion as shown in FIGS. In addition to the plasma generated between the target pair of electrodes, this leakage current not only causes an abnormal discharge in an unnecessary place and causes a problem of power loss, but also prevents uniformization of the substrate surface treatment by the plasma. It is a factor and a problem. The phenomenon related to the leakage current becomes more prominent than RF (13.56 MHz) when the power supply frequency is in the VHF band.

無線工学の知見によれば、特許文献6に記載されているように平衡不平衡変換装置を図10ないし図12図示の同軸ケーブルの端部と電極の間に挿入すれば、上記問題要因の漏洩電流を抑制することが可能である。しかしながら、プラズマ表面処理装置の分野では、次に示す理由により応用することが困難であり、これまで成功例は見当たらない。 According to the knowledge of radio engineering, if the balance-unbalance conversion device is inserted between the end of the coaxial cable shown in FIGS. It is possible to suppress the current. However, in the field of plasma surface treatment apparatuses, it is difficult to apply for the following reasons, and no successful examples have been found so far.

無線工学の分野で用いられている例えば図13図示のシュペルトップ型及び図14図示の半波長迂回線路型の平衡不平衡変換装置をプラズマ表面処理装置に応用する場合、実用化を拒む困難な問題として次の3つがある。第1の問題は、高周波プラズマ表面処理装置に用いられる電力の周波数が、13.56MHz及び30MHz〜100MHzの領域であるので、半波長で、11m(13.56MHz)及び5m(30MHz)〜1.5m(100MHz)、四分の一波長で、5.5m(13.56MHz)及び2.5m(30MHz)〜0.75m(100MHz)と、波長が著しく長いので、それらの平衡不平衡変換装置を真空容器内に設置することは著しく困難である。強引にそれらの平衡不平衡変換装置を真空容器内に設置するとなると、真空容器の寸法が実用性を無視するほど大きくなるという問題が発生する。第2の問題は、プラズマ表面処理装置に用いられる真空容器内部に設置の同軸ケーブルには、その構成部材の誘電体の材料として真空場での不純物の発生を防止する為に高純度のセラミックスが用いられるので、曲がりにくい特性がある。そのため、長尺ものを曲げることにより、設置場所を小さくするという手段は通用しない。第3の問題は、例えば半波長迂回線路型の平衡不平衡変換装置をプラズマ表面処理装置に応用する場合、図14図示の如く、強烈な異常放電が発生するので、実用性がなく用いられていない。また、LCブリッジ型の平衡不平衡変換装置をプラズマ表面処理装置に応用する場合、図12図示の如く、一対の電極間以外に強烈な異常放電が発生するので、該電極回りにセラミックス絶縁物を充填するなどの対策が必要となり、大面積基板を対象にする表面処理装置への応用では実用性がない。 For example, in the case of applying the balance-unbalance converter of the super top type shown in FIG. 13 and the half-wavelength bypass type shown in FIG. 14 used in the field of radio engineering to the plasma surface treatment apparatus, it is difficult to refuse practical use. There are the following three problems. The first problem is that the frequency of the power used in the high-frequency plasma surface treatment apparatus is in the region of 13.56 MHz and 30 MHz to 100 MHz, so that the half-wavelength is 11 m (13.56 MHz) and 5 m (30 MHz) to 1. 5m (100MHz), quarter wavelength, 5.5m (13.56MHz) and 2.5m (30MHz) to 0.75m (100MHz), the wavelength is remarkably long. It is extremely difficult to install in a vacuum vessel. When these balance-unbalance conversion devices are forcibly installed in a vacuum vessel, there arises a problem that the size of the vacuum vessel becomes so large that practicality is ignored. The second problem is that high-purity ceramics is used as a dielectric material of the constituent member of the coaxial cable installed in the vacuum vessel used in the plasma surface treatment apparatus in order to prevent the generation of impurities in the vacuum field. Since it is used, it has the characteristic that it is hard to bend. Therefore, the means of reducing the installation location by bending a long object is not effective. The third problem is that, for example, when a half-wavelength bypass type balance-unbalance conversion device is applied to a plasma surface treatment device, a strong abnormal discharge occurs as shown in FIG. Absent. In addition, when an LC bridge type balance-unbalance conversion device is applied to a plasma surface treatment device, as shown in FIG. 12, a strong abnormal discharge occurs between a pair of electrodes, so a ceramic insulator is placed around the electrodes. Measures such as filling are required, and there is no practicality in application to a surface treatment apparatus targeting a large area substrate.

したがって、従来のプラズマ表面処理装置の応用分野では、シュペルトップ型、半波長迂回線路型及びLCブリッジ型等の平衡不平衡変換装置のプラズマ表面処理装置への応用は、原理的には可能性があるものの、その応用を実現可能とする技術は、まだ開発されていない。 Therefore, in the field of application of conventional plasma surface treatment equipment, it is possible in principle to apply the balance / unbalance conversion equipment such as super-top type, half-wavelength detour path type and LC bridge type to plasma surface treatment equipment. However, the technology that can realize the application has not been developed yet.

以上説明したように、従来技術では、量産性向上や低コスト化に必要な大面積基板、例えばサイズ1mx1m級大面積基板を対象にしたVHFプラズマCVDおよびプラズマエッチング等の応用は、依然として困難で、不可能視されている。このような状況のもと、応用物理学会および電気学会等関連学会において研究が活発化しているが、1mx1m級大面積基板を対象にしたVHFプラズマ利用の表面処理方法およびその装置の成功例は発表されていない。 As described above, in the prior art, it is still difficult to apply VHF plasma CVD and plasma etching to a large area substrate necessary for improving mass productivity and cost reduction, for example, a large area substrate having a size of 1 m × 1 m class, It seems impossible. Under such circumstances, researches are active in related academic societies such as the Japan Society of Applied Physics and the Institute of Electrical Engineers of Japan, but a successful example of a surface treatment method using VHF plasma and its apparatus for a 1 mx 1 m class large area substrate has been announced. It has not been.

そこで、本発明は、上記課題を解決するためになされたもので、無線工学で利用されているシュペルトップ型、半波長迂回線路型及びLCブリッジ型等の平衡不平衡変換装置をプラズマ表面処理装置へ応用可能とすることにより、従来技術では困難視されている、例えば1mx1m級の大面積基板に対してもVHF帯域(30MHz〜300MHz)の周波数を用いて、高速かつ均一性に優れたプラズマ表面処理装置およびプラズマ表面処理方法を提供することを目的とする。 Accordingly, the present invention has been made to solve the above-mentioned problems, and plasma surface treatment is performed on balance-unbalance conversion devices such as super-top type, half-wavelength detour type, and LC bridge type used in wireless engineering. By making it applicable to an apparatus, plasma that has been regarded as difficult by the prior art, for example, a high-speed and uniform plasma using a frequency in the VHF band (30 MHz to 300 MHz) even for a large area substrate of 1 mx 1 m class. An object is to provide a surface treatment apparatus and a plasma surface treatment method.

上記目的を達成する為に、本願の請求項1記載の発明は、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられるプラズマ生成用平衡不平衡変換装置であって、同軸ケーブルの給電端側に長さが前記高周波電力の波長の四分の一の円筒型導電体を被せ、該円筒型導電体の底面中央を該同軸ケーブルの外部導体に密着させるという構造のシュペルトップ型平衡不平衡変換装置を分断し、該分断されたシュペルトップ型平衡不平衡変換装置の一方を前記真空容器内部に配置し、他方を大気側に配置するとともに、両者を該真空容器の壁に取り付けられている同軸ケーブル接続端子を介して元の状態に戻す形で接続し、かつ、大気側に配置の該分断されたシュペルトップ型平衡不平衡変換装置に長さの調整手段を設けるという構成を有することを特徴とする。 In order to achieve the above object, according to the first aspect of the present invention, a vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and a substrate are set. Used in combination with a pair of electrodes composed of a first electrode and a second electrode disposed opposite to the first electrode, a power supply system for supplying high-frequency power to the pair of electrodes, and the power supply system A plasma generation balance-unbalance conversion apparatus for use in a plasma surface treatment apparatus that includes a balance-unbalance conversion apparatus and that uses the generated plasma to treat the surface of a substrate, and has a length on the feeding end side of the coaxial cable. A super-top type balance-unbalance converter having a structure in which a cylindrical conductor having a quarter of the wavelength of the high-frequency power is covered and the center of the bottom of the cylindrical conductor is in close contact with the outer conductor of the coaxial cable. Divide One of the supper top type balance-unbalance conversion devices arranged inside the vacuum vessel, the other is arranged on the atmosphere side, and both are connected via a coaxial cable connection terminal attached to the wall of the vacuum vessel It is characterized by having a configuration in which the length adjusting means is provided in the split-top type balun that is connected to the original state and arranged on the atmosphere side.

同様に上記目的を達成する為に、本願の請求項2記載の発明は、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられるプラズマ生成用平衡不平衡変換装置であって、前記真空容器の壁に配置されたフランジ及び該フランジと組み合わせて用いられる金属製芯棒と第1の誘電体と第1の管型導電体と第2の誘電体と第2の管型導電体と第3の誘電体から成る真空装置用同軸ケーブル接続端子の真空側面の該金属製芯棒及び該第1の管型導電体に、それぞれ、第3の管型導電体で囲繞された第1の同軸ケーブルの一方の端部の芯線及び外部導体が接続され、該真空装置用同軸ケーブル接続端子の真空側面の第2の管型導電体に該第3の管型導電体の一方の端部が接続されるとともに、該真空装置用同軸ケーブル接続端子の大気側面の金属製芯棒及び第1の管型導電体に、それぞれ、第4の管型導電体及び円筒型導電体で囲繞された第2の同軸ケーブルの一方の端部の芯線及び外部導体が接続され、該真空装置用同軸ケーブル接続端子の大気側面の第2の管型導電体に該第4の管型導電体の一方の端部が接続され、該第4の管型導電体の他方の端部と該円筒型導電体の一方の端部が内筒と外筒の関係を持たせる形で密着され、該円筒型導電体の他方の端部が該第2の同軸ケーブルの外部導体に密着されるとともに、該第1の同軸ケーブルの端面から該フランジまでの距離と該第3の管型導電体の端面から該フランジまでの距離が等しくなるように、かつ、該第1の同軸ケーブルの外部導体と該第3の管型導電体が短絡しないように配置され、該第3の管型導電体の他方の端部から該円筒型導電体の閉じた方の端面までの距離が前記高周波電力の波長の四分の一に設定され、かつ、該第2の同軸ケーブルの他方の端部の芯線及び外部導体を入力部とし、該第1の同軸ケーブルの他方の芯線及び外部導体を出力部とするという構成を有することを特徴とする。 Similarly, in order to achieve the above object, the invention according to claim 2 of the present application is that a vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and a substrate are set. A pair of electrodes composed of a first electrode and a second electrode disposed opposite to the first electrode, a power supply system for supplying high-frequency power to the pair of electrodes, and a combination of the power supply system A balanced / unbalanced conversion apparatus for plasma generation used in a plasma surface treatment apparatus having a balanced / unbalanced conversion apparatus to be used and processing the surface of a substrate by using generated plasma, which is disposed on the wall of the vacuum vessel And a metal core rod used in combination with the flange, a first dielectric, a first tubular conductor, a second dielectric, a second tubular conductor, and a third dielectric. Coaxial cable connection end for vacuum equipment A core wire and an external conductor at one end of the first coaxial cable surrounded by the third tube type conductor are connected to the metal core rod and the first tube type conductor on the vacuum side surface, respectively. One end of the third tube-type conductor is connected to the second tube-type conductor on the vacuum side surface of the vacuum device coaxial cable connection terminal, and the vacuum device coaxial cable connection terminal A core wire and an outer conductor at one end of a second coaxial cable surrounded by a metal core rod and a first tubular conductor on the air side surface, respectively, surrounded by a fourth tubular conductor and a cylindrical conductor, respectively. Is connected, and one end of the fourth tubular conductor is connected to the second tubular conductor on the atmospheric side of the coaxial cable connecting terminal for vacuum apparatus, The other end and one end of the cylindrical conductor are in close contact with each other so as to have a relationship between an inner cylinder and an outer cylinder. The other end of the conductor is in close contact with the outer conductor of the second coaxial cable, and the distance from the end surface of the first coaxial cable to the flange and the end surface of the third tubular conductor The other end of the third tubular conductor is arranged so that the distances to the flanges are equal and the outer conductor of the first coaxial cable and the third tubular conductor are not short-circuited. The distance from the end of the cylindrical conductor to the closed end face of the cylindrical conductor is set to a quarter of the wavelength of the high-frequency power, and the core wire and the outer conductor at the other end of the second coaxial cable It is characterized by having a configuration in which the other core wire and the outer conductor of the first coaxial cable are used as the input section and the output section as the output section.

同様に上記目的を達成する為に、本願の請求項3記載の発明は、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられるプラズマ生成用平衡不平衡変換装置であって、前記真空容器の壁に配置されたフランジ及び該フランジと組み合わせて用いられる金属製芯棒と第1の誘電体と第1の管型導電体と第2の誘電体と該フランジに密着されている第2の管型導電体から成る真空装置用同軸ケーブル接続端子の真空側面の該金属製芯棒及び該第1の管型導電体に、それぞれ、該第2の管型導電体で囲繞された第1の同軸ケーブルの一方の端部の芯線及び外部導体が接続されるとともに、該真空装置用同軸ケーブル接続端子の大気側面の金属製芯棒及び第1の管型導電体に、それぞれ、該第2の管型導電体及び円筒型導電体で囲繞された第2の同軸ケーブルの一方の端部の芯線及び外部導体が接続され、該第2の管型導電体の端部と該円筒型導電体の開放側の端部が内筒と外筒の関係を持たせる形で密着され、該円筒型導電体の底面の中央部が該第2の同軸ケーブルの外部導体に密着され、該第1の同軸ケーブルの端面から該フランジまでの距離と該第2の管型導電体の端面から該フランジまでの距離とが等しくなるように、かつ、該第1の同軸ケーブルの外部導体と該第2の管型導電体が短絡しないように配置され、該第2の管型導電体の開放されている側の端面から該円筒型導電体の底面までの距離が、前記高周波電源から供給される高周波電力の波長の四分の一に設定され、かつ、該第2の同軸ケーブルの他方の端部の芯線及び外部導体を入力部とし、該第1の同軸ケーブルの他方の芯線及び外部導体を出力部とするという構成を有することを特徴とする。 Similarly, in order to achieve the above object, the invention according to claim 3 of the present application is a set of a vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and a substrate. A pair of electrodes composed of a first electrode and a second electrode disposed opposite to the first electrode, a power supply system that supplies high-frequency power to the pair of electrodes, and a combination of the power supply system A balanced / unbalanced conversion apparatus for plasma generation used in a plasma surface treatment apparatus having a balanced / unbalanced conversion apparatus to be used and processing the surface of a substrate by using generated plasma, which is disposed on the wall of the vacuum vessel Flange, a metal core rod used in combination with the flange, a first dielectric, a first tubular conductor, a second dielectric, and a second tubular conductor in close contact with the flange Coaxial casing for vacuum equipment A core wire at one end of the first coaxial cable surrounded by the second tube-type conductor, respectively, on the metal core rod and the first tube-type conductor on the vacuum side surface of the bull connecting terminal; An external conductor is connected to the metal core rod and the first tubular conductor on the atmospheric side of the coaxial cable connection terminal for the vacuum device, respectively, with the second tubular conductor and the cylindrical conductor, respectively. The core wire and the outer conductor at one end of the enclosed second coaxial cable are connected, and the end of the second tubular conductor and the open end of the cylindrical conductor are connected to the inner cylinder and the outer The cylindrical conductor is in close contact with the cylindrical conductor, the central portion of the bottom surface of the cylindrical conductor is in close contact with the outer conductor of the second coaxial cable, and the distance from the end surface of the first coaxial cable to the flange The distance from the end face of the second tubular conductor to the flange is equal, and the The outer conductor of one coaxial cable and the second tubular conductor are arranged so as not to be short-circuited, and from the open end surface of the second tubular conductor to the bottom surface of the cylindrical conductor The distance is set to a quarter of the wavelength of the high-frequency power supplied from the high-frequency power source, and the core wire and the external conductor at the other end of the second coaxial cable are used as the input unit, and the first The other core wire and the outer conductor of the coaxial cable are used as an output part.

同様に上記目的を達成する為に、本願の請求項4記載の発明は、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられるプラズマ生成用平衡不平衡変換装置であって、長さが等しい2本の同軸ケーブルのそれぞれの一方の端部の芯線を前記一対の電極に設けられた電力供給点に接続し、該端部のそれぞれの同軸ケーブルの外部導体を短絡するとともに、該2本の同軸ケーブルの他方の端部の芯線及び外部導体に、それぞれに前記真空容器の壁に配置される同軸ケーブル接続端子を介して電力を供給し、該電力の電圧の位相差を180度に設定する手段が設けられるという構成を有することを特徴とする。 Similarly, in order to achieve the above object, the invention according to claim 4 of the present application is that a vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and a substrate are set. A pair of electrodes composed of a first electrode and a second electrode disposed opposite to the first electrode, a power supply system that supplies high-frequency power to the pair of electrodes, and a combination of the power supply system A plasma generation balance / unbalance conversion apparatus for use in a plasma surface treatment apparatus having a balance / unbalance conversion apparatus to be used and processing the surface of a substrate using the generated plasma. A core wire at one end of each of the coaxial cables is connected to a power supply point provided at the pair of electrodes, and an outer conductor of each of the coaxial cables at the ends is short-circuited. The other end The core wire and the external conductor are each provided with means for supplying electric power via a coaxial cable connection terminal disposed on the wall of the vacuum vessel and setting the phase difference of the voltage of the electric power to 180 degrees. It is characterized by that.

同様に上記目的を達成する為に、本願の請求項5記載の発明は、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられるプラズマ生成用平衡不平衡変換装置であって、前記真空容器の壁に配置された第1の真空装置用同軸ケーブル接続端子の大気側面に長さがLの第1の同軸ケーブルの一方の端部が接続され、該第1の同軸ケーブルの他方の端部が同軸ケーブル用分岐器の第1の出力端子に接続され、該同軸ケーブル用分岐器の第2の出力端子に長さが前記高周波電力の波長λの二分の一に該第1の同軸ケーブルの長さLを加えた値に等しい長さ即ち(λ/2+L)である第2の同軸ケーブルの一方の端部が接続され、該第2の同軸ケーブルの他方の端部が前記真空容器の壁に配置された第2の真空装置用同軸ケーブル接続端子の大気側面に接続され、該同軸ケーブル用分岐器の入力端子に第3の同軸ケーブルの一方の端部が接続され、該第3の同軸ケーブルの他方の端部の芯線及び外部導体を入力部とし、該第1及び第2の真空装置用同軸ケーブル接続端子の真空側面に、それぞれ、長さが等しい第4及び第5の同軸ケーブルの一方の端部が接続され、該第4及び第5の同軸ケーブルの他方の端部のそれぞれの外部導体が前記高周波電力の波長の三十分の一以下の長さの短絡用導電体で短絡され、かつ、該第4及び第5の同軸ケーブルの端部のそれぞれの芯線を出力部とするという構成を有することを特徴とする。 Similarly, in order to achieve the above object, the invention according to claim 5 of the present application is a set of a vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and a substrate. A pair of electrodes composed of a first electrode and a second electrode disposed opposite to the first electrode, a power supply system for supplying high-frequency power to the pair of electrodes, and a combination of the power supply system A balanced / unbalanced conversion apparatus for plasma generation used in a plasma surface treatment apparatus having a balanced / unbalanced conversion apparatus to be used and processing the surface of a substrate by using generated plasma, which is disposed on the wall of the vacuum vessel One end portion of the first coaxial cable having a length L is connected to the atmospheric side surface of the first coaxial device connection terminal for vacuum device, and the other end portion of the first coaxial cable is for the coaxial cable. First output terminal of turnout Connected to the second output terminal of the coaxial cable branching unit, a length equal to a value obtained by adding a length L of the first coaxial cable to a half of the wavelength λ of the high-frequency power, that is, ( λ / 2 + L) one end of the second coaxial cable is connected, and the other end of the second coaxial cable is disposed on the wall of the vacuum vessel. Connected to the atmospheric side of the terminal, one end of the third coaxial cable is connected to the input terminal of the coaxial cable branch, and the core wire and external conductor of the other end of the third coaxial cable are input One end of the fourth and fifth coaxial cables having the same length are connected to the vacuum side surfaces of the first and second vacuum device coaxial cable connection terminals, respectively. Each of the outer conductors at the other end of the coaxial cable 5 It is short-circuited by a short-circuiting conductor having a length of one-third or less of the wavelength of wave power, and each core wire at the end of the fourth and fifth coaxial cables is used as an output unit. It is characterized by that.

ここで、上記Lは、零を含む任意の長さを選ぶことができるが、零の場合は特別のコネクターが必要となる。また、長い場合には、電力損失が発生し、かつ広い設置場所が必要になるので短い方が良い。 Here, L can be selected to have an arbitrary length including zero, but if it is zero, a special connector is required. If the length is long, power loss occurs and a large installation location is required.

