JP2005302968A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2005302968A
JP2005302968A JP2004116077A JP2004116077A JP2005302968A JP 2005302968 A JP2005302968 A JP 2005302968A JP 2004116077 A JP2004116077 A JP 2004116077A JP 2004116077 A JP2004116077 A JP 2004116077A JP 2005302968 A JP2005302968 A JP 2005302968A
Authority
JP
Japan
Prior art keywords
ppm
thermal expansion
wiring board
main surface
reinforcing frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004116077A
Other languages
Japanese (ja)
Other versions
JP2005302968A5 (en
JP4342366B2 (en
Inventor
Tatsuya Ito
達也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004116077A priority Critical patent/JP4342366B2/en
Publication of JP2005302968A publication Critical patent/JP2005302968A/en
Publication of JP2005302968A5 publication Critical patent/JP2005302968A5/ja
Application granted granted Critical
Publication of JP4342366B2 publication Critical patent/JP4342366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board that has no core substrate and can be reduced in warping. <P>SOLUTION: The wiring board has a laminate BU formed by alternatively laminating two or more dielectric layers and two or more conductor layers upon another so that the first and second main surfaces MP1 and MP2 of the laminate BU may be formed of dielectric layers, a plurality of metallic terminal pads PD1 and PD2 formed on the first and second main surfaces MP1 and MP2, and a reinforcing frame ST which secures flatness by reinforcing the laminate BU. Semiconductor chips and the reinforcing frame ST are arranged on the first main surface MP1 and at least part of the metallic terminal pads PD1 and PD2 are electrically connected to internal conductor layers positioned in the laminate BU through via holes. At the same time, the metallic terminal pads PD1 and PD2 and semiconductor chips are flip-chip connected to each other through soldered connections and the coefficients of thermal expansion of all dielectric layers are adjusted to 15-40 ppm/°C and the coefficient of thermal expansion of the reinforcing frame ST is also adjusted to 15-40 ppm/°C. Since the difference between the coefficients of thermal expansion of the dielectric layers and reinforcing frame ST is small, the warping of the wiring board can be reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、配線基板に関するものである。   The present invention relates to a wiring board.

近年、電子機器における高機能化並びに軽薄短小化の要求により、ICチップやLSI等の電子部品では高密度集積化が急速に進んでおり、これに伴い、電子部品を搭載するパッケージ基板には、従来にも増して高密度配線化及び多端子化が求められている。   In recent years, due to the demand for higher functionality and lighter, thinner and smaller electronic devices, high-density integration has rapidly progressed in electronic components such as IC chips and LSIs. There is a demand for higher-density wiring and multi-terminals than ever before.

このようなパッケージ基板としては、現状において、ビルドアップ多層配線基板が採用されている。ビルドアップ多層配線基板とは、補強繊維に樹脂を含浸させた絶縁性のコア基板(FR−4等のガラスエポキシ基板)のリジッド性を利用し、その両主表面上に、誘電体層と導体層とが交互に配されたビルドアップ層を形成したものである。このようなビルドアップ多層配線基板では、ビルドアップ層(以下、積層体とも記す)において高密度配線化が実現されており、一方、コア基板は補強の役割を果たす。そのため、コア基板は、積層体と比べて非常に厚く構成され、またその内部にはそれぞれの主表面に配された積層体間の導通を図るための配線(例えば、スルーホール導体と呼ばれる)が厚さ方向に貫通形成されている。ところが、使用する信号周波数が1GHzを超える高周波帯域となってきた現在では、そのような厚いコア基板を貫通する配線は、大きなインダクタンスとして寄与してしまうという問題があった。   As such a package substrate, a build-up multilayer wiring substrate is currently used. The build-up multilayer wiring board uses the rigid property of an insulating core substrate (glass epoxy substrate such as FR-4) in which a reinforcing fiber is impregnated with a resin, and a dielectric layer and a conductor are formed on both main surfaces thereof. A build-up layer in which layers are alternately arranged is formed. In such a build-up multilayer wiring board, high-density wiring is realized in the build-up layer (hereinafter also referred to as a laminate), while the core board plays a role of reinforcement. Therefore, the core substrate is configured to be very thick compared to the multilayer body, and wiring (for example, referred to as a through-hole conductor) for establishing electrical connection between the multilayer bodies disposed on the respective main surfaces is provided in the core substrate. It is formed penetrating in the thickness direction. However, at the present time when the signal frequency to be used has become a high frequency band exceeding 1 GHz, there is a problem that the wiring penetrating such a thick core substrate contributes as a large inductance.

そこで、そのような問題を解決するため下記特許文献1のように、コア基板を有さないことで、高密度配線化を可能とした配線基板が提案されている。このような配線基板ではコア基板が省略されているため、全体の配線長が短く構成され、高周波用途に供するのに好適である。このような配線基板を製造するためには、特許文献1の段落0012〜0029及び図1〜4に記載されているように、金属板上に積層体を形成した後、該金属板をエッチングすることにより薄膜の積層体のみを得る。そして、この積層体が配線基板とされる。
特開2002−26171号公報
Therefore, in order to solve such a problem, a wiring board has been proposed that enables high-density wiring by not having a core board as in Patent Document 1 below. In such a wiring board, since the core board is omitted, the entire wiring length is short, which is suitable for use in high frequency applications. In order to manufacture such a wiring board, as described in paragraphs 0012 to 0029 and FIGS. 1 to 4 of Patent Document 1, after forming a laminate on a metal plate, the metal plate is etched. Thus, only a thin film laminate is obtained. And this laminated body is used as a wiring board.
JP 2002-26171 A

