JP2005298602A - 可燃性廃棄物の熱分解方法及び装置 - Google Patents
可燃性廃棄物の熱分解方法及び装置 Download PDFInfo
- Publication number
- JP2005298602A JP2005298602A JP2004114516A JP2004114516A JP2005298602A JP 2005298602 A JP2005298602 A JP 2005298602A JP 2004114516 A JP2004114516 A JP 2004114516A JP 2004114516 A JP2004114516 A JP 2004114516A JP 2005298602 A JP2005298602 A JP 2005298602A
- Authority
- JP
- Japan
- Prior art keywords
- pyrolysis
- gas
- waste
- combustible waste
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/143—Reduction of greenhouse gas [GHG] emissions of methane [CH4]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/143—Feedstock the feedstock being recycled material, e.g. plastics
Landscapes
- Processing Of Solid Wastes (AREA)
- Coke Industry (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Muffle Furnaces And Rotary Kilns (AREA)
Abstract
【課題】 本発明は従来の方法では困難であった外熱式の熱分解炉内の熱分解進行度の検知および制御が可能な熱分解方法及び装置を提供することを目的とする。
【解決手段】 可燃性廃棄物を熱分解炉に供給して熱分解ガスと熱分解残渣とに熱分解処理する可燃性廃棄物の熱分解方法において、前記熱分解ガス中に含まれる構成炭素数1〜3の炭化水素ガス濃度、水素ガス濃度の1種又は2種以上を測定し、前記ガス濃度変化から熱分解炉内での熱分解進行度を検知し制御する。
【選択図】 図4
【解決手段】 可燃性廃棄物を熱分解炉に供給して熱分解ガスと熱分解残渣とに熱分解処理する可燃性廃棄物の熱分解方法において、前記熱分解ガス中に含まれる構成炭素数1〜3の炭化水素ガス濃度、水素ガス濃度の1種又は2種以上を測定し、前記ガス濃度変化から熱分解炉内での熱分解進行度を検知し制御する。
【選択図】 図4
Description
本発明は可燃性廃棄物を燃料や原料として有効利用するための熱分解処理方法及び装置に関するものである。
一般廃棄物系や産業廃棄物系の可燃性廃棄物の処理方法は従来単純焼却や埋立てが中心であったが、循環型社会促進が近年の大きな社会的課題となっていることから、これら可燃性廃棄物の有効利用技術が求められている。可燃性廃棄物の有効利用を目的とした廃棄物処理方法としては、例えば非特許文献1、2、3に記載されているように廃棄物を熱分解炉で加熱して熱分解ガスと熱分解残渣とを生成した後、熱分解ガスを後段で冷却してガスとタール分を分離し、ガスは燃料ガスや化学原料ガスとして利用し、タール分は燃料油等として利用し、熱分解残渣は炭素質燃料や金属原料等として利用する廃棄物熱分解法が提案されている。廃棄物熱分解法の熱分解炉の方式にはロータリーキルン熱分解炉に代表される外熱式熱分解法、流動床熱分解炉や移動床熱分解炉等などに代表される部分燃焼式熱分解法など一般的な方式が適用可能であるが、高カロリーガス回収を目的とする場合には燃焼空気導入による熱分解ガス部分燃焼や流動化ガス導入に伴う熱分解ガス希釈がない外熱式熱分解法が特に適した方式である。熱分解温度は廃棄物の種類によって異なるがプラスチック系廃棄物やゴム系廃棄物では通常500〜700℃程度である。
「日本ゴム協会誌」第59巻、第10号、P565-567(1986)、565頁、図1
「リサイクル技術研究発表会講演論文集」6th、P89-92(1998)、92頁、図4
「セメント製造技術シンポジウム報告集」No.57 、P90-P97 (2000)、91頁、Fig.1
特開2003-139314公報
特開平11-344213公報
しかしながら既存の外熱式熱分解炉を用いた廃棄物熱分解法の抱える課題として、廃棄物は原料形状や不燃分比率、含水率等の原料性状が一様でないため、熱分解炉の外熱温度や廃棄物供給重量を一定条件に維持させても炉内反応温度や昇温速度を十分制御できずに廃棄物の熱分解進行度が変動し、熱分解炉出口生成物の収率や性状にばらつきが生じてしまうことが挙げられる。
廃棄物の熱分解進行度の検知及び制御を狙った方法としては例えば特許文献1に記載されているように熱分解炉後段の配管内で熱分解ガス温度を測定し熱分解ガス温度に応じて熱分解炉の加熱量を調整する方法や、特許文献2に記載されているように熱分解炉内の特定箇所で熱分解残渣温度を測定し熱分解残渣温度に応じて熱分解炉への廃棄物供給量を調整する方法が提案されている。しかしながら特許文献1の方法の抱える問題点として、出口温度が同一でも出口温度近傍での熱分解ガスや熱分解残渣の滞留時間が異なる場合には熱分解進行度に差が生じるため出口ガス温度のみを測定しても廃棄物の熱分解進行度を把握することが難しい点が挙げられる。一方特許文献2の方法の抱える問題点として、炉内に局所的な温度分布がある場合の熱分解進行度の検知が難しいことが挙げられる。例えば通常のロータリーキルン熱分解炉では炉内への侵入空気を完全に遮断することができずキルン回転体シール部や廃棄物供給部等から空気が侵入して熱分解ガスの一部が炉内燃焼するが、侵入空気量の増減によりヒートスポット等の局所的な温度分布が変動して熱分解進行度に変化が生じた場合、炉内の特定箇所で熱分解残渣温度を測定する特許文献2の方法では熱分解進行度変化を検知することが困難である。さらに特許文献2の方法の抱える別の問題点として、ワイヤー類やハーネス類等の炉内閉塞を生じやすい不燃物を含んだ廃タイヤ、シュレッダーダスト等の廃棄物へ適用した場合、熱分解残渣温度測定のために炉内に挿入した熱電対にワイヤー類やハーネス類がからみついて熱分解残渣の排出安定性が悪化してしまう点が挙げられる。