同様に上記目的を達成する為に、本願の請求項6記載の発明は、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられるプラズマ生成用平衡不平衡変換装置であって、前記真空容器の壁に配置された第1の真空装置用同軸ケーブル接続端子の大気側面に同軸ケーブル用分岐器の第1の出力端子が接続され、該同軸ケーブル用分岐器の第2の出力端子に長さが前記高周波電力の波長λの二分の一である第2の同軸ケーブルの一方の端部が接続され、該第2の同軸ケーブルの他方の端部が前記真空容器の壁に配置された第2の真空装置用同軸ケーブル接続端子の大気側面に接続され、該同軸ケーブル用分岐器の入力端子に第1の同軸ケーブルの一方の端部が接続され、該第1の同軸ケーブルの他方の端部の芯線及び外部導体を入力部とし、該第1及び第2の真空装置用同軸ケーブル接続端子の真空側面に、それぞれ、長さが等しい第3及び第4の同軸ケーブルの一方の端部が接続され、該第3及び第4の同軸ケーブルの他方の端部のそれぞれの外部導体が前記高周波電力の波長の三十分の一以下の長さの短絡用導電体で短絡され、かつ、該第3及び第4の同軸ケーブルの端部のそれぞれの芯線を出力部とするという構成を有することを特徴とする。 Similarly, in order to achieve the above object, the invention according to claim 6 of the present application is that a vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and a substrate are set. A pair of electrodes composed of a first electrode and a second electrode disposed opposite to the first electrode, a power supply system that supplies high-frequency power to the pair of electrodes, and a combination of the power supply system A balanced / unbalanced conversion apparatus for plasma generation used in a plasma surface treatment apparatus having a balanced / unbalanced conversion apparatus to be used and processing the surface of a substrate by using generated plasma, which is disposed on the wall of the vacuum vessel The first output terminal of the coaxial cable branch is connected to the atmospheric side of the first coaxial cable connection terminal for the vacuum device, and the length of the high frequency power is connected to the second output terminal of the coaxial cable branch ½ of wavelength λ One end of a second coaxial cable that is one is connected, and the other end of the second coaxial cable is connected to the atmosphere of the second coaxial cable connection terminal for a vacuum apparatus disposed on the wall of the vacuum vessel. Connected to the side surface, one end of the first coaxial cable is connected to the input terminal of the branching device for coaxial cable, the core wire and the outer conductor of the other end of the first coaxial cable are used as the input unit, One ends of third and fourth coaxial cables having the same length are connected to the vacuum side surfaces of the first and second vacuum device coaxial cable connection terminals, respectively, and the third and fourth coaxial cables are connected. Each outer conductor of the other end of the cable is short-circuited by a short-circuiting conductor having a length of one-third or less of the wavelength of the high-frequency power, and ends of the third and fourth coaxial cables That each core wire has an output part Features.

同様に上記目的を達成する為に、本願の請求項7記載の発明は、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられるプラズマ生成用平衡不平衡変換装置であって、LCブリッジ型平衡不平衡変換装置の入力端子を入力部とし、該LCブリッジ型平衡不平衡変換装置の2つの出力端子に、それぞれ、長さが等しい第1及び第2の大気用同軸ケーブルの一方の端部が接続され、該第1及び第2の大気用同軸ケーブルの他方の端部は、それぞれ第1及び第2の真空装置用同軸ケーブル接続端子を介して、第1及び第2の真空用同軸ケーブルの一方の端部に接続され、かつ、該第1及び第2の真空用同軸ケーブルの他方の端部の外部導体間が前記高周波電力の波長の三十分の一以下の長さの短絡用導電体で短絡され、かつ、該端部のそれぞれの芯線を出力部とするという構成を有することを特徴とする高周波プラズマ生成用平衡不平衡変換装置。 Similarly, in order to achieve the above object, an invention according to claim 7 of the present application is that a vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and a substrate are set. A pair of electrodes composed of a first electrode and a second electrode disposed opposite to the first electrode, a power supply system for supplying high-frequency power to the pair of electrodes, and a combination of the power supply system An equilibrium-unbalance conversion apparatus for plasma generation used in a plasma surface treatment apparatus having a balance-unbalance conversion apparatus to be used and processing the surface of a substrate using generated plasma, and comprising an LC bridge type balance-unbalance conversion The input terminal of the device is used as an input unit, and one end of each of the first and second atmospheric coaxial cables having the same length is connected to the two output terminals of the LC bridge type balun. The first and The other end of each of the two atmospheric coaxial cables is connected to one end of each of the first and second vacuum coaxial cables via the first and second vacuum device coaxial cable connection terminals, respectively. And between the outer conductors at the other end of the first and second vacuum coaxial cables is short-circuited by a short-circuiting conductor having a length of one-third or less of the wavelength of the high-frequency power, and A balance-unbalance converter for high-frequency plasma generation, characterized in that each core wire at the end is used as an output section.

同様に上記目的を達成する為に、本願の請求項8記載の発明は、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置において、前記平衡不平衡変換装置が請求項1ないし7のいずれか1項に記載の高周波プラズマ生成用平衡不平衡変換装置により構成されていることを特徴とするプラズマ表面処理装置。 Similarly, in order to achieve the above object, an invention according to claim 8 of the present application is that a vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and a substrate are set. A pair of electrodes composed of a first electrode and a second electrode disposed opposite to the first electrode, a power supply system for supplying high-frequency power to the pair of electrodes, and a combination of the power supply system 8. A plasma surface treatment apparatus comprising a balance-unbalance conversion device to be used, and processing the surface of a substrate using generated plasma, wherein the balance-unbalance conversion device is according to claim 1. A plasma surface treatment apparatus comprising a balance-unbalance conversion device for high-frequency plasma generation.

同様に上記目的を達成する為に、本願の請求項9記載の発明は、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理方法において、前記平衡不平衡変換装置を請求項1ないし7のいずれか1項に記載の高周波プラズマ生成用平衡不平衡変換装置によって構成し、プラズマ表面処理を行うことを特徴とする。 Similarly, in order to achieve the above object, the invention according to claim 9 of the present application is that a vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, and a substrate are set. A pair of electrodes composed of a first electrode and a second electrode disposed opposite to the first electrode, a power supply system for supplying high-frequency power to the pair of electrodes, and a combination of the power supply system 8. The plasma surface treatment method comprising the balance-unbalance conversion device used and treating the surface of the substrate using the generated plasma, wherein the balance-unbalance conversion device according to claim 1. The plasma surface treatment is performed by a balance-unbalance converter for high-frequency plasma generation.

請求項1の高周波プラズマ生成用平衡不平衡変換装置によれば、従来のシュペルトップ型平衡不平衡変換装置と同様の機能を有する平衡不平衡変換装置の本体部分をプラズマ生成用真空容器の中に挿入することなく、大気側に設置して応用することが可能となり、かつ、使用電力の波長に対応する為の該平衡不平衡変換装置の長さの調整が大気側に設置の長さの調整手段で実施可能となり、かつ、該真空容器内部での異常放電の原因である同軸ケーブル端部の漏洩電流の発生を抑制可能となったので、該真空容器の寸法がコンパクト化され、かつ、一対の電極間のプラズマの均一性が改善されるので、従来困難視されていたVHF帯域(30MHz〜300MHz)の電源を用いる高密度プラズマの空間分布の均一化が可能となり、基板に対する均一な表面処理、即ち製膜速度およびエッチング速度の向上と均一性向上が再現性良く可能である。この効果は、LSI,LCD、複写機用感光体の産業のみならず、太陽電池業界での生産性向上に関し、貢献度が著しく大きい。 According to the balance-unbalance conversion device for high-frequency plasma generation according to claim 1, the main body portion of the balance-unbalance conversion device having the same function as the conventional super-top type balance-unbalance conversion device is placed in the plasma generation vacuum vessel. It is possible to install and apply to the atmosphere side without inserting it into the atmosphere, and adjustment of the length of the balance-unbalance conversion device to accommodate the wavelength of the power used Since the adjustment means can be implemented, and the generation of leakage current at the end of the coaxial cable, which is the cause of abnormal discharge inside the vacuum vessel, can be suppressed, the dimensions of the vacuum vessel are reduced, and Since the uniformity of the plasma between the pair of electrodes is improved, the spatial distribution of the high density plasma using the power source in the VHF band (30 MHz to 300 MHz), which has been regarded as difficult in the past, can be made uniform. That uniform surface treatment, i.e. increase and improving uniformity of the film deposition rate and the etch rate can be reproducibly. This effect greatly contributes not only to the industry of LSIs, LCDs, and photoconductors for copying machines but also to the improvement of productivity in the solar cell industry.

請求項2の高周波プラズマ生成用平衡不平衡変換装置によれば、請求項1を実現する一つの具体的な確実な手段として、その価値が高い。すなわち、従来のシュペルトップ型平衡不平衡変換装置と同様の機能を有する平衡不平衡変換装置の本体部分をプラズマ生成用真空容器の中に挿入することなく、大気側に設置して応用することが可能となり、かつ、使用電力の波長に対応する為の該平衡不平衡変換装置の長さの調整が大気側に設置の該平衡不平衡変換装置の構成部材の管型導体と円筒型導体の接合部分の重なり合い長さの調整により容易に簡便に実施可能となり、かつ、該真空容器内部での異常放電の原因である同軸ケーブル端部の漏洩電流の発生を抑制可能となったので、該真空容器の寸法がコンパクト化され、かつ、一対の電極間のプラズマの均一性が改善されるので、従来困難視されていたVHF帯域(30MHz〜300MHz)の電源を用いる高密度プラズマの空間分布の均一化が可能となり、基板に対する均一な表面処理、即ち製膜速度およびエッチング速度の向上と均一性向上が再現性良く可能である。この効果は、LSI,LCD、複写機用感光体の産業のみならず、太陽電池業界での生産性向上に関し、貢献度が著しく大きい。 According to the balance-unbalance conversion device for high-frequency plasma generation of claim 2, its value is high as one specific reliable means for realizing claim 1. That is, the main body part of the balance-unbalance conversion device having the same function as the conventional super-type balance-unbalance conversion device should be installed on the atmosphere side without being inserted into the plasma generating vacuum vessel. And adjusting the length of the balance-unbalance conversion device to correspond to the wavelength of the power used, the tube conductor and the cylindrical conductor of the component of the balance-unbalance conversion device installed on the atmosphere side can be adjusted. Since the adjustment of the overlapping length of the joining portion can be easily and easily performed, and the generation of leakage current at the end of the coaxial cable, which is the cause of abnormal discharge inside the vacuum vessel, can be suppressed. Since the size of the container is made compact and the uniformity of the plasma between the pair of electrodes is improved, high density plasma using a power source in the VHF band (30 MHz to 300 MHz), which has been considered difficult in the past, is used. It enables uniform between distribution, uniform surface treatment to the substrate, i.e. improvement and improving uniformity of the film deposition rate and the etch rate can be reproducibly. This effect greatly contributes not only to the industry of LSIs, LCDs, and photoconductors for copying machines but also to the improvement of productivity in the solar cell industry.

請求項3の高周波プラズマ生成用平衡不平衡変換装置によれば、請求項1を実現する一つの具体的な確実な手段として、その価値が高い。すなわち、従来のシュペルトップ型平衡不平衡変換装置と同様の機能を有する平衡不平衡変換装置の本体部分をプラズマ生成用真空容器の中に挿入することなく、大気側に設置して応用することが可能となり、かつ、使用電力の波長に対応する為の該平衡不平衡変換装置の長さの調整が大気側に設置の該平衡不平衡変換装置の構成部材の管型導体と円筒型導体の接合部分の重なり合い長さの調整により容易に簡便に実施可能となり、かつ、該真空容器内部での異常放電の原因である同軸ケーブル端部の漏洩電流の発生を抑制可能であるので、該真空容器の寸法がコンパクト化され、かつ、一対の電極間のプラズマの均一性が改善されるので、従来困難視されていたVHF帯域(30MHz〜300MHz)の電源を用いる高密度プラズマの空間分布の均一化が可能となり、基板に対する均一な表面処理、即ち製膜速度およびエッチング速度の向上と均一性向上が再現性良く可能である。この効果は、LSI,LCD、複写機用感光体の産業のみならず、太陽電池業界での生産性向上に関し、貢献度が著しく大きい。 According to the balance-unbalance conversion apparatus for high-frequency plasma generation of claim 3, the value is high as one specific reliable means for realizing claim 1. That is, the main body part of the balance-unbalance conversion device having the same function as the conventional super-type balance-unbalance conversion device should be installed on the atmosphere side without being inserted into the plasma generating vacuum vessel. And adjusting the length of the balance-unbalance conversion device to correspond to the wavelength of the power used, the tube conductor and the cylindrical conductor of the component of the balance-unbalance conversion device installed on the atmosphere side can be adjusted. The vacuum vessel can be easily and simply implemented by adjusting the overlapping length of the joining portions, and can suppress the occurrence of leakage current at the end of the coaxial cable that is the cause of abnormal discharge inside the vacuum vessel. Since the size of the plasma is reduced and the uniformity of the plasma between the pair of electrodes is improved, the high-density plasma can be emptied using a power supply in the VHF band (30 MHz to 300 MHz), which has been regarded as difficult in the past. It enables uniform distribution, uniform surface treatment to the substrate, i.e. improvement and improving uniformity of the film deposition rate and the etch rate can be reproducibly. This effect greatly contributes not only to the industry of LSIs, LCDs, and photoconductors for copying machines but also to the improvement of productivity in the solar cell industry.

なお、請求項3の装置の構成は、上記請求項2の場合に比べて構成部材の一つである真空装置用同軸ケーブル接続端子の構造が簡単である。 In addition, the structure of the apparatus of Claim 3 is simple in the structure of the coaxial cable connection terminal for vacuum devices which is one of the structural members compared with the case of the said Claim 2.

請求項4の高周波プラズマ生成用平衡不平衡変換装置によれば、従来の二分の一波長迂回線路型平衡不平衡変換装置及びLCブリッジ型平衡不平衡変換装置を高周波プラズマ生成に応用する際に問題であった真空容器内部での同軸ケーブル端部からの漏洩電流発生に起因する給電部分近傍での異常放電の発生を確実に抑制可能となり、かつ、平衡不平衡変換装置の本体部分をプラズマ生成用真空容器の中に挿入することなく、かつ、使用電力の波長に対応する為の該平衡不平衡変換装置の長さの調整が大気側に設置の長さの調整手段あるいはLCブリッジ回路で実施可能となったので、該真空容器の寸法がコンパクト化され、かつ、一対の電極間のプラズマの均一性が改善されるので、従来困難視されていたVHF帯域(30MHz〜300MHz)の電源を用いる高密度プラズマの空間分布の均一化が可能となり、基板に対する均一な表面処理、即ち製膜速度およびエッチング速度の向上と均一性向上が再現性良く可能である。この効果は、LSI,LCD、複写機用感光体の産業のみならず、太陽電池業界での生産性向上に関し、貢献度が著しく大きい。 According to the balance-unbalance converter for high-frequency plasma generation according to claim 4, there is a problem in applying the conventional half-wavelength bypass type balance-unbalance converter and LC bridge-type balance-unbalance converter to high-frequency plasma generation. The generation of abnormal discharge near the power feeding part due to the leakage current from the end of the coaxial cable inside the vacuum vessel can be reliably suppressed, and the main body of the balance-unbalance conversion device can be used for plasma generation. The length of the balance-unbalance conversion device can be adjusted without adjusting the length of the balance to match the wavelength of the power used without being inserted into the vacuum vessel. Since the dimensions of the vacuum vessel are reduced and the uniformity of plasma between the pair of electrodes is improved, the VHF band (30 MHz to 300 MHz, which has been regarded as difficult in the past). Using the power of Hz) enables uniform spatial distribution of the high-density plasma, uniform surface treatment to the substrate, i.e. improvement and improving uniformity of the film deposition rate and the etch rate can be reproducibly. This effect greatly contributes not only to the industry of LSIs, LCDs, and photoconductors for copying machines but also to the improvement of productivity in the solar cell industry.

請求項5の高周波プラズマ生成用平衡不平衡変換装置によれば、請求項4を実現する一つの具体的な確実な手段として、その価値が高い。すなわち、従来の二分の一波長迂回線路型平衡不平衡変換装置と同様の機能を有する平衡不平衡変換装置の本体部分をプラズマ生成用真空容器の中に挿入することなく、大気側に設置して応用することが可能となり、かつ、使用電力の波長に対応する為の該平衡不平衡変換装置の長さの調整が大気側に設置の該平衡不平衡変換装置の構成部材の同軸ケーブルの長さの調整により容易に簡便に実施可能となり、かつ、該真空容器内部での異常放電の原因である同軸ケーブル端部の漏洩電流の発生を抑制可能となったので、該真空容器の寸法がコンパクト化され、かつ、一対の電極間のプラズマの均一性が改善されるので、従来困難視されていたVHF帯域(30MHz〜300MHz)の電源を用いる高密度プラズマの空間分布の均一化が可能となり、基板に対する均一な表面処理、即ち製膜速度およびエッチング速度の向上と均一性向上が再現性良く可能である。この効果は、LSI,LCD、複写機用感光体の産業のみならず、太陽電池業界での生産性向上に関し、貢献度が著しく大きい。 According to the balance-unbalance conversion apparatus for high-frequency plasma generation of claim 5, the value is high as one specific reliable means for realizing claim 4. That is, the main body of the balance-unbalance conversion device having the same function as the conventional half-wavelength detour-type balance-unbalance conversion device is installed on the atmosphere side without being inserted into the plasma generating vacuum vessel. The length of the coaxial cable of the component of the balance-unbalance conversion apparatus installed on the atmosphere side can be adjusted and the length of the balance-unbalance conversion apparatus can be adjusted to correspond to the wavelength of the power used. This makes it possible to easily and easily carry out the adjustment and to suppress the occurrence of leakage current at the end of the coaxial cable, which is the cause of abnormal discharge inside the vacuum vessel, thereby reducing the size of the vacuum vessel. In addition, since the uniformity of the plasma between the pair of electrodes is improved, the spatial distribution of the high-density plasma using the power source in the VHF band (30 MHz to 300 MHz), which has been considered difficult in the past, can be made uniform. Becomes, uniform surface treatment to the substrate, i.e. improvement and improving uniformity of the film deposition rate and the etch rate can be reproducibly. This effect greatly contributes not only to the industry of LSIs, LCDs, and photoconductors for copying machines but also to the improvement of productivity in the solar cell industry.

請求項6の高周波プラズマ生成用平衡不平衡変換装置によれば、請求項4を実現する一つの具体的な確実な手段として、その価値が高い。すなわち、従来の二分の一波長迂回線路型平衡不平衡変換装置と同様の機能を有する平衡不平衡変換装置の本体部分をプラズマ生成用真空容器の中に挿入することなく、大気側に設置して応用することが可能となり、かつ、使用電力の波長に対応する為の該平衡不平衡変換装置の長さの調整が大気側に設置の該平衡不平衡変換装置の構成部材の同軸ケーブルの長さの調整により容易に簡便に実施可能となり、かつ、該真空容器内部での異常放電の原因である同軸ケーブル端部の漏洩電流の発生を抑制可能となったので、該真空容器の寸法がコンパクト化され、かつ、一対の電極間のプラズマの均一性が改善されるので、従来困難視されていたVHF帯域(30MHz〜300MHz)の電源を用いる高密度プラズマの空間分布の均一化が可能となり、基板に対する均一な表面処理、即ち製膜速度およびエッチング速度の向上と均一性向上が再現性良く可能である。この効果は、LSI,LCD、複写機用感光体の産業のみならず、太陽電池業界での生産性向上に関し、貢献度が著しく大きい。 According to the balance-unbalance conversion apparatus for high-frequency plasma generation of claim 6, the value is high as one specific reliable means for realizing claim 4. That is, the main body of the balance-unbalance conversion device having the same function as the conventional half-wavelength detour-type balance-unbalance conversion device is installed on the atmosphere side without being inserted into the plasma generating vacuum vessel. The length of the coaxial cable of the component of the balance-unbalance conversion apparatus installed on the atmosphere side can be adjusted and the length of the balance-unbalance conversion apparatus can be adjusted to correspond to the wavelength of the power used. This makes it possible to easily and easily carry out the adjustment and to suppress the occurrence of leakage current at the end of the coaxial cable, which is the cause of abnormal discharge inside the vacuum vessel, thereby reducing the size of the vacuum vessel. In addition, since the uniformity of the plasma between the pair of electrodes is improved, the spatial distribution of the high-density plasma using the power source in the VHF band (30 MHz to 300 MHz), which has been considered difficult in the past, can be made uniform. Becomes, uniform surface treatment to the substrate, i.e. improvement and improving uniformity of the film deposition rate and the etch rate can be reproducibly. This effect greatly contributes not only to the industry of LSIs, LCDs, and photoconductors for copying machines but also to the improvement of productivity in the solar cell industry.

なお、請求項6の装置は上記請求項5の場合に比べて構成部材の一つである同軸ケーブルの数が1本少ないので、構造が簡単であるが、特別仕様の同軸ケーブル用分岐器を用意する必要がある。 The apparatus of claim 6 has a simple structure because the number of coaxial cables, which is one of the constituent members, is one less than that of the case of claim 5, but a special-purpose coaxial cable branching device is provided. It is necessary to prepare.