金属板から分離された薄膜の積層体には、IC接続側に配線基板のリジッド性を確保するための補強枠(以下、スティフナとも記す)が設置される。補強枠の材料としては銅合金やSUS304が用いられ、誘電体層としてはエポキシ系樹脂が使用される。補強枠を積層体に接続するときには接着剤を用い、接着剤を固化するために150℃程度で真空キュアする。補強枠に用いる銅合金の熱膨張係数は17.7ppm/℃程度である。誘電体層はエポキシ系樹脂を主成分としており、その熱膨張係数は55ppm/℃程度である。従来の配線基板では、これらの熱膨張係数の違いから、配線基板に反りが生じてしまう問題があった。すなわち、真空キュアが終了して冷却される時に補強枠は僅かしか縮まないが、誘電体層を含む配線基板は大きく縮むため図3のように弓型になるのである。   In the thin film laminate separated from the metal plate, a reinforcing frame (hereinafter also referred to as a stiffener) for securing the rigid property of the wiring board is installed on the IC connection side. Copper alloy or SUS304 is used as the material of the reinforcing frame, and epoxy resin is used as the dielectric layer. When connecting the reinforcing frame to the laminate, an adhesive is used, and vacuum curing is performed at about 150 ° C. in order to solidify the adhesive. The thermal expansion coefficient of the copper alloy used for the reinforcing frame is about 17.7 ppm / ° C. The dielectric layer is mainly composed of an epoxy resin, and its thermal expansion coefficient is about 55 ppm / ° C. In the conventional wiring board, there is a problem that the wiring board is warped due to the difference in the coefficient of thermal expansion. In other words, when the vacuum curing is finished and the cooling is completed, the reinforcing frame is slightly shrunk, but the wiring board including the dielectric layer is shrunk so that it has a bow shape as shown in FIG.

一方、導体層の配線密度の差に起因する反りもある。導体層は、各層によって配線密度が異なる。例えば半導体チップ接続側の導体層は配線密度が小さく、マザーボード接続側の導体層は配線密度が高い。その理由は、半導体チップ接続側の金属端子パッドは一般に小さく作られているためである。導体層に銅合金を用いた場合、その熱膨張率は17.7ppm/℃程度であり、エポキシ樹脂を主成分とする誘電体層は55ppm/℃程度である。そのため、配線密度の低い半導体チップ接続側の面と、配線密度の高いマザーボード接続側の面で熱膨張率に差が生じて、反りが発生してしまう。ビルドアップ工程は170℃程度の高温がかかるので、ビルドアップ工程が終了して冷却された配線基板に応力がかかり、反りが生じるのである。半導体チップを接続する金属端子パッドは配線基板の中央部に配置されているので、図4のように、中央部が凹むように変形する。   On the other hand, there is also a warp caused by a difference in wiring density of the conductor layer. The conductor layer has a different wiring density depending on each layer. For example, the conductor layer on the semiconductor chip connection side has a low wiring density, and the conductor layer on the motherboard connection side has a high wiring density. This is because the metal terminal pads on the semiconductor chip connection side are generally made small. When a copper alloy is used for the conductor layer, the coefficient of thermal expansion is about 17.7 ppm / ° C., and the dielectric layer mainly composed of epoxy resin is about 55 ppm / ° C. Therefore, a difference in thermal expansion coefficient occurs between the surface on the semiconductor chip connection side where the wiring density is low and the surface on the motherboard connection side where the wiring density is high, causing warpage. Since a high temperature of about 170 ° C. is applied in the build-up process, stress is applied to the cooled wiring board after the build-up process is completed, and warping occurs. Since the metal terminal pad for connecting the semiconductor chip is disposed in the central portion of the wiring board, it is deformed so that the central portion is recessed as shown in FIG.

本発明は上述のような事情を背景になされたもので、導体層と誘電体層を交互に積層した積層体と、該積層体を補強して平坦度を確保する補強枠を備え、反りの低減が可能な配線基板を提供することを課題とする。   The present invention has been made in the background as described above, and includes a laminated body in which conductor layers and dielectric layers are alternately laminated, a reinforcing frame that reinforces the laminated body to ensure flatness, It is an object to provide a wiring board that can be reduced.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために本発明の配線基板は、コア基板を有さず、かつ半導体チップを接続する配線基板であって、前記第一主表面及び第二主表面が誘電体層にて形成されるように、2以上の誘電体層と2以上の導体層とが交互に積層された積層体と、前記第一主表面及び前記第二主表面上に形成される複数の金属端子パッドと、前記積層体を補強して平坦度を確保する補強枠と、を有し、前記半導体チップ及び前記補強枠は前記第一主表面に配置され、前記金属端子パッドの少なくとも一部のものが、前記積層体内に位置する内部導体層にビアを介して導通するとともに、前記金属端子パッドと前記半導体チップとが半田接続部を介してフリップチップ接続され、全ての前記誘電体層の熱膨張係数が15ppm/℃以上40ppm/℃以下であり、前記補強枠の熱膨張係数が15ppm/℃以上25ppm/℃以下であることを主要な特徴とする。   In order to solve the above problems, a wiring board of the present invention is a wiring board that does not have a core board and connects a semiconductor chip, and the first main surface and the second main surface are formed of a dielectric layer. A laminate in which two or more dielectric layers and two or more conductor layers are alternately laminated, and a plurality of metal terminal pads formed on the first main surface and the second main surface; A reinforcing frame that reinforces the laminated body to ensure flatness, and the semiconductor chip and the reinforcing frame are disposed on the first main surface, and at least a part of the metal terminal pads are: Conductive to the internal conductor layer located in the multilayer body through vias, and the metal terminal pads and the semiconductor chip are flip-chip connected through solder connection parts, the thermal expansion coefficient of all the dielectric layers 15 ppm / ° C or higher and 40 ppm / ° C or lower , And the is mainly characterized in that the thermal expansion coefficient of said reinforcing frame is 15 ppm / ° C. or higher 25 ppm / ° C. or less.

