JP2005300815A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2005300815A
JP2005300815A JP2004115238A JP2004115238A JP2005300815A JP 2005300815 A JP2005300815 A JP 2005300815A JP 2004115238 A JP2004115238 A JP 2004115238A JP 2004115238 A JP2004115238 A JP 2004115238A JP 2005300815 A JP2005300815 A JP 2005300815A
Authority
JP
Japan
Prior art keywords
image forming
rotary polygon
light
polygon mirror
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004115238A
Other languages
Japanese (ja)
Inventor
Takeshi Souwa
健 宗和
Nozomi Inoue
望 井上
Yoichi Mitsui
洋一 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004115238A priority Critical patent/JP2005300815A/en
Priority to EP05007811A priority patent/EP1584965B1/en
Priority to US11/102,551 priority patent/US7256918B2/en
Priority to DE602005008801T priority patent/DE602005008801D1/en
Priority to AT05007811T priority patent/ATE404899T1/en
Publication of JP2005300815A publication Critical patent/JP2005300815A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To hardly give rise to contrast unevenness and color unevenness of images by compensating the nonuniformity of the light power distribution of a light beam spot in a horizontal scanning direction due to staining of reflective surfaces of rotary polygon mirrors of optical scanning arrangements used for exposing devices by the dependence of the reflectivity to the reflective surfaces on incident angles. <P>SOLUTION: The image forming apparatus is provided with at least one or more of image forming stations disposed with electrostatic charging means, exposing means, developing means, and transferring means around an image carrier and transfers the toner images formed in such image forming stations to transfer media, wherein the optical scanning arrangements using the rotary polygon mirrors 1 as deflection reflective surfaces are used for the exposing means and the polarization directions of the incident light on the respective deflection reflective surfaces of the rotary polygon mirrors 1 of the optical scanning arrangements are so set as as to constitute approximately P polarized light and are so set as to make the light 15 incident on the respective deflection reflective surfaces of the rotary polygon mirrors from the deflection upstream side of the deflection light beams 16 by the rotary polygon mirrors 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、画像形成装置に関し、特に、露光装置に用いる回転多面鏡の反射面が汚れても光パワーの面内不均一を起こし難く、画像の濃淡むらや色むらが起き難い画像形成装置に関するものである。   The present invention relates to an image forming apparatus, and more particularly, to an image forming apparatus that hardly causes in-plane optical power unevenness even when the reflecting surface of a rotary polygon mirror used in an exposure apparatus becomes dirty, and is less likely to cause unevenness in color shading or color unevenness. Is.

回転多面鏡(ポリゴンミラー)を用いた光走査装置において、使用時間の経過と共に回転多面鏡の反射面に空気中の塵や埃が衝突付着し、汚れが生じる。その汚れにより反射率が低下することにより被走査面上の光ビームスポットの光パワーが低下するが、反射面の汚れは各反射面内で不均一となるために、被走査面の主走査方向の光パワー分布も不均一となってしまう。このような光走査装置を用いた電子写真レーザープリンターを継続して使用する中に、このような光パワー分布の不均一に起因する画像の濃淡むらや色むらが生じるようになる。   In an optical scanning device using a rotating polygon mirror (polygon mirror), dust in the air collides and adheres to the reflecting surface of the rotating polygon mirror as the usage time elapses, resulting in contamination. The reflectivity decreases due to the dirt, so that the optical power of the light beam spot on the scanned surface is reduced. However, since the dirt on the reflecting surface is not uniform in each reflecting surface, the main scanning direction of the scanned surface is reduced. Also, the optical power distribution is non-uniform. While the electrophotographic laser printer using such an optical scanning device is continuously used, unevenness of the image and unevenness of color due to such non-uniformity of the optical power distribution occurs.

従来は、このような回転多面鏡の反射面の汚れによる光パワー分布の不均一を防止する手段としては、回転多面鏡を密閉する方法がとられていたが、その場合でも反射面の汚れは避けられず使用時間の経過と共にどうしても画像の濃淡むらや色むらが生じてしまっていた。   Conventionally, as a means for preventing unevenness of the optical power distribution due to the contamination of the reflecting surface of the rotating polygon mirror, a method of sealing the rotating polygon mirror has been used. Inevitably, unevenness of color and unevenness of color occurred as time passed.

本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、露光装置に用いる光走査装置の回転多面鏡の反射面の汚れに起因する主走査方向の光ビームスポットの光パワー分布の不均一を、反射面に対する反射率の入射角依存性で補償するようにして画像の濃淡むらや色むらが起き難いようにすることである。   The present invention has been made in view of such problems of the prior art, and the object thereof is a light beam spot in the main scanning direction caused by dirt on the reflecting surface of the rotary polygon mirror of the optical scanning device used in the exposure apparatus. Is to compensate for the non-uniformity of the light power distribution by the dependence of the reflectance on the reflecting surface on the incident angle, thereby making it difficult for unevenness of color and unevenness of color to occur.