請求項7の高周波プラズマ生成用平衡不平衡変換装置によれば、請求項4を実現する一つの具体的な確実な手段として、その価値が高い。すなわち、従来のLCブリッジ型平衡不平衡変換装置では問題であった真空容器内部での同軸ケーブルと電極の接合部分での漏洩電流及び該接合部分近傍での異常放電の発生を確実に抑制可能となり、一対の電極間のプラズマの均一性が改善されるので、従来困難視されていたVHF帯域(30MHz〜300MHz)の電源を用いる高密度プラズマの空間分布の均一化が可能となり、基板に対する均一な表面処理、即ち製膜速度およびエッチング速度の向上と均一性向上が再現性良く可能である。この効果は、LSI,LCD、複写機用感光体の産業のみならず、太陽電池業界での生産性向上に関し、貢献度が著しく大きい。 According to the balance-unbalance conversion apparatus for high-frequency plasma generation of claim 7, the value is high as one specific reliable means for realizing claim 4. In other words, the leakage current at the joint between the coaxial cable and the electrode inside the vacuum vessel and the occurrence of abnormal discharge near the joint can be reliably suppressed, which was a problem with the conventional LC bridge type balance-unbalance converter. Since the uniformity of the plasma between the pair of electrodes is improved, the spatial distribution of the high-density plasma using the power source in the VHF band (30 MHz to 300 MHz), which has been regarded as difficult in the past, can be made uniform, and the substrate can be made uniform. It is possible to improve the surface treatment, that is, the film forming speed and the etching speed and the uniformity, with good reproducibility. This effect greatly contributes not only to the industry of LSIs, LCDs, and photoconductors for copying machines but also to the improvement of productivity in the solar cell industry.

請求項8のプラズマ表面処理装置によれば、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置において、前記平衡不平衡変換装置が請求項1ないし7のいずれか1項に記載の高周波プラズマ生成用平衡不平衡変換装置により構成されことにより、該平衡不平衡変換装置の本体部分が実質的に前記真空容器の外部に設置可能となり、かつ、使用電力の波長に対応する為の該平衡不平衡変換装置の長さ調整あるいはLCブリッジ型回路の調整が容易に簡便に実施可能となり、かつ、真空容器内部に設置の同軸ケーブルと電極の接合部分での漏洩電流及び異常放電を確実に抑制可能となり、一対の電極間のプラズマの均一性が改善されるので、従来困難視されていたVHF帯域(30MHz〜300MHz)の電源を用いる高密度プラズマの空間分布の均一化が可能となり、基板に対する均一な表面処理、即ち製膜速度およびエッチング速度の向上と均一性向上が再現性良く可能である。この効果は、LSI,LCD、複写機用感光体の産業のみならず、太陽電池業界での生産性向上に関し、貢献度が著しく大きい。 According to the plasma surface treatment apparatus of claim 8, a vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, a first electrode on which a substrate is set, and the A balance-unbalance conversion device used in combination with a pair of electrodes composed of a second electrode disposed opposite to the first electrode, a power supply system for supplying high-frequency power to the pair of electrodes, and the power supply system 8. A plasma surface treatment apparatus comprising the generated plasma for treating a surface of a substrate, wherein the balance-unbalance conversion device is the balance-unbalance conversion for high-frequency plasma generation according to any one of claims 1 to 7. By configuring the apparatus, the main body portion of the balance-unbalance conversion apparatus can be substantially installed outside the vacuum vessel, and the balance-unbalance conversion apparatus length corresponding to the wavelength of power used is long. Adjustment or LC bridge type circuit adjustment can be performed easily and easily, and leakage current and abnormal discharge at the joint between the coaxial cable and the electrode installed inside the vacuum vessel can be reliably suppressed. Therefore, the spatial distribution of the high-density plasma using a power source in the VHF band (30 MHz to 300 MHz), which has been regarded as difficult in the past, can be made uniform. The film speed and etching speed can be improved and the uniformity can be improved with good reproducibility. This effect greatly contributes not only to the industry of LSIs, LCDs, and photoconductors for copying machines but also to the improvement of productivity in the solar cell industry.

請求項9のプラズマ表面処理方法によれば、排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理方法において、前記平衡不平衡変換装置を請求項1ないし7のいずれか1項に記載の高周波プラズマ生成用平衡不平衡変換装置によって構成し、プラズマ表面処理を行うことにより、該平衡不平衡変換装置の本体部分が実質的に前記真空容器の外部に設置可能となり、かつ、使用電力の波長に対応する為の該平衡不平衡変換装置の長さ調整が容易に簡便に実施可能となり、かつ、真空容器内部に設置の同軸ケーブルと電極の接合部分での漏洩電流及び異常放電を確実に抑制可能となり、一対の電極間のプラズマの均一性が改善されるので、従来困難視されていたVHF帯域(30MHz〜300MHz)の電源を用いる高密度プラズマの空間分布の均一化が可能となり、基板に対する均一な表面処理、即ち製膜速度およびエッチング速度の向上と均一性向上が再現性良く可能である。この効果は、LSI,LCD、複写機用感光体の産業のみならず、太陽電池業界での生産性向上に関し、貢献度が著しく大きい。 According to the plasma surface treatment method of claim 9, a vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, a first electrode on which a substrate is set, and the A balance-unbalance conversion device used in combination with a pair of electrodes composed of a second electrode disposed opposite to the first electrode, a power supply system for supplying high-frequency power to the pair of electrodes, and the power supply system 8. A plasma surface treatment method comprising: treating a surface of a substrate using generated plasma, wherein the balance-unbalance conversion device is a balance-unbalance conversion for high-frequency plasma generation according to any one of claims 1 to 7. By configuring the apparatus and performing plasma surface treatment, the main body portion of the balance-unbalance conversion apparatus can be substantially installed outside the vacuum vessel, and is adapted to correspond to the wavelength of power used. The length adjustment of the balance-unbalance conversion device can be easily and easily implemented, and the leakage current and abnormal discharge at the joint between the coaxial cable and the electrode installed inside the vacuum vessel can be reliably suppressed, and a pair of electrodes Since the plasma uniformity during the process is improved, the spatial distribution of the high-density plasma using the power source in the VHF band (30 MHz to 300 MHz), which has been regarded as difficult in the past, can be made uniform, and the surface treatment on the substrate can be made uniform. It is possible to improve the film forming speed and the etching speed and improve the uniformity with good reproducibility. This effect greatly contributes not only to the industry of LSIs, LCDs, and photoconductors for copying machines but also to the improvement of productivity in the solar cell industry.

以下、本発明の実施の一形態に係わる高周波プラズマ発生用平衡不平衡変換装置、該平衡不平衡変換装置により構成のプラズマ表面処理装置およびプラズマ表面処理方法について、図面を参照して説明する。なお、以下の説明では、プラズマ表面処理装置およびプラズマ表面処理方法の一例として、太陽電池を製作する際に必要なa―Si薄膜を製作する装置および方法が記載されているが、本願の発明対象が下記の例の装置および方法に限定されるものではない。 Hereinafter, a balanced / unbalanced conversion apparatus for high-frequency plasma generation according to an embodiment of the present invention, a plasma surface treatment apparatus and a plasma surface treatment method constituted by the balanced / unbalanced conversion apparatus will be described with reference to the drawings. In the following description, as an example of a plasma surface treatment apparatus and a plasma surface treatment method, an apparatus and method for producing an a-Si thin film necessary for producing a solar cell are described. Is not limited to the apparatus and method of the examples below.

(実施例1)
図1〜図3を参照して、本発明に関する実施例1の高周波プラズマ生成用平衡不平衡変換装置、該平衡不平衡変換装置により構成のプラズマ表面処理装置(プラズマCVD装置)およびプラズマ表面処理方法(プラズマCVD方法)について説明する。
(Example 1)
1 to 3, a balanced / unbalanced conversion apparatus for high-frequency plasma generation according to a first embodiment of the present invention, a plasma surface treatment apparatus (plasma CVD apparatus) and a plasma surface treatment method constituted by the balanced / unbalanced conversion apparatus (Plasma CVD method) will be described.

図1は実施例1に係わるプラズマ表面処理装置の全体を示す概略図、図2は図1のプラズマ表面処理装置の一構成である平衡不平衡変換装置の第1の具体例100を示す説明図及び図3は図2の平衡不平衡変換装置の第1の具体例100の構成部材である管型導電体と円筒型導電体の接続部の構成を示す説明図である。 FIG. 1 is a schematic view showing the entire plasma surface treatment apparatus according to the first embodiment, and FIG. 2 is an explanatory view showing a first specific example 100 of a balance-unbalance conversion apparatus which is one configuration of the plasma surface treatment apparatus of FIG. 3 and FIG. 3 are explanatory views showing the configuration of the connection portion between the tubular conductor and the cylindrical conductor, which are constituent members of the first specific example 100 of the balance-unbalance conversion device of FIG.

先ず、装置の構成を説明する。図1〜図3において、符番1は真空容器である。この真空容器1には、後述の放電ガスをプラズマ化する一対の電極、即ち第1の非接地電極2と図示しない基板ヒータ3を内臓した第2の非接地電極4が配置されている。該第1及び第2の非接地電極2、4は、それぞれ、図示しない絶縁物支持材5a、5bで真空容器1に固着されている。該第1の非接地電極2には直径2mm〜10mm程度の多数の小孔6が開口率40%〜60%で配置されている。前記第1の非接地電極2の周りにはアースシールド7が配置されている。該アースシールド7は、不必要な部分での放電を抑制し、かつ、放電ガス供給管8a、8bより供給されるSiH4等放電ガスを、図示しない整流孔9および前記非接地電極2に配置されている多数の小孔6を介して、前記一対の電極2と4の間に均一に供給する機能を有している。また、前記アースシールド7は、排気管10および図示しない真空ポンプ11と組み合わせて使用されることのより、プラズマ生成空間でプラズマ化された使用済みの放電ガスを排出する機能を有している。 First, the configuration of the apparatus will be described. 1 to 3, reference numeral 1 denotes a vacuum vessel. The vacuum vessel 1 is provided with a pair of electrodes for converting a discharge gas, which will be described later, into plasma, that is, a first non-grounded electrode 2 and a second non-grounded electrode 4 incorporating a substrate heater 3 (not shown). The first and second non-grounded electrodes 2 and 4 are fixed to the vacuum vessel 1 by insulator support members 5a and 5b (not shown), respectively. A large number of small holes 6 having a diameter of about 2 mm to 10 mm are arranged in the first non-grounded electrode 2 with an opening ratio of 40% to 60%. An earth shield 7 is disposed around the first non-grounded electrode 2. The earth shield 7 suppresses discharge in unnecessary portions, and discharge gas such as SiH 4 supplied from the discharge gas supply tubes 8a and 8b is disposed in the rectifying hole 9 and the non-ground electrode 2 (not shown). It has a function of supplying uniformly between the pair of electrodes 2 and 4 through a large number of small holes 6. The earth shield 7 is used in combination with the exhaust pipe 10 and a vacuum pump 11 (not shown), and thus has a function of discharging the used discharge gas that has been converted into plasma in the plasma generation space.

真空容器1内の圧力は、図示しない圧力計によりモニターされ、図示しない圧力調整弁により自動的に所定の値に調整、設定される。なお、本実施例の場合は、放電ガスが流量500sccm〜1500sccm程度の場合、圧力0.01Torr〜10Torr(1.33Pa〜1330Pa)程度に調整できる。真空容器101の真空到達圧力は2〜3E−7Torr(2.66〜3.99E−5Pa)程度である。 The pressure in the vacuum vessel 1 is monitored by a pressure gauge (not shown), and is automatically adjusted and set to a predetermined value by a pressure adjustment valve (not shown). In the case of the present embodiment, when the discharge gas has a flow rate of about 500 sccm to 1500 sccm, the pressure can be adjusted to about 0.01 Torr to 10 Torr (1.33 Pa to 1330 Pa). The vacuum ultimate pressure of the vacuum vessel 101 is about 2 to 3E-7 Torr (2.66 to 3.99E-5 Pa).

符番12は基板で、図示しないゲートバルブ13の開閉操作により、第2の非接地電極4に設置される。そして、図示しない基板ヒータ3により所定の温度に加熱される。 Reference numeral 12 denotes a substrate, which is installed on the second non-grounded electrode 4 by opening and closing a gate valve 13 (not shown). Then, it is heated to a predetermined temperature by a substrate heater 3 (not shown).

符番14は高周波電源で、周波数30MHz〜300MHz(VHF帯域)の電力を発生する。その電力は同軸ケーブル15、インピーダンス整合器16、後述の第2の同軸ケーブル109b、後述の平衡不平衡変換装置100及び図示しない絶縁環102a、102bに囲繞されている第1及び第2の給電線18a、18bを介して、一対の電極2,4の電力供給箇所17a、17bに供給される。 Reference numeral 14 denotes a high-frequency power source, which generates power having a frequency of 30 MHz to 300 MHz (VHF band). The power is supplied to the coaxial cable 15, the impedance matching unit 16, the second coaxial cable 109b described later, the balance-unbalance conversion device 100 described later, and the first and second feeders surrounded by the insulating rings 102a and 102b (not shown). The power is supplied to the power supply points 17a and 17b of the pair of electrodes 2 and 4 through 18a and 18b.

符番100は、平衡不平衡変換装置の第1の具体例で、図2図示の構成を有する。図2において、前記真空容器1の壁に配置されたフランジ108及び該フランジ108と組み合わせて用いられる金属製芯棒105と第1の誘電体106aと第1の管型導電体107aと第2の誘電体106bと第2の管型導電体107bと第3の誘電体106cから成る真空装置用同軸ケーブル接続端子103の真空側面の該金属製芯棒105及び該第1の管型導電体107aに、それぞれ、第3の管型導電体107cで囲繞された第1の同軸ケーブル109aの一方の端部の芯線110a及び外部導体111aがプラグ112a及びナット113aを介して接続されるとともに、該真空用同軸ケーブル接続端子103の真空側面の第2の管型導電体107bに該第3の管型導電体107cの一方の端部が接続され、かつ、該第3の管型導電体107cと該第1の同軸ケーブル109aの外部導体111aとの間に絶縁環114aが設置される。他方、該真空用同軸ケーブル接続端子103の大気側面の金属製芯棒105及び第1の管型導電体107aに、それぞれ、第4の管型導電体107d及び円筒型導電体115で囲繞された第2の同軸ケーブル109bの一方の端部の芯線110b及び外部導体111bが、それぞれ、プラグ112b及びナット113bを介して接続され、該真空用同軸ケーブル接続端子103の大気側面の第2の管型導電体107bに該第4の管型導電体107dの一方の端部が接続され、該第4の管型導電体107dの他方の端部と該円筒型導電体115の一方の端部が内筒と外筒の関係を持たせる形で密着され、該円筒型導電体115の他方の端部が該第2の同軸ケーブル109bの外部導体111bに密着されるとともに、該第4の管型導電体107d及び円筒型導電体115と該第2の同軸ケーブルの外部導体111bの間に絶縁環114b、114cが設置される。なお、ここで、絶縁環は必ずしも必要な部材でなく、該第1の同軸ケーブル109aの外部導体と該第3の管型導電体107cが短絡しないようにできればよい。そして、該第1の同軸ケーブル109aの端面から該フランジ108までの距離と該第3の管型導電体107cの端面から該フランジ108までの距離が等しくなるように配置され、該第3の管型導電体107cの他方の端部即ち開放されている側の端部から該円筒型導電体の閉じた方の端面116までの距離が、前記高周波電源から供給される高周波電力の波長λの四分の一に設定される。そして、該第2の同軸ケーブル109bの他方の端部の芯線110b及び外部導体111bを入力部とし、該第1の同軸ケーブル109aの他方の芯線110a及び外部導体111aを出力部として、第1及び第2の給電線18a、18bを介して電極2、4上の電力給電点17a、17bに接続される。なお、出力部の芯線110a及び外部導体111aに接続された第1及び第2の給電線18a、18bには図示しない絶縁環102a、102bを被せられ、異常放電が抑制される。 Reference numeral 100 is a first specific example of the balance-unbalance conversion apparatus and has the configuration shown in FIG. In FIG. 2, a flange 108 disposed on the wall of the vacuum vessel 1, a metal core rod 105 used in combination with the flange 108, a first dielectric 106a, a first tubular conductor 107a, and a second The metal core rod 105 and the first tubular conductor 107a on the vacuum side surface of the coaxial cable connecting terminal 103 for a vacuum device comprising the dielectric 106b, the second tubular conductor 107b, and the third dielectric 106c The core wire 110a and the outer conductor 111a at one end of the first coaxial cable 109a surrounded by the third tubular conductor 107c are connected via a plug 112a and a nut 113a, respectively, and the vacuum One end of the third tubular conductor 107c is connected to the second tubular conductor 107b on the vacuum side surface of the coaxial cable connection terminal 103, and the third tubular conductor is connected. Insulating ring 114a is installed between the external conductor 111a of the body 107c and the first coaxial cable 109a. On the other hand, the metal core rod 105 and the first tube-type conductor 107a on the air side surface of the vacuum coaxial cable connection terminal 103 are surrounded by a fourth tube-type conductor 107d and a cylindrical conductor 115, respectively. A core wire 110b and an outer conductor 111b at one end of the second coaxial cable 109b are connected via a plug 112b and a nut 113b, respectively, and a second tube type on the air side surface of the vacuum coaxial cable connection terminal 103. One end of the fourth tubular conductor 107d is connected to the conductor 107b, and the other end of the fourth tubular conductor 107d and one end of the cylindrical conductor 115 are connected to each other. The cylindrical conductor 115 is in close contact with each other so as to have a relationship between a cylinder and an outer cylinder, and the other end of the cylindrical conductor 115 is in close contact with the outer conductor 111b of the second coaxial cable 109b. Body 107 And cylindrical conductor 115 and the insulating ring 114b between the second coaxial cable outer conductor 111b, 114c are installed. Here, the insulating ring is not necessarily a necessary member, and it is sufficient that the outer conductor of the first coaxial cable 109a and the third tubular conductor 107c are not short-circuited. The distance from the end face of the first coaxial cable 109a to the flange 108 is equal to the distance from the end face of the third tubular conductor 107c to the flange 108, and the third pipe The distance from the other end of the type conductor 107c, that is, the end on the open side to the end face 116 on the closed side of the cylindrical conductor is four wavelengths λ of the high frequency power supplied from the high frequency power source. Set to a fraction. Then, the core wire 110b and the outer conductor 111b at the other end of the second coaxial cable 109b are used as input parts, and the other core wire 110a and the outer conductor 111a of the first coaxial cable 109a are used as output parts. The power supply points 17a and 17b on the electrodes 2 and 4 are connected via the second power supply lines 18a and 18b. The first and second power supply lines 18a and 18b connected to the core wire 110a and the outer conductor 111a of the output unit are covered with insulating rings 102a and 102b (not shown), so that abnormal discharge is suppressed.

ただし、上記構成において、該第3の管型導電体107cと該第1の同軸ケーブル109aの外部導体111aとの間に設置される絶縁環114aは、該第3の管型導電体107cと該第1の同軸ケーブル109aの外部導体111aとの短絡を防止するために用いられるもので、必ずしも必須のものではない。同様に、該第4の管型導電体107d及び円筒型導電体115と該第2の同軸ケーブルの外部導体111bの間に設置される絶縁環114b、114cも短絡を防止するために用いられるもので、必ずしも必須のものではない。 However, in the above configuration, the insulating ring 114a installed between the third tubular conductor 107c and the outer conductor 111a of the first coaxial cable 109a is connected to the third tubular conductor 107c and the outer conductor 111a. The first coaxial cable 109a is used to prevent a short circuit with the outer conductor 111a, and is not necessarily essential. Similarly, the insulating rings 114b and 114c installed between the fourth tubular conductor 107d and the cylindrical conductor 115 and the outer conductor 111b of the second coaxial cable are also used to prevent a short circuit. However, it is not always essential.

また、該第3の管型導電体107cと第1の同軸ケーブル109aの外部導体111aとの間隔は、絶縁性を確保できればとくに問題はないが、好ましくは、プラズマ生成中に電子及びイオンの影響で導通状態になることを抑制する為、パッシェンの法則を考慮することにより、上記一対の電極間隔の五分の一ないし十分の一、あるいは5倍以上に設定される。 The distance between the third tubular conductor 107c and the outer conductor 111a of the first coaxial cable 109a is not particularly problematic as long as insulation can be ensured. In order to suppress the conductive state, the Paschen's law is taken into consideration, so that the distance between the pair of electrodes is set to one-fifth to one-tenth, or five times or more.

図1及び図2において、第1の同軸ケーブル109aの端面及び該第3の管型導電体107cの開放端面から前記円筒型導電体115の端部116を見た回路は、長さが波長の四分の一である先端短絡のフィーダと同じであるので、その伝播路のインピーダンスは無限大である。したがって、上記第1の同軸ケーブル109aの外部導体111a端面からの電流の漏洩は発生しない。 1 and 2, the circuit in which the end 116 of the cylindrical conductor 115 is viewed from the end face of the first coaxial cable 109a and the open end face of the third tubular conductor 107c has a length of wavelength. Since it is the same as a feeder with a short-circuited tip that is a quarter, the impedance of its propagation path is infinite. Accordingly, current leakage from the end face of the outer conductor 111a of the first coaxial cable 109a does not occur.