また、本発明の配線基板は、全ての導体層の熱膨張係数が15ppm/℃以上25ppm/℃以下である。   In the wiring board of the present invention, the thermal expansion coefficients of all the conductor layers are 15 ppm / ° C. or more and 25 ppm / ° C. or less.

さらに、本発明の配線基板は、上記第一主表面に最も近い導体層の配線密度50%以上90%以下であり、かつ、上記第二主表面に最も近い導体層の配線密度が50%以上90%以下である。   Further, in the wiring board of the present invention, the wiring density of the conductor layer closest to the first main surface is 50% or more and 90% or less, and the wiring density of the conductor layer closest to the second main surface is 50% or more. 90% or less.

配線基板に生じる反りが誘電体層と補強枠の熱膨張係数の差に起因する場合は、それぞれの熱膨張係数が略同じになるように材料を組み合わせればよい。本発明では誘電体層と補強枠との熱膨張係数の差を25ppm/℃以下とすることで、反りの少ない配線基板を提供する。熱膨張係数の差が25ppm/℃以上になると、反りが発生する。具体的には、全ての誘電体層の熱膨張係数が15ppm/℃以上40ppm/℃以下であり、補強枠の熱膨張係数が15ppm/℃以上25ppm/℃以下であることが望ましい。例えば補強枠の材料として熱膨張係数が16ppm/℃以上20ppm/℃以下の純銅または銅合金を用いた場合は、誘電体層として熱膨張係数が20ppm/℃以上30ppm/℃以下の材料を使用すればよい。このような材料としては、例えばABF−GX TH3(商品名:味の素ファインテクノ株式会社製)が挙げられる。   When the warp generated in the wiring board is caused by the difference in the thermal expansion coefficient between the dielectric layer and the reinforcing frame, the materials may be combined so that the respective thermal expansion coefficients are substantially the same. In the present invention, the difference in the thermal expansion coefficient between the dielectric layer and the reinforcing frame is 25 ppm / ° C. or less, thereby providing a wiring board with less warpage. Warpage occurs when the difference in thermal expansion coefficient is 25 ppm / ° C. or more. Specifically, it is desirable that the thermal expansion coefficient of all the dielectric layers is 15 ppm / ° C. or more and 40 ppm / ° C. or less, and the thermal expansion coefficient of the reinforcing frame is 15 ppm / ° C. or more and 25 ppm / ° C. or less. For example, when pure copper or a copper alloy having a thermal expansion coefficient of 16 ppm / ° C. or higher and 20 ppm / ° C. or lower is used as the material of the reinforcing frame, a material having a thermal expansion coefficient of 20 ppm / ° C. or higher and 30 ppm / ° C. or lower is used as the dielectric layer. That's fine. An example of such a material is ABF-GX TH3 (trade name: manufactured by Ajinomoto Fine Techno Co., Ltd.).

配線基板の反りが導体層の配線密度の差に起因する場合は、導体層と誘電体層の熱膨張係数を略同じにすれば、反りを低減できる。本発明では、誘電体層と導体層との熱膨張係数の差を25ppm/℃以下とすることで、反りの少ない配線基板を提供する。具体的には、全ての誘電体層の熱膨張係数が15ppm/℃以上40ppm/℃以下であり、かつ、配線を構成する導体層の熱膨張係数が15ppm/℃以上25ppm/℃以下であることが望ましい。誘電体層と導体層の熱膨張係数は、完全に同一であることが望ましいが、現実にはそのような材料の組み合わせを適用することは困難である。そこで、熱膨張係数の差を小さくするとともに、導体層の配線密度の差を小さくすることで、さらに反りを低減することができる。具体的には、半導体チップ接続側の主表面に最も近い導体層の配線密度を50%以上90%以下とし、かつ、半導体チップ接続側の主表面から最も遠い導体層の配線密度を50%以上90%以下とする。このようにすると各導体層の配線密度の差は40%以下となり、反りが低減できるのである。   When the warp of the wiring board is caused by the difference in the wiring density of the conductor layer, the warp can be reduced by making the thermal expansion coefficients of the conductor layer and the dielectric layer substantially the same. In the present invention, a wiring board with less warpage is provided by setting the difference in thermal expansion coefficient between the dielectric layer and the conductor layer to 25 ppm / ° C. or less. Specifically, the thermal expansion coefficients of all the dielectric layers are 15 ppm / ° C. or more and 40 ppm / ° C. or less, and the thermal expansion coefficients of the conductor layers constituting the wiring are 15 ppm / ° C. or more and 25 ppm / ° C. or less. Is desirable. Although it is desirable that the thermal expansion coefficients of the dielectric layer and the conductor layer are completely the same, in reality, it is difficult to apply such a combination of materials. Therefore, warpage can be further reduced by reducing the difference in thermal expansion coefficient and reducing the difference in wiring density of the conductor layer. Specifically, the wiring density of the conductor layer closest to the main surface on the semiconductor chip connection side is set to 50% or more and 90% or less, and the wiring density of the conductor layer farthest from the main surface on the semiconductor chip connection side is set to 50% or more. 90% or less. In this way, the difference in wiring density between the conductor layers is 40% or less, and the warpage can be reduced.