上記目的を達成する本発明の画像形成装置は、像担持体の周囲に帯電手段、露光手段、現像手段、転写手段を配した画像形成ステーションを少なくとも1つ以上設け、前記画像形成ステーションで形成されたトナー像を転写媒体に転写させる画像形成装置において、
前記露光手段に偏向反射面として回転多面鏡を用いた光走査装置が用いられ、
前記光走査装置の回転多面鏡が汚染物質を含んだ空気中を回転することによりその汚染物質が回転多面鏡の各偏向反射面に不均一に付着して面内の反射率が不均一になるのを、偏向反射面の入射角による反射率の依存性で補償するように、回転多面鏡の回転方向と、偏向反射面への入射光の入射位置とが設定されていることを特徴とするものである。
The image forming apparatus of the present invention that achieves the above object is provided with at least one image forming station in which a charging unit, an exposure unit, a developing unit, and a transfer unit are arranged around an image carrier, and is formed by the image forming station. In the image forming apparatus for transferring the toner image to the transfer medium,
An optical scanning device using a rotating polygon mirror as a deflection reflection surface is used for the exposure means,
When the rotary polygon mirror of the optical scanning device rotates in the air containing the contaminant, the contaminant adheres unevenly to each deflecting reflection surface of the rotary polygon mirror and the in-plane reflectance becomes non-uniform. The rotation direction of the rotary polygon mirror and the incident position of the incident light on the deflecting reflecting surface are set so as to compensate for this with the dependence of the reflectance on the incident angle of the deflecting reflecting surface. Is.

本発明のもう1つの画像形成装置は、像担持体の周囲に帯電手段、露光手段、現像手段、転写手段を配した画像形成ステーションを少なくとも1つ以上設け、前記画像形成ステーションで形成されたトナー像を転写媒体に転写させる画像形成装置において、
前記露光手段に偏向反射面として回転多面鏡を用いた光走査装置が用いられ、
前記光走査装置の回転多面鏡の各偏向反射面への入射光の偏光方向が略S偏光となるように設定され、かつ、回転多面鏡による偏向光ビームの偏向下流側から回転多面鏡の各偏向反射面へ光を入射させるように設定されていることを特徴とするものである。
Another image forming apparatus according to the present invention includes at least one image forming station in which a charging unit, an exposure unit, a developing unit, and a transfer unit are arranged around an image carrier, and a toner formed by the image forming station. In an image forming apparatus for transferring an image to a transfer medium,
An optical scanning device using a rotating polygon mirror as a deflection reflection surface is used for the exposure means,
The polarization direction of the incident light to each deflection reflection surface of the rotary polygon mirror of the optical scanning device is set to be substantially S-polarized light, and each of the rotary polygon mirrors from the deflection downstream side of the deflection light beam by the rotary polygon mirror It is characterized in that it is set so that light enters the deflecting reflecting surface.

本発明のさらにもう1つの画像形成装置は、像担持体の周囲に帯電手段、露光手段、現像手段、転写手段を配した画像形成ステーションを少なくとも1つ以上設け、前記画像形成ステーションで形成されたトナー像を転写媒体に転写させる画像形成装置において、
前記露光手段に偏向反射面として回転多面鏡を用いた光走査装置が用いられ、
前記光走査装置の回転多面鏡の各偏向反射面への入射光の偏光方向が略P偏光となるように設定され、かつ、回転多面鏡による偏向光ビームの偏向上流側から回転多面鏡の各偏向反射面へ光を入射させるように設定されていることを特徴とするものである。
Still another image forming apparatus according to the present invention includes at least one image forming station in which a charging unit, an exposure unit, a developing unit, and a transfer unit are arranged around an image carrier, and is formed by the image forming station. In an image forming apparatus for transferring a toner image to a transfer medium,
An optical scanning device using a rotating polygon mirror as a deflection reflection surface is used for the exposure means,
The polarization direction of the incident light on each deflection reflection surface of the rotary polygon mirror of the optical scanning device is set to be substantially P-polarized light, and each of the rotary polygon mirrors from the upstream side of deflection of the deflection light beam by the rotary polygon mirror It is characterized in that it is set so that light enters the deflecting reflecting surface.

以上において、本発明は、光走査装置が現像手段の重力方向の略下方に配置されている場合に好適なものである。   In the above, the present invention is suitable when the optical scanning device is disposed substantially below the developing unit in the direction of gravity.

本発明においては、露光手段の光走査装置に用いる回転多面鏡が汚染物質を含んだ空気中を回転することによりその汚染物質が回転多面鏡の各偏向反射面に不均一に付着して面内の反射率が不均一になるのを、偏向反射面の入射角による反射率の依存性で補償するように、回転多面鏡の回転方向と、偏向反射面への入射光の入射位置とを設定したので、使用時間の経過と共に光パワー分布の不均一に起因する画像の濃淡むらや色むらが生じることが起き難くなる。   In the present invention, the rotating polygon mirror used in the optical scanning device of the exposure means rotates in the air containing the contaminant, so that the contaminant adheres unevenly to each deflecting reflecting surface of the rotating polygon mirror. The rotation direction of the rotating polygon mirror and the incident position of incident light on the deflecting reflecting surface are set so as to compensate for the non-uniform reflectance of the reflecting mirror depending on the dependency of the reflecting angle on the incident angle of the deflecting reflecting surface. Therefore, it is difficult for image unevenness and color unevenness to occur due to the nonuniformity of the light power distribution with the passage of time of use.

本発明の画像形成装置に用いる光走査装置の基本原理は、回転多面鏡の反射面での反射率の入射角依存性と、その反射面の汚れによる反射率の位置依存性とを相互に補完するように、光源からの光の偏光を選ぶと共に、回転多面鏡の反射面への入射方向を選択することにある。   The basic principle of the optical scanning device used in the image forming apparatus of the present invention is to complement the incident angle dependence of the reflectance on the reflecting surface of the rotating polygon mirror and the position dependence of the reflectance due to dirt on the reflecting surface. Thus, the polarization of the light from the light source is selected, and the incident direction to the reflection surface of the rotary polygon mirror is selected.

図5に示すように、回転多面鏡1が矢印で示したように回転すると、周囲の空気が各反射面2に対して相対的に反射面回転方向と逆方向に流れて空気流4となるが、相互に隣り合う反射面2、2の境界のエッジ部3より下流側では乱流となり、空気流4中に含まれる塵や埃を巻き込んで各反射面2に衝突し、各反射面2の主に境界エッジ部3の下流側(反射面2回転方向先端側)2’が顕著に汚れる。境界エッジ部3の下流側2’が汚れると言うことは、偏向の上流側、すなわち、光ビームの主走査方向の書き始め側が汚れると言うことであり、レーザープリンターを継続的に使用する中に、書き始め側の光ビームスポットの光パワーが低下することとなる。   As shown in FIG. 5, when the rotating polygonal mirror 1 rotates as indicated by an arrow, the surrounding air flows relative to each reflecting surface 2 in the direction opposite to the reflecting surface rotation direction to become an air flow 4. However, it becomes a turbulent flow on the downstream side of the edge portion 3 at the boundary between the reflecting surfaces 2 and 2 adjacent to each other, and dust and dust contained in the air flow 4 are involved and collide with each reflecting surface 2. In particular, the downstream side (the front end side in the rotational direction of the reflecting surface 2) 2 'of the boundary edge portion 3 is significantly soiled. The fact that the downstream side 2 ′ of the boundary edge portion 3 is dirty means that the upstream side of the deflection, that is, the writing start side of the light beam in the main scanning direction is dirty, and the laser printer is being used continuously. Thus, the optical power of the light beam spot on the writing start side is lowered.

図6に、一定時間稼働した回転多面鏡1の各反射面2の汚れによる反射光量の反射面上の位置に依存した低下を示す。横軸の反射面上の位置は、走査光ビームによる書き始め位置を0、書き終わり位置を1で示してあり、縦軸は反射光量の相対値である。なお、測定は同一入射角で行った。   FIG. 6 shows a decrease in the amount of reflected light depending on the position on the reflecting surface due to dirt on each reflecting surface 2 of the rotary polygon mirror 1 operated for a certain time. The position on the reflecting surface on the horizontal axis indicates the writing start position by the scanning light beam as 0 and the writing end position as 1, and the vertical axis indicates the relative value of the reflected light amount. Measurement was performed at the same incident angle.

一方、回転多面鏡1の反射面2が金属反射面に保護膜をコーティングしてなる反射面である場合には、図7に示すように、S偏光で入射する場合は、入射角(法線に対する角度)が大きくなる程反射率が上がり、P偏光では反射率が下がる。この傾向は、保護膜をコーティングしていない金属反射鏡で反射面2を構成する場合も同じである。   On the other hand, when the reflecting surface 2 of the rotary polygon mirror 1 is a reflecting surface obtained by coating a metal reflecting surface with a protective film, as shown in FIG. The reflectance increases as the angle (with respect to) increases, and the reflectance decreases with P-polarized light. This tendency is the same when the reflecting surface 2 is constituted by a metal reflecting mirror not coated with a protective film.

そこで、本発明においては、回転多面鏡1の偏向反射面2に入射する光の偏光方向に応じて、偏向光ビームの偏向上流側あるいは下流側から入射させるようにして、図6の書き始め側の光ビームスポットの光パワーの低下を図7の反射率の入射角依存性で補償するようにする。その具体的な配置を図1と図2に示す。   Therefore, in the present invention, depending on the polarization direction of the light incident on the deflecting / reflecting surface 2 of the rotary polygon mirror 1, the deflected light beam is incident from the upstream side or the downstream side of the deflected light beam, and the writing start side in FIG. The decrease in the optical power of the light beam spot is compensated by the incident angle dependence of the reflectivity in FIG. The specific arrangement is shown in FIGS.

図1と図2において、本発明による光走査装置は、例示として、光源11、照明レンズ12、回転多面鏡1、走査光学系13、被走査面(電子写真レーザープリンターの場合は、感光体)14で構成されており、光源11からの光は照明レンズ12により平行光ビームに変換され(面倒れ補正を行う場合は、回転多面鏡1の回転軸に直交する方向には平行光になり、その回転軸に平行な方向には回転多面鏡1の偏光反射面2近傍に集光するように変換され)、その光ビーム15は回転多面鏡1の偏向反射面2に入射し、その偏向反射面2で反射偏向された光ビームは走査光学系13を経て図の矢印方向へ偏向される偏向光ビーム16に変換され、被走査面14に入射して集束する。   1 and 2, an optical scanning device according to the present invention includes, as an example, a light source 11, an illumination lens 12, a rotary polygon mirror 1, a scanning optical system 13, and a surface to be scanned (in the case of an electrophotographic laser printer, a photoconductor). The light from the light source 11 is converted into a parallel light beam by the illumination lens 12 (when surface tilt correction is performed, the light becomes parallel light in the direction perpendicular to the rotation axis of the rotary polygon mirror 1, The light beam 15 is incident on the deflecting reflecting surface 2 of the rotating polygon mirror 1 and is deflected and reflected in the direction parallel to the rotation axis). The light beam reflected and deflected by the surface 2 is converted into a deflected light beam 16 which is deflected in the direction of the arrow in the figure through the scanning optical system 13, and is incident on the surface 14 to be scanned and converged.

図1の配置は、偏向反射面2に入射する光ビーム15がP偏光(電場ベクトル振動方向が入射面に平行)の場合である。図1においては、P偏光の光ビーム15が偏向反射面2に対して、偏向光ビーム16の偏向上流側から入射しており、偏向の最初は偏向反射面2に対して小さな入射角で入射し、順に入射角は大きくなり、偏向の最後では偏向反射面2に対して大きな入射角で入射することになる。そのため、偏向反射面2での反射率は下がっていくが(図7)、偏向反射面2の汚れが著しく反射率が低下する偏向反射面2の回転方向先端側2’(図5)には最初に入射するので、偏向反射面2の汚れによる反射率の最初の低下は反射率の入射角依存性により補償することができる。   The arrangement in FIG. 1 is a case where the light beam 15 incident on the deflecting reflecting surface 2 is P-polarized light (the electric field vector oscillation direction is parallel to the incident surface). In FIG. 1, a P-polarized light beam 15 is incident on the deflecting / reflecting surface 2 from the upstream side of deflection of the deflecting light beam 16, and is initially incident on the deflecting / reflecting surface 2 with a small incident angle. Then, the incident angle increases in order, and at the end of the deflection, the incident light enters the deflecting reflection surface 2 at a large incident angle. Therefore, the reflectivity at the deflecting / reflecting surface 2 is lowered (FIG. 7), but on the leading end side 2 ′ (FIG. 5) in the rotational direction of the deflecting / reflecting surface 2 where the reflectivity of the deflecting / reflecting surface 2 is significantly reduced. Since the light is incident first, the first decrease in the reflectance due to dirt on the deflecting reflecting surface 2 can be compensated by the dependency of the reflectance on the incident angle.

図3に、図1の配置の場合に、回転多面鏡1の偏光反射面2が塵、埃等で汚れた状態での光ビーム15の入射角に対する反射光量の分布の1例を示す。図中、実線が図1の配置の場合の反射光量の分布を示し、破線は図1とは反対の側(偏向光ビーム16の偏向下流側)から光ビーム15を入射させた場合の反射光量の分布を示す。回転多面鏡1の偏光反射面2が汚れる前は、図7のP偏向の曲線に対応する反射光量の分布を示していたが、一定時間稼働して偏光反射面2が汚れてくると、図3のように、相対的に偏向の最初部分(書き始め側)の光パワーが低くなり、主走査範囲全体ではよりバランスのとれた分布になり、主走査方向の光パワー分布の不均一がより目立たなくなる。仮に、図3の破線のように、図1とは反対の側から光ビーム15を入射させる場合には、走査範囲の両端での光パワーの差が大きくなりすぎ、光パワー分布の不均一が目立つようになってしまい、濃度むらや色むらが起きやすくなる。   FIG. 3 shows an example of the distribution of the amount of reflected light with respect to the incident angle of the light beam 15 when the polarization reflecting surface 2 of the rotary polygon mirror 1 is contaminated with dust or the like in the arrangement of FIG. In the figure, the solid line shows the distribution of the reflected light amount in the case of the arrangement of FIG. 1, and the broken line shows the reflected light amount when the light beam 15 is incident from the side opposite to FIG. 1 (the deflection downstream side of the deflected light beam 16). The distribution of. Before the polarization reflecting surface 2 of the rotary polygon mirror 1 is soiled, the distribution of the reflected light quantity corresponding to the curve of P deflection in FIG. 7 is shown. As shown in FIG. 3, the optical power of the first part of deflection (writing start side) is relatively low, the distribution is more balanced over the entire main scanning range, and the optical power distribution in the main scanning direction is more uneven. Disappears. If the light beam 15 is incident from the side opposite to that in FIG. 1 as shown by the broken line in FIG. 3, the difference in the optical power at both ends of the scanning range becomes too large, resulting in nonuniform light power distribution. It becomes conspicuous, and uneven density and uneven color easily occur.

図2の配置は、偏向反射面2に入射する光ビーム15がS偏光(電場ベクトル振動方向が入射面に垂直)の場合である。図2においては、S偏光の光ビーム15が偏向反射面2に対して、偏向光ビーム16の偏向下流側から入射しており、偏向の最初は偏向反射面2に対して大きな入射角で入射し、順に入射角は小さくなり、偏向の最後では偏向反射面2に対して小さな入射角で入射することになる。そのため、偏向反射面2での反射率は下がっていくが(図7)、偏向反射面2の汚れが著しく反射率が低下する偏向反射面2の回転方向先端側2’(図5)には最初に入射するので、偏向反射面2の汚れによる反射率の最初の低下は反射率の入射角依存性により補償することができる。   The arrangement in FIG. 2 is a case where the light beam 15 incident on the deflecting reflecting surface 2 is S-polarized light (the electric field vector oscillation direction is perpendicular to the incident surface). In FIG. 2, the S-polarized light beam 15 is incident on the deflecting / reflecting surface 2 from the downstream side of the deflecting light beam 16 and is initially incident on the deflecting / reflecting surface 2 at a large incident angle. Then, the incident angle decreases in order, and at the end of the deflection, the incident light enters the deflecting reflection surface 2 at a small incident angle. Therefore, the reflectivity at the deflecting / reflecting surface 2 is lowered (FIG. 7), but on the leading end side 2 ′ (FIG. 5) in the rotational direction of the deflecting / reflecting surface 2 where the reflectivity of the deflecting / reflecting surface 2 is significantly reduced. Since the light is incident first, the first decrease in the reflectance due to dirt on the deflecting reflecting surface 2 can be compensated by the dependency of the reflectance on the incident angle.

図4に、図2の配置の場合に、回転多面鏡1の偏光反射面2が塵、埃等で汚れた状態での光ビーム15の入射角に対する反射光量の分布の1例を示す。図中、実線が図2の配置の場合の反射光量の分布を示し、破線は図2とは反対の側(偏向光ビーム16の偏向上流側)から光ビーム15を入射させた場合の反射光量の分布を示す。回転多面鏡1の偏光反射面2が汚れる前は、図7のS偏向の曲線に対応する反射光量の分布を示していたが、一定時間稼働して偏光反射面2が汚れてくると、図4のように、相対的に偏向の最初部分(書き始め側)の光パワーが低くなり、主走査範囲全体ではよりバランスのとれた分布になり、主走査方向の光パワー分布の不均一がより目立たなくなる。仮に、図4の破線のように、図2とは反対の側から光ビーム15を入射させる場合には、走査範囲の両端での光パワーの差が大きくなりすぎ、光パワー分布の不均一が目立つようになってしまい、濃度むらや色むらが起きやすくなる。   FIG. 4 shows an example of the distribution of the amount of reflected light with respect to the incident angle of the light beam 15 when the polarization reflecting surface 2 of the rotary polygon mirror 1 is contaminated with dust or the like in the arrangement of FIG. In the figure, the solid line shows the distribution of the reflected light amount in the case of the arrangement of FIG. 2, and the broken line shows the reflected light amount when the light beam 15 is incident from the side opposite to FIG. 2 (the upstream side of deflection of the deflected light beam 16). The distribution of. Before the polarization reflecting surface 2 of the rotary polygon mirror 1 is soiled, the distribution of the amount of reflected light corresponding to the S deflection curve of FIG. 7 is shown. As shown in FIG. 4, the optical power of the first part of deflection (writing start side) is relatively low, the distribution is more balanced over the entire main scanning range, and the optical power distribution in the main scanning direction is more uneven. Disappears. If the light beam 15 is incident from the opposite side of FIG. 2 as indicated by the broken line in FIG. 4, the difference in the optical power at both ends of the scanning range becomes too large, resulting in uneven optical power distribution. It becomes conspicuous, and uneven density and uneven color easily occur.

なお、回転多面鏡1の偏向反射面2に入射する光ビーム15の偏光方向(P偏光、S偏光)は使用する光源11から射出する光が直線偏光の場合は、その射出光の偏光方向が所望の方向を向くように回転調整し、光源11から射出する光が直線偏光以外の場合は、行路中に偏光子を配置して光ビーム15が所望の偏光方向になるように調整する。   Note that the polarization direction (P-polarized light, S-polarized light) of the light beam 15 incident on the deflecting / reflecting surface 2 of the rotary polygon mirror 1 is such that when the light emitted from the light source 11 to be used is linearly polarized light, the polarization direction of the emitted light is When the light emitted from the light source 11 is other than linearly polarized light, the light beam 15 is adjusted so that the light beam 15 has a desired polarization direction by arranging a polarizer in the path.

以上のように、図1、図2の何れの配置においても、初期光パワー分布の傾きと、反射面の汚れによって生じるパワー分布の傾きが互いに補うように作用するため、本発明の光走査装置を用いた電子写真レーザープリンター等による画像は濃度むらや色むらが起き難くなる。   As described above, in any of the arrangements of FIGS. 1 and 2, the inclination of the initial optical power distribution and the inclination of the power distribution caused by the dirt on the reflection surface act so as to compensate for each other. In an image obtained by an electrophotographic laser printer or the like using, density unevenness and color unevenness hardly occur.

さて、以上のような本発明による光走査装置は、特に、画像形成装置の汚れやすい環境に配置する場合に特に有効なものである。図8は、本発明による光走査装置を適用するに好適な本発明の電子写真プロセスを用いた画像形成装置(電子写真レーザープリンター)30の1実施例の全体構成を示す模式的断面図である。この実施例の画像形成装置30は、単一の像担持体(感光体ドラム)31を用い、その像担持体31の周囲にその回転方向の上流から下流にかけて配設された、単一のコロナ帯電手段からなる帯電手段32と、像担持体(感光体ドラム)31の母線方向に繰り返し偏向光ビーム16を偏向走査させる本発明の光走査装置20と、イエロー用現像器33Y、マゼンタ用現像器33M、シアン用現像器33C、ブラック用現像器33Kを回転中心の周りで回転切り換え可能に配置したロータリー現像装置34とを配置してなるもので、像担持体31に帯電手段32によって一様に帯電され、光走査装置20からの偏向光ビーム16で露光放電されることにより形成された静電潜像は、ロータリー現像装置34の順に選択した何れかの現像器33Y、33M、33C、33Kでトナー像として現像される。このようにして順に形成されたイエロー、マゼンタ、シアン、黒の各トナー像は、一次転写部材(転写ローラ)35に印加される一次転写バイアスにより中間転写ベルト36上に順次一次転写が繰り返され、中間転写ベルト36上で順次重ね合わされてフルカラーとなったトナー像は、二次転写ローラ37において用紙等の記録媒体Pに二次転写され、定着ユニット38の定着ローラ対を通ることで記録媒体P上に定着され、排紙ローラ対39によって、装置上部に形成された排紙トレイ40上へ排出される。なお、図中、符号41は給紙ユニットであり、記録媒体Pが積層保持されている給紙カセット42と、給紙カセット42から記録媒体Pを一枚ずつ給送するピックアップローラ43とからなる給紙部を備えている。   The optical scanning device according to the present invention as described above is particularly effective when it is disposed in an environment where the image forming apparatus is easily contaminated. FIG. 8 is a schematic cross-sectional view showing the overall configuration of one embodiment of an image forming apparatus (electrophotographic laser printer) 30 using the electrophotographic process of the present invention suitable for applying the optical scanning device according to the present invention. . The image forming apparatus 30 of this embodiment uses a single image carrier (photosensitive drum) 31, and a single corona disposed around the image carrier 31 from upstream to downstream in the rotation direction. A charging means 32 comprising a charging means, an optical scanning device 20 of the present invention for repeatedly deflecting and scanning the deflected light beam 16 in the direction of the generatrix of the image carrier (photosensitive drum) 31, a yellow developing device 33Y, and a magenta developing device. 33M, a cyan developing device 33C, and a black developing device 33K are arranged with a rotary developing device 34 arranged so as to be able to rotate and rotate around the rotation center. The electrostatic latent image formed by being charged and exposed and discharged by the deflected light beam 16 from the optical scanning device 20 is one of the developing devices 33Y selected in the order of the rotary developing device 34. 33M, 33C, is developed as a toner image by 33K. The yellow, magenta, cyan, and black toner images sequentially formed in this manner are sequentially subjected to primary transfer on the intermediate transfer belt 36 sequentially by a primary transfer bias applied to a primary transfer member (transfer roller) 35. The full-color toner image that is sequentially superimposed on the intermediate transfer belt 36 is secondarily transferred to a recording medium P such as paper by a secondary transfer roller 37, and passes through a pair of fixing rollers of a fixing unit 38. The sheet is fixed on the sheet and discharged by a pair of sheet discharge rollers 39 onto a sheet discharge tray 40 formed on the upper part of the apparatus. In the figure, reference numeral 41 denotes a paper feed unit, which comprises a paper feed cassette 42 in which the recording media P are stacked and held, and a pickup roller 43 that feeds the recording media P from the paper feed cassette 42 one by one. A paper feeder is provided.

ここで、この画像形成装置30において、光走査装置20はロータリー現像装置34の重力方向の略下方に配置されているため、現像器33Y、33M、33C、33Kからこぼれたトナーで汚染されやすく、そのため、図5を用いて説明したように、回転多面鏡1の各反射面2の回転方向先端側2’が汚れやすい。したがって、このような環境にある光走査装置20に本発明に基づく光走査装置を用いることで、使用時間が相当程度経過しても、画像の濃淡むらや色むらが発生し難くなる。   Here, in the image forming apparatus 30, the optical scanning device 20 is disposed substantially below the gravity direction of the rotary developing device 34, so that it is easily contaminated with toner spilled from the developing devices 33Y, 33M, 33C, and 33K. Therefore, as described with reference to FIG. 5, the front end side 2 ′ in the rotation direction of each reflecting surface 2 of the rotary polygon mirror 1 is easily contaminated. Therefore, by using the optical scanning device according to the present invention for the optical scanning device 20 in such an environment, even when the usage time is considerably long, unevenness in color density and color unevenness hardly occur.

以上、本発明の光走査装置とそれを用いた画像形成装置をその原理と実施例に基づいて説明してきたが、本発明はこれら実施例に限定されず種々の変形が可能である。   As described above, the optical scanning device of the present invention and the image forming apparatus using the same have been described based on the principle and the embodiments. However, the present invention is not limited to these embodiments and can be variously modified.

偏向反射面に入射する光ビームがP偏光の場合の本発明による光走査装置の配置を示す光路図である。FIG. 6 is an optical path diagram showing the arrangement of the optical scanning device according to the present invention when the light beam incident on the deflecting reflecting surface is P-polarized light. 偏向反射面に入射する光ビームがS偏光の場合の本発明による光走査装置の配置を示す光路図である。FIG. 6 is an optical path diagram showing the arrangement of the optical scanning device according to the present invention when the light beam incident on the deflecting reflecting surface is S-polarized light. 図1の配置の場合に回転多面鏡の偏光反射面が塵、埃等で汚れた状態での光ビームの入射角に対する反射光量の分布の1例を示す。FIG. 1 shows an example of the distribution of the amount of reflected light with respect to the incident angle of a light beam when the polarization reflecting surface of the rotary polygon mirror is soiled with dust, dust, etc. in the case of the arrangement of FIG. 図2の配置の場合に回転多面鏡の偏光反射面が塵、埃等で汚れた状態での光ビームの入射角に対する反射光量の分布の1例を示す。2 shows an example of the distribution of the amount of reflected light with respect to the incident angle of the light beam when the polarization reflecting surface of the rotary polygon mirror is soiled with dust, dust, or the like in the arrangement of FIG. 回転多面鏡の各反射面がその回転により汚れる理由を説明するための図である。It is a figure for demonstrating the reason which each reflective surface of a rotary polygon mirror becomes dirty by the rotation. 一定時間稼働した回転多面鏡の各反射面の汚れによる反射光量の反射面上の位置に依存した低下を示す図である。It is a figure which shows the fall depending on the position on the reflective surface of the reflected light quantity by the stain | pollution | contamination of each reflective surface of the rotary polygon mirror which worked for a fixed time. 回転多面鏡の反射面のS偏光、P偏光の入射角による反射率の依存性を示す図である。It is a figure which shows the dependence of the reflectance by the incident angle of the S polarized light of the reflective surface of a rotary polygon mirror, and P polarized light. 本発明の電子写真プロセスを用いた画像形成装置(電子写真レーザープリンター)の1実施例の全体構成を示す模式的断面図である。1 is a schematic cross-sectional view showing an overall configuration of an embodiment of an image forming apparatus (electrophotographic laser printer) using an electrophotographic process of the present invention.

符号の説明Explanation of symbols

1…回転多面鏡
2…偏光反射面
2’…反射面の主に境界エッジ部の下流側(反射面回転方向先端側)
3…エッジ部
4…空気流
11…光源
12…照明レンズ
13…走査光学系
14…被走査面(感光体)
15…偏光反射面への入射光ビーム
16…偏向光ビーム
30…画像形成装置(電子写真レーザープリンター)
31…像担持体(感光体ドラム)
32…帯電手段
20…光走査装置
33Y…イエロー用現像器
33M…マゼンタ用現像器
33C…シアン用現像器
33K…ブラック用現像器
34…ロータリー現像装置
35…一次転写部材(転写ローラ)
36…中間転写ベルト
37…二次転写ローラ
38…定着ユニット
39…排紙ローラ対
40…排紙トレイ
41…給紙ユニット
42…給紙カセット
43…ピックアップローラ
P…記録媒体
DESCRIPTION OF SYMBOLS 1 ... Rotating polygon mirror 2 ... Polarization reflecting surface 2 '... The downstream side of a boundary edge part mainly on a reflective surface (reflective surface rotation direction front side)
3 ... Edge part 4 ... Air flow 11 ... Light source 12 ... Illumination lens 13 ... Scanning optical system 14 ... Scanned surface (photosensitive member)
15: Light beam incident on polarization reflecting surface 16: Deflection light beam 30 ... Image forming apparatus (electrophotographic laser printer)
31. Image carrier (photosensitive drum)
32 ... Charging means 20 ... optical scanning device 33Y ... yellow developing device 33M ... magenta developing device 33C ... cyan developing device 33K ... black developing device 34 ... rotary developing device 35 ... primary transfer member (transfer roller)
36 ... Intermediate transfer belt 37 ... Secondary transfer roller 38 ... Fixing unit 39 ... Paper discharge roller pair 40 ... Paper discharge tray 41 ... Paper feed unit 42 ... Paper feed cassette 43 ... Pickup roller P ... Recording medium

Claims (4)

像担持体の周囲に帯電手段、露光手段、現像手段、転写手段を配した画像形成ステーションを少なくとも1つ以上設け、前記画像形成ステーションで形成されたトナー像を転写媒体に転写させる画像形成装置において、
前記露光手段に偏向反射面として回転多面鏡を用いた光走査装置が用いられ、
前記光走査装置の回転多面鏡が汚染物質を含んだ空気中を回転することによりその汚染物質が回転多面鏡の各偏向反射面に不均一に付着して面内の反射率が不均一になるのを、偏向反射面の入射角による反射率の依存性で補償するように、回転多面鏡の回転方向と、偏向反射面への入射光の入射位置とが設定されていることを特徴とする画像形成装置。
An image forming apparatus in which at least one image forming station having a charging unit, an exposing unit, a developing unit, and a transfer unit arranged around an image carrier is provided, and a toner image formed at the image forming station is transferred to a transfer medium. ,
An optical scanning device using a rotating polygon mirror as a deflection reflection surface is used for the exposure means,
When the rotary polygon mirror of the optical scanning device rotates in the air containing the contaminant, the contaminant adheres unevenly to each deflecting reflection surface of the rotary polygon mirror and the in-plane reflectance becomes non-uniform. The rotation direction of the rotary polygon mirror and the incident position of the incident light on the deflecting reflecting surface are set so as to compensate for this with the dependence of the reflectance on the incident angle of the deflecting reflecting surface. Image forming apparatus.
像担持体の周囲に帯電手段、露光手段、現像手段、転写手段を配した画像形成ステーションを少なくとも1つ以上設け、前記画像形成ステーションで形成されたトナー像を転写媒体に転写させる画像形成装置において、
前記露光手段に偏向反射面として回転多面鏡を用いた光走査装置が用いられ、
前記光走査装置の回転多面鏡の各偏向反射面への入射光の偏光方向が略S偏光となるように設定され、かつ、回転多面鏡による偏向光ビームの偏向下流側から回転多面鏡の各偏向反射面へ光を入射させるように設定されていることを特徴とする画像形成装置。
An image forming apparatus in which at least one image forming station having a charging unit, an exposing unit, a developing unit, and a transfer unit arranged around an image carrier is provided, and a toner image formed at the image forming station is transferred to a transfer medium. ,
An optical scanning device using a rotating polygon mirror as a deflection reflection surface is used for the exposure means,
The polarization direction of the incident light to each deflection reflection surface of the rotary polygon mirror of the optical scanning device is set to be substantially S-polarized light, and each of the rotary polygon mirrors from the deflection downstream side of the deflection light beam by the rotary polygon mirror An image forming apparatus, wherein the image forming apparatus is set so that light is incident on a deflecting reflecting surface.
像担持体の周囲に帯電手段、露光手段、現像手段、転写手段を配した画像形成ステーションを少なくとも1つ以上設け、前記画像形成ステーションで形成されたトナー像を転写媒体に転写させる画像形成装置において、
前記露光手段に偏向反射面として回転多面鏡を用いた光走査装置が用いられ、
前記光走査装置の回転多面鏡の各偏向反射面への入射光の偏光方向が略P偏光となるように設定され、かつ、回転多面鏡による偏向光ビームの偏向上流側から回転多面鏡の各偏向反射面へ光を入射させるように設定されていることを特徴とする画像形成装置。
An image forming apparatus in which at least one image forming station having a charging unit, an exposing unit, a developing unit, and a transfer unit arranged around an image carrier is provided, and a toner image formed at the image forming station is transferred to a transfer medium. ,
An optical scanning device using a rotating polygon mirror as a deflection reflection surface is used for the exposure means,
The polarization direction of the incident light on each deflection reflection surface of the rotary polygon mirror of the optical scanning device is set to be substantially P-polarized light, and each of the rotary polygon mirrors from the upstream side of deflection of the deflection light beam by the rotary polygon mirror An image forming apparatus, wherein the image forming apparatus is set so that light is incident on a deflecting reflecting surface.
前記光走査装置が前記現像手段の重力方向の略下方に配置されていることを特徴とする請求項1から3の何れか1項記載の画像形成装置。 The image forming apparatus according to claim 1, wherein the optical scanning device is disposed substantially below the developing unit in the direction of gravity.
JP2004115238A 2004-04-09 2004-04-09 Image forming apparatus Pending JP2005300815A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004115238A JP2005300815A (en) 2004-04-09 2004-04-09 Image forming apparatus
EP05007811A EP1584965B1 (en) 2004-04-09 2005-04-08 Optical scanning device and image forming apparatus incorporating the same
US11/102,551 US7256918B2 (en) 2004-04-09 2005-04-08 Optical scanning device and image forming apparatus incorporating the same
DE602005008801T DE602005008801D1 (en) 2004-04-09 2005-04-08 An optical scanning apparatus and image forming apparatus comprising the same
AT05007811T ATE404899T1 (en) 2004-04-09 2005-04-08 OPTICAL SCANNING DEVICE AND IMAGE PRODUCING APPARATUS COMPRISING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004115238A JP2005300815A (en) 2004-04-09 2004-04-09 Image forming apparatus

Publications (1)

Publication Number Publication Date
JP2005300815A true JP2005300815A (en) 2005-10-27

Family

ID=35332439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115238A Pending JP2005300815A (en) 2004-04-09 2004-04-09 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP2005300815A (en)

Similar Documents

Publication Publication Date Title
JP3295281B2 (en) Laser scanning optics
JP2011053436A (en) Optical scanner and image forming apparatus
US7446794B2 (en) Image forming apparatus
US8872873B2 (en) Light scanning unit and image forming apparatus using the same
US20060139716A1 (en) Scanner apparatus and image forming apparatus
JP4380445B2 (en) Image forming apparatus and scanning unit
US20030152407A1 (en) Cleaning apparatus and image forming apparatus
US7787003B2 (en) Image forming apparatus
EP1584965B1 (en) Optical scanning device and image forming apparatus incorporating the same
JP2010191292A (en) Optical scanner and image forming apparatus
JP2005300814A (en) Optical scanner
JP2005300815A (en) Image forming apparatus
JP2004233554A (en) Polygon mirror, optical scanner and image forming device
US10268137B2 (en) Optical scanning device and image forming apparatus
JP5544694B2 (en) Optical element fixing mechanism, optical scanning device, and image forming apparatus
JP3392107B2 (en) Scanning optical device and image forming apparatus using the same
JP2006301314A (en) Image forming apparatus
JP2006301313A (en) Image forming apparatus
JP5059453B2 (en) Optical scanning apparatus and image forming apparatus
KR101902527B1 (en) Laser scanning unit and image forming apparatus employing the same
JP2006301315A (en) Image forming apparatus
JP2006315311A (en) Image forming device
JP2006317732A (en) Image forming apparatus
JP2005292349A (en) Optical scanning device, image forming apparatus and method for driving liquid crystal element
JP2007098681A (en) Electrophotographic image forming apparatus