上記漏洩電流発生を抑制するための上記平衡不平衡変換装置100の長さの調整において、上記第1、第2、第3の絶縁環114a、114b、114c及び第2の誘電体106bの影響で、該第3の管型導電体107c、該第4の管型導電体107d及び該円筒型導電体115内を伝播する際の電波の波長は、真空中伝播の場合の波長と異なり、かつ、予め理論計算して求めた波長の値と異なる場合があるので、実際に電力を供給しつつ簡便に調整することが必要かつ重要である。この場合、上記第4の管型導電体107dに密着している円筒型導電体115の接続部分をスライドさせることにより所望の漏洩電流抑制機能を確認することが可能である。ここでは、図3に示すように、円筒型導電体115にスリット118を設置するとともに、締め付けバンド119を併用することにより、両者を容易にスライド出来て、かつ、両者間の密着性を確実に実施することができる。そして、円筒型導電体115の端部116と第2の同軸ケーブル109aの外部導体の接続部に締め付けビス117を併用することにより、両者間の密着性を確実に実施することができる。 In the adjustment of the length of the balance-unbalance conversion device 100 for suppressing the generation of the leakage current, the influence of the first, second, and third insulating rings 114a, 114b, 114c and the second dielectric 106b. The wavelength of the radio wave when propagating through the third tubular conductor 107c, the fourth tubular conductor 107d, and the cylindrical conductor 115 is different from the wavelength when propagating in vacuum, and Since it may be different from the wavelength value obtained by theoretical calculation in advance, it is necessary and important to make simple adjustment while actually supplying power. In this case, it is possible to confirm a desired leakage current suppressing function by sliding the connecting portion of the cylindrical conductor 115 that is in close contact with the fourth tubular conductor 107d. Here, as shown in FIG. 3, by installing a slit 118 in a cylindrical conductor 115 and using a fastening band 119 together, both can be easily slid and adhesion between the two can be ensured. Can be implemented. Then, by using the fastening screw 117 in combination with the end portion 116 of the cylindrical conductor 115 and the connecting portion of the outer conductor of the second coaxial cable 109a, the adhesion between the two can be reliably implemented.

上記漏洩電流発生を抑制するための上記平衡不平衡変換装置100の長さの調整において、漏洩電流抑制機能の確認が困難である場合には、次に説明するような確認手段を用いることもできる。即ち、図1において、図示しない電圧定在波比(Voltage Standing Wave Ratio:略して、VSWRと呼ぶ)を測定するVSWR計を、インピーダンス整合器16と平衡不平衡変換装置100の間に設置して、上記円筒型導電体115の接続部分をスライドさせた場合の進行波と反射波の干渉で発生する定在波の電圧の最大値と最小値の比(ここでは、これをSと表す)を測定・表示する。そして、インピーダンス整合器16の出力側から平衡不平衡変換装置100を介して一対の電極へ伝播していく進行波と一対の電極側からインピーダンス整合器16の方へ戻ってくる反射波により発生する定在波の電圧最大値と電圧最小値に関する情報をS(即ちVSWR)の値で読む。仮に、S=3程度以上の場合、平衡不平衡変換装置の第2の具体例100の長さの調整を調整する。一般に、同軸ケーブルの接合部に異常が無ければ、上記Sは、S=3程度以下になる。 In the adjustment of the length of the balance-unbalance conversion device 100 for suppressing the occurrence of the leakage current, if it is difficult to confirm the leakage current suppression function, a confirmation means as described below can be used. . That is, in FIG. 1, a VSWR meter for measuring a voltage standing wave ratio (abbreviated as VSWR for short) not shown is installed between the impedance matching device 16 and the balun device 100. The ratio of the maximum value and the minimum value of the voltage of the standing wave generated by the interference between the traveling wave and the reflected wave when the connecting portion of the cylindrical conductor 115 is slid (here, this is expressed as S). Measure and display. Then, it is generated by a traveling wave propagating from the output side of the impedance matching unit 16 to the pair of electrodes via the balance-unbalance conversion device 100 and a reflected wave returning from the pair of electrodes side to the impedance matching unit 16. Information on the voltage maximum value and voltage minimum value of the standing wave is read as the value of S (ie, VSWR). If S = 3 or more, the length adjustment of the second specific example 100 of the balance-unbalance conversion apparatus is adjusted. Generally, if there is no abnormality in the joint portion of the coaxial cable, the above S is about S = 3 or less.

次に、上記構成のプラズマ表面処理装置を用いて、a−Si太陽電池用のa−Siを製膜する方法を説明する。図1〜図3において、予め、基板12を第2の非接地電極4の上に設置し、真空ポンプ11を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8a,8bからSiH4ガスを、例えば500sccm、圧力0.5Torr(66.5Pa)で供給しつつ、一対の電極2、4に高周波電力を、例えば周波数60MHzの電力例えば500Wを供給する。なお、基板温度は80〜350℃の範囲、例えば180℃に保持する。 Next, a method of forming a-Si for an a-Si solar cell using the plasma surface treatment apparatus having the above configuration will be described. 1 to 3, in advance, the substrate 12 is placed on the second non-grounded electrode 4 and the vacuum pump 11 is operated to remove impurity gas and the like in the vacuum vessel 1, and then the discharge gas supply pipe 8a. , 8b, while supplying SiH4 gas at a pressure of, for example, 500 sccm and a pressure of 0.5 Torr (66.5 Pa), high-frequency power, for example, power of a frequency of 60 MHz, for example, 500 W is supplied to the pair of electrodes 2, 4. The substrate temperature is kept in the range of 80 to 350 ° C., for example, 180 ° C.

即ち、高周波電源14の出力を例えば60MHzで500Wとし、その出力を同軸ケーブル15、インピーダンス整合器16、第2の同軸ケーブル109bを含む平衡不平衡変換装置100及び図示しない絶縁環102a、102bを被せられた第1及び第2の給電線18a、18bを介して、電力給電点17a、17bに供給する。この場合、上記インピーダンス整合器16及び高周波電源14に付属の進行波及び反射波の電力値モニターを組み合わせて用いることにより、インピーダンス整合器16の上流側には上記供給電力の反射波が戻らないようにできる。仮に、上記平衡不平衡変換装置の第1の具体例100の長さの調整が周波数60MHzに整合していないことが原因で、第1の同軸ケーブル109aと一対の電極2、4の間で電流の漏洩電流が発生している場合、一旦、プラズマの生成を中断し、上記平衡不平衡変換装置の第1の具体例100の長さを調整する。その調整は、上記図2及び図3に示したように、該スリット118付の円筒型導電体115の締め付けバンド119及び締め付けビス117を緩め、該第4の管型導電体107dに密着している円筒型導電体115の接続部分を適当長さだけスライドさせる。その後、該締め付けバンド119及び締め付けビス117を締め付けることにより、両者間の密着性を確実に実施することができる。そして、再度プラズマを生成し、上記電力の反射が抑制されたことを確認することができる。その結果、SiH4ガスのプラズマが生成される。 That is, the output of the high-frequency power supply 14 is set to 500 W at 60 MHz, for example, and the output is covered with the balanced / unbalanced conversion device 100 including the coaxial cable 15, the impedance matching device 16, and the second coaxial cable 109b, and insulating rings 102a and 102b (not shown). The power supply points 17a and 17b are supplied via the first and second power supply lines 18a and 18b. In this case, by using a combination of the traveling wave and reflected wave power value monitors attached to the impedance matching unit 16 and the high frequency power source 14, the reflected wave of the supplied power does not return to the upstream side of the impedance matching unit 16. Can be. If the adjustment of the length of the first specific example 100 of the balance-unbalance conversion device is not matched to the frequency of 60 MHz, the current between the first coaxial cable 109a and the pair of electrodes 2, 4 Is generated, the plasma generation is temporarily interrupted, and the length of the first specific example 100 of the balance-unbalance conversion device is adjusted. As shown in FIGS. 2 and 3, the adjustment is performed by loosening the tightening band 119 and the tightening screw 117 of the cylindrical conductor 115 with the slit 118 and closely contacting the fourth tubular conductor 107d. The connecting portion of the cylindrical conductor 115 is slid by an appropriate length. Thereafter, by tightening the tightening band 119 and the tightening screw 117, adhesion between the two can be reliably performed. Then, plasma can be generated again, and it can be confirmed that the reflection of the power is suppressed. As a result, plasma of SiH 4 gas is generated.

なお、上記インピーダンス整合器16及び上記進行波及び反射波の電力値モニターで上記平衡不平衡変換装置の第1の具体例100の長さを調整できない場合は、上記VSWR計を用いることにより確実に実施できる。 If the impedance matching unit 16 and the power value monitor of the traveling wave and the reflected wave cannot adjust the length of the first specific example 100 of the balance-unbalance conversion device, it is ensured by using the VSWR meter. Can be implemented.

上記電力供給箇所17a、17bへの電力供給が、漏洩電流の発生を抑制して実施できることから、第1および第2の給電線101a、101b近傍には局部放電など異常放電は発生しない。なお、前記第1および第2の給電線18a、18b回りの絶縁環102a、102bの絶縁効果も、両者間での異常放電を抑制している。また、従来技術では一対の電極周辺のアース構造および配線状況に関係する漏洩電流発生するので、再現性の良いプラズマ生成は困難であるが、本実施例では漏洩電流が発生しないので、再現性の良いプラズマを生成できる。 Since the power supply to the power supply points 17a and 17b can be performed while suppressing the occurrence of leakage current, abnormal discharge such as local discharge does not occur in the vicinity of the first and second power supply lines 101a and 101b. The insulating effect of the insulating rings 102a and 102b around the first and second power supply lines 18a and 18b also suppresses abnormal discharge between them. In addition, in the prior art, since leakage current related to the ground structure and wiring situation around the pair of electrodes is generated, it is difficult to generate plasma with good reproducibility. A good plasma can be generated.

上記工程において、SiH4ガスがプラズマ化されると、そのプラズマ中に存在するSiH3、SiH2、SiH等のラジカルが拡散現象により拡散し、基板12表面に吸着されることにより、a−Si膜が堆積する。なお、微結晶Siあるいは薄膜多結晶Si等は、製膜条件の中のSiH4、H2の流量比、圧力および電力を適正化することで製膜できることは公知の技術である。 In the above process, when SiH 4 gas is turned into plasma, radicals such as SiH 3, SiH 2, and SiH existing in the plasma are diffused by a diffusion phenomenon and adsorbed on the surface of the substrate 12, thereby depositing an a-Si film. To do. It is a well-known technique that microcrystalline Si, thin film polycrystalline Si, or the like can be formed by optimizing the flow ratio, pressure, and power of SiH4 and H2 in the film forming conditions.

上記の手順で製膜する場合の具体的条件を以下に説明する。サイズ1200mmx300mm(厚み4mm)程度のガラス基板12に製膜速度1nm/s、膜厚分布±10%のa−Siを製膜することを実施する。 Specific conditions in the case of film formation by the above procedure will be described below. A-Si having a film forming speed of 1 nm / s and a film thickness distribution of ± 10% is formed on a glass substrate 12 having a size of about 1200 mm × 300 mm (thickness 4 mm).

製膜条件は次の通りである。
(製膜条件)
放電ガス:SiH4
流量:500sccm
圧力:0.5Torr(66.5Pa)
電源周波数:60MHz
電力:500W
基板13の温度:180℃
The film forming conditions are as follows.
(Film forming conditions)
Discharge gas: SiH4
Flow rate: 500sccm
Pressure: 0.5 Torr (66.5 Pa)
Power supply frequency: 60 MHz
Power: 500W
The temperature of the substrate 13: 180 ° C.

上記製膜条件でプラズマを生成すると、上記平衡不平衡変換装置100により電力供給系と一対の電極との接続部での伝送特性が整合され、漏洩電流の発生が抑制されるので、生成されるプラズマの密度の空間的分布は、従来に比べて、再現性良く均一になる。その結果、製膜されるa−Siの膜厚分布は従来に比べて、再現性良く均一になる。数値的にはa−Si膜厚分布が±10以内で製膜が可能となる。   When the plasma is generated under the film forming conditions, the balance-unbalance conversion device 100 matches the transmission characteristics at the connection portion between the power supply system and the pair of electrodes, and the generation of leakage current is suppressed. The spatial distribution of plasma density is uniform with good reproducibility compared to the conventional case. As a result, the film thickness distribution of the a-Si film to be formed becomes uniform with good reproducibility compared to the conventional case. Numerically, film formation is possible when the a-Si film thickness distribution is within ± 10.

なお、本実施例では、一対の電極2、4にそれぞれ、給電点を1点(一対)としているので、基板サイズは上記1200mmx300mm程度に制約されるが、給電点数を増加すればサイズの幅は拡大可能であることは当然のことである。 In this embodiment, since the feeding point is set to one point (a pair) for each of the pair of electrodes 2 and 4, the substrate size is limited to about 1200 mm × 300 mm. However, if the number of feeding points is increased, the width of the size is increased. It is natural that it can be expanded.

また、a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造では、膜厚分布として±10%以内であれば性能上問題はない。上記実施例によれば、60MHzの電源周波数を用いても、従来の装置および方法に比べ著しく良好な膜厚分布を得ることが可能である。このことは、a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造分野での生産性向上および低コスト化に係わる工業的価値が著しく大きいことを意味している。 Further, in the manufacture of a-Si solar cells, thin film transistors, and photosensitive drums, there is no problem in performance as long as the film thickness distribution is within ± 10%. According to the above embodiment, it is possible to obtain a significantly better film thickness distribution as compared with the conventional apparatus and method even when a power supply frequency of 60 MHz is used. This means that the industrial value related to productivity improvement and cost reduction in the manufacturing field of a-Si solar cells, thin film transistors, and photosensitive drums is remarkably large.

(実施例2)
図1及び図4を参照しながら、本発明に関する実施例2の高周波プラズマ生成用平衡不平衡変換装置、該平衡不平衡変換装置により構成のプラズマ表面処理装置(プラズマCVD装置)およびプラズマ表面処理方法(プラズマCVD方法)
について説明する。
(Example 2)
With reference to FIG. 1 and FIG. 4, a balanced / unbalanced conversion apparatus for high-frequency plasma generation according to a second embodiment of the present invention, a plasma surface treatment apparatus (plasma CVD apparatus) and a plasma surface treatment method constituted by the balanced / unbalanced conversion apparatus (Plasma CVD method)
Will be described.

先ず、装置の構成について説明する。ただし、図1ないし図3に示した部材と同じ部材は同符番を付して説明を省略する。図4は実施例2に係わるプラズマ表面処理装置の一構成である平衡不平衡変換装置の第2の具体例を示す説明図である。図4図示の実施例2のプラズマ表面処理装置の構成は、実施例1の構成即ち図1において、平衡不平衡変換装置として用いられた平衡不平衡変換装置の第1の具体例100に代えて、図4に示す平衡不平衡変換装置の第2の具体例200を用いるもので、その他の装置構成要素は同様である。それ故、平衡不平衡変換装置の第2の具体例200以外の装置の構成要素については図1ないし図3を参照することにし、ここでは説明を省略する。また、この平衡不平衡変換装置の第2の具体例200を用いたプラズマ表面処理の実施手順については省略し、実施例1を参照する。 First, the configuration of the apparatus will be described. However, the same members as those shown in FIG. 1 to FIG. FIG. 4 is an explanatory view showing a second specific example of a balance-unbalance conversion apparatus which is one configuration of the plasma surface treatment apparatus according to the second embodiment. The configuration of the plasma surface treatment apparatus of the second embodiment shown in FIG. 4 is replaced with the first specific example 100 of the balance / unbalance conversion apparatus used as the balance / unbalance conversion apparatus in the configuration of the first embodiment, that is, FIG. The second specific example 200 of the balance-unbalance conversion device shown in FIG. 4 is used, and other device components are the same. Therefore, the constituent elements of the apparatus other than the second specific example 200 of the balance-unbalance conversion apparatus will be described with reference to FIGS. 1 to 3, and description thereof will be omitted here. Further, the procedure for performing the plasma surface treatment using the second specific example 200 of the balance-unbalance conversion apparatus is omitted, and the first embodiment is referred to.

図4は図1図示のプラズマ表面処理装置の一構成である平衡不平衡変換装置の第1の具体例100に代えて用いられる平衡不平衡変換装置の第2の具体例200の構成を示す説明図である。 FIG. 4 is a diagram illustrating the configuration of a second specific example 200 of the balance-unbalance conversion apparatus used in place of the first specific example 100 of the balance-unbalance conversion apparatus, which is one configuration of the plasma surface treatment apparatus shown in FIG. FIG.

図4図示の平衡不平衡変換装置の第2の具体例200の構成は次に示す通りである。前記真空容器1の壁に配置されたフランジ202及び 該フランジ202と組み合わせて用いられる金属製芯棒105と第1の誘電体106aと第1の管型導電体107aと第2の誘電体106bと該フランジ202に密着されている第2の管型導電体203から成る真空装置用同軸ケーブル接続端子201の真空側面の該金属製芯棒105及び該第1の管型導電体107aに、それぞれ、該第2の管型導電体203で囲繞された第1の同軸ケーブル109aの一方の端部の芯線110a及び外部導体111aがプラグ112a及びナット113aを介して接続されるとともに、該第2の管型導電体203と該第1の真空用同軸ケーブル109aの外部導体111aとの間に絶縁環114aが設置される。他方、該真空装置用同軸ケーブル接続端子201の大気側面の金属製芯棒105及び第1の管型導電体107aに、それぞれ、該第2の管型導電体203及び
円筒型導電体115で囲繞された第2の同軸ケーブル109bの一方の端部の芯線110b及び外部導体111bが、プラグ112b及びナット113bを介して接続され、該第2の管型導電体203の他方の端部と該円筒型導電体115の開放側の端部が内筒と外筒の関係を持たせる形で密着され、該円筒型導電体115の底面116の中央部が第2の同軸ケーブル109bの外部導体111bに密着されるとともに、該第2の管型導電体203及び円筒型導電体115と該第1の大気用同軸ケーブル109bの外部導体111bの間に絶縁環114b、114cが設置される。なお、ここで、絶縁環は必ずしも必要な部材でなく、該第1の同軸ケーブルの外部導111aと該第2の管型導電体203が短絡しないように、かつ、該第2の管型導電体203及び円筒型導電体115と第2の同軸ケーブル109bの外部導体111bが短絡しないようにできればよい。そして、該第1の同軸ケーブル109aの端面から該フランジ202までの距離と該第2の管型導電体203の端面から該フランジ202までの距離とが等しくなるように設置され、かつ、該第2の管型導電体203の開放端部面から該円筒型導電体115の底面116までの距離が、前記高周波電源から供給される高周波電力の波長の四分の一に設定される。そして、該第2の用同軸ケーブル109bの他方の端部の芯線110b及び外部導体111bを入力部とし、該第1の同軸ケーブル109aの他方の芯線110a及び外部導体111aを出力部として、それぞれ第1及び第2の給電線18a、18bを介して電極2、4上の電力給電点17a、17bに接続される。なお、第1及び第2の給電線18a、18bには、図示しない絶縁環102a、102bが被せられる。
The configuration of the second specific example 200 of the balance-unbalance conversion apparatus shown in FIG. 4 is as follows. A flange 202 disposed on the wall of the vacuum vessel 1, a metal core rod 105 used in combination with the flange 202, a first dielectric 106 a, a first tubular conductor 107 a, and a second dielectric 106 b The metallic core rod 105 and the first tubular conductor 107a on the vacuum side surface of the coaxial cable connecting terminal 201 for a vacuum device comprising the second tubular conductor 203 which is in close contact with the flange 202, respectively, The core wire 110a and the outer conductor 111a at one end of the first coaxial cable 109a surrounded by the second tube-type conductor 203 are connected via a plug 112a and a nut 113a, and the second tube An insulating ring 114a is installed between the type conductor 203 and the outer conductor 111a of the first vacuum coaxial cable 109a. On the other hand, the metal core rod 105 and the first tubular conductor 107a on the atmospheric side of the coaxial cable connection terminal 201 for the vacuum apparatus are surrounded by the second tubular conductor 203 and the cylindrical conductor 115, respectively. The core wire 110b and the outer conductor 111b at one end of the second coaxial cable 109b are connected via a plug 112b and a nut 113b, and the other end of the second tubular conductor 203 and the cylinder are connected. The open end of the type conductor 115 is brought into close contact with the inner cylinder and the outer cylinder, and the central portion of the bottom surface 116 of the cylindrical conductor 115 is connected to the outer conductor 111b of the second coaxial cable 109b. In addition, the insulating rings 114b and 114c are installed between the second tubular conductor 203 and the cylindrical conductor 115 and the outer conductor 111b of the first atmospheric coaxial cable 109b. Here, the insulating ring is not necessarily a necessary member, and the second tube-type conductive material is used so that the external conductor 111a of the first coaxial cable and the second tube-type conductor 203 are not short-circuited. It is sufficient that the body 203 and the cylindrical conductor 115 and the outer conductor 111b of the second coaxial cable 109b are not short-circuited. The distance from the end surface of the first coaxial cable 109a to the flange 202 is set equal to the distance from the end surface of the second tubular conductor 203 to the flange 202, and the first The distance from the open end surface of the second tubular conductor 203 to the bottom surface 116 of the cylindrical conductor 115 is set to a quarter of the wavelength of the high frequency power supplied from the high frequency power source. Then, the core wire 110b and the outer conductor 111b at the other end of the second coaxial cable 109b are used as input portions, and the other core wire 110a and the outer conductor 111a of the first coaxial cable 109a are used as output portions. The power supply points 17a and 17b on the electrodes 2 and 4 are connected via the first and second power supply lines 18a and 18b. The first and second power supply lines 18a and 18b are covered with insulating rings 102a and 102b (not shown).