以下、本発明に係わる実施形態を、図面を用いて説明する。
図1(a)は、本発明の一実施形態を示す概略断面図である。誘電体層と導体層が交互に積層されて、積層体BUを構成している。その第一主表面MP1には半導体チップと接続するための、周知の半田で構成された突起状の金属端子(半田バンプ)FBが形成されている。また、第一主表面MP1には配線基板100を補強して平坦性を確保するための補強枠(スティフナー)STが接着されている。本発明の配線基板はコア基板を有さないので、補強枠を使用しないと曲がりやすく、半田バンプFBと半導体チップとの接続が難しくなる。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
Fig.1 (a) is a schematic sectional drawing which shows one Embodiment of this invention. Dielectric layers and conductor layers are alternately stacked to form a stacked body BU. On the first main surface MP1, a protruding metal terminal (solder bump) FB made of a well-known solder for connecting to the semiconductor chip is formed. Further, a reinforcing frame (stiffener) ST for reinforcing the wiring substrate 100 and ensuring flatness is bonded to the first main surface MP1. Since the wiring board of the present invention does not have a core board, it is easy to bend unless a reinforcing frame is used, and it becomes difficult to connect the solder bump FB and the semiconductor chip.

次に図1(b)を用いて、さらに詳細に説明をする。図1(b)は、本発明の配線基板の要部断面図である。積層体100は、導体層M1〜M4と誘電体層B1〜B4が交互に積層されてなる。そして、誘電体層B4の表面にはソルダーレジストSRが形成されている。導体層M1〜M4は銅を主成分としている。第一主表面MP1には複数の金属端子パッドPD1が形成されている。金属端子パッドPD1は、半導体チップなどをフリップチップ接続するためのパッドである半田ランドを構成する。また、第二主表面MP2側の金属端子パッドPD2は、配線基板自体をマザーボードにピングリッドアレイ(PGA)あるいはボールグリッドアレイ(BGA)により接続するための裏面ランドとして利用されるものである。一方、導体層M1およびM2はビアV1によって層間接続されている。同様にして、導体層M2およびM3はビアV2によって、導体層M3およびM4はビアV3によって層間接続がなされている。このようにして、ハンダバンプFBから金属端子パッドPD2への電気導通路が形成されている。   Next, it will be described in more detail with reference to FIG. FIG.1 (b) is principal part sectional drawing of the wiring board of this invention. The laminate 100 is formed by alternately laminating conductor layers M1 to M4 and dielectric layers B1 to B4. A solder resist SR is formed on the surface of the dielectric layer B4. The conductor layers M1 to M4 are mainly composed of copper. A plurality of metal terminal pads PD1 are formed on the first main surface MP1. The metal terminal pad PD1 constitutes a solder land that is a pad for flip-chip connection of a semiconductor chip or the like. The metal terminal pad PD2 on the second main surface MP2 side is used as a back surface land for connecting the wiring board itself to the mother board by a pin grid array (PGA) or a ball grid array (BGA). On the other hand, the conductor layers M1 and M2 are interconnected by a via V1. Similarly, the conductor layers M2 and M3 are interconnected by a via V2, and the conductor layers M3 and M4 are interconnected by a via V3. In this manner, an electrical conduction path from the solder bump FB to the metal terminal pad PD2 is formed.

半導体チップ接続用の金属端子パッドPD1と比較すると、マザーボード接続用の金属端子パッドPD2は大きく作られている。そのため、導体層M1の配線密度は低く、導体層M4の配線密度は高くなっている。前述したように、この配線密度の違いが反りを生じる原因となる。   Compared with the metal terminal pad PD1 for connecting the semiconductor chip, the metal terminal pad PD2 for connecting the mother board is made larger. Therefore, the wiring density of the conductor layer M1 is low, and the wiring density of the conductor layer M4 is high. As described above, this difference in wiring density causes a warp.

図2(a)に示すように、金属端子パッドPD1は配線基板1の中央部分に格子状に配列し、各々その上に形成された半田バンプFBとともにチップ搭載部40を形成している。また、図2(b)に示すように、金属端子パッドPD2も、格子状に配列形成されている。   As shown in FIG. 2A, the metal terminal pads PD1 are arranged in a lattice pattern at the central portion of the wiring substrate 1, and the chip mounting portions 40 are formed together with the solder bumps FB formed thereon. Further, as shown in FIG. 2B, the metal terminal pads PD2 are also arranged in a grid pattern.

以上説明した積層体BUは、例えば金属基板に周知のビルドアップ法を用いて積層形成し、金属板をエッチング除去することで製造できる。図3は、補強枠を接着した時の反り発生を示す概念図である。本実施形態では誘電体層としてエポキシ樹脂を用いている。図3に示すように、積層体BUの第一主表面MP1側に、平坦性を確保するための補強枠STを接着する。補強枠STの接着は接着剤を用いて行われ、接着剤の固化のために高温(例えば150℃程度)がかけられる。ここで、誘電体層B1〜B4としてエポキシ樹脂を使用しているので、その熱膨張係数は55ppm/℃程度である。その値は、補強枠STの熱膨張係数16ppm/℃以上20ppm/℃以下と比較すると、大きく異なる。このように熱膨張係数の差が大きいと、冷却した時に積層体BUの収縮率が大きいため、弓状に変形してしまう。しかし誘電体層B1〜B4の材料を変更し、その熱膨張係数と、補強枠STの熱膨張係数との差が25ppm/℃以下となるようにすれば、反りは低減される。具体的には、全ての誘電体層の熱膨張係数を15ppm/℃以上40ppm/℃以下とし、補強枠の熱膨張係数を15ppm/℃以上25ppm/℃以下とする。   The laminated body BU described above can be manufactured, for example, by stacking and forming a metal substrate using a known build-up method, and removing the metal plate by etching. FIG. 3 is a conceptual diagram showing the occurrence of warping when the reinforcing frame is bonded. In this embodiment, an epoxy resin is used as the dielectric layer. As shown in FIG. 3, a reinforcing frame ST for ensuring flatness is bonded to the first main surface MP1 side of the stacked body BU. Adhesion of the reinforcing frame ST is performed using an adhesive, and a high temperature (for example, about 150 ° C.) is applied to solidify the adhesive. Here, since the epoxy resin is used as the dielectric layers B1 to B4, the thermal expansion coefficient thereof is about 55 ppm / ° C. The value is significantly different from the coefficient of thermal expansion of the reinforcing frame ST, compared with 16 ppm / ° C. or more and 20 ppm / ° C. or less. Thus, when the difference in thermal expansion coefficient is large, the contraction rate of the laminated body BU is large when cooled, so that it is deformed into an arcuate shape. However, if the material of the dielectric layers B1 to B4 is changed so that the difference between the thermal expansion coefficient thereof and the thermal expansion coefficient of the reinforcing frame ST is 25 ppm / ° C. or less, the warpage is reduced. Specifically, the thermal expansion coefficient of all the dielectric layers is 15 ppm / ° C. or more and 40 ppm / ° C. or less, and the thermal expansion coefficient of the reinforcing frame is 15 ppm / ° C. or more and 25 ppm / ° C. or less.