そこで本発明は従来の方法では困難であった外熱式熱分解炉内の熱分解進行度の検知および制御が可能な熱分解方法及び装置を提供することを目的とする。
係る課題を解決するため、本発明の要旨とするところは以下(1)〜(9)に示す通りである。
(1)可燃性廃棄物を熱分解炉に供給して熱分解ガスと熱分解残渣とに熱分解処理する可燃性廃棄物の熱分解方法において、前記熱分解ガス中に含まれる構成炭素数1〜3の炭化水素ガス及び水素ガスの1種又は2種以上のガス濃度を測定し、前記ガス濃度変化から熱分解炉内での熱分解進行度を検知することを特徴とする可燃性廃棄物の熱分解方法。
(2)前記ガス濃度測定にて検知した熱分解進行度に応じて熱分解炉の反応温度を調整することを特徴とする(1)記載の可燃性廃棄物の熱分解方法。
(3)前記ガス濃度測定にて検知した熱分解進行度に応じて熱分解炉への可燃性廃棄物の供給量を調整することを特徴とする(1)記載の可燃性廃棄物の熱分解方法。
(4)前記ガス濃度測定にて検知した熱分解進行度に応じて熱分解炉内の廃棄物移動速度を調整することを特徴とする(1)記載の可燃性廃棄物の熱分解方法。
(5)前記可燃性廃棄物を廃タイヤまたは廃タイヤを主体とする廃棄物とし、前記構成炭素数1〜3の炭化水素ガス種がメタンおよび/またはエチレンであることを特徴とする(1)〜(4)記載の可燃性廃棄物の熱分解方法。
(6) 廃棄物供給装置、外熱式熱分解炉、タール分離装置、ガス精製装置の順に配置された可燃性廃棄物の熱分解装置であって、更に、構成炭素数1〜3の炭化水素ガス濃度測定装置、水素ガス濃度測定装置の少なくともいずれかが、該外熱式熱分解炉よりも後段に設置されていることを特徴とする可燃性廃棄物の熱分解装置。
(7)前記可燃性廃棄物の熱分解装置に加えて、前記ガス濃度測定装置のガス濃度測定値と連動する前記外熱式熱分解炉の反応温度調整装置を有することを特徴とする(6)記載の可燃性廃棄物の熱分解装置。
(8)前記可燃性廃棄物の熱分解装置に加えて、前記ガス濃度測定装置のガス濃度測定値と連動する前記外熱式熱分解炉への原料供給量調整装置を有することを特徴とする(6)記載の可燃性廃棄物の熱分解装置。
(9)前記可燃性廃棄物の熱分解装置に加えて、前記ガス濃度測定装置のガス濃度測定値と連動する前記外熱式熱分解炉内の廃棄物移動速度調整装置を有することを特徴とする(6)記載の可燃性廃棄物の熱分解装置。
本発明により外熱式熱分解炉内の熱分解進行度の検知および制御が可能な廃棄物の熱分解処理が可能となり、製品であるガスやタールの量や質の変動を無くし、計画通りの収率、発熱量、粘度等を達成することができる。
本発明者らは外熱式の熱分解炉は部分燃焼式の熱分解炉に比べガスの炉内滞留時間が長いため500〜700℃程度の低温反応条件下でも発生した熱分解ガス中のタール分が炉内で徐々に2次分解されること、タール分の炉内2次分解に伴って水素ガスおよび低分子量の炭化水素ガス、特に炭素数1〜3のオレフィン炭化水素、パラフィン炭化水素が多く生成されることを見出し、これら炭化水素ガス及び水素ガスの濃度変化をモニタリングすることにより外熱式熱分解炉内での廃棄物の熱分解進行度を検知し制御することを着想した。図1は本発明の可燃性廃棄物の熱分解方法および装置を実施するための設備例を示すブロック図である。廃棄物1は廃棄物供給装置2を用いて外熱式熱分解炉3内に装入する。外熱式熱分解炉3の方式としては外熱式であれば特に限定するところはなく最も広く用いられているロータリーキルン熱分解炉の他、プッシャー式熱分解炉など既存の外熱炉が使用可能である。外熱式熱分解炉3内は加熱炉12により廃棄物の熱分解温度以上に加熱され、熱分解ガス6と熱分解残渣7とを生成させる。熱分解ガス6はタール分離装置4で冷却しタール分8を分離回収した後、タール分離後ガス9はガス精製装置5へ導入してH2S やHCl等の有害ガス成分およびダスト類、ミスト類を除去し精製ガス10を回収する。精製ガス10の一部は炭素数1〜3の炭化水素ガス分析装置および/または水素ガス分析装置11へ導入され、炭素数1〜3の炭化水素ガス、水素ガスの1種又は2種以上のガス濃度を測定する。炭素数1〜3の炭化水素ガス濃度及び水素ガス濃度の測定方法としては例えばガスクロマトグラフ分析法やFT-IRガス分析法など既存のガス分析法が適用可能である。
廃棄物性状変動等に伴う熱分解炉出口温度近傍での反応時間変動などにより熱分解炉内の反応条件に変動が生じた場合、炉内での熱分解ガス中タール分の2次分解の進行度が変化して炭素数1〜3の炭化水素ガスや水素ガスの発生量が増減するため、熱分解炉後段でこれらガス種の濃度変化をモニタリングすることにより炉内の熱分解進行度変化を検知することができる。例えば熱分解炉出口温度近傍での反応時間が長くなって過乾留状態が生じた場合、炭素数1〜3の炭化水素ガスや水素ガス濃度の上昇として検知することができる。図2〜図3に一例として廃タイヤを熱分解処理したときの熱分解進行度(タール収率及びガス収率)の変化と炭化水素(CH4)濃度および水素濃度の変化の関係を示す。
また図4〜図6は本発明の廃棄物の熱分解方法および装置を実施するための別の設備例を示すブロック図である。図4の例ではガス分析装置11で検出された炭素数1〜3の炭化水素ガス濃度信号および/または水素ガス濃度信号A1を加熱炉12へ送信し、外熱式熱分解炉3の加熱量を制御する。図5の例ではガス分析装置11で検出された炭素数1〜3の炭化水素ガス濃度信号および/または水素ガス濃度信号A2を廃棄物供給装置2へ送信し、外熱式熱分解炉3への廃棄物供給量を制御する。図6の例ではガス分析装置11で検出された炭素数1〜3の炭化水素ガス濃度信号および/または水素ガス濃度信号A3を熱分解炉回転速度調整装置13へ送信し、外熱式熱分解炉3内での廃棄物移動速度を制御する。
熱分解進行度の検知や制御に用いるガス種は構成炭素数1〜3の炭化水素ガス、水素ガスの中から熱分解進行度変化に伴う濃度変化が最も大きいガスを選定するのが望ましく、さらに熱分解進行度の検知や制御に用いたガス種の濃度変化が分析計トラブル等の他要因由来でないことをチェックするために2種以上のガス濃度を同時に測定しても良い。
尚、図4〜図6の例では炭素数1〜3の炭化水素ガス分析装置および/または水素ガス分析装置11へ導入するガスをガス精製装置5後の精製ガスとしたが、炭素数1〜3の炭化水素ガスや水素ガスの濃度はタール分離装置およびガス精製装置を通過しても変化しないためガス採取箇所は外熱式熱分解炉3の後段であれば特に限定するところはなく、外熱式熱分解炉3後の熱分解ガス6、タール分離装置4後のタール分離後ガス9、ガス精製装置5後の精製ガス10を適用することが可能である。
さらに本発明は図4〜図6による廃棄物の熱分解方法および装置を用いて廃タイヤまたは廃タイヤを主体とする廃棄物を処理する場合において、構成炭素数1〜3の炭化水素ガス種としてメタン(CH4)および/またはエチレン(C2H4)とすることを特徴とする。ここで廃タイヤを主体とする廃棄物の処理とは、廃タイヤと共にプラスチック系廃棄物や繊維系廃棄物等の他の産廃系可燃性廃棄物や一廃系可燃性廃棄物を熱分解処理する場合で、かつ熱分解ガス量が廃タイヤ熱分解ガスによって占められる割合が少なくとも50%以上となるように熱分解炉への廃タイヤ供給比率を選定した場合を指す。非廃タイヤ系廃棄物の混合割合が増加すると非廃タイヤ系廃棄物熱分解ガス中タール分の2次分解に由来したガス発生の影響が大きくなるため、廃タイヤ由来の熱分解ガス量が50%を下回るような場合には炉内熱分解進行度の検知が難しくなる。熱分解ガス発生量は廃棄物の種類によって異なることから、廃タイヤ供給比率の下限値については予め廃タイヤおよび廃タイヤと共に処理する各廃棄物について熱分解実験を実施し1〜3の炭化水素ガスおよび/または水素ガスの発生量を把握した上で決定するのが望ましい。本発明者らは廃タイヤまたは廃タイヤを主体とする廃棄物を熱分解する場合、熱分解ガス中タール分の1次生成物として主に脂肪族側鎖を持った芳香族炭化水素類が生成すること、熱分解度進行に伴ってタール2次分解による脂肪族側鎖の脱離反応が生じてメタン、エチレン、水素を主とするガスが生成されることを見出し、これらガス種を熱分解炉内の熱分解進行度検知および制御へ利用する本発明を着想した。
得られた熱分解生成物はガスについては燃料ガスや化学原料ガスとして利用し、タール分は重油や軽油等の燃料油として利用し、熱分解残渣については炭素質燃料や金属原料等として利用する。可燃性廃棄物を熱分解処理してガスと重油、軽油等の燃料油を併産する場合、各製品の生成量と品質が一定となるような操業を行うことが重要である。従来の可燃性廃棄物の熱分解方法では熱分解炉内で廃棄物の熱分解進行度が変動して熱分解生成物の収率バランスや性状にばらつきが生じるのに対し、本発明による可燃性廃棄物の熱分解方法では熱分解炉内での廃棄物の熱分解進行度を検知し制御できるため生成量および品質が揃ったガスや燃料油を製造することが可能となる。
図4に示した本発明を用いて、廃タイヤ80wt%および産廃プラ20wt%の比率から成る複数の廃棄物を処理規模100t/Dで同時に熱分解処理した例を示す。熱分解炉は外熱式ロータリーキルンを用い、加熱炉はLNG焚き熱風発生炉を用い、タール分離装置は直接冷却式のクウェンチングタワーおよび間接冷却式のコンデンサ−を用い、ガス精製装置は湿式脱硫装置および湿式電気集塵機を用い、炭化水素ガスおよび水素ガス分析装置にはオートサンプラーを備えた熱伝導度検出器式のガスクロマトグラフ分析計を用いた。各熱分解生成物の収率目標値はガス20±2wt%、重質油35±2wt%、軽質油8.5±2wt%とした。廃棄物は熱分解炉に装入されて熱分解ガスと熱分解残渣を生成し、熱分解ガスをクウェンチングタワーで冷却してタール中の重質油成分を分離回収した後コンデンサ−で冷却して軽質油成分を分離回収し、タール分離後ガスをガス精製装置で処理してH2Sを10ppm以下まで除去すると共にダスト類、ミスト類を除去して精製ガスを得た。精製ガスの一部を10分間周期でサンプリングしガスクロマトグラフ分析計へ導入して炭素数1〜3の炭化水素濃度および水素濃度を測定した。実施例ではガスクロマトグラフ分析計で測定した炭素数1〜3の炭化水素濃度および水素濃度のうちCH4濃度信号を加熱炉に送信し、CH4濃度が目標値25%〜30%の範囲内となるように加熱炉温度を自動制御し、CH4濃度が上昇したら加熱炉温度を下げ、CH4濃度が低下したら加熱炉温度を上げる運転を行った。CH4濃度目標値は試運転時に予めCH4濃度とガス収率の関係を調査し、CH4濃度がガス収率の増加と共に上昇すること、ガス収率18wt%〜22wt%時の熱分解ガス中CH4濃度は25%〜30%の範囲となることを把握した後選定した。
表1に示すように、得られた熱分解生成物は重質油34〜36t/D、軽質油8〜9t/D、精製ガス19〜20t/D、熱分解残渣36〜39t/Dとなり、生成物収率が目標値の範囲内となる操業ができた。重質油は発熱量約1万kcal/kgで1ヶ月間の期間内で評価した50℃での動粘度は5〜15cStの範囲であり、A重油代替として有効利用することができた。軽質油は発熱量約1万kcal/kgであり軽油代替として有効利用することができた。精製ガスは発熱量約1万kcal/Nm3でありLNG代替として有効利用することができた。熱分解残渣はワイヤー類6〜7t/Dを製鉄原料として、カーボン30〜32t/Dを微粉炭燃料代替としてそれぞれ有効利用することができた。
(比較例)
比較例として、熱分解炉後段の配管内でガス温度を測定しガス温度に応じて熱分解炉の加熱量を調整する従来の熱分解進行度の検知および制御方法を用い、その他条件は実施例と同一条件とし、実施例と同じ廃タイヤ80wt%および産廃プラ20wt%から成る複数の廃棄物を同一処理量100t/Dで処理した。熱分解炉後段配管内で測定したガス温度には殆ど変動がなく、結果として加熱炉の加熱量は一定条件下での操業となった。しかしながら比較例の方法は表1に示すように実施例に比べて各熱分解生成物の収率の変動が大きく、各熱分解生成物製品の生成量管理性能が低い結果となった。また得られた重質油の50℃での動粘度は1ヶ月間の期間内で評価したところ10〜100cStの範囲にばらつき、A重油のJIS規格K2205に適合した品質の重質油(50℃での動粘度20cSt以下)を安定的に製造することが困難であった。重質油の元素分析を実施したところ動粘度が高い重質油はC/H比が上昇しており、従来の方法では熱分解進行度の差を検知できないために過乾留が生じやすく、熱分解ガス中タール分の炉内2次分解進行に伴ってタール分を構成している芳香族炭化水素の重縮合が進行して動粘度の上昇を招くことがわかった。
(比較例)
比較例として、熱分解炉後段の配管内でガス温度を測定しガス温度に応じて熱分解炉の加熱量を調整する従来の熱分解進行度の検知および制御方法を用い、その他条件は実施例と同一条件とし、実施例と同じ廃タイヤ80wt%および産廃プラ20wt%から成る複数の廃棄物を同一処理量100t/Dで処理した。熱分解炉後段配管内で測定したガス温度には殆ど変動がなく、結果として加熱炉の加熱量は一定条件下での操業となった。しかしながら比較例の方法は表1に示すように実施例に比べて各熱分解生成物の収率の変動が大きく、各熱分解生成物製品の生成量管理性能が低い結果となった。また得られた重質油の50℃での動粘度は1ヶ月間の期間内で評価したところ10〜100cStの範囲にばらつき、A重油のJIS規格K2205に適合した品質の重質油(50℃での動粘度20cSt以下)を安定的に製造することが困難であった。重質油の元素分析を実施したところ動粘度が高い重質油はC/H比が上昇しており、従来の方法では熱分解進行度の差を検知できないために過乾留が生じやすく、熱分解ガス中タール分の炉内2次分解進行に伴ってタール分を構成している芳香族炭化水素の重縮合が進行して動粘度の上昇を招くことがわかった。
1…廃棄物
2…廃棄物供給装置
3…外熱式熱分解炉
4…タール分離装置
5…ガス精製装置
6…熱分解ガス
7…熱分解残渣
8…タール分
9…タール分離後ガス
10…精製ガス
11…炭素数1〜3の炭化水素ガス分析装置および/または水素ガス分析装置
12…加熱炉
13…熱分解炉回転速度調整装置
A1…炭素数1〜3の炭化水素ガス濃度信号および/または水素ガス濃度信号
A2…炭素数1〜3の炭化水素ガス濃度信号および/または水素ガス濃度信号
A3…炭素数1〜3の炭化水素ガス濃度信号および/または水素ガス濃度信号
2…廃棄物供給装置
3…外熱式熱分解炉
4…タール分離装置
5…ガス精製装置
6…熱分解ガス
7…熱分解残渣
8…タール分
9…タール分離後ガス
10…精製ガス
11…炭素数1〜3の炭化水素ガス分析装置および/または水素ガス分析装置
12…加熱炉
13…熱分解炉回転速度調整装置
A1…炭素数1〜3の炭化水素ガス濃度信号および/または水素ガス濃度信号
A2…炭素数1〜3の炭化水素ガス濃度信号および/または水素ガス濃度信号
A3…炭素数1〜3の炭化水素ガス濃度信号および/または水素ガス濃度信号
Claims (9)
- 可燃性廃棄物を外熱式熱分解炉に供給して熱分解ガスと熱分解残渣とに熱分解処理する可燃性廃棄物の熱分解方法において、前記熱分解ガス中に含まれる構成炭素数1〜3の炭化水素ガス及び水素ガスの1種又は2種以上のガス濃度を測定し、前記ガス濃度変化から熱分解炉内での熱分解進行度を検知することを特徴とする可燃性廃棄物の熱分解方法。
- 前記ガス濃度測定にて検知した熱分解進行度に応じて熱分解炉の反応温度を調整することを特徴とする請求項1記載の可燃性廃棄物の熱分解方法。
- 前記ガス濃度測定にて検知した熱分解進行度に応じて熱分解炉への可燃性廃棄物の供給量を調整することを特徴とする請求項1記載の可燃性廃棄物の熱分解方法。
- 前記ガス濃度測定にて検知した熱分解進行度に応じて熱分解炉内の廃棄物移動速度を調整することを特徴とする請求項1記載の可燃性廃棄物の熱分解方法。
- 前記可燃性廃棄物が廃タイヤまたは廃タイヤを主体とする廃棄物であり、前記構成炭素数1〜3の炭化水素ガス種がメタンおよび/またはエチレンであることを特徴とする請求項1〜4のいずれか1項に記載の可燃性廃棄物の熱分解方法。
- 廃棄物供給装置、外熱式熱分解炉、タール分離装置、ガス精製装置の順に配置された可燃性廃棄物の熱分解装置であって、更に、構成炭素数1〜3の炭化水素ガス濃度測定装置、水素ガス濃度測定装置の少なくともいずれかが、該外熱式熱分解炉よりも後段に設置されていることを特徴とする可燃性廃棄物の熱分解装置。
- 更に、構成炭素数1〜3の炭化水素ガス及び水素ガスの少なくともいずれかのガス濃度測定値と連動する前記外熱式熱分解炉の反応温度調整装置を有することを特徴とする請求項6記載の可燃性廃棄物の熱分解装置。
- 更に、構成炭素数1〜3の炭化水素ガス及び水素ガスの少なくともいずれかのガス濃度測定値と連動する前記外熱式熱分解炉への原料供給量調整装置を有することを特徴とする請求項6記載の可燃性廃棄物の熱分解装置。
- 更に、構成炭素数1〜3の炭化水素ガス及び水素ガスの少なくともいずれかのガス濃度測定値と連動する前記外熱式熱分解炉内の廃棄物移動速度調整装置を有することを特徴とする請求項6記載の可燃性廃棄物の熱分解装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004114516A JP2005298602A (ja) | 2004-04-08 | 2004-04-08 | 可燃性廃棄物の熱分解方法及び装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004114516A JP2005298602A (ja) | 2004-04-08 | 2004-04-08 | 可燃性廃棄物の熱分解方法及び装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005298602A true JP2005298602A (ja) | 2005-10-27 |
Family
ID=35330542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004114516A Withdrawn JP2005298602A (ja) | 2004-04-08 | 2004-04-08 | 可燃性廃棄物の熱分解方法及び装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005298602A (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014516377A (ja) * | 2011-04-15 | 2014-07-10 | バイオジェニック リージェンツ エルエルシー | 炭素質材料のエネルギー含有量を熱分解から高めるための方法および装置 |
WO2015087568A1 (ja) * | 2013-12-13 | 2015-06-18 | 株式会社ハイテム | 鶏糞処理方法及び鶏糞処理システム |
WO2015093590A1 (ja) * | 2013-12-20 | 2015-06-25 | 貞充 山▲崎▼ | 電池の製造方法 |
JP2017517468A (ja) * | 2014-03-31 | 2017-06-29 | クリーンカーボンコンバージョン、パテンツ、アクチエンゲゼルシャフトCleancarbonconversion Patents Ag | 水素ガスを生成するために有機材料を反応させるためのプロセスおよび装置 |
US10093860B2 (en) | 2013-02-20 | 2018-10-09 | Recycling Technologies Ltd | Process and apparatus for treating waste comprising mixed plastic waste |
US11213801B2 (en) | 2013-10-24 | 2022-01-04 | Carbon Technology Holdings, LLC | Methods and apparatus for producing activated carbon from biomass through carbonized ash intermediates |
US11285454B2 (en) | 2012-05-07 | 2022-03-29 | Carbon Technology Holdings, LLC | Biogenic activated carbon and methods of making and using same |
US11358119B2 (en) | 2014-01-16 | 2022-06-14 | Carbon Technology Holdings, LLC | Carbon micro-plant |
US11413601B2 (en) | 2014-10-24 | 2022-08-16 | Carbon Technology Holdings, LLC | Halogenated activated carbon compositions and methods of making and using same |
US11458452B2 (en) | 2014-02-24 | 2022-10-04 | Carbon Technology Holdings, LLC | Highly mesoporous activated carbon |
US11753698B2 (en) | 2020-09-25 | 2023-09-12 | Carbon Technology Holdings, LLC | Bio-reduction of metal ores integrated with biomass pyrolysis |
US11851723B2 (en) | 2021-02-18 | 2023-12-26 | Carbon Technology Holdings, LLC | Carbon-negative metallurgical products |
US11932814B2 (en) | 2021-04-27 | 2024-03-19 | Carbon Technology Holdings, LLC | Biocarbon blends with optimized fixed carbon content, and methods for making and using the same |
US11987763B2 (en) | 2021-07-09 | 2024-05-21 | Carbon Technology Holdings, LLC | Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom |
US12103892B2 (en) | 2021-11-12 | 2024-10-01 | Carbon Technology Holdings, LLC | Biocarbon compositions with optimized compositional parameters, and processes for producing the same |
-
2004
- 2004-04-08 JP JP2004114516A patent/JP2005298602A/ja not_active Withdrawn
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10982161B2 (en) | 2011-04-15 | 2021-04-20 | Carbon Technology Holdings, LLC | Process for producing high-carbon biogenic reagents |
US11674101B2 (en) | 2011-04-15 | 2023-06-13 | Carbon Technology Holdings, LLC | Process for producing high-carbon biogenic reagents |
US12084623B2 (en) | 2011-04-15 | 2024-09-10 | Carbon Technology Holdings, LLC | High-carbon biogenic reagents and uses thereof |
US10889775B2 (en) | 2011-04-15 | 2021-01-12 | Carbon Technology Holdings, LLC | Systems and apparatus for production of high-carbon biogenic reagents |
JP7539540B2 (ja) | 2011-04-15 | 2024-08-23 | カーボン テクノロジー ホールディングス, エルエルシー | 高炭素生体試薬の生成のためのシステムおよび装置 |
US9388046B2 (en) | 2011-04-15 | 2016-07-12 | Biogenic Reagents Ventures, Llc | Systems and apparatus for production of high-carbon biogenic reagents |
US11965139B2 (en) | 2011-04-15 | 2024-04-23 | Carbon Technology Holdings, LLC | Systems and apparatus for production of high-carbon biogenic reagents |
US11959038B2 (en) | 2011-04-15 | 2024-04-16 | Carbon Technology Holdings, LLC | High-carbon biogenic reagents and uses thereof |
US11891582B2 (en) | 2011-04-15 | 2024-02-06 | Carbon Technology Holdings, LLC | High-carbon biogenic reagents and uses thereof |
US11879107B2 (en) | 2011-04-15 | 2024-01-23 | Carbon Technology Holdings, LLC | High-carbon biogenic reagents and uses thereof |
JP2023165780A (ja) * | 2011-04-15 | 2023-11-17 | カーボン テクノロジー ホールディングス, エルエルシー | 高炭素生体試薬の生成のためのシステムおよび装置 |
US9845440B2 (en) | 2011-04-15 | 2017-12-19 | Carbon Technology Holdings, LLC | Methods and apparatus for enhancing the energy content of carbonaceous materials from pyrolysis |
JP2014516377A (ja) * | 2011-04-15 | 2014-07-10 | バイオジェニック リージェンツ エルエルシー | 炭素質材料のエネルギー含有量を熱分解から高めるための方法および装置 |
JP2014524824A (ja) * | 2011-04-15 | 2014-09-25 | バイオジェニック リージェンツ エルエルシー | 高炭素生体試薬の生成のためのシステムおよび装置 |
US10167437B2 (en) | 2011-04-15 | 2019-01-01 | Carbon Technology Holdings, LLC | Systems and apparatus for production of high-carbon biogenic reagents |
US10174267B2 (en) | 2011-04-15 | 2019-01-08 | Carbon Technology Holdings, LLC | Process for producing high-carbon biogenic reagents |
JP2019131831A (ja) * | 2011-04-15 | 2019-08-08 | カーボン テクノロジー ホールディングス, エルエルシー | 高炭素生体試薬の生成のためのシステムおよび装置 |
US10611977B2 (en) | 2011-04-15 | 2020-04-07 | Carbon Technology Holdings, LLC | Methods and apparatus for enhancing the energy content of carbonaceous materials from pyrolysis |
US11359154B2 (en) | 2011-04-15 | 2022-06-14 | Carbon Technology Holdings, LLC | Systems and apparatus for production of high-carbon biogenic reagents |
US11286440B2 (en) | 2011-04-15 | 2022-03-29 | Carbon Technology Holdings, LLC | Methods and apparatus for enhancing the energy content of carbonaceous materials from pyrolysis |
JP2017148798A (ja) * | 2011-04-15 | 2017-08-31 | バイオジェニック リージェンツ エルエルシー | 高炭素生体試薬の生成のためのシステムおよび装置 |
US11091716B2 (en) | 2011-04-15 | 2021-08-17 | Carbon Technology Holdings, LLC | High-carbon biogenic reagents and uses thereof |
US11285454B2 (en) | 2012-05-07 | 2022-03-29 | Carbon Technology Holdings, LLC | Biogenic activated carbon and methods of making and using same |
US10760003B2 (en) | 2013-02-20 | 2020-09-01 | Recycling Technologies Ltd | Process and apparatus for treating waste comprising mixed plastic waste |
US10093860B2 (en) | 2013-02-20 | 2018-10-09 | Recycling Technologies Ltd | Process and apparatus for treating waste comprising mixed plastic waste |
US10717934B2 (en) | 2013-02-20 | 2020-07-21 | Recycling Technologies Ltd. | Apparatus for treating waste comprising mixed plastic waste |
EP2956524B1 (en) * | 2013-02-20 | 2020-04-08 | Recycling Technologies Ltd | Process and apparatus for treating waste comprising mixed plastic waste |
US11213801B2 (en) | 2013-10-24 | 2022-01-04 | Carbon Technology Holdings, LLC | Methods and apparatus for producing activated carbon from biomass through carbonized ash intermediates |
WO2015087568A1 (ja) * | 2013-12-13 | 2015-06-18 | 株式会社ハイテム | 鶏糞処理方法及び鶏糞処理システム |
JP2015112579A (ja) * | 2013-12-13 | 2015-06-22 | 株式会社ハイテム | 鶏糞処理方法及び鶏糞処理システム |
KR101750333B1 (ko) * | 2013-12-20 | 2017-06-23 | 사다요시 야마사키 | 전지의 제조방법 |
WO2015093590A1 (ja) * | 2013-12-20 | 2015-06-25 | 貞充 山▲崎▼ | 電池の製造方法 |
US9991516B2 (en) | 2013-12-20 | 2018-06-05 | Sadayoshi YAMASAKI | Battery production method |
JPWO2015093590A1 (ja) * | 2013-12-20 | 2017-03-23 | 貞充 山▲崎▼ | 電池の製造方法 |
CN105830262A (zh) * | 2013-12-20 | 2016-08-03 | 山崎贞充 | 电池的制造方法 |
US11358119B2 (en) | 2014-01-16 | 2022-06-14 | Carbon Technology Holdings, LLC | Carbon micro-plant |
US11458452B2 (en) | 2014-02-24 | 2022-10-04 | Carbon Technology Holdings, LLC | Highly mesoporous activated carbon |
JP2017517468A (ja) * | 2014-03-31 | 2017-06-29 | クリーンカーボンコンバージョン、パテンツ、アクチエンゲゼルシャフトCleancarbonconversion Patents Ag | 水素ガスを生成するために有機材料を反応させるためのプロセスおよび装置 |
US11413601B2 (en) | 2014-10-24 | 2022-08-16 | Carbon Technology Holdings, LLC | Halogenated activated carbon compositions and methods of making and using same |
US11753698B2 (en) | 2020-09-25 | 2023-09-12 | Carbon Technology Holdings, LLC | Bio-reduction of metal ores integrated with biomass pyrolysis |
US11851723B2 (en) | 2021-02-18 | 2023-12-26 | Carbon Technology Holdings, LLC | Carbon-negative metallurgical products |
US11932814B2 (en) | 2021-04-27 | 2024-03-19 | Carbon Technology Holdings, LLC | Biocarbon blends with optimized fixed carbon content, and methods for making and using the same |
US11987763B2 (en) | 2021-07-09 | 2024-05-21 | Carbon Technology Holdings, LLC | Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom |
US12103892B2 (en) | 2021-11-12 | 2024-10-01 | Carbon Technology Holdings, LLC | Biocarbon compositions with optimized compositional parameters, and processes for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dunnigan et al. | Production of biochar from rice husk: Particulate emissions from the combustion of raw pyrolysis volatiles | |
Shen et al. | An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed☆ | |
Scaccia | TG–FTIR and kinetics of devolatilization of Sulcis coal | |
Ma et al. | Pyrolysis behaviors of oilfield sludge based on Py-GC/MS and DAEM kinetics analysis | |
Tursunov | A comparison of catalysts zeolite and calcined dolomite for gas production from pyrolysis of municipal solid waste (MSW) | |
Dai et al. | Pyrolysis of waste tires in a circulating fluidized-bed reactor | |
Jiang et al. | TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion | |
JP2005298602A (ja) | 可燃性廃棄物の熱分解方法及び装置 | |
Magdziarz et al. | Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS | |
Asadullah et al. | Evaluation of structural features of chars from pyrolysis of biomass of different particle sizes | |
Materazzi et al. | Tar evolution in a two stage fluid bed–plasma gasification process for waste valorization | |
Cheng et al. | Combustion behavior and thermochemical treatment scheme analysis of oil sludges and oil sludge semicokes | |
Zolezzi et al. | Conventional and fast pyrolysis of automobile shredder residues (ASR) | |
Ma et al. | Study of the fast pyrolysis of oilfield sludge with solid heat carrier in a rotary kiln for pyrolytic oil production | |
Galvagno et al. | Pyrolysis process for treatment of automobile shredder residue: preliminary experimental results | |
Punnaruttanakun et al. | Pyrolysis of API separator sludge | |
Guo et al. | TG–MS study of the thermo-oxidative behavior of plastic automobile shredder residues | |
Notarnicola et al. | Pyrolysis of automotive shredder residue in a bench scale rotary kiln | |
Ouyang et al. | Pyrolysis of scrap tyres pretreated by waste coal tar | |
Zhao et al. | Release and transformation of K and Cl during the pyrolysis of KCl-loaded cellulose | |
Grigiante et al. | Pyrolysis analysis and solid residue stabilization of polymers, waste tyres, spruce sawdust and sewage sludge | |
Kim et al. | Investigation on the combustion possibility of dry sewage sludge as a pulverized fuel of thermal power plant | |
CA2338611C (en) | Method for in-parallel conducting of coking coal and processing chlorine-containing resin, chlorine-containing organic compound or waste plastic containing the same | |
WO2012166606A2 (en) | Coal processing to upgrade low rank coal having low oil content | |
Kundu et al. | Evolution characteristics of metallurgical coals for coke making through thermogravimetric-mass spectroscopic measurements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070703 |