ただし、上記構成において、該第2の管型導電体203と該第1の真空用同軸ケーブル109aの外部導体111aとの間に設置される絶縁環114aは、該第2の管型導電体203と該第1の真空用同軸ケーブル109aの外部導体111aとの短絡防止に用いられるもので、必ずしも必須のものではない。同様に、該第2の管型導電体203及び円筒型導電体115と該第1の大気用同軸ケーブル109bの外部導体111bの間に設置される絶縁環114b、114cも同じ理由により、必ずしも必須のものではない。 However, in the above configuration, the insulating ring 114a installed between the second tubular conductor 203 and the outer conductor 111a of the first vacuum coaxial cable 109a is provided with the second tubular conductor 203. And the outer conductor 111a of the first vacuum coaxial cable 109a, and is not necessarily essential. Similarly, the insulating rings 114b and 114c installed between the second tubular conductor 203 and the cylindrical conductor 115 and the outer conductor 111b of the first atmospheric coaxial cable 109b are also indispensable for the same reason. Is not.

また、該第2の管型導電体203と第1の同軸ケーブル109aの外部導体111aとの間隔は、絶縁性を確保できればとくに問題はないが、好ましくは、プラズマ生成中に電子及びイオンの影響で導通状態になることを抑制する為、パッシェンの法則を考慮することにより、上記一対の電極間隔の五分の一ないし十分の一、あるいは5倍以上に設定される。 The distance between the second tubular conductor 203 and the outer conductor 111a of the first coaxial cable 109a is not particularly limited as long as insulation can be ensured, but preferably, the influence of electrons and ions during plasma generation. In order to suppress the conductive state, the Paschen's law is taken into consideration, so that the distance between the pair of electrodes is set to one-fifth, one-fifth, or five times or more.

図1及び図4において、第1の同軸ケーブル109aの端面及び該第2の管型導電体203の開放端面から前記円筒型導電体115の端部116を見た回路は、長さが波長の四分の一である先端短絡のフィーダと同じであるので、その伝播路のインピーダンスは無限大である。したがって、上記第1の同軸ケーブル109aの外部導体111aの端面からの電流の漏洩は発生しない。 1 and 4, the circuit in which the end portion 116 of the cylindrical conductor 115 is viewed from the end face of the first coaxial cable 109a and the open end face of the second tubular conductor 203 has a length of wavelength. Since it is the same as a short-circuit feeder, which is a quarter, the impedance of its propagation path is infinite. Therefore, current leakage from the end face of the outer conductor 111a of the first coaxial cable 109a does not occur.

上記漏洩電流発生を抑制するための上記平衡不平衡変換装置200の長さの調整において、上記第1、第2、第3の絶縁環114a、114b、114c及び第2の誘電体106bの影響で、該第2の管型導電体203及び該円筒型導電体115内を伝播する際の電波の波長は、真空中伝播の場合の波長と異なり、かつ、予め理論計算して求めた波長の値と異なる場合があるので、実際に電力を供給しつつ簡便に調整することが必要かつ重要である。この場合、上記第2の管型導電体203に密着している円筒型導電体115の接続部分をスライドさせることにより所望の漏洩電流抑制機能を確認することが可能である。ここでは、前記図3に示すように、円筒型導電体115にスリット118を設置するとともに、締め付けバンド119を併用することにより、両者を容易にスライド出来て、かつ、両者間の密着性を確実に実施することができる。そして、円筒型導電体115の端部116と第2の同軸ケーブル109aの外部導体の接続部に締め付けビス117を併用することにより、両者間の密着性を確実に実施することができる。 In adjusting the length of the balance-unbalance conversion device 200 for suppressing the generation of the leakage current, the first, second, and third insulating rings 114a, 114b, 114c and the second dielectric 106b are affected. The wavelength of the radio wave when propagating through the second tubular conductor 203 and the cylindrical conductor 115 is different from the wavelength when propagating in vacuum, and the wavelength value obtained by theoretical calculation in advance. Therefore, it is necessary and important to simply adjust while actually supplying power. In this case, it is possible to confirm a desired leakage current suppressing function by sliding the connecting portion of the cylindrical conductor 115 that is in close contact with the second tubular conductor 203. Here, as shown in FIG. 3, the slit 118 is installed in the cylindrical conductor 115 and the fastening band 119 is used in combination so that both can be easily slid and the adhesion between the two is ensured. Can be implemented. Then, by using the fastening screw 117 in combination with the end portion 116 of the cylindrical conductor 115 and the connecting portion of the outer conductor of the second coaxial cable 109a, the adhesion between the two can be reliably implemented.

上記漏洩電流発生を抑制するための上記平衡不平衡変換装置200の長さの調整において、漏洩電流抑制機能の確認が困難である場合には、次に説明するような確認手段を用いることもできる。即ち、図1において、図示しない電圧定在波比(Voltage Standing Wave Ratio:略して、VSWRと呼ぶ)を測定するVSWR計を、インピーダンス整合器16と平衡不平衡変換装置200の間に設置して、上記円筒型導電体115の接続部分をスライドさせた場合の進行波と反射波の干渉で発生する定在波の電圧の最大値と最小値の比(ここでは、これをSと表す)を測定・表示する。そして、インピーダンス整合器16の出力側から平衡不平衡変換装置200を介して一対の電極へ伝播していく進行波と一対の電極側からインピーダンス整合器16の方へ戻ってくる反射波により発生する定在波の電圧最大値と電圧最小値に関する情報をS(即ちVSWR)の値で読む。仮に、S=3程度以上の場合、平衡不平衡変換装置の第2の具体例200の長さの調整を調整する。一般に、同軸ケーブルの接合部に異常が無ければ、上記Sは、S=3程度以下になる。 In the adjustment of the length of the balance-unbalance conversion device 200 for suppressing the occurrence of the leakage current, if it is difficult to confirm the leakage current suppression function, a confirmation means as described below can be used. . That is, in FIG. 1, a VSWR meter for measuring a voltage standing wave ratio (abbreviated as VSWR for short) not shown is installed between the impedance matching device 16 and the balun device 200. The ratio of the maximum value and the minimum value of the voltage of the standing wave generated by the interference between the traveling wave and the reflected wave when the connecting portion of the cylindrical conductor 115 is slid (herein, this is expressed as S). Measure and display. Then, it is generated by a traveling wave propagating from the output side of the impedance matching unit 16 to the pair of electrodes via the balance-unbalance conversion device 200 and a reflected wave returning from the pair of electrodes side to the impedance matching unit 16. Information on the voltage maximum value and voltage minimum value of the standing wave is read as the value of S (ie, VSWR). If S = about 3 or more, the length adjustment of the second specific example 200 of the balance-unbalance conversion apparatus is adjusted. Generally, if there is no abnormality in the joint portion of the coaxial cable, the above S is about S = 3 or less.

なお、本実施例2では、平衡不平衡変換装置の第2の具体例200を用いたプラズマ表面処理の実施手順については省略し、実施例1を参照するとしたが、実施例1と同様に、一対の電極2,4にそれぞれ、給電点を1点(一対)としているので、基板サイズは上記1200mmx300mm程度に制約される。しかし、給電点数を増加すればサイズの幅は拡大可能であることは当然のことである。 In the second embodiment, the execution procedure of the plasma surface treatment using the second specific example 200 of the balance-unbalance conversion apparatus is omitted and the first embodiment is referred to. However, as in the first embodiment, Since each of the pair of electrodes 2 and 4 has one feeding point (a pair), the substrate size is limited to about 1200 mm × 300 mm. However, it goes without saying that the size range can be expanded by increasing the number of feeding points.

また、上記実施例2によれば、電源周波数30MHz〜100MHzにおいて、従来の装置および方法に比べ著しく良好な膜厚分布を得ることが可能である。このことは、a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造分野での生産性向上および低コスト化に係わる工業的価値が著しく大きいことを意味している。 Moreover, according to the said Example 2, it is possible to obtain a remarkably favorable film thickness distribution compared with the conventional apparatus and method in power supply frequency 30MHz-100MHz. This means that the industrial value related to productivity improvement and cost reduction in the manufacturing field of a-Si solar cells, thin film transistors, and photosensitive drums is remarkably large.

(実施例3)
図5及び図6を参照して、本発明に関する実施例3の高周波プラズマ発生用平衡不平衡変換装置、該平衡不平衡変換装置により構成のプラズマ表面処理装置(プラズマCVD装置)およびプラズマ表面処理方法(プラズマCVD方法)について説明する。先ず、装置の構成について説明する。図5は実施例3に係わるプラズマ表面処理装置の構成図、図6(a)、(b)は 実施例3の理想的な構成を示す説明図である。
(Example 3)
Referring to FIGS. 5 and 6, a balanced / unbalanced conversion apparatus for high-frequency plasma generation according to a third embodiment of the present invention, a plasma surface treatment apparatus (plasma CVD apparatus) and a plasma surface treatment method constituted by the balanced / unbalanced conversion apparatus. (Plasma CVD method) will be described. First, the configuration of the apparatus will be described. FIG. 5 is a configuration diagram of a plasma surface treatment apparatus according to the third embodiment, and FIGS. 6A and 6B are explanatory diagrams showing an ideal configuration of the third embodiment.

先ず、装置の構成について説明する。ただし、図1ないし図4に示した部材と同じ部材は同符番を付して説明を省略する。図5図示の実施例3のプラズマ表面処理装置の構成は、次に説明する電力供給系以外は、図1と同様である。すなわち、高周波電源14、大気用同軸ケーブル15、インピーダンス整合器16、第1の大気用同軸ケーブル501、LCブリッジ型平衡不平衡変換装置502、第2及び第3の大気用同軸ケーブル503a、503b、真空容器に配置の第1及び第2の真空装置用同軸ケーブル接続端子504a、504b、第1及び第2の真空用同軸ケーブル505a、505b、短絡用導体506、第1及び第2の給電線18a、18bから構成される電力供給系以外は、図1と同様である。それ故、該電力供給系以外の装置の構成については、図1を参照することにし、ここでは説明を省略する。また、該電力供給系を用いた実施例3のプラズマ表面処理の実施手順については省略し、実施例1を参照する。 First, the configuration of the apparatus will be described. However, the same members as those shown in FIG. 1 to FIG. The configuration of the plasma surface treatment apparatus of Example 3 shown in FIG. 5 is the same as that of FIG. 1 except for the power supply system described below. That is, the high-frequency power source 14, the atmospheric coaxial cable 15, the impedance matching unit 16, the first atmospheric coaxial cable 501, the LC bridge type balance-unbalance conversion device 502, the second and third atmospheric coaxial cables 503a, 503b, First and second vacuum coaxial cable connection terminals 504a and 504b, first and second vacuum coaxial cables 505a and 505b, a short-circuiting conductor 506, and first and second feeders 18a disposed in the vacuum vessel. , 18b, except for the power supply system. Therefore, the configuration of the apparatus other than the power supply system will be described with reference to FIG. 1, and description thereof will be omitted here. Further, the procedure for performing the plasma surface treatment of the third embodiment using the power supply system is omitted, and the first embodiment is referred to.

上記構成において、該第1及び第2の真空用同軸ケーブル505a、505bの外部導体を短絡する手段として、該短絡用導体506を用いている理由は次の通りである。すなわち、実施例3の基本的な構成としては、図5図示のように、排気系を備えた真空容器1と、この真空容器1内に放電用ガスを供給する放電用ガス供給管8a、8bと、基板12がセットされる第1の電極4と前記第1の電極4に対向設置される第2の電極2からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系14、15、16、501と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置502を配置させて、長さが等しい2本の同軸ケーブル505a、505bのそれぞれの一方の端部の芯線を前記一対の電極に設けられた電力供給点17a、17bに接続し、該端部のそれぞれの同軸ケーブルの外部導体を短絡するとともに、該2本の同軸ケーブル505a、505bの他方の端部の芯線及び外部導体に、それぞれに前記真空容器1の壁に配置の同軸ケーブル接続端子504a、504bを介して電力を供給し、該電力の電圧の位相差を180度に調整する手段502を設けるということを特徴としている。 In the above configuration, the reason why the shorting conductor 506 is used as means for short-circuiting the outer conductors of the first and second vacuum coaxial cables 505a and 505b is as follows. That is, as a basic configuration of the third embodiment, as shown in FIG. 5, a vacuum vessel 1 having an exhaust system and discharge gas supply pipes 8a and 8b for supplying a discharge gas into the vacuum vessel 1 are provided. A pair of electrodes composed of a first electrode 4 on which the substrate 12 is set and a second electrode 2 placed opposite to the first electrode 4, and a power supply system for supplying high-frequency power to the pair of electrodes 14, 15, 16, 501 and a balance-unbalance conversion device 502 used in combination with the power supply system are arranged, and the core wires at one end of each of two coaxial cables 505 a, 505 b having the same length Are connected to power supply points 17a and 17b provided on the pair of electrodes, the outer conductors of the respective coaxial cables at the ends are short-circuited, and the other ends of the two coaxial cables 505a and 505b are connected. Core wire and The unit conductor is provided with means 502 for supplying electric power via coaxial cable connection terminals 504a and 504b arranged on the wall of the vacuum vessel 1 and adjusting the phase difference of the voltage of the electric power to 180 degrees. It is a feature.

上記長さが等しい2本の同軸ケーブル505a、505bのそれぞれの一方の端部の外部導体を短絡することの作用としては、第1に、該2本の同軸ケーブル505a、505bのそれぞれの端部で発生する漏洩電流が、大きさが等しく、方向が逆であるので、互いに消去されて、その結果、出力部である該2本の同軸ケーブル505a、505bのそれぞれの芯線から位相差180度の電圧を持つ電力を漏洩電流抑制して供給可能となる。第2に、2本の同軸ケーブル505a、505bの端部の外部導体の外表面の電位が同じとなるので、該2本の同軸ケーブル505a、505bの芯線から出力される電力の電圧の基準値が時間的に安定する。このことは、真空容器内部に配線される該2本の同軸ケーブル505a、505bの真空装置内部の部材の構造及びアース条件に影響される度合いが著しく小さくなることを意味している。 As an action of short-circuiting the outer conductor at one end of each of the two coaxial cables 505a and 505b having the same length, first, the respective end portions of the two coaxial cables 505a and 505b are used. The leakage currents generated in are equal in magnitude and opposite in direction, so they are erased from each other. As a result, the phase difference of 180 degrees from the respective core wires of the two coaxial cables 505a and 505b, which are output portions, is obtained. Electric power having a voltage can be supplied while suppressing leakage current. Second, since the potentials of the outer surfaces of the outer conductors at the ends of the two coaxial cables 505a and 505b are the same, the reference value of the voltage of the power output from the core wires of the two coaxial cables 505a and 505b Is stable over time. This means that the degree to which the two coaxial cables 505a and 505b wired inside the vacuum vessel are affected by the structure of the members inside the vacuum device and the grounding condition is significantly reduced.

上記2本の同軸ケーブル505a、505bの端部の短絡の手段としては、図6(a)に示すように、真空容器内部に2本の同軸ケーブル311a、311bを平行に配置し、それらの外部導体を密着することにより、短絡状態312を作るのが常識的で、かつ理想的である。この状態であれば、該2本の同軸ケーブル311a、311bの外部導体に漏れてくる電流は互いにキャンセルして確実に漏洩電流の防止を実現できる。しかしながら、図6(a)図示の大気用同軸ケーブル314a、314b、真空装置用同軸ケーブル接続端子315、真空同軸ケーブル311a、311bの芯線317a、317b等からなる構成は、真空装置用同軸ケーブル接続端子315が汎用的部材で無く特殊仕様であること及び真空同軸ケーブル311a、311bが平行に密着されていれば実際に応用する場合、使用条件が制約されることがある。それ故、図6(a)の構成は、実用上は特殊ケースの応用に限定されると考えられる。また、図6(b)に示すように、大気用同軸ケーブル324a、324b、真空装置用同軸ケーブル接続端子325a、325b、芯線327a、327bを含む真空同軸ケーブル321a、321bからなる構成例である。該真空装置用同軸ケーブル接続端子325a、325bは汎用性のある部材であり、応用上は安価で便利であるが、点状にて接続する状態322は不安定である。それ故、この構成も実用上は特殊ケースの応用に限定されると考えられる。 As means for short-circuiting the ends of the two coaxial cables 505a and 505b, as shown in FIG. 6A, two coaxial cables 311a and 311b are arranged in parallel inside the vacuum vessel, It is common sense and ideal to create a short circuit state 312 by closely contacting the conductors. In this state, the currents leaking to the outer conductors of the two coaxial cables 311a and 311b are canceled each other, and the leakage current can be reliably prevented. However, the configuration including the coaxial cables 314a and 314b for the atmosphere shown in FIG. 6A, the coaxial cable connection terminal 315 for the vacuum apparatus, the core wires 317a and 317b of the vacuum coaxial cables 311a and 311b, etc. If 315 is not a general-purpose member but has a special specification, and if the vacuum coaxial cables 311a and 311b are in close contact in parallel, the usage conditions may be restricted when actually applied. Therefore, it is considered that the configuration of FIG. 6A is practically limited to the application of a special case. Further, as shown in FIG. 6B, this is a configuration example including vacuum coaxial cables 321a and 321b including atmospheric coaxial cables 324a and 324b, vacuum device coaxial cable connection terminals 325a and 325b, and core wires 327a and 327b. The vacuum device coaxial cable connection terminals 325a and 325b are general-purpose members, and are inexpensive and convenient for application, but the state 322 of connection in the form of dots is unstable. Therefore, it is considered that this configuration is practically limited to special case applications.

したがって、実際的には、図5図示の同軸ケーブル端部の外部導体の短絡手段は、短絡用導体506のような形態が考えられる。当然ながら、図6(a)、(b)に示したような構成が最も好ましい形態である。 Therefore, in practice, the short-circuit means for the outer conductor at the end of the coaxial cable shown in FIG. Of course, the configuration as shown in FIGS. 6A and 6B is the most preferable mode.

図5において、高周波電源14の出力、例えば周波数70MHzで出力500Wの電力が大気用同軸ケーブル15、インピーダンス整合器16及び第1の大気用同軸ケーブル501を介してLCブリッジ型平衡不平衡変換装置502に入力される。該LCブリッジ型平衡不平衡変換装置502に入力された電力は2分配され、かつ2分配された電力の電圧の位相差が180度に調整される。該電圧の位相差が180度の関係にある2分配された電力は、それぞれ、長さが同じ、例えば長さ60cmの第2及び第3の大気用同軸ケーブル503a、503bを伝播し、第1及び第2の真空装置用同軸ケーブル接続端子504a、504bを介して、長さが同じ、例えば長さ20cmで、かつ、一方の端部の外部導体同士が短絡用導体506で短絡されている第1及び第2の真空用同軸ケーブル505a、505bに伝送される。該第1及び第2の真空用同軸ケーブル505a、505bに伝送された電力は、その端部の芯線に接続された第1及び第2の給電線18a、18bを用いて電力給電点17a、17bに供給される。 In FIG. 5, the output of the high frequency power source 14, for example, the power of 500 W at a frequency of 70 MHz, is supplied to the LC bridge type unbalanced converter 502 through the atmospheric coaxial cable 15, the impedance matching device 16, and the first atmospheric coaxial cable 501. Is input. The power input to the LC bridge type balun device 502 is divided into two, and the voltage phase difference between the two distributed powers is adjusted to 180 degrees. The two distributed powers having a phase difference of 180 degrees in the voltage propagate through the second and third atmospheric coaxial cables 503a and 503b having the same length, for example, a length of 60 cm, for example. And the second vacuum device coaxial cable connection terminals 504a and 504b, the lengths of which are the same, for example, 20 cm in length, and the outer conductors at one end are short-circuited by the short-circuiting conductor 506. The first and second vacuum coaxial cables 505a and 505b are transmitted. The power transmitted to the first and second vacuum coaxial cables 505a and 505b is supplied to the power feed points 17a and 17b using the first and second feed lines 18a and 18b connected to the core wires at the ends thereof. To be supplied.

ここで、上記短絡用導体506の長さは、使用電力の波長の三十分の一以下、好ましくは六十分の一以下になるように設定される。該短絡用導体506の長さを該電力の波長の三十分の一以下、好ましくは六十分の一以下に設定する理由は、超高周波で顕著に現れる電力伝播時の表皮効果に起因するインピーダンスの増大により、該短絡用導体506が短絡の機能を発揮できなくなるからである。すなわち、長さが不適当であれば、超高周波的に両者を短絡したことにならないという意味である。その結果、該LCブリッジ型平衡不平衡変換装置502に第1の大気用同軸ケーブル501で入力された高周波電力は、出力部となる該第1及び第2の真空用同軸ケーブル505a、505bの一方の端部のそれぞれの芯腺から、電圧の位相差が180度の関係をもつ電力が該第1及び第2の給電線18a、18bを介して、電力供給点17a、17bに供給される。   Here, the length of the short-circuiting conductor 506 is set to be not more than one-third of the wavelength of the power used, and preferably not more than one-sixth. The reason for setting the length of the short-circuiting conductor 506 to not more than one-third of the wavelength of the power, preferably to not more than six-thousand is due to the skin effect at the time of power propagation that appears prominently at ultra-high frequencies. This is because the short-circuiting conductor 506 cannot exhibit a short-circuiting function due to an increase in impedance. That is, if the length is inappropriate, it means that the two are not short-circuited in an ultrahigh frequency. As a result, the high-frequency power input to the LC bridge type balance-unbalance conversion device 502 via the first atmospheric coaxial cable 501 is one of the first and second vacuum coaxial cables 505a and 505b serving as an output unit. Electric power having a voltage phase difference of 180 degrees is supplied to the power supply points 17a and 17b through the first and second feeders 18a and 18b.

ただし、上記電力供給系において、該第1及び第2の真空用同軸ケーブル505a、505bの一方の端部同士が、長さが該電力の波長の三十分の一以下、好ましくは六十分の一以下である短絡用導体506で短絡されていなければ、上記出力部の該第1及び第2の真空用同軸ケーブル505a、505bのそれぞれの外部導体及び端部の近傍には、漏洩電流が原因の強力な異常放電が発生する。 However, in the above power supply system, one end of each of the first and second vacuum coaxial cables 505a and 505b has a length of one-third or less, preferably six-tenths of the wavelength of the power. If the short-circuiting conductor 506 that is less than or equal to 1 is not short-circuited, a leakage current is present in the vicinity of the outer conductor and the end of each of the first and second vacuum coaxial cables 505a and 505b of the output section. Causes a strong abnormal discharge.

即ち、該第1及び第2の真空用同軸ケーブル505a、505bの一方の端部の外部導体間を長さが該電力の波長の三十分の一以下、好ましくは六十分の一以下の短絡用導体606で短絡する手段は画期的であると言える。 That is, the length between the outer conductors at one end of the first and second vacuum coaxial cables 505a and 505b is not more than one third of the wavelength of the power, preferably not more than sixteenth. It can be said that the means for short-circuiting with the short-circuiting conductor 606 is epoch-making.

なお、本実施例3では、図5図示の装置を用いたプラズマ表面処理の実施手順については省略し、実施例1を参照するとしたが、実施例1と同様に、一対の電極2、4にそれぞれ、給電点を1点(一対)としているので、基板サイズは上記1200mmx300mm程度に制約される。しかし、給電点数を増加すればサイズの幅は拡大可能であることは当然のことである。 In the third embodiment, the procedure for performing the plasma surface treatment using the apparatus shown in FIG. 5 is omitted and reference is made to the first embodiment. Since each feeding point is one point (a pair), the substrate size is limited to about 1200 mm × 300 mm. However, it goes without saying that the size range can be expanded by increasing the number of feeding points.

また、上記実施例3によれば、電源周波数30MHz〜100MHzにおいて、従来の装置および方法に比べ著しく良好な膜厚分布を得ることが可能である。このことは、a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造分野での生産性向上および低コスト化に係わる工業的価値が著しく大きいことを意味している。 Moreover, according to the said Example 3, it is possible to obtain a remarkably favorable film thickness distribution compared with the conventional apparatus and method in power supply frequency 30MHz-100MHz. This means that the industrial value related to productivity improvement and cost reduction in the manufacturing field of a-Si solar cells, thin film transistors, and photosensitive drums is remarkably large.

(実施例4)
図7及び図8を参照して、本発明に関する実施例4の高周波プラズマ発生用平衡不平衡変換装置、該平衡不平衡変換装置により構成のプラズマ表面処理装置(プラズマCVD装置)およびプラズマ表面処理方法(プラズマCVD方法)について説明する。先ず、装置の構成について説明する。ただし、図1ないし図6に示した部材と同じ部材は同符番を付して説明を省略する。図7は実施例4に係わるプラズマ表面処理装置の全体を示す概略図、図8は図7のプラズマ表面処理装置の一構成である平衡不平衡変換装置の第4の具体例300を示す説明図である。
Example 4
7 and 8, a balanced / unbalanced conversion apparatus for high-frequency plasma generation according to a fourth embodiment of the present invention, a plasma surface treatment apparatus (plasma CVD apparatus) and a plasma surface treatment method constituted by the balanced / unbalanced conversion apparatus. (Plasma CVD method) will be described. First, the configuration of the apparatus will be described. However, the same members as those shown in FIG. 1 to FIG. FIG. 7 is a schematic view showing the entire plasma surface treatment apparatus according to the fourth embodiment, and FIG. 8 is an explanatory view showing a fourth specific example 300 of the balance-unbalance conversion apparatus which is one configuration of the plasma surface treatment apparatus of FIG. It is.

図7及び図8図示の実施例4のプラズマ表面処理装置の構成は、実施例1の構成図即ち図1において、平衡不平衡装置として用いられた平衡不平衡装置の第1の具体例100に代えて、図8に示す平衡不平衡変換装置の第4の具体例300を用いるもので、その他の装置構成要素は同様である。それ故、平衡不平衡変換装置の第4の具体例300以外の装置の構成要素については図1を参照することにし、ここでは説明を省略する。 The configuration of the plasma surface treatment apparatus according to the fourth embodiment shown in FIGS. 7 and 8 is the same as that of the first embodiment 100 of the balance / unbalance apparatus used as the balance / unbalance apparatus in FIG. Instead, the fourth specific example 300 of the balance-unbalance conversion apparatus shown in FIG. 8 is used, and other apparatus components are the same. Therefore, the constituent elements of the apparatus other than the fourth specific example 300 of the balance-unbalance conversion apparatus will be described with reference to FIG.

図7及び図8において、真空容器1の壁に配置された第1及び第2の真空装置用同軸ケーブル接続端子303a、303bの中、第1の真空装置用同軸ケーブル接続端子303aの大気側面に長さがL例えば30cmの第3の同軸ケーブル305の一方の端部が接続され、該第2の同軸ケーブル305の他方の端部が同軸ケーブル用T型コネクター307の第1の接続部に接続され、該同軸ケーブル用T型コネクター307の第2の接続部に長さが前記高周波電力の波長λの二分の一例えば137cm(周波数70MHz、真空中の波長4.2m、同軸ケーブル伝播時の波長短縮率0.65の場合)と該第3の同軸ケーブルの長さL(例えば30cm)を加えた値に等しい長さ即ち(λ/2+L)例えば167cmである第2の同軸ケーブル306の一方の端部が接続され、該第2の同軸ケーブル306の他方の端部が前記真空容器1の壁に配置された第2の真空装置用同軸ケーブル接続端子303bの大気側面に接続され、該同軸ケーブル用T型コネクター307の第3の接続部に第1の同軸ケーブル304の一方の端部が接続される。そして、該第1の同軸ケーブル304の他方の端部の芯線及び外部導体が入力部として用いられる。そして、該第1及び第2の真空装置用同軸ケーブル接続端子303a、303bの真空側面に、それぞれ、長さが等しい例えば20cmの長さの第1及び第2の真空用同軸ケーブル302a、302bの一方の端部が接続され、該第1及び第2の真空用同軸ケーブル302a、302bの他方の端部のそれぞれの外部導体が長さが使用電力の波長の三十分の一以下、好ましくは六十分の一以下、例えば5cm(70MHz、λ=4.2m)の短絡用導電体308で短絡され、かつ、それぞれの芯線301a、301bを出力部として、第1及び第2の給電線18a、18bに接続される。この場合、該芯線301a、301bから出力される電圧及び電流は、第1の同軸ケーブル304と同軸ケーブル用T型コネクター307の接続部で分岐された2つの伝送路の長さが使用電力の波長の二分の一であるので、位相差が180度となり、平衡伝送路になっている。即ち、第1の同軸ケーブル304の一方の端部の芯線及び外部導体を入力部とし、第1及び第2の真空用同軸ケーブルの芯線301a、301bを出力部とする平衡不平衡変換装置300が構成されている。 7 and 8, among the first and second vacuum device coaxial cable connection terminals 303a and 303b arranged on the wall of the vacuum vessel 1, on the atmosphere side surface of the first vacuum device coaxial cable connection terminal 303a. One end of a third coaxial cable 305 having a length L, for example, 30 cm, is connected, and the other end of the second coaxial cable 305 is connected to the first connection portion of the T-connector 307 for the coaxial cable. The length of the second connection portion of the T-connector 307 for the coaxial cable is 137 cm (the frequency is 70 MHz, the wavelength is 4.2 m in vacuum, the wavelength when propagating the coaxial cable, for example, one half of the wavelength λ of the high-frequency power. The second coaxial cable 3 having a length equal to a value obtained by adding the length L (for example, 30 cm) of the third coaxial cable, ie, (λ / 2 + L), for example, 167 cm. 06 is connected, and the other end of the second coaxial cable 306 is connected to the atmospheric side surface of the second coaxial cable connection terminal 303b for the vacuum device disposed on the wall of the vacuum vessel 1. One end portion of the first coaxial cable 304 is connected to the third connection portion of the T-connector 307 for the coaxial cable. The core wire and the outer conductor at the other end of the first coaxial cable 304 are used as the input unit. The first and second vacuum coaxial cables 302a and 302b having the same length, for example, 20 cm, are respectively formed on the vacuum side surfaces of the first and second vacuum device coaxial cable connection terminals 303a and 303b. One end is connected, and each outer conductor of the other end of each of the first and second vacuum coaxial cables 302a and 302b has a length of one third or less of the wavelength of the power used, preferably The first and second feeders 18a are short-circuited by a short-circuiting conductor 308 having a thickness of less than 1/6, for example, 5 cm (70 MHz, λ = 4.2 m), and the core wires 301a and 301b are used as output portions. , 18b. In this case, the voltage and current output from the core wires 301a and 301b are the wavelength of the power used by the length of the two transmission lines branched at the connection between the first coaxial cable 304 and the coaxial cable T-connector 307. Therefore, the phase difference is 180 degrees, which is a balanced transmission line. That is, the balance-unbalance conversion apparatus 300 has the core wire and the outer conductor at one end of the first coaxial cable 304 as input parts and the core wires 301a and 301b of the first and second vacuum coaxial cables as output parts. It is configured.

ここで、該第1及び第2の真空用同軸ケーブル302a、302bの長さは同じ長さである必要がある。また、該同軸ケーブル302a、302bの端部を短絡する短絡用導電体308の長さは、使用電力の波長の三十分の一以下、好ましくは六十分の一程度以下に短くする必要がある。その理由は高周波数で顕著に現れる電力伝播時の表皮効果に起因するインピーダンスの増大により、該短絡用導体308が短絡の機能を発揮できなくなるからである。すなわち、長さが不適当であれば、両者を短絡したことにならないで、短絡用導電体308の長さ方向で電位が発生し、その結果として該同軸ケーブル302a、302bの端部より漏洩電流が原因の異常放電が発生する。すなわち、該第1及び第2の真空用同軸ケーブル302a、302bの端部の外部導体が互いに同電位すなわち短絡状態になることが漏洩電流抑制上、重要なポイントである。 Here, the lengths of the first and second vacuum coaxial cables 302a and 302b need to be the same. Further, the length of the short-circuiting conductor 308 that short-circuits the ends of the coaxial cables 302a and 302b needs to be shortened to one-third or less of the wavelength of the power used, preferably to about one-sixth or less. is there. This is because the short-circuiting conductor 308 cannot exhibit the short-circuiting function due to an increase in impedance due to the skin effect during power propagation that appears prominently at high frequencies. That is, if the length is inappropriate, the potential is generated in the length direction of the short-circuiting conductor 308 without short-circuiting the both, and as a result, leakage current is generated from the ends of the coaxial cables 302a and 302b. An abnormal discharge occurs due to. That is, it is an important point for suppressing leakage current that the outer conductors at the ends of the first and second vacuum coaxial cables 302a and 302b are at the same potential, that is, short-circuited.

すなわち、該第1及び第2の真空用同軸ケーブル302a、302bの一方の端部の外部導体間を長さが該電力の波長の三十分の一以下、好ましくは六十分の一以下の短絡用導体308で短絡する手段は画期的であると言える。 That is, the length between the outer conductors at one end of the first and second vacuum coaxial cables 302a and 302b is not more than one third of the wavelength of the power, preferably not more than sixteenth. It can be said that the means for short-circuiting with the short-circuiting conductor 308 is epoch-making.

次に、上記構成の表面処理装置を用いて、a−Si太陽電池用のa−Siを製
膜する方法を説明する。図7及び図8において、予め、基板12を第2の非接地電極4の上に設置し、真空ポンプ11を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8a、8bからSiH4ガスを、例えば500sccm、圧力0.5Torr(66.5Pa)で供給しつつ、一対の電極2、4に高周波電力を、例えば周波数70MHzの電力500Wを供給する。なお、基板温度は80〜350℃の範囲、例えば180℃に保持する。
Next, a method of forming a-Si for an a-Si solar cell using the surface treatment apparatus having the above configuration will be described. 7 and 8, the substrate 12 is previously placed on the second non-grounded electrode 4, the vacuum pump 11 is operated, and the impurity gas in the vacuum vessel 1 is removed, and then the discharge gas supply pipe 8a. While supplying SiH4 gas from 8b at, for example, 500 sccm and a pressure of 0.5 Torr (66.5 Pa), high-frequency power is supplied to the pair of electrodes 2 and 4, for example, power of 500 W at a frequency of 70 MHz. The substrate temperature is kept in the range of 80 to 350 ° C., for example, 180 ° C.

即ち、高周波電源14の出力を例えば70MHz、500Wの出力を同軸ケーブル15、インピーダンス整合器16を介して、第1の同軸ケーブル304を含む平衡不平衡変換装置の具体例300及び図示しない絶縁環102a、102bを被せられた第1及び第2の給電線18a、18bを介して、電力給電点17a、17bに供給する。この場合、上記インピーダンス整合器16を調整することにより、インピーダンス整合器16の上流側には上記供給電力の反射波が戻らないようにできる。仮に、上記平衡不平衡変換装置の第3の具体例300の長さの調整が周波数70MHzに整合していないことが原因で、第1及び第2の真空用同軸ケーブル302a、302bの端部で漏洩電流が発生している場合、一旦、プラズマの生成を中断し、上記平衡不平衡変換装置の第3の具体例300の構成部材の第2の同軸ケーブル306の長さを変更する。その場合、予め、長さの異なる数本の第2の同軸ケーブル306を用意しておき、それを順次交換して、再度プラズマを生成し、上記電力の反射が抑制されたことを確認することができる。その結果、SiH4ガスのプラズマが生成される。なお、上記電力の反射の程度だけで、漏洩電流の発生の有無が確認できない場合は、実施例1及び2の場合と同様に、VSWR計をインピーダンス整合器16と同軸ケーブル用T型コネクター307の間に設置して、進行波と反射波の干渉で発生する定在波の電圧の最大値と最小値の比(ここでは、これをSと表す)を測定・表示する。そして、インピーダンス整合器16の出力側から平衡不平衡変換装置300を介して一対の電極へ伝播していく進行波と一対の電極側からインピーダンス整合器16の方へ戻ってくる反射波により発生する定在波の電圧最大値と電圧最小値に関する情報をS(即ちVSWR)の値で読む。仮に、S=3程度以上の場合、平衡不平衡変換装置の第2の具体例200の長さの調整を調整する。一般に、同軸ケーブルの接合部に異常が無ければ、上記Sは、S=3程度以下になる。 That is, the output of the high-frequency power source 14 is, for example, 70 MHz, the output of 500 W is supplied through the coaxial cable 15 and the impedance matching unit 16, and the specific example 300 of the balance-unbalance conversion device including the first coaxial cable 304 and the insulating ring 102a (not shown). , 102b is supplied to the power feeding points 17a and 17b via the first and second feeding lines 18a and 18b. In this case, the reflected wave of the supplied power can be prevented from returning to the upstream side of the impedance matching unit 16 by adjusting the impedance matching unit 16. If the length adjustment of the third specific example 300 of the balance-unbalance conversion device is not matched to the frequency of 70 MHz, the end portions of the first and second vacuum coaxial cables 302a and 302b When the leakage current is generated, the generation of plasma is temporarily stopped, and the length of the second coaxial cable 306 of the constituent member of the third specific example 300 of the balance-unbalance conversion apparatus is changed. In that case, several second coaxial cables 306 having different lengths are prepared in advance, and are sequentially exchanged to generate plasma again to confirm that the reflection of the power is suppressed. Can do. As a result, plasma of SiH 4 gas is generated. If the presence or absence of leakage current cannot be confirmed only by the degree of power reflection, the VSWR meter is connected to the impedance matching device 16 and the coaxial cable T-type connector 307 as in the first and second embodiments. It is installed in between to measure and display the ratio between the maximum value and the minimum value of the voltage of the standing wave generated by the interference between the traveling wave and the reflected wave (here, this is expressed as S). Then, it is generated by a traveling wave propagating from the output side of the impedance matching unit 16 to the pair of electrodes via the balance-unbalance conversion device 300 and a reflected wave returning from the pair of electrodes side to the impedance matching unit 16. Information on the voltage maximum value and voltage minimum value of the standing wave is read as the value of S (ie, VSWR). If S = about 3 or more, the length adjustment of the second specific example 200 of the balance-unbalance conversion apparatus is adjusted. Generally, if there is no abnormality in the joint portion of the coaxial cable, the above S is about S = 3 or less.

なお、長さの異なる数本の上記平衡不平衡変換装置の第4の具体例300の第2の同軸ケーブル306を予め用意しておくことは、高周波電源14の周波数が若干変更された場合において、そのケーブル306を交換することで対応できるというメリットになる。 It should be noted that the preparation of the second coaxial cable 306 of the fourth specific example 300 of the balance-unbalance conversion device having several different lengths in advance means that the frequency of the high-frequency power source 14 is slightly changed. The advantage is that it can be handled by replacing the cable 306.

SiH4ガスがプラズマ化されると、そのプラズマ中に存在するSiH3、SiH2、SiH等のラジカルが拡散現象により拡散し、基板12表面に吸着されることにより、a−Si膜が堆積する。なお、微結晶Siあるいは薄膜多結晶Si等は、製膜条件の中のSiH4、H2の流量比、圧力および電力を適正化することで製膜できることは公知の技術である。 When the SiH 4 gas is turned into plasma, radicals such as SiH 3, SiH 2, and SiH existing in the plasma diffuse due to a diffusion phenomenon and are adsorbed on the surface of the substrate 12, thereby depositing an a-Si film. It is a well-known technique that microcrystalline Si, thin film polycrystalline Si, or the like can be formed by optimizing the flow ratio, pressure, and power of SiH4 and H2 in the film forming conditions.

上記の手順で製膜する場合の具体的条件を以下に説明する。サイズ1200mmx300mm(厚み4mm)程度のガラス基板12に製膜速度1nm/s、膜厚分布±10%のa−Siを製膜することを実施する。 Specific conditions in the case of film formation by the above procedure will be described below. A-Si having a film forming speed of 1 nm / s and a film thickness distribution of ± 10% is formed on a glass substrate 12 having a size of about 1200 mm × 300 mm (thickness 4 mm).

製膜条件は次の通りである。
(製膜条件)
放電ガス:SiH4
流量:500sccm
圧力:0.5Torr(66.5Pa)
電源周波数:70MHz
電力:500W
基板13の温度:180℃
The film forming conditions are as follows.
(Film forming conditions)
Discharge gas: SiH4
Flow rate: 500sccm
Pressure: 0.5 Torr (66.5 Pa)
Power supply frequency: 70 MHz
Power: 500W
The temperature of the substrate 13: 180 ° C.

上記製膜条件でプラズマを生成すると、実施例1ないし実施例3と同様に、上記平衡不平衡変換装置により電力供給系と一対の電極との接続部での伝送特性が整合され、漏洩電流の発生が抑制されるので、生成されるプラズマの密度の空間的分布は、従来に比べて再現性良く均一になる。その結果、製膜されるa−Siの膜厚分布は従来に比べて、再現性良く均一になる。数値的にはa−Si膜厚分布が±10以内で製膜が可能となる。 When plasma is generated under the above-mentioned film forming conditions, the transmission characteristics at the connection between the power supply system and the pair of electrodes are matched by the balance-unbalance converter as in the first to third embodiments, and the leakage current is reduced. Since the generation is suppressed, the spatial distribution of the density of the generated plasma becomes uniform with good reproducibility compared to the conventional case. As a result, the film thickness distribution of the a-Si film to be formed becomes uniform with good reproducibility compared to the conventional case. Numerically, film formation is possible when the a-Si film thickness distribution is within ± 10.

なお、本実施例4では、一対の電極2,4にそれぞれ、給電点を1点(一対)としているので、基板サイズは上記1200mmx300mm程度に制約されるが、給電点数を増加すればサイズの幅は拡大可能であることは当然のことである。 In the fourth embodiment, since the feeding point is set to one point (a pair) for each of the pair of electrodes 2 and 4, the substrate size is limited to about 1200 mm × 300 mm. However, if the number of feeding points is increased, the width of the size is increased. Of course, it is expandable.

また、a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造では、膜厚分布として±10%以内であれば性能上問題はない。上記実施例によれば、70MHzの電源周波数を用いても、従来の装置および方法に比べ著しく良好な膜厚分布を得ることが可能である。このことは、a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造分野での生産性向上および低コスト化に係わる工業的価値が著しく大きいことを意味している。 Further, in the manufacture of a-Si solar cells, thin film transistors, and photosensitive drums, there is no problem in performance as long as the film thickness distribution is within ± 10%. According to the above embodiment, it is possible to obtain a significantly better film thickness distribution as compared with the conventional apparatus and method even when a power supply frequency of 70 MHz is used. This means that the industrial value related to productivity improvement and cost reduction in the manufacturing field of a-Si solar cells, thin film transistors, and photosensitive drums is remarkably large.

(実施例5)
図7及び図9を参照しながら、本発明に関する実施例5の高周波プラズマ生成用平衡不平衡変換装置、該平衡不平衡変換装置により構成のプラズマ表面処理装置(プラズマCVD装置)およびプラズマ表面処理方法(プラズマCVD方法)
について説明する。図9は実施例5に係わるプラズマ表面処理装置の一構成である平衡不平衡変換装置の第5の具体例を示す説明図である。
(Example 5)
With reference to FIGS. 7 and 9, a balanced / unbalanced conversion apparatus for high-frequency plasma generation according to a fifth embodiment of the present invention, a plasma surface processing apparatus (plasma CVD apparatus) and a plasma surface processing method constituted by the balanced / unbalanced conversion apparatus (Plasma CVD method)
Will be described. FIG. 9 is an explanatory view showing a fifth specific example of the balance-unbalance conversion apparatus which is one configuration of the plasma surface treatment apparatus according to the fifth embodiment.

先ず、装置の構成について説明する。ただし、図1ないし図8に示した部材と同じ部材は同符番を付して説明を省略する。図9図示の実施例5のプラズマ表面処理装置の構成は、実施例4の構成即ち図7において、平衡不平衡装置として用いられた平衡不平衡変換装置の第4の具体例300に代えて、図9に示す平衡不平衡変換装置の第5の具体例400を用いるもので、その他の装置構成要素は同様である。それ故、平衡不平衡変換装置の第5の具体例400以外の装置の構成要素については図1ないし図8を参照することにし、ここでは説明を省略する。また、この平衡不平衡変換装置の第5の具体例400を用いたプラズマ表面処理の実施手順については省略し、実施例1及び実施例4を参照する。 First, the configuration of the apparatus will be described. However, the same members as those shown in FIG. 1 to FIG. The configuration of the plasma surface treatment apparatus of the fifth embodiment shown in FIG. 9 is replaced with the fourth embodiment 300 of the balance / unbalance conversion apparatus used as the balance / unbalance apparatus in the configuration of the fourth embodiment, ie, FIG. The fifth specific example 400 of the balance-unbalance conversion apparatus shown in FIG. 9 is used, and other apparatus components are the same. Therefore, the components of the apparatus other than the fifth specific example 400 of the balance-unbalance conversion apparatus will be described with reference to FIGS. 1 to 8, and description thereof will be omitted here. Further, the procedure for performing the plasma surface treatment using the fifth specific example 400 of the balance-unbalance conversion apparatus is omitted, and the first and fourth embodiments are referred to.

図9は図7のプラズマ表面処理装置の一構成である平衡不平衡変換装置の第5の具体例400を示す説明図である。図9において、真空容器1の壁に配置された第1及び第2の真空装置用同軸ケーブル接続端子303a、303bの一方の第1の真空装置用同軸ケーブル接続端子303aの大気側面に同軸ケーブル用T型コネクター401の第1の接続部が接続され、該同軸ケーブル用T型コネクター401の第2の接続部には第1の同軸ケーブル304の一方の端部が、該同軸ケーブル用T型コネクター401の第3の接続部には長さが使用電力の波長λの二分の一である第2の同軸ケーブル402の一方の端部が接続され、該第2の同軸ケーブル402の他方の端部は前記真空容器1の壁に配置された第2の真空装置用同軸ケーブル接続端子303bの大気側面に接続される。そして、該第1の同軸ケーブル304の他方の端部の芯線及び外部導体が入力部として用いられる。そして、該第1及び第2の真空装置用同軸ケーブル接続端子303a、303bの真空側面に、それぞれ、長さが等しい例えば20cmの長さの第1及び第2の真空用同軸ケーブル302a、302bの一方の端部が接続され、該第1及び第2の真空用同軸ケーブル302a、302bの他方の端部のそれぞれの外部導体間を長さが使用電力の波長の三十分の一以下、好ましくは六十分の一以下、例えば5cm(70MHz、λ=4.2m)の短絡用導電体308で短絡し、かつ、それぞれの芯線301a、301bを出力部として、第1及び第2の給電線18a、18bに接続する。この場合、該芯線301a、301bから出力される電力は、それぞれ、該同軸ケーブル用T型コネクター401から第2の同軸ケーブル402及び第2の真空用同軸ケーブル302bから成る線路を、及び該同軸ケーブル用T型コネクター401から第2の真空用同軸ケーブル302bの線路を介して伝播してくるので、両者の位相差は180度異なっている。すなわち、該第1の同軸ケーブル304の他方の端部の芯線及び外部導体を入力部とし、該第1及び第2の真空用同軸ケーブル302a、302bの芯線301a、301bを出力部とする上記平衡不平衡変換装置の第4の具体例400は平衡伝送(平衡線路)の機能を有している。 FIG. 9 is an explanatory view showing a fifth specific example 400 of the balance-unbalance conversion apparatus which is one configuration of the plasma surface treatment apparatus of FIG. In FIG. 9, one of the first and second vacuum device coaxial cable connection terminals 303a and 303b disposed on the wall of the vacuum vessel 1 is connected to the atmospheric side of the first vacuum device coaxial cable connection terminal 303a. The first connection portion of the T-type connector 401 is connected, and one end portion of the first coaxial cable 304 is connected to the second connection portion of the T-type connector 401 for the coaxial cable. One end portion of the second coaxial cable 402 whose length is one-half of the wavelength λ of the power used is connected to the third connection portion 401, and the other end portion of the second coaxial cable 402 is connected to the third connection portion 401. Is connected to the atmospheric side surface of the second coaxial cable connecting terminal 303b for the vacuum device disposed on the wall of the vacuum vessel 1. The core wire and the outer conductor at the other end of the first coaxial cable 304 are used as the input unit. The first and second vacuum coaxial cables 302a and 302b having the same length, for example, 20 cm, are respectively formed on the vacuum side surfaces of the first and second vacuum device coaxial cable connection terminals 303a and 303b. One end is connected, and the length between the outer conductors of the other ends of the first and second vacuum coaxial cables 302a and 302b is not more than one third of the wavelength of the power used, preferably Is short-circuited by a short-circuiting conductor 308 of 6/10 or less, for example, 5 cm (70 MHz, λ = 4.2 m), and each of the core wires 301a and 301b is used as an output unit, and the first and second feeder lines Connect to 18a, 18b. In this case, the electric power output from the core wires 301a and 301b is transmitted from the coaxial cable T-type connector 401 to a line composed of the second coaxial cable 402 and the second vacuum coaxial cable 302b, and the coaxial cable, respectively. Propagation from the T-type connector 401 via the line of the second vacuum coaxial cable 302b results in a phase difference of 180 degrees between the two. In other words, the above-described balanced structure in which the core wire and the outer conductor at the other end of the first coaxial cable 304 are used as an input portion, and the core wires 301a and 301b of the first and second vacuum coaxial cables 302a and 302b are used as output portions. The fourth specific example 400 of the unbalance conversion device has a function of balanced transmission (balanced line).

ここで、該第1及び第2の真空用同軸ケーブル302a、302bの長さは同じ長さである必要がある。また、該同軸ケーブル302a、302bの端部を短絡する短絡用導電体308の長さは、使用電力の波長の三十分の一以下、好ましくは六十分の一程度以下に短くする必要がある。その理由は高周波数で顕著に現れる電力伝播時の表皮効果に起因するインピーダンスの増大により、該短絡用導体308が短絡の機能を発揮できなくなるからである。すなわち、長さが不適当であれば、両者を短絡したことにならないで、短絡用導電体308の長さ方向で電位が発生し、その結果として該同軸ケーブル302a、302bの端部より漏洩電流が原因の異常放電が発生する。すなわち、該第1及び第2の真空用同軸ケーブル302a、302bの端部の外部導体が互いに同電位すなわち短絡状態になることが漏洩電流抑制上、重要なポイントである。 Here, the lengths of the first and second vacuum coaxial cables 302a and 302b need to be the same. Further, the length of the short-circuiting conductor 308 that short-circuits the ends of the coaxial cables 302a and 302b needs to be shortened to one-third or less of the wavelength of the power used, preferably to about one-sixth or less. is there. This is because the short-circuiting conductor 308 cannot exhibit the short-circuiting function due to an increase in impedance due to the skin effect during power propagation that appears prominently at high frequencies. That is, if the length is inappropriate, the potential is generated in the length direction of the short-circuiting conductor 308 without short-circuiting the both, and as a result, leakage current is generated from the ends of the coaxial cables 302a and 302b. An abnormal discharge occurs due to. That is, it is an important point for suppressing leakage current that the outer conductors at the ends of the first and second vacuum coaxial cables 302a and 302b are at the same potential, that is, short-circuited.

すなわち、該第1及び第2の真空用同軸ケーブル302a、302bの一方の端部の外部導体間を長さが該電力の波長の三十分の一以下、好ましくは六十分の一以下の短絡用導体606で短絡する手段は画期的であると言える。 That is, the length between the outer conductors at one end of the first and second vacuum coaxial cables 302a and 302b is not more than one third of the wavelength of the power, preferably not more than sixteenth. It can be said that the means for short-circuiting with the short-circuiting conductor 606 is epoch-making.

なお、本実施例5では、平衡不平衡変換装置の第5の具体例400を用いたプラズマ表面処理の実施手順については省略し、実施例1及び実施例4を参照するとしたが、実施例1及び実施例4と同様に、一対の電極2、4にそれぞれ、給電点を1点(一対)としているので、基板サイズは上記1200mmx300mm程度に制約される。しかし、給電点数を増加すればサイズの幅は拡大可能であることは当然のことである。 In the fifth embodiment, the procedure for performing the plasma surface treatment using the fifth specific example 400 of the balance / unbalance conversion apparatus is omitted, and the first and fourth embodiments are referred to. As in the fourth embodiment, since the feeding point is set to one point (a pair) for each of the pair of electrodes 2 and 4, the substrate size is limited to about 1200 mm × 300 mm. However, it goes without saying that the size range can be expanded by increasing the number of feeding points.

また、上記実施例5によれば、電源周波数30MHz〜100MHzにおいて、従来の装置および方法に比べ著しく良好な膜厚分布を得ることが可能である。このことは、a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造分野での生産性向上および低コスト化に係わる工業的価値が著しく大きいことを意味している。 Moreover, according to the said Example 5, in the power supply frequency 30MHz-100MHz, it is possible to obtain a remarkably favorable film thickness distribution compared with the conventional apparatus and method. This means that the industrial value related to productivity improvement and cost reduction in the manufacturing field of a-Si solar cells, thin film transistors, and photosensitive drums is remarkably large.

本発明に関する実施例1に係わるプラズマ表面処理装置の全体を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows the whole plasma surface treatment apparatus concerning Example 1 regarding this invention. 実施例1に係わる図1のプラズマ表面処理装置の一構成である平衡不平衡変換装置の第1の具体例を示す説明図。FIG. 3 is an explanatory diagram illustrating a first specific example of a balance-unbalance conversion apparatus that is one configuration of the plasma surface treatment apparatus of FIG. 1 according to the first embodiment. 実施例1に係わる図1のプラズマ表面処理装置での平衡不平衡変換装置の第1の具体例の構成部材である管型導電体と円筒型導電体の接続部の構成を示す説明図。FIG. 3 is an explanatory diagram illustrating a configuration of a connection portion between a tubular conductor and a cylindrical conductor, which is a constituent member of a first specific example of the balance-unbalance conversion apparatus in the plasma surface treatment apparatus of FIG. 1 according to the first embodiment. 本発明に関する実施例2に係わるプラズマ表面処理装置の一構成である平衡不平衡変換装置の第2の具体例の構成を示す説明図。Explanatory drawing which shows the structure of the 2nd specific example of the balance-unbalance conversion apparatus which is one structure of the plasma surface treatment apparatus concerning Example 2 regarding this invention. 本発明に関する実施例3に係わるプラズマ表面処理装置の構成図。The block diagram of the plasma surface treatment apparatus concerning Example 3 regarding this invention. 実施例3に関わる図5のプラズマ表面処理装置の一構成である平衡不平衡変換装置の理想的な構成を示す説明図。FIG. 6 is an explanatory diagram showing an ideal configuration of a balance-unbalance conversion device that is one configuration of the plasma surface treatment device of FIG. 5 according to the third embodiment. 本発明に関する実施例4に係わるプラズマ表面処理装置の全体を示す概略図。Schematic which shows the whole plasma surface treatment apparatus concerning Example 4 regarding this invention. 実施例4に係わる図7のプラズマ表面処理装置の一構成である平衡不平衡変換装置の第4の具体例を示す説明図。FIG. 9 is an explanatory diagram illustrating a fourth specific example of a balance-unbalance conversion apparatus that is one configuration of the plasma surface treatment apparatus of FIG. 7 according to the fourth embodiment. 本発明に関する実施例5に係わるプラズマ表面処理装置の一構成である平衡不平衡変換装置の第5の具体例を示す説明図。Explanatory drawing which shows the 5th example of the balance-unbalance conversion apparatus which is one structure of the plasma surface treatment apparatus concerning Example 5 regarding this invention. 従来のプラズマ表面処理装置の第1の典型例の構成を示す説明図。Explanatory drawing which shows the structure of the 1st typical example of the conventional plasma surface treatment apparatus. 従来のプラズマ表面処理装置の第2の典型例の構成を示す説明図。Explanatory drawing which shows the structure of the 2nd typical example of the conventional plasma surface treatment apparatus. 従来のプラズマ表面処理装置の第3の典型例の構成を示す説明図。Explanatory drawing which shows the structure of the 3rd typical example of the conventional plasma surface treatment apparatus. 従来のシュペルトップ型平衡不平衡変換装置の構成を示す説明図。Explanatory drawing which shows the structure of the conventional super top type | mold balance-unbalance conversion apparatus. 従来の二分の一波長迂回型平衡不平衡変換装置の構成を示す説明図。Explanatory drawing which shows the structure of the conventional half-wavelength detour-type balance-unbalance conversion apparatus.

符号の説明Explanation of symbols

1...真空容器、
2...第1の非接地電極、
3...図示しない基板ヒータ、
4...第2の非接地電極、
5a、5b...図示しない絶縁物支持材、
6...小孔、
7...アースシールド、
8a、8b...放電ガス供給管、
9...図示しない整流孔、
10...排気管、
11...図示しない真空ポンプ、
12...基板、
13...図示しないゲートバルブ、
14...高周波電源、
15...同軸ケーブル、
16...インピーダンス整合器、
17a、17b...第1及び第2の電力供給箇所、
18a,18b...第1及び第2の給電線、
100...平衡不平衡変換装置の第1の具体例、
109b...第2の同軸ケーブル。
1. . . Vacuum vessel,
2. . . A first ungrounded electrode;
3. . . Substrate heater (not shown),
4). . . A second ungrounded electrode,
5a, 5b. . . Insulator support material not shown,
6). . . Small holes,
7). . . Earth shield,
8a, 8b. . . Discharge gas supply pipe,
9. . . Rectifying hole not shown,
10. . . Exhaust pipe,
11. . . Vacuum pump not shown,
12 . . substrate,
13. . . Gate valve not shown,
14 . . High frequency power supply,
15. . . coaxial cable,
16. . . Impedance matcher,
17a, 17b. . . First and second power supply locations;
18a, 18b. . . First and second feeder lines,
100. . . A first example of a balance-unbalance conversion device;
109b. . . Second coaxial cable.

Claims (9)