図4は、導体層間の配線密度に起因する反り発生を説明する概略断面図である。図4においては、誘電体層B1〜B4としてエポキシ樹脂を用いている。金属板をエッチング除去して積層体BUを分離すると、反りが発生する。上述したように、第一主表面側と、第二主表面側では導体層の密度が異なる。配線密度の低い第一主表面MP1側(フリップチップ接続側)は熱膨張係数が高く、配線密度が高い第二主表面MP2側(マザーボード接続側)は熱膨張係数が低い。ビルドアップ工程時には170℃程度の高温状態となるが、冷却された後に、金属板をエッチング除去して積層体BUを分離すると、中央部分が凹んでしまう。中央部分が特に凹む理由は、中央部に金属端子パッドが配置されているためである。しかし誘電体層の熱膨張係数と、導体層の熱膨張係数との差が25ppm/℃以下となるようにすれば、このような反りは低減される。具体的には、全ての誘電体層の熱膨張係数を15ppm/℃以上40ppm/℃以下とし、全ての導体層の熱膨張係数を15ppm/℃以上25ppm/℃以下とする。なお、第一主表面に最も近い導体層M1の配線密度を50%以上90%以下とし、第二主表面に最も近い導体層M4の配線密度を50%以上90%以下とすることで、これら導体層M1とM4の配線密度の差を40%以下とすると、より望ましい。   FIG. 4 is a schematic cross-sectional view for explaining the occurrence of warpage due to the wiring density between conductor layers. In FIG. 4, epoxy resin is used as the dielectric layers B1 to B4. When the metal plate is removed by etching to separate the stacked body BU, warpage occurs. As described above, the density of the conductor layer is different between the first main surface side and the second main surface side. The first main surface MP1 side (flip chip connection side) with a low wiring density has a high thermal expansion coefficient, and the second main surface MP2 side (motherboard connection side) with a high wiring density has a low thermal expansion coefficient. At the time of the build-up process, a high temperature state of about 170 ° C. is obtained. However, after cooling, if the metal plate is removed by etching to separate the stacked body BU, the central portion is recessed. The reason why the central portion is particularly recessed is that a metal terminal pad is disposed in the central portion. However, if the difference between the thermal expansion coefficient of the dielectric layer and the thermal expansion coefficient of the conductor layer is 25 ppm / ° C. or less, such warpage is reduced. Specifically, the thermal expansion coefficients of all dielectric layers are 15 ppm / ° C. or more and 40 ppm / ° C. or less, and the thermal expansion coefficients of all conductor layers are 15 ppm / ° C. or more and 25 ppm / ° C. or less. The wiring density of the conductor layer M1 closest to the first main surface is set to 50% or more and 90% or less, and the wiring density of the conductor layer M4 closest to the second main surface is set to 50% or more and 90% or less. More preferably, the difference in wiring density between the conductor layers M1 and M4 is 40% or less.

図4のように、積層体BUを金属板上に積層した後、該金属板をエッチング除去する方法では、金属板が支持基盤としての強度を保つ必要があるので、その厚さを例えば0.8m程度とする必要がある。この場合、金属板をエッチング除去するのに30分程度の比較的長い時間が必要とされていた。このような問題点は、下記のような製造方法によって解決できる。図5および図6に配線基板の製造方法の一例を示す。この製造方法は金属箔M1,M1’が密着してなる金属箔密着体を使用する点に特徴がある。工程1では、支持基盤20上に形成された下地誘電体シート21上に積層体BUが形成されている。また、下地誘電体シート21の主表面に包含されるように金属箔密着体が配され、該金属箔密着体を包むように第一誘電体層B2が配されている。そして金属箔密着体の上に、周知のビルドアップ工程を用いて、誘電体層B2〜B4および導体層M2〜M4が積層されている。熱膨張係数が16ppm/℃以上20ppm/℃以下の純銅または銅合金を導体層に用い、熱膨張係数が20ppm/℃以上30ppm/℃以下の高分子材料を誘電体層に使用する。次に積層体BUの周辺部(図中の破線部)を除去し、積層体の端面101を露出させる(工程2)。そして、金属箔密着体を剥離することで、積層体BUを支持基盤20および下地誘電体シート21から分離する(工程3)。次に積層体BU側についた金属箔M1にパターニングを施し、エッチングすることで半導体チップ接続側の金属端子パッドPD1を形成する(工程4)。すなわち、金属箔M1は金属端子パッドPD1を構成するための導体層として使用される。この後、金属端子パッドPD1側に誘電体層B1を積層し、金属パッドPD1が開口するように選択的にエッチングする。このように形成された積層体BUの、半導体チップ接続側(PD1側)に補強枠を接着すると、図1(a),(b)に示す構造の配線基板1が形成される。上記方法によると金属板をエッチングする必要はないので、工程時間の短縮化を図ることができる。また、導体層と誘電体層の熱膨張係数の差が小さいので、反りを低減できる。   As shown in FIG. 4, in the method of laminating the laminated body BU on the metal plate and then removing the metal plate by etching, it is necessary to maintain the strength of the metal plate as a support base. It needs to be about 8m. In this case, a relatively long time of about 30 minutes is required to remove the metal plate by etching. Such a problem can be solved by the following manufacturing method. 5 and 6 show an example of a method for manufacturing a wiring board. This manufacturing method is characterized in that it uses a metal foil contact body in which metal foils M1 and M1 'are in close contact. In step 1, the laminated body BU is formed on the base dielectric sheet 21 formed on the support substrate 20. Further, a metal foil adhesion body is disposed so as to be included in the main surface of the base dielectric sheet 21, and a first dielectric layer B2 is disposed so as to wrap the metal foil adhesion body. And dielectric material layer B2-B4 and conductor layer M2-M4 are laminated | stacked on the metal foil adhesion body using the well-known buildup process. Pure copper or a copper alloy having a thermal expansion coefficient of 16 ppm / ° C. to 20 ppm / ° C. is used for the conductor layer, and a polymer material having a thermal expansion coefficient of 20 ppm / ° C. to 30 ppm / ° C. is used for the dielectric layer. Next, the peripheral part (broken line part in the figure) of the laminated body BU is removed, and the end surface 101 of the laminated body is exposed (step 2). Then, the laminated body BU is separated from the support base 20 and the base dielectric sheet 21 by peeling the metal foil adhesion body (step 3). Next, the metal foil M1 attached to the laminated body BU side is patterned and etched to form the metal terminal pad PD1 on the semiconductor chip connection side (step 4). That is, the metal foil M1 is used as a conductor layer for constituting the metal terminal pad PD1. Thereafter, the dielectric layer B1 is laminated on the metal terminal pad PD1 side and selectively etched so that the metal pad PD1 is opened. When the reinforcing frame is bonded to the semiconductor chip connection side (PD1 side) of the laminated body BU thus formed, the wiring substrate 1 having the structure shown in FIGS. 1A and 1B is formed. According to the above method, since it is not necessary to etch the metal plate, the process time can be shortened. Further, since the difference in coefficient of thermal expansion between the conductor layer and the dielectric layer is small, warpage can be reduced.

本発明の効果を確認するために、以下の実験をおこなった。まず、上述の製造方法を用いて、図1(b)の構造を有する薄膜の積層体BUを得た。本発明に属する実施例には、誘電体層B1〜B4として熱膨張係数が23ppm/℃のABF−GX TH3(商品名:味の素ファインテクノ株式会社製)を使用した。一方、本発明外の比較例のサンプルには、誘電体層B1〜B4として熱膨張係数が55ppm/℃のエポキシ樹脂を主体としたABF−GX Code3(商品名:味の素ファインテクノ株式会社製)を使用した。その後、実施例および比較例の第一主表面に補強枠STを150℃で接着した。各サンプルとも、導体層M1〜M4および補強枠STの材料として熱膨張係数が17.7ppm/℃の銅合金を用いた。実施例および比較例の配線密度は、半導体チップ接続側は60%、マザーボード接続側は80%であった。以上説明した内容を、表1にまとめる。   In order to confirm the effect of the present invention, the following experiment was conducted. First, a thin film stack BU having the structure of FIG. 1B was obtained using the above-described manufacturing method. In Examples belonging to the present invention, ABF-GX TH3 (trade name: manufactured by Ajinomoto Fine Techno Co., Ltd.) having a thermal expansion coefficient of 23 ppm / ° C. was used as the dielectric layers B1 to B4. On the other hand, ABF-GX Code 3 (trade name: manufactured by Ajinomoto Fine Techno Co., Ltd.) mainly composed of an epoxy resin having a thermal expansion coefficient of 55 ppm / ° C. is used as the dielectric layers B1 to B4 in the sample of the comparative example outside the present invention. used. Thereafter, the reinforcing frame ST was bonded at 150 ° C. to the first main surfaces of the examples and comparative examples. In each sample, a copper alloy having a thermal expansion coefficient of 17.7 ppm / ° C. was used as a material for the conductor layers M1 to M4 and the reinforcing frame ST. The wiring densities of the example and the comparative example were 60% on the semiconductor chip connection side and 80% on the motherboard connection side. The contents described above are summarized in Table 1.

各サンプルの、反り量を測定した結果を図7(a)および図7(b)に示す。図7(a)はスティフナーを接着する前に測定した結果で、図7(b)はスティフナーを接着した後に測定した結果である。1サンプルにつき、マザーボード接続側から25点の高さを測定し、測定値の差が最大になる値を反り値とした。図7(a)に関しては各6サンプル、図7(b)に関しては各12サンプル測定した。図7(a)から、スティフナーを接着する前では実施例と比較例の反り量は同程度であるが、実施例の方が反り量のバラツキが小さいことがわかる。また、図7(b)から、スティフナーを接着した後では、実施例の反り量は比較例よりも小さくなっており、改善されていることがわかる。   The results of measuring the amount of warpage of each sample are shown in FIGS. 7 (a) and 7 (b). FIG. 7A shows the result measured before bonding the stiffener, and FIG. 7B shows the result measured after bonding the stiffener. For each sample, the height of 25 points from the motherboard connection side was measured, and the value that maximized the difference in the measured values was taken as the warp value. 6 samples each for FIG. 7A and 12 samples each for FIG. 7B. From FIG. 7A, it can be seen that the amount of warpage in the example and the comparative example is about the same before the stiffener is bonded, but the variation in the amount of warpage is smaller in the example. Further, FIG. 7B shows that after the stiffener is bonded, the amount of warpage of the example is smaller than that of the comparative example, which is improved.