排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられるプラズマ生成用平衡不平衡変換装置であって、同軸ケーブルの給電端側に長さが前記高周波電力の波長の四分の一の円筒型導電体を被せ、該円筒型導電体の底面中央を該同軸ケーブルの外部導体に密着させるという構造のシュペルトップ型平衡不平衡変換装置を分断し、該分断されたシュペルトップ型平衡不平衡変換装置の一方を前記真空容器内部に配置し、他方を大気側に配置するとともに、両者を該真空容器の壁に取り付けられている同軸ケーブル接続端子を介して元の状態に戻す形で接続し、かつ、大気側に配置の該分断されたシュペルトップ型平衡不平衡変換装置に長さの調整手段を設けるという構成を有することを特徴とする高周波プラズマ生成用平衡不平衡変換装置。 A vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, a first electrode on which a substrate is set, and a second electrode disposed opposite to the first electrode A pair of electrodes composed of electrodes; a power supply system that supplies high-frequency power to the pair of electrodes; and a balance-unbalance conversion device that is used in combination with the power supply system. A plasma generation balance-unbalance conversion apparatus used in a plasma surface treatment apparatus for treating a surface, wherein a coaxial conductor having a length of a quarter of the wavelength of the high-frequency power is covered on a feeding end side of a coaxial cable. , Dividing the super-top type balance-unbalance converter having a structure in which the center of the bottom surface of the cylindrical conductor is in close contact with the outer conductor of the coaxial cable, Before It is arranged inside the vacuum vessel, the other is arranged on the atmosphere side, and both are connected in the form of returning to the original state via a coaxial cable connection terminal attached to the wall of the vacuum vessel, and on the atmosphere side A balanced / unbalanced conversion apparatus for high-frequency plasma generation, characterized in that a length adjusting means is provided in the split-top type balanced / unbalanced conversion apparatus. 排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられるプラズマ生成用平衡不平衡変換装置であって、前記真空容器の壁に配置されたフランジ及び該フランジと組み合わせて用いられる金属製芯棒と第1の誘電体と第1の管型導電体と第2の誘電体と第2の管型導電体と第3の誘電体から成る真空装置用同軸ケーブル接続端子の真空側面の該金属製芯棒及び該第1の管型導電体に、それぞれ、第3の管型導電体で囲繞された第1の同軸ケーブルの一方の端部の芯線及び外部導体が接続され、該真空装置用同軸ケーブル接続端子の真空側面の第2の管型導電体に該第3の管型導電体の一方の端部が接続されるとともに、該真空装置用同軸ケーブル接続端子の大気側面の金属製芯棒及び第1の管型導電体に、それぞれ、第4の管型導電体及び円筒型導電体で囲繞された第2の同軸ケーブルの一方の端部の芯線及び外部導体が接続され、該真空装置用同軸ケーブル接続端子の大気側面の第2の管型導電体に該第4の管型導電体の一方の端部が接続され、該第4の管型導電体の他方の端部と該円筒型導電体の一方の端部が内筒と外筒の関係を持たせる形で密着され、該円筒型導電体の他方の端部が該第2の同軸ケーブルの外部導体に密着されるとともに、該第1の同軸ケーブルの端面から該フランジまでの距離と該第3の管型導電体の端面から該フランジまでの距離が等しくなるように、かつ、該第1の同軸ケーブルの外部導体と該第3の管型導電体が短絡しないように配置され、該第3の管型導電体の他方の端部から該円筒型導電体の閉じた方の端面までの距離が前記高周波電力の波長の四分の一に設定され、かつ、該第2の同軸ケーブルの他方の端部の芯線及び外部導体を入力部とし、該第1の同軸ケーブルの他方の芯線及び外部導体を出力部とするという構成を有することを特徴とする高周波プラズマ生成用平衡不平衡変換装置。 A vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, a first electrode on which a substrate is set, and a second electrode disposed opposite to the first electrode A pair of electrodes composed of electrodes; a power supply system that supplies high-frequency power to the pair of electrodes; and a balance-unbalance conversion device that is used in combination with the power supply system. A plasma generation balance-unbalance conversion apparatus used in a plasma surface treatment apparatus for treating a surface, a flange disposed on a wall of the vacuum vessel, a metal core rod used in combination with the flange, and a first dielectric The metal core rod on the vacuum side surface of the coaxial cable connection terminal for a vacuum device comprising the body, the first tubular conductor, the second dielectric, the second tubular conductor, and the third dielectric, and the first 1 tube conductor, respectively The second tubular conductor on the vacuum side surface of the coaxial cable connection terminal for the vacuum apparatus is connected to the core wire and the outer conductor at one end of the first coaxial cable surrounded by the third tubular conductor. One end of the third tubular conductor is connected to the metal core rod on the atmospheric side of the coaxial cable connection terminal for the vacuum device and the first tubular conductor, respectively. A core wire at one end of the second coaxial cable surrounded by the tubular conductor and the cylindrical conductor and the outer conductor are connected, and the second tubular type on the atmospheric side of the coaxial cable connection terminal for vacuum device One end of the fourth tubular conductor is connected to the conductor, and the other end of the fourth tubular conductor and the one end of the cylindrical conductor are the inner cylinder and the outer cylinder. The other end of the cylindrical conductor is in close contact with the outer conductor of the second coaxial cable. And the distance from the end face of the first coaxial cable to the flange is equal to the distance from the end face of the third tubular conductor to the flange, and the outside of the first coaxial cable. The conductor and the third tubular conductor are arranged so as not to short-circuit, and the distance from the other end of the third tubular conductor to the closed end face of the cylindrical conductor is the high-frequency power. Of the second coaxial cable and the other end of the second coaxial cable and the outer conductor as an input section, and the other core wire and the outer conductor of the first coaxial cable as an output section. A balance-unbalance conversion apparatus for high-frequency plasma generation, characterized in that it has a configuration of 排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられるプラズマ生成用平衡不平衡変換装置であって、前記真空容器の壁に配置されたフランジ及び該フランジと組み合わせて用いられる金属製芯棒と第1の誘電体と第1の管型導電体と第2の誘電体と該フランジに密着されている第2の管型導電体から成る真空装置用同軸ケーブル接続端子の真空側面の該金属製芯棒及び該第1の管型導電体に、それぞれ、該第2の管型導電体で囲繞された第1の同軸ケーブルの一方の端部の芯線及び外部導体が接続されるとともに、該真空装置用同軸ケーブル接続端子の大気側面の金属製芯棒及び第1の管型導電体に、それぞれ、該第2の管型導電体及び円筒型導電体で囲繞された第2の同軸ケーブルの一方の端部の芯線及び外部導体が接続され、該第2の管型導電体の端部と該円筒型導電体の開放側の端部が内筒と外筒の関係を持たせる形で密着され、該円筒型導電体の底面の中央部が該第2の同軸ケーブルの外部導体に密着され、該第1の同軸ケーブルの端面から該フランジまでの距離と該第2の管型導電体の端面から該フランジまでの距離とが等しくなるように、かつ、該第1の同軸ケーブルの外部導体と該第2の管型導電体が短絡しないように配置され、該第2の管型導電体の開放されている側の端面から該円筒型導電体の底面までの距離が前記高周波電源から供給される高周波電力の波長の四分の一に設定され、かつ、該第2の同軸ケーブルの他方の端部の芯線及び外部導体を入力部とし、該第1の同軸ケーブルの他方の芯線及び外部導体を出力部とするという構成を有することを特徴とする高周波プラズマ生成用平衡不平衡変換装置。 A vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, a first electrode on which a substrate is set, and a second electrode disposed opposite to the first electrode A pair of electrodes composed of electrodes; a power supply system that supplies high-frequency power to the pair of electrodes; and a balance-unbalance conversion device that is used in combination with the power supply system. A plasma generation balance-unbalance conversion apparatus used in a plasma surface treatment apparatus for treating a surface, a flange disposed on a wall of the vacuum vessel, a metal core rod used in combination with the flange, and a first dielectric The metal core rod on the vacuum side of the coaxial cable connection terminal for a vacuum apparatus, comprising the body, the first tubular conductor, the second dielectric, and the second tubular conductor in close contact with the flange; First tube-type conductivity Are connected to the core wire and the outer conductor of one end of the first coaxial cable surrounded by the second tubular conductor, respectively, and the metal on the atmospheric side of the coaxial cable connection terminal for the vacuum device The core wire and the outer conductor at one end of the second coaxial cable surrounded by the second tubular conductor and the cylindrical conductor are connected to the core-making rod and the first tubular conductor, respectively. The end portion of the second tubular conductor and the end portion on the open side of the cylindrical conductor are brought into close contact with each other so as to have a relationship between the inner cylinder and the outer cylinder, and the central portion of the bottom surface of the cylindrical conductor Is closely attached to the outer conductor of the second coaxial cable so that the distance from the end surface of the first coaxial cable to the flange is equal to the distance from the end surface of the second tubular conductor to the flange. In addition, the outer conductor of the first coaxial cable and the second tubular conductor are not short-circuited. The distance from the open end surface of the second tubular conductor to the bottom surface of the cylindrical conductor is a quarter of the wavelength of the high-frequency power supplied from the high-frequency power source. And having a configuration in which the core wire and the outer conductor at the other end of the second coaxial cable are used as an input portion, and the other core wire and the outer conductor of the first coaxial cable are used as an output portion. A balanced / unbalanced converter for high-frequency plasma generation. 排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられるプラズマ生成用平衡不平衡変換装置であって、長さが等しい2本の同軸ケーブルのそれぞれの一方の端部の芯線を前記一対の電極に設けられた電力供給点に接続し、該端部のそれぞれの同軸ケーブルの外部導体を短絡するとともに、該2本の同軸ケーブルの他方の端部の芯線及び外部導体に、それぞれに前記真空容器の壁に配置の同軸ケーブル接続端子を介して電力を供給し、該電力の電圧の位相差を180度に設定する手段が設けられるという構成を有することを特徴とする高周波プラズマ生成用平衡不平衡変換装置。 A vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, a first electrode on which a substrate is set, and a second electrode disposed opposite to the first electrode A pair of electrodes composed of electrodes; a power supply system that supplies high-frequency power to the pair of electrodes; and a balance-unbalance conversion device that is used in combination with the power supply system. A balance-unbalance conversion device for plasma generation used in a plasma surface treatment apparatus for treating a surface, wherein core wires at one end of two coaxial cables having the same length are provided on the pair of electrodes. Connect to the power supply point, short-circuit the outer conductor of each coaxial cable at the end, and place it on the core wire and outer conductor at the other end of the two coaxial cables, respectively, on the wall of the vacuum vessel Same Supplying power via the cable connection terminal, the high-frequency plasma generation balun apparatus characterized by having a structure that means are provided for setting the phase difference between the voltage of the power to 180 degrees. 排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられるプラズマ生成用平衡不平衡変換装置であって、前記真空容器の壁に配置された第1の真空装置用同軸ケーブル接続端子の大気側面に長さがLの第1の同軸ケーブルの一方の端部が接続され、該第1の同軸ケーブルの他方の端部が同軸ケーブル用分岐器の第1の出力端子に接続され、該同軸ケーブル用分岐器の第2の出力端子に長さが前記高周波電力の波長λの二分の一に該第1の同軸ケーブルの長さLを加えた値に等しい長さ即ち(λ/2+L)である第2の同軸ケーブルの一方の端部が接続され、該第2の同軸ケーブルの他方の端部が前記真空容器の壁に配置された第2の真空装置用同軸ケーブル接続端子の大気側面に接続され、該同軸ケーブル用分岐器の入力端子に第3の同軸ケーブルの一方の端部が接続され、該第3の同軸ケーブルの他方の端部の芯線及び外部導体を入力部とし、該第1及び第2の真空装置用同軸ケーブル接続端子の真空側面に、それぞれ、長さが等しい第4及び第5の同軸ケーブルの一方の端部が接続され、該第4及び第5の同軸ケーブルの他方の端部のそれぞれの外部導体が前記高周波電力の波長の三十分の一以下の長さの短絡用導電体で短絡され、かつ、該第4及び第5の同軸ケーブルの端部のそれぞれの芯線を出力部とするという構成を有することを特徴とする高周波プラズマ生成用平衡不平衡変換装置。 A vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, a first electrode on which a substrate is set, and a second electrode disposed opposite to the first electrode A pair of electrodes composed of electrodes; a power supply system that supplies high-frequency power to the pair of electrodes; and a balance-unbalance conversion device that is used in combination with the power supply system. A balance-unbalance converter for plasma generation used in a plasma surface treatment apparatus for treating a surface, wherein the length is L on the atmosphere side surface of the first coaxial cable connection terminal for vacuum equipment disposed on the wall of the vacuum vessel. One end of the first coaxial cable is connected, and the other end of the first coaxial cable is connected to a first output terminal of the coaxial cable branch, and the first end of the coaxial cable branch is The length of the two output terminals One end of the second coaxial cable having a length equal to a value obtained by adding the length L of the first coaxial cable to one half of the wavelength λ of the high frequency power, that is, (λ / 2 + L) is connected. The other end of the second coaxial cable is connected to the atmosphere side surface of the second coaxial cable connection terminal for vacuum equipment disposed on the wall of the vacuum vessel, and the second coaxial cable is connected to the input terminal of the coaxial cable branching device. One end of the third coaxial cable is connected, and the core wire and the outer conductor of the other end of the third coaxial cable are used as input parts, and the vacuum of the coaxial cable connection terminals for the first and second vacuum devices is used. One end of each of the fourth and fifth coaxial cables having the same length is connected to the side surface, and each outer conductor of the other end of the fourth and fifth coaxial cables is connected to the high-frequency power. Shorted by a short-circuiting conductor with a length of one-third or less of the wavelength And high-frequency plasma generation balun apparatus characterized by having a configuration in which an output portion of each core wire of an end portion of the fourth and fifth coaxial cable. 排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられるプラズマ生成用平衡不平衡変換装置であって、前記真空容器の壁に配置された第1の真空装置用同軸ケーブル接続端子の大気側面に同軸ケーブル用分岐器の第1の出力端子が接続され、該同軸ケーブル用分岐器の第2の出力端子に長さが前記高周波電力の波長λの二分の一である第2の同軸ケーブルの一方の端部が接続され、該第2の同軸ケーブルの他方の端部が前記真空容器の壁に配置された第2の真空装置用同軸ケーブル接続端子の大気側面に接続され、該同軸ケーブル用分岐器の入力端子に第1の同軸ケーブルの一方の端部が接続され、該第1の同軸ケーブルの他方の端部の芯線及び外部導体を入力部とし、該第1及び第2の真
空装置用同軸ケーブル接続端子の真空側面に、それぞれ、長さが等しい第3及び第4の同軸ケーブルの一方の端部が接続され、該第3及び第4の同軸ケーブルの他方の端部のそれぞれの外部導体が前記高周波電力の波長の三十分の一以下の長さの短絡用導電体で短絡され、かつ、該第3及び第4の同軸ケーブルの端部のそれぞれの芯線を出力部とするという構成を有することを特徴とする高周波プラズマ生成用平衡不平衡変換装置。
A vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, a first electrode on which a substrate is set, and a second electrode disposed opposite to the first electrode A pair of electrodes composed of electrodes; a power supply system that supplies high-frequency power to the pair of electrodes; and a balance-unbalance conversion device that is used in combination with the power supply system. A balance-unbalance converter for plasma generation used in a plasma surface treatment apparatus for treating a surface, wherein a coaxial cable branch is formed on the atmosphere side surface of a first vacuum device coaxial cable connection terminal disposed on a wall of the vacuum vessel. A second output terminal of the coaxial cable branch is connected to one end of a second coaxial cable having a length that is half the wavelength λ of the high-frequency power. Connected, the second The other end of the coaxial cable is connected to the atmospheric side surface of the second coaxial cable connection terminal for vacuum equipment disposed on the wall of the vacuum vessel, and the input terminal of the coaxial cable branch is connected to the input terminal of the first coaxial cable. One end is connected, the core of the other end of the first coaxial cable and the outer conductor as an input, and the vacuum side of the first and second vacuum device coaxial cable connection terminal, respectively, One ends of the third and fourth coaxial cables having the same length are connected to each other, and the outer conductors at the other ends of the third and fourth coaxial cables are 30% of the wavelength of the high-frequency power. A high-frequency plasma generation characterized in that it is short-circuited by a short-circuiting conductor having a length of 1 or less and the core wires at the ends of the third and fourth coaxial cables are used as output portions. Balance / unbalance conversion device.
排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられるプラズマ生成用平衡不平衡変換装置であって、LCブリッジ型平衡不平衡変換装置の入力端子を入力部とし、該LCブリッジ型平衡不平衡変換装置の2つの出力端子に、それぞれ、長さが等しい第1及び第2の大気用同軸ケーブルの一方の端部が接続され、該第1及び第2の大気用同軸ケーブルの他方の端部は、それぞれ第1及び第2の真空装置用同軸ケーブル接続端子を介して、第1及び第2の真空用同軸ケーブルの一方の端部に接続され、かつ、該第1及び第2の真空用同軸ケーブルの他方の端部の外部導体間が前記高周波電力の波長の三十分の一以下の長さの短絡用導電体で短絡され、かつ、該端部のそれぞれの芯線を出力部とするという構成を有することを特徴とする高周波プラズマ生成用平衡不平衡変換装置。 A vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, a first electrode on which a substrate is set, and a second electrode disposed opposite to the first electrode A pair of electrodes composed of electrodes; a power supply system that supplies high-frequency power to the pair of electrodes; and a balance-unbalance conversion device that is used in combination with the power supply system. A plasma generation balance-unbalance conversion device used in a plasma surface treatment apparatus for treating a surface, wherein an input terminal of the LC bridge-type balance-unbalance conversion device is used as an input unit, and the LC bridge-type balance-unbalance conversion device 2 One end of each of the first and second atmospheric coaxial cables having the same length is connected to each of the two output terminals, and the other ends of the first and second atmospheric coaxial cables are respectively connected to the first output terminal. 1st and 2nd And connected to one end of the first and second vacuum coaxial cables via the coaxial cable connection terminal for the vacuum device, and the other end of the first and second vacuum coaxial cables. The outer conductor is short-circuited by a short-circuiting conductor having a length of one-third or less of the wavelength of the high-frequency power, and each core wire at the end portion is used as an output portion. A balance-unbalance converter for high-frequency plasma generation. 排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置において、前記平衡不平衡変換装置が請求項1ないし7のいずれか1項に記載の高周波プラズマ生成用平衡不平衡変換装置により構成されていることを特徴とするプラズマ表面処理装置。 A vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, a first electrode on which a substrate is set, and a second electrode disposed opposite to the first electrode A pair of electrodes composed of electrodes; a power supply system that supplies high-frequency power to the pair of electrodes; and a balance-unbalance conversion device that is used in combination with the power supply system. A plasma surface treatment apparatus for treating a surface, wherein the balance-unbalance conversion device is constituted by the balance-unbalance conversion device for high-frequency plasma generation according to any one of claims 1 to 7. Surface treatment equipment. 排気系を備えた真空容器と、この真空容器内に放電用ガスを供給する放電用ガス供給系と、基板がセットされる第1の電極と前記第1の電極に対向設置される第2の電極からなる一対の電極と、前記一対の電極に高周波電力を供給する電力供給系と、前記電力供給系と組み合わせて用いられる平衡不平衡変換装置を具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理方法において、前記平衡不平衡変換装置を請求項1ないし7のいずれか1項に記載の高周波プラズマ生成用平衡不平衡変換装置によって構成し、プラズマ表面処理を行うことを特徴とするプラズマ表面処理方法。
A vacuum vessel provided with an exhaust system, a discharge gas supply system for supplying a discharge gas into the vacuum vessel, a first electrode on which a substrate is set, and a second electrode disposed opposite to the first electrode A pair of electrodes composed of electrodes; a power supply system that supplies high-frequency power to the pair of electrodes; and a balance-unbalance conversion device that is used in combination with the power supply system. In the plasma surface treatment method for treating a surface, the balance-unbalance conversion device is constituted by the balance-unbalance conversion device for high-frequency plasma generation according to any one of claims 1 to 7, and the plasma surface treatment is performed. A plasma surface treatment method.
JP2004289486A 2004-10-01 2004-10-01 Balanced-to-unbalanced conversion device for high-frequency plasma generation, plasma surface treatment device constituted of the balanced-to-unbalanced conversion device, and plasma surface treatment method Pending JP2005303257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289486A JP2005303257A (en) 2004-10-01 2004-10-01 Balanced-to-unbalanced conversion device for high-frequency plasma generation, plasma surface treatment device constituted of the balanced-to-unbalanced conversion device, and plasma surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289486A JP2005303257A (en) 2004-10-01 2004-10-01 Balanced-to-unbalanced conversion device for high-frequency plasma generation, plasma surface treatment device constituted of the balanced-to-unbalanced conversion device, and plasma surface treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004117451A Division JP3637447B2 (en) 2004-04-13 2004-04-13 Equilibrium / unbalance converter for high-frequency plasma generation, plasma surface treatment apparatus and plasma surface treatment method comprising the balance / unbalance converter

Publications (1)

Publication Number Publication Date
JP2005303257A true JP2005303257A (en) 2005-10-27

Family

ID=35334354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289486A Pending JP2005303257A (en) 2004-10-01 2004-10-01 Balanced-to-unbalanced conversion device for high-frequency plasma generation, plasma surface treatment device constituted of the balanced-to-unbalanced conversion device, and plasma surface treatment method

Country Status (1)

Country Link
JP (1) JP2005303257A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953877A1 (en) * 2007-01-31 2008-08-06 Applied Materials, Inc. Power supply to at least one electricity consumer
JP2010001535A (en) * 2008-06-20 2010-01-07 Fujifilm Corp Method of forming gas barrier film, and gas barrier film
WO2010013624A1 (en) * 2008-07-31 2010-02-04 Murata Masayoshi Current introducing terminal, plasma surface processing apparatus provided with the current introducing terminal, and plasma surface processing method
CN110800377A (en) * 2017-06-27 2020-02-14 佳能安内华股份有限公司 Plasma processing apparatus
CN110800379A (en) * 2017-06-27 2020-02-14 佳能安内华股份有限公司 Plasma processing apparatus
US11600466B2 (en) 2018-06-26 2023-03-07 Canon Anelva Corporation Plasma processing apparatus, plasma processing method, and memory medium
US11626270B2 (en) 2017-06-27 2023-04-11 Canon Anelva Corporation Plasma processing apparatus
US11961710B2 (en) 2017-06-27 2024-04-16 Canon Anelva Corporation Plasma processing apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953877A1 (en) * 2007-01-31 2008-08-06 Applied Materials, Inc. Power supply to at least one electricity consumer
JP2010001535A (en) * 2008-06-20 2010-01-07 Fujifilm Corp Method of forming gas barrier film, and gas barrier film
WO2010013624A1 (en) * 2008-07-31 2010-02-04 Murata Masayoshi Current introducing terminal, plasma surface processing apparatus provided with the current introducing terminal, and plasma surface processing method
US11569070B2 (en) 2017-06-27 2023-01-31 Canon Anelva Corporation Plasma processing apparatus
CN110800379A (en) * 2017-06-27 2020-02-14 佳能安内华股份有限公司 Plasma processing apparatus
CN110800379B (en) * 2017-06-27 2022-01-18 佳能安内华股份有限公司 Plasma processing apparatus
CN110800377A (en) * 2017-06-27 2020-02-14 佳能安内华股份有限公司 Plasma processing apparatus
US11600469B2 (en) 2017-06-27 2023-03-07 Canon Anelva Corporation Plasma processing apparatus
US11626270B2 (en) 2017-06-27 2023-04-11 Canon Anelva Corporation Plasma processing apparatus
US11756773B2 (en) 2017-06-27 2023-09-12 Canon Anelva Corporation Plasma processing apparatus
US11784030B2 (en) 2017-06-27 2023-10-10 Canon Anelva Corporation Plasma processing apparatus
US11961710B2 (en) 2017-06-27 2024-04-16 Canon Anelva Corporation Plasma processing apparatus
US11600466B2 (en) 2018-06-26 2023-03-07 Canon Anelva Corporation Plasma processing apparatus, plasma processing method, and memory medium

Similar Documents

Publication Publication Date Title
JP5086092B2 (en) Impedance matching of capacitively coupled RF plasma reactor suitable for large area substrates
JP2009302566A (en) Plasma surface processor with balanced-unbalanced transformer
JP3697110B2 (en) Plasma chemical vapor deposition equipment
WO2010024128A1 (en) Plasma surface processing method and plasma surface processing apparatus
JP2007220594A (en) Plasma generation method and plasma generation device as well as plasma treatment device
WO2010013624A1 (en) Current introducing terminal, plasma surface processing apparatus provided with the current introducing terminal, and plasma surface processing method
JP2006332704A (en) Method and apparatus for plasma surface treatment
JP2005303257A (en) Balanced-to-unbalanced conversion device for high-frequency plasma generation, plasma surface treatment device constituted of the balanced-to-unbalanced conversion device, and plasma surface treatment method
KR100382380B1 (en) Discharge electrode, high-frequency plasma generator, method of power feeding, and method of manufacturing semiconductor device
JP3575011B1 (en) Plasma surface treatment apparatus and plasma surface treatment method
JP3637447B2 (en) Equilibrium / unbalance converter for high-frequency plasma generation, plasma surface treatment apparatus and plasma surface treatment method comprising the balance / unbalance converter
JP3590955B2 (en) Balanced transmission circuit, plasma surface treatment apparatus and plasma surface treatment method constituted by the balanced transmission circuit
JP4022670B2 (en) Electrode for generating ultrahigh frequency plasma, plasma surface treatment apparatus and plasma surface treatment method comprising the electrode
JP2007103970A (en) Method of supplying power to electrode, plasma surface treatment method using the same, and plasma surface treatment system
JP2012124184A (en) Plasma surface processing method and plasma surface processing device
JP3575014B1 (en) Electrode for high-frequency plasma generation, plasma surface treatment apparatus and plasma surface treatment method constituted by the electrode
JP2006228933A (en) High frequency plasma generator, surface treatment apparatus constituted thereof and surface treatment method
JP3416622B2 (en) Surface treatment device and surface treatment method
JP3575013B1 (en) High frequency power supply coaxial cable, plasma surface treatment apparatus and plasma surface treatment method constituted by the coaxial cable
JP3519678B2 (en) Surface treatment device and surface treatment method
JP2006332709A (en) Method of supplying power to electrode, plasma surface treatment method using this power supplying method and plasma surface treatment apparatus
JP4207131B2 (en) High frequency plasma generator and surface treatment method
JP4026181B2 (en) Electrode for generating high-frequency plasma, plasma surface treatment apparatus and plasma surface treatment method comprising the electrode
JP4264962B2 (en) High-frequency plasma generator, and surface treatment apparatus and surface treatment method constituted by the high-frequency plasma generator
JP2004266038A (en) Surface treatment device and method therefor