さらに図8に、配線基板の半導体チップエリアの反り量を測定した結果を示す。図8(a)は、マザーボード接続側からみた半導体チップエリアの反り量を示すグラフである。半導体チップエリアだけの高さを測定し、測定値の差が最大になる値を反り値とした。図8(b)は半田バンプFBの平坦度を示すグラフである。1サンプルにつき25点の半田バンプFBの高さを測定し、測定値の差が最大になる値を反り値とした。図8(a)および図8(b)はスティフナーを接着した後に、各12サンプルずつ測定した。図8(a)から、半導体チップエリアの反り量は、実施例の方が小さいことがわかる。さらに図8(b)から、半田バンプの平坦度は実施例の方が比較例よりも小さくなっており、改善されていることがわかる。   Further, FIG. 8 shows the result of measuring the warpage amount of the semiconductor chip area of the wiring board. FIG. 8A is a graph showing the amount of warpage of the semiconductor chip area as seen from the motherboard connection side. The height of only the semiconductor chip area was measured, and the value that maximized the difference in the measured values was taken as the warpage value. FIG. 8B is a graph showing the flatness of the solder bump FB. The height of 25 solder bumps FB per sample was measured, and the value that maximized the difference in the measured values was taken as the warp value. In FIGS. 8A and 8B, 12 samples each were measured after the stiffener was bonded. FIG. 8A shows that the amount of warpage of the semiconductor chip area is smaller in the example. Further, from FIG. 8B, it can be seen that the flatness of the solder bumps is improved in the example compared to the comparative example.

本発明の一実施形態を示す(a)概略断面図および(b)要部断面図。BRIEF DESCRIPTION OF THE DRAWINGS (a) schematic sectional drawing and (b) principal part sectional drawing which show one Embodiment of this invention. 本発明の一実施形態を示す(a)表面図および(b)裏面図。BRIEF DESCRIPTION OF THE DRAWINGS (a) Front view and (b) Back view which show one Embodiment of this invention. 補強枠を接着した時の反り発生を示す断面図。Sectional drawing which shows curvature generation | occurrence | production when the reinforcement frame was adhere | attached. 導体層間の配線密度に起因する反り発生を示す断面図。Sectional drawing which shows generation | occurrence | production of the curvature resulting from the wiring density between conductor layers. 配線基板の製造方法の一例を示す工程図。Process drawing which shows an example of the manufacturing method of a wiring board. 図5に続く工程図。Process drawing following FIG. 誘電体層の材質と反り量の関係を示すグラフ。The graph which shows the relationship between the material of a dielectric material layer, and curvature amount. 誘電体層の材質と、半導体チップエリアの反り量の関係を示すグラフ。The graph which shows the relationship between the material of a dielectric material layer, and the curvature amount of a semiconductor chip area.

符号の説明Explanation of symbols

1 配線基板
20 支持基盤
21 下地誘電体層
BU 積層体
MP1 第一主表面
MP2 第二主表面
M1 第一導体層(金属箔)
B1 第一誘電体層
PD1 金属端子パッド
ST 補強枠
FB 半田バンプ
DESCRIPTION OF SYMBOLS 1 Wiring board 20 Support base 21 Base dielectric layer BU Laminate MP1 1st main surface MP2 2nd main surface M1 1st conductor layer (metal foil)
B1 First dielectric layer PD1 Metal terminal pad ST Reinforcement frame FB Solder bump

Claims (3)

コア基板を有さず、かつ半導体チップを接続する配線基板であって、
第一主表面及び第二主表面が誘電体層にて形成されるように、2以上の誘電体層と2以上の導体層とが交互に積層された積層体と、
前記第一主表面及び前記第二主表面上に形成される複数の金属端子パッドと、
前記積層体を補強して平坦度を確保する補強枠と、
を有し、前記半導体チップ及び前記補強枠は前記第一主表面に配置され、
前記金属端子パッドの少なくとも一部のものが、前記積層体内に位置する内部導体層にビアを介して導通するとともに、
前記金属端子パッドと前記半導体チップとが半田接続部を介してフリップチップ接続され、
全ての前記誘電体層の熱膨張係数が15ppm/℃以上40ppm/℃以下であり、
前記補強枠の熱膨張係数が15ppm/℃以上25ppm/℃以下であることを特徴とする配線基板。
A wiring board that does not have a core board and connects a semiconductor chip,
A laminate in which two or more dielectric layers and two or more conductor layers are alternately laminated so that the first main surface and the second main surface are formed of a dielectric layer;
A plurality of metal terminal pads formed on the first main surface and the second main surface;
A reinforcing frame that reinforces the laminate and ensures flatness;
The semiconductor chip and the reinforcing frame are disposed on the first main surface,
At least a part of the metal terminal pad is electrically connected to an internal conductor layer located in the multilayer body through a via,
The metal terminal pad and the semiconductor chip are flip-chip connected via a solder connection portion,
The thermal expansion coefficient of all the dielectric layers is 15 ppm / ° C. or more and 40 ppm / ° C. or less,
A wiring board, wherein the reinforcing frame has a thermal expansion coefficient of 15 ppm / ° C. or more and 25 ppm / ° C. or less.
全ての前記導体層の熱膨張係数が15ppm/℃以上25ppm/℃以下である請求項1記載の配線基板。 The wiring board according to claim 1, wherein the thermal expansion coefficient of all the conductor layers is 15 ppm / ° C. or more and 25 ppm / ° C. or less. 前記第一主表面に最も近い導体層の配線密度が50%以上90%以下であり、かつ、前記第二主表面に最も近い導体層の配線密度が50%以上90%以下である請求項1または請求項2に記載の配線基板。 The wiring density of the conductor layer closest to the first main surface is 50% to 90%, and the wiring density of the conductor layer closest to the second main surface is 50% to 90%. Or the wiring board of Claim 2.
JP2004116077A 2004-04-09 2004-04-09 Wiring board manufacturing method Expired - Fee Related JP4342366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116077A JP4342366B2 (en) 2004-04-09 2004-04-09 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116077A JP4342366B2 (en) 2004-04-09 2004-04-09 Wiring board manufacturing method

Publications (3)

Publication Number Publication Date
JP2005302968A true JP2005302968A (en) 2005-10-27
JP2005302968A5 JP2005302968A5 (en) 2008-11-06
JP4342366B2 JP4342366B2 (en) 2009-10-14

Family

ID=35334115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116077A Expired - Fee Related JP4342366B2 (en) 2004-04-09 2004-04-09 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP4342366B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290081A (en) * 2008-05-30 2009-12-10 Ngk Spark Plug Co Ltd Intermediate product of multilayer wiring board, and method of manufacturing multilayer wiring board
JP2010080808A (en) * 2008-09-29 2010-04-08 Ngk Spark Plug Co Ltd Method of manufacturing wired board with reinforcing material
JP2010103516A (en) * 2008-09-29 2010-05-06 Ngk Spark Plug Co Ltd Wiring board with reinforcement
CN102347287A (en) * 2010-08-02 2012-02-08 日本特殊陶业株式会社 Multilayer wiring substrate
TWI492689B (en) * 2011-11-09 2015-07-11 日本特殊陶業股份有限公司 Method for manufacturing a multilayer wiring substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260527A (en) * 1996-03-19 1997-10-03 Matsushita Electric Ind Co Ltd Chip carrier and semiconductor device using the same
JP2000323613A (en) * 1999-03-11 2000-11-24 Shinko Electric Ind Co Ltd Multilayer substrate for semiconductor device and manufacture thereof
JP2001015929A (en) * 1999-06-29 2001-01-19 Sony Chem Corp Multilayer board
JP2004006989A (en) * 2000-06-30 2004-01-08 Nec Corp Method of manufacturing semiconductor package substrate and semiconductor device
JP2004063532A (en) * 2002-07-25 2004-02-26 Kyocera Corp Package for housing semiconductor element, and semiconductor device
JP2004111536A (en) * 2002-09-17 2004-04-08 Nec Electronics Corp Method for producing multilayer wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260527A (en) * 1996-03-19 1997-10-03 Matsushita Electric Ind Co Ltd Chip carrier and semiconductor device using the same
JP2000323613A (en) * 1999-03-11 2000-11-24 Shinko Electric Ind Co Ltd Multilayer substrate for semiconductor device and manufacture thereof
JP2001015929A (en) * 1999-06-29 2001-01-19 Sony Chem Corp Multilayer board
JP2004006989A (en) * 2000-06-30 2004-01-08 Nec Corp Method of manufacturing semiconductor package substrate and semiconductor device
JP2004063532A (en) * 2002-07-25 2004-02-26 Kyocera Corp Package for housing semiconductor element, and semiconductor device
JP2004111536A (en) * 2002-09-17 2004-04-08 Nec Electronics Corp Method for producing multilayer wiring board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290081A (en) * 2008-05-30 2009-12-10 Ngk Spark Plug Co Ltd Intermediate product of multilayer wiring board, and method of manufacturing multilayer wiring board
JP2010080808A (en) * 2008-09-29 2010-04-08 Ngk Spark Plug Co Ltd Method of manufacturing wired board with reinforcing material
JP2010103516A (en) * 2008-09-29 2010-05-06 Ngk Spark Plug Co Ltd Wiring board with reinforcement
CN102347287A (en) * 2010-08-02 2012-02-08 日本特殊陶业株式会社 Multilayer wiring substrate
JP2012033790A (en) * 2010-08-02 2012-02-16 Ngk Spark Plug Co Ltd Multilayer wiring board
US8530751B2 (en) 2010-08-02 2013-09-10 Ngk Spark Plug Co., Ltd. Multilayer wiring substrate
KR101322126B1 (en) 2010-08-02 2013-10-28 니혼도꾸슈도교 가부시키가이샤 Multilayer Wiring Substrate
TWI492689B (en) * 2011-11-09 2015-07-11 日本特殊陶業股份有限公司 Method for manufacturing a multilayer wiring substrate

Also Published As

Publication number Publication date
JP4342366B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
US7683266B2 (en) Circuit board and circuit apparatus using the same
JP4914474B2 (en) Multilayer printed circuit board manufacturing method
KR20060101286A (en) Wiring board and method of manufacturing the same
US8212365B2 (en) Printed wiring board and manufacturing method thereof
US8581421B2 (en) Semiconductor package manufacturing method and semiconductor package
US20120210576A1 (en) Printed circuit board and method of manufacturing the same
JPWO2010052942A1 (en) Electronic component built-in wiring board and manufacturing method thereof
JP4460341B2 (en) Wiring board and manufacturing method thereof
JP5176676B2 (en) Manufacturing method of component-embedded substrate
JP5660462B2 (en) Printed wiring board
JP4342366B2 (en) Wiring board manufacturing method
JP4203538B2 (en) Wiring board manufacturing method and wiring board
JP4597561B2 (en) Wiring board and manufacturing method thereof
US10111335B2 (en) Printed wiring board
JP2007115809A (en) Wiring board
JP4342367B2 (en) Wiring board manufacturing method
JP4336605B2 (en) Wiring board manufacturing method
JP2005340355A (en) Wiring board
JP2004071698A (en) Semiconductor package
JP2004193274A (en) Electronic part mounting structure and manufacturing method thereof
JP2005063987A (en) Wiring board and its manufacturing method
JP2005243990A (en) Method for manufacturing wiring board
KR101771801B1 (en) Printed circuit board and manufacturing method of the same
JP5062022B2 (en) Electronic component equipment
JP3247888B2 (en) Electronic component package and method for manufacturing electronic component package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees