JP2005296998A - Can-manufacturing method for preventing growth of hair crack - Google Patents

Can-manufacturing method for preventing growth of hair crack Download PDF

Info

Publication number
JP2005296998A
JP2005296998A JP2004116306A JP2004116306A JP2005296998A JP 2005296998 A JP2005296998 A JP 2005296998A JP 2004116306 A JP2004116306 A JP 2004116306A JP 2004116306 A JP2004116306 A JP 2004116306A JP 2005296998 A JP2005296998 A JP 2005296998A
Authority
JP
Japan
Prior art keywords
laser
resin
hair
cup
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004116306A
Other languages
Japanese (ja)
Other versions
JP4336238B2 (en
Inventor
Hiroshi Nishida
浩 西田
Masao Kurosaki
將夫 黒崎
Hikari Tachiki
光 立木
Hiroichi Yokoya
博一 横矢
Tatsuhiko Sakai
辰彦 坂井
Tooru Chijiki
亨 千々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004116306A priority Critical patent/JP4336238B2/en
Publication of JP2005296998A publication Critical patent/JP2005296998A/en
Application granted granted Critical
Publication of JP4336238B2 publication Critical patent/JP4336238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent coating hair and film hair generated when manufacturing a drawn can, a re-drawn can, and a re-drawn and ironed can which are formed of a metallic sheet having an organic coating layer as material. <P>SOLUTION: In a method for manufacturing a metallic container by cup-forming or draw-ironing by using a metallic sheet with at least one side thereof coated with resin film, laser beam irradiation is performed before or after cup-forming, and a part of a surface-coated resin layer is removed to prevent hair growth. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、基材の少なくとも片面に有機被膜層を形成された板材より缶体を成形する製缶方法に関するものであり、更に詳しくは基材の少なくとも片面に有機被膜層を形成された板材を素材として絞り成形缶、再絞り成形缶、再絞り−しごき成形缶を製造する際に発生する塗膜ヘアやフィルムヘアを防止する製缶方法に関するものである。   The present invention relates to a can manufacturing method for forming a can body from a plate material having an organic coating layer formed on at least one side of a substrate, and more specifically, a plate material having an organic coating layer formed on at least one side of a substrate. The present invention relates to a can-making method for preventing coated hair and film hair generated when a drawn can, redrawn can, and redraw-ironed can are produced as materials.

炭酸飲料缶、ジュース缶、コーヒー飲料缶あるいはゼリー等の固形食品缶等の食品缶詰等に用いられる、絞り成形缶{例えば、特公昭60−11576号公報(特許文献1)}、薄肉化再絞り成形缶{例えば、特開平3−155419号公報(特許文献2)、特開平4−324826号公報(特許文献3)}、薄肉化再絞り−しごき成形缶{例えば、特開平7−275961号公報(特許文献4)参照}等のシームレス缶、および缶蓋{例えば特公平3−58814号公報(特許文献5)参照}等を形成する場合に、金属層の少なくとも片面(通常は両面)に有機被膜層を形成された板材よりパンチとダイによりブランクを打抜き、直ちに同じ工程で絞り加工を行って、絞り成形体を形成してから、次工程でシームレス缶体や缶蓋を形成する方法が採用されている。   Drawing cans used for carbonated beverage cans, juice cans, coffee beverage cans or food cans such as solid food cans such as jelly {for example, Japanese Patent Publication No. 60-11576 (Patent Document 1)} Molded cans {for example, JP-A-3-155419 (Patent Document 2), JP-A-4-324826 (Patent Document 3)}, thinned redraw-ironing can {for example, JP-A-7-275961 When forming a seamless can such as (see Patent Document 4) and a can lid {for example, see Japanese Patent Publication No. 3-58814 (Patent Document 5)} or the like, at least one side (usually both sides) of the metal layer is organic. A blank is punched out of the plate material on which the coating layer has been formed with a punch and die, and immediately after drawing in the same process to form a drawn molded body, a seamless can body and can lid are formed in the next process. The law has been adopted.

このようにして形成されたシームレス缶体や缶蓋の端縁(シームレス缶体の場合はフランジ部の端縁、缶蓋の場合はカール部の端縁)に、特開昭58−16848号公報(特許文献6)に記載されているように、毛髪状の有機被膜片(以下、有機被膜ヘアとよぶ:通常長さが約10mm以上)が多数発生し易い。この有機被膜ヘアは端縁から剥離し、缶内面に付着残留して、内容物を充填密封して缶詰となった後、異物として発見されることがあるが、その場合、ヘア自身は無害ではあるものの、不衛生物として疑われて苦情の対象となり易い。そのため全数検査により有機被膜ヘアが発見された缶はリジェクトしている。従って、この場合製品歩留まりが低下するという問題を生ずる。   Japanese Patent Application Laid-Open No. 58-16848 discloses an edge of a seamless can or can lid formed in this way (in the case of a seamless can body, the edge of a flange portion, in the case of a can lid, the edge of a curled portion). As described in (Patent Document 6), a large number of hair-like organic coating pieces (hereinafter referred to as organic coating hairs: usually about 10 mm or more in length) are likely to occur. This organic coated hair peels off from the edge, remains attached to the inner surface of the can, is filled and sealed with the contents, and can be found as a foreign object, but in that case the hair itself is harmless However, it is suspected of being unsanitary and is subject to complaints. For this reason, cans with organic coating hair found by 100% inspection are rejected. Therefore, in this case, there arises a problem that the product yield is lowered.

また、缶蓋の有機被膜ヘアは、密封の際に缶内に入るおそれがある。また、製缶の加工工程で脱落して、ツールと缶体の間に入り込み、被膜欠陥を生じる原因となることもあり、缶体や缶蓋の品質低下の問題も引き起こす。
有機被膜ヘアの発生原因については特開2000−167625号公報(特許文献7)に記載のとおりであり、薄肉化再絞り−しごき成形缶の製造を例にとり詳細に説明されている。
In addition, the organic film hair on the can lid may enter the can during sealing. In addition, it may fall off during the can manufacturing process, get into the space between the tool and the can body, and cause a film defect, resulting in a problem of quality deterioration of the can body and can lid.
The cause of the occurrence of organic film hair is as described in JP-A No. 2000-167625 (Patent Document 7), and is explained in detail by taking as an example the production of a thinned redrawn-ironed can.

ヘアの防止方法としてブランクに打抜くに際し、少なくとも板材とパンチが接触して打抜きを始める時点において、パンチと接触する有機被膜層と、パンチの切刃を通る、パンチ端面の切刃近傍周辺部の接線とのなす角度が、3〜60度になるように設定したツールの開示(特許文献7)があるが、切刃が磨耗してきたり、特に有機被膜が厚い場合や、柔らかい場合にはこれらの提案では完全にヘアが防止できないのが実情である。また、製缶素材へのレーザ照射を提案した例としては溶接缶用の素材の樹脂不用部に赤外パルスレーザを照射して不用樹脂を除去する提案{特開平7−290258号公報(特許文献8)}がある。   When punching into a blank as a hair prevention method, at least at the time when the plate material and the punch come into contact with each other and start punching, the punching edge of the punch edge face near the edge of the punch is near the punch. There is a disclosure (Patent Document 7) of a tool set so that the angle formed with the tangent line is 3 to 60 degrees. However, when the cutting edge is worn, especially when the organic film is thick or soft, these tools are disclosed. The reality is that the proposal cannot completely prevent hair. Further, as an example in which laser irradiation of a can material is proposed, a proposal for removing an unnecessary resin by irradiating an infrared pulse laser to a resin-free portion of a material for a welding can {Japanese Patent Laid-Open No. 7-290258 (Patent Document) 8)}.

特公昭60−11576号公報Japanese Patent Publication No. 60-11576 特開平3−155419号公報Japanese Patent Laid-Open No. 3-155419 特開平4−324826号公報JP-A-4-324826 特開平7−275961号公報JP-A-7-275961 特公平3−58814号公報Japanese Patent Publication No. 3-58814 特開昭58−16848号公報JP 58-16848 A 特開2000−167625号公報JP 2000-167625 A 特開平7−290258号公報JP 7-290258 A

本発明は、基材の少なくとも片面に有機被膜層を形成された板材を素材として絞り成形缶、再絞り成形缶、再絞り−しごき成形缶を製造する際に発生する塗膜ヘアやフィルムヘアを防止する製缶方法を提供することを課題とする。   The present invention relates to coating film hair and film hair generated when producing a drawing can, a redrawing can, and a redrawing-ironing can using a plate material having an organic coating layer formed on at least one side of a substrate. It is an object of the present invention to provide a method for preventing canning.

(1)少なくとも片面を樹脂被膜で被覆された金属板を剪断後、絞り成形、絞りしごき成形を行い金属容器を製造するに際し、絞り成形前或いは絞り成形後に、レーザ照射処理を行い、剪断部近傍の樹脂層の少なくとも一部を除去することを特徴とするヘア発生を防止した製缶方法。
(2)絞り成形前にレーザ照射する場合は、少なくとも金属板の片面に、絞り成形時の剪断線と該剪断線より金属板板厚分内側の線との間の領域の少なくとも一部を全周に渡って含み、0.1〜10mm幅のリング状にレーザ照射を行なって、金属板表面樹脂層の少なくとも一部を除去し、剪断を受ける部分に残存した樹脂被膜厚みを0〜10μmとすることを特徴とする前記(1)記載のヘア発生を防止した製缶方法。
(1) After shearing a metal plate coated with a resin film on at least one side, and then performing draw forming and draw ironing to manufacture a metal container, laser irradiation treatment is performed before or after draw forming, and in the vicinity of the shearing portion. A can-making method in which hair generation is prevented, wherein at least part of the resin layer is removed.
(2) When laser irradiation is performed before drawing, at least a part of the area between the shear line at the time of drawing and the line inside the thickness of the metal plate from the shear line is at least on one side of the metal plate. Laser irradiation is performed in a ring shape having a width of 0.1 to 10 mm including the circumference, and at least a part of the resin layer on the metal plate surface is removed, and the resin film thickness remaining on the portion subjected to shearing is 0 to 10 μm. A can-making method in which hair generation is prevented as described in (1) above.

(3)絞り成形後にレーザ照射する場合は、少なくとも絞り成形された金属カップの片面に、カップ上端部を含み、上端より0.1〜10mm幅にレーザ照射を行なうことにより、金属カップ表面樹脂層の少なくとも一部を除去し、カップ上端部に残存した樹脂被膜厚みを0〜10μm以下とすることを特徴とする前記(1)記載のヘア発生を防止した製缶方法。
(4)前記レーザ光が樹脂の赤外域の吸収を示す波長で発振するCO2 レーザ光であることを特徴とする前記(1)〜(3)記載のヘア発生を防止した製缶方法。
(3) In the case of laser irradiation after drawing, the metal cup surface resin layer includes a cup upper end on at least one side of the drawn metal cup and laser irradiation is performed at a width of 0.1 to 10 mm from the upper end. The can-making method according to (1), wherein at least a part of the resin film is removed and the thickness of the resin film remaining on the upper end of the cup is 0 to 10 μm or less.
(4) The can manufacturing method as described in (1) to (3) above, wherein the laser beam is a CO 2 laser beam that oscillates at a wavelength indicating absorption in the infrared region of the resin.

(5)前記レーザ光が樹脂の赤外域の吸収を示す波長で発振するTEAまたはQスイッチCO2 レーザ、または連続波CO2 レーザのパルス変調発振モード、または連続波CO2 レーザであることを特徴とする前記(1)〜(4)記載のヘア発生を防止した製缶方法。
(6)前記レーザ光でありレーザフルエンスが樹脂の蒸発気化しきい値以上であり、且つ樹脂被覆金属板の母材の表面ダメージのしきい値以下であることを特徴とする前記(1)〜(5)記載のヘア発生を防止した製缶方法。
(7)被覆樹脂がポリエステル系樹脂、ポリプロピレン系またはポリエチレン系の高分子材料であることを特徴とする前記(1)〜(6)記載のヘア発生を防止した製缶方法にある。
(5), wherein the laser light is TEA, or Q-switched CO 2 laser or a continuous wave CO 2 laser pulse modulation oscillation mode, or a continuous wave CO 2 laser oscillates at a wavelength showing an absorption in the infrared region of the resin The can manufacturing method which prevented hair generation | occurrence | production as described in said (1)-(4).
(6) The laser light, wherein the laser fluence is not less than the evaporation threshold value of the resin and not more than the threshold value of the surface damage of the base material of the resin-coated metal plate. (5) The can-making method which prevented generation | occurrence | production of the hair.
(7) The method for producing a can preventing hair generation according to the above (1) to (6), wherein the coating resin is a polyester-based resin, a polypropylene-based or a polyethylene-based polymer material.

本発明により、樹脂被覆金属板の製缶工程においてヘアの発生が無い製缶実施可能となり、製品歩留まりの低下や缶体や缶蓋の品質低下の問題も引き起こすことなく製缶作業が実施できるようになった。   According to the present invention, it becomes possible to carry out can making without generation of hair in the can-making process of the resin-coated metal plate, and the can-making operation can be carried out without causing a problem of reduction in product yield and quality of can bodies and can lids. Became.

本発明は少なくとも片面を樹脂被膜で被覆された金属板を用いて、絞り成形、絞りしごき成形を行い金属容器を製造する方法において、絞り成形前或いは絞り成形後に、レーザ照射処理を行い、表面を被覆した樹脂層の一部を除去することを特徴とするヘア発生を防止する製缶方法である。
発明者等は樹脂被覆金属板を製缶する工程でヘアを防止する方策として、予め、ヘアになる部分の樹脂皮膜を除去することが非常に有効であることを知見し、その除去の手段としてレーザを照射することが、効率的であることも知見し、本発明を完成させたものである。
The present invention relates to a method for producing a metal container by drawing and drawing and ironing using a metal plate coated on at least one side with a resin film. It is a can-making method for preventing hair generation, characterized in that a part of a coated resin layer is removed.
As a means for preventing the hair in the process of making a resin-coated metal plate, the inventors have found in advance that it is very effective to remove the resin film of the part that becomes the hair. The inventors have also found that it is efficient to irradiate a laser, and have completed the present invention.

さらに、発明者らは、再絞りやしごき成形に至る前段階であるカップ状態においてカップ上端部の樹脂皮膜を除去することもヘアを防止する方策として非常に有効であり、その除去の手段としてレーザを照射することが、効率的であることを見出した。
ヘアは樹脂被覆金属板が剪断された際に、端面に相当する部分から発生することから、樹脂被覆金属板の状態あるいはカップの状態において端面に相当する部分の樹脂皮膜を除去することにより、ヘアを防止できる。
Furthermore, the inventors have also found that removal of the resin film on the upper end of the cup in the cup state, which is a stage before redrawing and ironing, is also very effective as a measure for preventing hair, and laser is used as a means for removing it. It has been found that it is efficient to irradiate.
Since the hair is generated from the portion corresponding to the end face when the resin-coated metal plate is sheared, the hair is removed by removing the resin film corresponding to the end face in the state of the resin-coated metal plate or the cup. Can be prevented.

樹脂被覆金属板状態でレーザを照射する場合、絞り成形時の剪断線に沿った幅0.1〜10mmのリング状に照射を行う。好ましくは2〜7mmの幅が好ましい。絞り成形時の剪断線と該剪断線より金属板板厚分内側の線との間の領域の少なくとも一部を全周に渡って含む位置が良い。剪断線より板厚程度内側部分のみに照射をした場合でも、剪断時には金属板の変形により、剪断線上の樹脂がスケルトン(金属板を剪断した残りの部分)側に樹脂膜が付着し、効果を発揮することがある。剪断線を全周に渡って含むことが好ましい。(図8参照)カップの状態において端面にレーザを照射する場合、カップの端面全周に渡って幅0.1〜10mmの照射を行う。   When irradiating a laser in a resin-coated metal plate state, irradiation is performed in a ring shape having a width of 0.1 to 10 mm along a shear line at the time of drawing. A width of 2 to 7 mm is preferable. A position including at least a part of a region between the shear line at the time of drawing and a line inside the metal plate by the thickness of the shear line is preferable. Even when only the inner part of the sheet thickness is irradiated from the shear line, the resin on the shear line adheres to the skeleton (remaining part where the metal plate is sheared) due to deformation of the metal plate during shearing. It may be demonstrated. It is preferable to include the shear line over the entire circumference. (Refer FIG. 8) When irradiating a laser to an end surface in the state of a cup, irradiation with a width of 0.1-10 mm is performed over the perimeter of the end surface of a cup.

金属板状態、カップ状態のいずれにおいても、レーザを照射して除去する樹脂皮膜の幅の上限は、最終缶体のトリム長さに影響を及ぼすことになる。10mm超では、ヘア防止の効果は完全に飽和し、トリム長さが長くなり過ぎ、缶体に対する素材のロスが大きくなり過ぎることから好ましくない。下限の0.1mm以下では、ヘア防止の効果が不完全であり好ましくない。好ましくは2〜7mmである。   In both the metal plate state and the cup state, the upper limit of the width of the resin film to be removed by irradiating a laser affects the trim length of the final can body. If it exceeds 10 mm, the effect of preventing hair is completely saturated, the trim length becomes too long, and the loss of the material to the can becomes too large, which is not preferable. If the lower limit is 0.1 mm or less, the effect of preventing hair is incomplete, which is not preferable. Preferably it is 2-7 mm.

また、レーザ照射後に残存する樹脂被膜厚みは0μmつまり完全に除去されていることが最も望ましいが、完全に0μmとならなくとも、ヘア発生防止に効果がある。0〜5μmであることが望ましいが、かなり不完全な除去である5〜10μmでも効果が現れる。これは、通常は薄い樹脂皮膜でも12μm程度の厚みがあるが、レーザにより10μm以下に薄くなっていると、端部がツールでスクイズされる場合に少しでも薄くなっていると樹脂が金属のエッジで切断され難いためと考えられる。   Further, it is most desirable that the resin film thickness remaining after laser irradiation is 0 μm, that is, it is completely removed, but even if it is not completely 0 μm, it is effective in preventing hair generation. Although it is desirable that the thickness is 0 to 5 μm, the effect appears even when 5 to 10 μm, which is a fairly incomplete removal. This is because a thin resin film usually has a thickness of about 12 μm, but if it is thinned to 10 μm or less by a laser, if the edge is squeezed with a tool, the resin will be a metal edge. This is thought to be because it is difficult to be cut.

次にレーザによる樹脂皮膜除去の原理について説明する。レーザ光のエネルギーによって樹脂が溶融・蒸発することにより樹脂皮膜が除去されることになる。従って、レーザエネルギー密度がある一定の強度を超える必要がある。つまり、レーザ光の単位面積当たりのエネルギー密度が樹脂の蒸発・溶融のしきい値を超えていることが必要となる。このエネルギー密度はレーザフルエンスと呼ばれ、パルスレーザを用いる場合はパルスエネルギーをE[J]、集光レーザビームの面積をS〔cm2 〕とすると、フルエンスFは次式で定義される。またその定義を示す図を図1に示す。
F=E/S 〔J/cm2
一般的な樹脂の蒸発・溶融のしきい値レーザフルエンスは1J/cm2 以下である。
さらに、樹脂皮膜の吸収波長のレーザ光を用いることが効率的である。
Next, the principle of resin film removal by laser will be described. The resin film is removed by melting and evaporating the resin by the energy of the laser beam. Therefore, the laser energy density needs to exceed a certain intensity. That is, it is necessary that the energy density per unit area of the laser beam exceeds the resin evaporation / melting threshold. This energy density is called laser fluence. When a pulse laser is used, assuming that the pulse energy is E [J] and the area of the focused laser beam is S [cm 2 ], the fluence F is defined by the following equation. A diagram showing the definition is shown in FIG.
F = E / S [J / cm 2 ]
The threshold laser fluence for general resin evaporation / melting is 1 J / cm 2 or less.
Furthermore, it is efficient to use laser light having an absorption wavelength of the resin film.

図2は、樹脂被覆金属板に用いられる熱可塑性樹脂の代表的なものであるPETフィルム30μm厚の900〜1200cm-1の赤外波長域での光の透過率特性を示す。図2では横軸に波長の逆数である波数〔cm-1〕を取り、縦軸には光の透過率を取ってある。図2から明らかなように、PET樹脂には透過率が著しく減少する吸収率の高い波長(A)〜(F)が存在する。これはPET分子内のC−H、C−O結合等の振動モードと特定波長の赤外光との共鳴吸収によるものである。従って、比較的吸収率の高い波長(A)〜(F)のレーザ光を照射することでPET分子に共鳴的に効率よくエネルギーを供給し、振動的な励起を行うことができる。 FIG. 2 shows light transmittance characteristics in the infrared wavelength region of 900 to 1200 cm −1 of a PET film 30 μm thick, which is a representative thermoplastic resin used for the resin-coated metal plate. In FIG. 2, the horizontal axis represents the wave number [cm −1 ] which is the reciprocal of the wavelength, and the vertical axis represents the light transmittance. As is apparent from FIG. 2, the PET resin has wavelengths (A) to (F) with high absorption at which the transmittance is significantly reduced. This is due to resonance absorption between vibration modes such as C—H and C—O bonds in the PET molecule and infrared light of a specific wavelength. Therefore, by irradiating laser light with wavelengths (A) to (F) having relatively high absorptance, energy can be efficiently supplied to the PET molecules in a resonant manner, and vibrational excitation can be performed.

ここで、入射するレーザ光としてパルス時間幅が短く、またエネルギーが大きく高ピーク出力のパルスレーザ光を用いれば、分子は一瞬のうちに多数の光子(フォトン)を吸収し、多段階に解離レベルまで振動励起され、高いエネルギー状態になる。その結果、分子内で最も結合力の弱い化学結合が切れ、分子は分解し、蒸発する。この様な赤外パルスレーザ光による分子の励起・解離現象は赤外多光子解離と呼ばれている。また、分解した樹脂が蒸発・飛散し、除去される現象はレーザアブレーションと呼ばれている。赤外パルスレーザ光を用いることにより、より効率的に樹脂皮膜除去することが可能である。   Here, if a pulse laser beam having a short pulse time width and a large energy and a high peak output is used as the incident laser beam, the molecule absorbs a large number of photons (photons) in an instant and dissociates in multiple stages. Vibrationally excited to a high energy state. As a result, the chemical bond having the weakest binding force in the molecule is broken, and the molecule is decomposed and evaporated. Such a molecular excitation / dissociation phenomenon by infrared pulsed laser light is called infrared multiphoton dissociation. The phenomenon in which decomposed resin is evaporated and scattered and removed is called laser ablation. By using infrared pulse laser light, it is possible to remove the resin film more efficiently.

次に、レーザアブレーションに要求されるレーザフルエンス〔J/cm2 〕について具体的に説明する。図3はPET樹脂ラミネート鋼板に後述のTEACO2 レーザパルスを照射し、PET樹脂の除去を行った場合のレーザフルエンスと単位パルス当たりの除去深さの関係を示したものである。ここで、レーザ波長は図2において比較的吸収率の大きい波長域(B)に属する波長9.2715μmを使用した。図3から、レーザフルエンスの増加によりレーザアブレーション能力は上昇し、5J/cm2 程度のレーザフルエンスで単位レーザパルス当たり10μm以上の除去が可能であることがわかる。樹脂被覆金属板の樹脂厚は一般に12〜100μm程度であるから、10パルス程度のレーザ照射で樹脂膜の完全除去が可能である。 Next, the laser fluence [J / cm 2 ] required for laser ablation will be specifically described. FIG. 3 shows the relationship between the laser fluence and the removal depth per unit pulse when the PET resin-laminated steel sheet is irradiated with a TEACO 2 laser pulse described later to remove the PET resin. Here, a laser wavelength of 9.2715 μm belonging to the wavelength region (B) having a relatively large absorption rate in FIG. 2 was used. From FIG. 3, it can be seen that the laser ablation ability is increased by the increase of the laser fluence, and it is possible to remove 10 μm or more per unit laser pulse with a laser fluence of about 5 J / cm 2 . Since the resin thickness of the resin-coated metal plate is generally about 12 to 100 μm, the resin film can be completely removed by laser irradiation of about 10 pulses.

また、レーザアブレーションを誘起するには最低限分子の解離エネルギーを供給する必要があるため、樹脂の種類、レーザ波長に依存してレーザアブレーションのレーザフルエンスしきい値が存在する。PET樹脂に波長9.2715μmのレーザ光を使用した場合のしきい値は、図3より約1J/cm2 以下であることが予測される。
次に、本発明で使用するレーザについて説明する。上述した赤外波長域はCO2 レーザの発振波長領域と合致する。従って、パルス発振のCO2 レーザを用いることでレーザアブレーションを誘起できる。また、CO2 レーザは現在最も技術が確立しているレーザの一つであり、本発明の工業的な使用目的には最適である。
In order to induce laser ablation, it is necessary to supply a minimum molecular dissociation energy. Therefore, there is a laser fluence threshold for laser ablation depending on the type of resin and the laser wavelength. It is predicted from FIG. 3 that the threshold value when a laser beam having a wavelength of 9.2715 μm is used for PET resin is about 1 J / cm 2 or less.
Next, the laser used in the present invention will be described. The infrared wavelength region described above matches the oscillation wavelength region of the CO 2 laser. Therefore, laser ablation can be induced by using a pulsed CO 2 laser. In addition, the CO 2 laser is one of the most well-established lasers at present, and is optimal for the industrial use purpose of the present invention.

CO2 レーザは波長9〜11μm(波数900〜1090cm-1)にわたり100本以上の発振線を持ち、回折格子等の波長選択素子を用いることで発振波長を選ぶことが可能である。図2中にCO2 レーザの発振線の模式図を併せて示す。ここで隣合う発振線の間隔は1〜2cm-1程度であるため、樹脂への吸収の大きな波長に合わせて微妙な波長選択が可能である。 The CO 2 laser has 100 or more oscillation lines over a wavelength range of 9 to 11 μm (wave number 900 to 1090 cm −1 ), and the oscillation wavelength can be selected by using a wavelength selection element such as a diffraction grating. FIG. 2 also shows a schematic diagram of the oscillation line of the CO 2 laser. Here, since the interval between the adjacent oscillation lines is about 1 to 2 cm −1 , subtle wavelength selection is possible in accordance with the wavelength that is highly absorbed by the resin.

CO2 レーザにおいてパルス光を得る主な方法には、TEA(Transversely Excited at Atomospheric pressure 横方向励起大気圧動作)法とQスイッチ法とがある。前者は実用レベルではパルス繰り返し能力に限界はあるものの、パルスエネルギーとして10J/pulse以上、ピーク出力としても50MW以上を得ることが可能であることから、単位レーザパルスで比較的広い面積にわたり高いレーザフルエンス領域を得ることが可能である。 The main methods for obtaining pulsed light in a CO 2 laser include a TEA (Transversally Excited at Atmospheric Pressure Lateral Excitation Atmospheric Pressure Operation) method and a Q-switch method. Although the former has a limit in pulse repetition capability at a practical level, it is possible to obtain a pulse energy of 10 J / pulse or more and a peak output of 50 MW or more, so a high laser fluence over a relatively large area with a unit laser pulse. It is possible to obtain a region.

一方、図3から明らかなようにレーザフルエンスの増加により除去される樹脂膜厚も増加することから、TEAレーザは金属板上のある特定点の樹脂を短時間で除去するのに適する。一方、Qスイッチ法はパルスエネルギーとしては一般に1J/pulse以下であり、レーザアブレーションに充分なレーザフルエンスを得るにはレンズ等でレーザビーム断面積を絞り込む必要があり、TEA法に比べると単一パルスでのレーザアブレーション面積は小さくなる。しかしながら、パルス繰り返し周波数として10kHz以上が可能であり、高速での製缶にも対応できる。   On the other hand, as apparent from FIG. 3, the film thickness of the resin to be removed increases as the laser fluence increases. Therefore, the TEA laser is suitable for removing the resin at a specific point on the metal plate in a short time. On the other hand, in the Q switch method, the pulse energy is generally 1 J / pulse or less, and in order to obtain a laser fluence sufficient for laser ablation, it is necessary to narrow the laser beam cross-sectional area with a lens or the like. The laser ablation area becomes smaller. However, the pulse repetition frequency can be 10 kHz or higher, and can be used for high-speed can manufacturing.

ところで、CO2 レーザにおいてパルスレーザを得る他の方法に、連続波レーザの励起放電をパルス変調して得られるパルス発振モードがある。この場合、得られるパルス光のピーク出力は一般的に20kW以下であり、またパルス時間幅も10μsを越えるような長パルスになる。従って、レーザアブレーション除去には通常不適であるとされていた。 By the way, as another method for obtaining a pulse laser in a CO 2 laser, there is a pulse oscillation mode obtained by pulse-modulating an excitation discharge of a continuous wave laser. In this case, the peak output of the obtained pulsed light is generally 20 kW or less, and the pulse time width becomes a long pulse exceeding 10 μs. Therefore, it was usually considered unsuitable for laser ablation removal.

しかし、除去の対称となる樹脂材料のレーザ光の吸収係数が十分に大きい場合には、低ピーク出力でも蒸発除去に十分なエネルギーが樹脂に供給され、且つ樹脂の熱伝動率が十分小さい条件においては、長パルスレーザ光でも周辺部に熱影響を与えずにシャープな断面を持つ除去が可能であることが判明した。例えばPET樹脂、またはそれに若干の添加物を含むようなポリエチレン系の高分子材料はCO2 レーザに対する吸収は図2に示すように非常に大きく、また熱伝導率は約0.37W/m・Kと小さい。その結果、連続波レーザのパルス変調モードでもきれいな除去断面を持つ除去加工が可能である。 However, if the absorption coefficient of the laser beam of the resin material that is symmetrical to be removed is sufficiently large, sufficient energy is supplied to the resin for evaporation removal even at a low peak output, and the heat transfer coefficient of the resin is sufficiently small. It was found that even a long pulse laser beam can be removed with a sharp cross section without affecting the periphery. For example, a polyethylene-based polymer material containing a PET resin or some additives therein has a very large absorption with respect to a CO 2 laser as shown in FIG. 2, and a thermal conductivity of about 0.37 W / m · K. And small. As a result, removal processing with a clean removal cross section is possible even in the pulse modulation mode of a continuous wave laser.

更に、ある一定以上のフルエンスが得られるのであれば、連続波レーザも適用可能である。連続波レーザの場合のフルエンスF〔J/mm2 〕の定義は、連続波レーザの平均パワーをP〔W〕=〔J/s〕、レーザビームの走査速度をV〔cm/s〕集光ビーム形状をd1 、d2 〔cm〕、ビーム面積をS=π/4(d1 ×d2 )(←楕円の面積)とした時、次式で定義される。また説明図を図4に示す。
F=(P/S)×(d2 /V)
Furthermore, a continuous wave laser is also applicable if a certain fluence or more can be obtained. The definition of the fluence F [J / mm 2 ] in the case of a continuous wave laser is as follows: the average power of the continuous wave laser is P [W] = [J / s], and the scanning speed of the laser beam is V [cm / s]. When the beam shape is d 1 , d 2 [cm] and the beam area is S = π / 4 (d 1 × d 2 ) (← the area of the ellipse), it is defined by the following equation. An explanatory diagram is shown in FIG.
F = (P / S) × (d 2 / V)

次に、レーザ照射の方法について述べる。図5は本発明の樹脂被覆金属板へのレーザ照射例の説明図である。環状のレーザ照射は(例えば)レーザビームを円周スキャン照射することで実現される。図示されないCO2 レーザ装置から出力されたレーザビームは、2枚のスキャニングミラーによって反射される。反射ビームはfθレンズでラミネート鋼板に集光される。ここで2枚のスキャニングミラーは図示されないガルバノモータによって、それぞれ直交する方向に振動し、その振動角度を電気的に制御することで、照射平面上でレーザビームは円環状に走査することができる。 Next, a laser irradiation method will be described. FIG. 5 is an explanatory view of an example of laser irradiation to the resin-coated metal plate of the present invention. The annular laser irradiation is realized by (for example) circumferential scanning irradiation of a laser beam. A laser beam output from a CO 2 laser device (not shown) is reflected by two scanning mirrors. The reflected beam is focused on the laminated steel plate by the fθ lens. Here, the two scanning mirrors vibrate in directions orthogonal to each other by a galvano motor (not shown), and the vibration angle is electrically controlled, so that the laser beam can be scanned in an annular shape on the irradiation plane.

図6は本発明のカップ成形後にカップの上部へレーザ照射例の説明図である。図5と同様にレーザ光側を走査させる例である。缶内壁への入射のためレーザビームは斜角入射となり、その分、照射パワー密度は低下するが、入射パワーの増加、スキャン速度の低減等により、平板での除去と同様の除去が可能である。この例とは別に、レーザ照射位置を固定してカップを走査(回転)させることも可能である。
いずれの方法も、パルスレーザを用いる場合は、ビームの走査速度とパルス繰り返し周波数を適宜調整することで、所望の厚みの樹脂を除去することができる。また、連続波レーザを使用する際も、やはり前述の式に従い、パワー、走査速度、集光形状を適宜調整してフルエンスを制御して、所望の除去を行うものである。
FIG. 6 is an explanatory view of an example of laser irradiation to the upper part of the cup after the cup molding of the present invention. It is an example which scans the laser beam side similarly to FIG. The laser beam is incident at an oblique angle due to incidence on the inner wall of the can, and the irradiation power density is reduced by that amount, but removal similar to that on a flat plate is possible by increasing the incident power and reducing the scanning speed. . Apart from this example, it is also possible to scan (rotate) the cup with the laser irradiation position fixed.
In either method, when a pulse laser is used, the resin having a desired thickness can be removed by appropriately adjusting the beam scanning speed and the pulse repetition frequency. Also, when using a continuous wave laser, the desired removal is performed by controlling the fluence by appropriately adjusting the power, the scanning speed, and the condensing shape according to the above formula.

以上説明したように、レーザ光を用いることにより樹脂被覆金属板の任意の位置の樹脂皮膜を短時間で除去することができる。
本発明においては、レーザ照射で除去される樹脂は蒸発気化するため、機械的な削り取りで問題となった樹脂の切削屑発生の問題がない。更に、レーザ被照射部付近にアシストガスを吹き付けることで飛散した樹脂を速やかにレーザ光路上から除くことが可能であるため、飛散樹脂によるレーザ光の吸収その他除去された樹脂に起因する問題も容易に解決できる。
As described above, the resin film at an arbitrary position of the resin-coated metal plate can be removed in a short time by using laser light.
In the present invention, since the resin removed by laser irradiation evaporates, there is no problem of generation of resin cutting waste that has been a problem in mechanical scraping. Furthermore, since the scattered resin can be quickly removed from the laser beam path by spraying the assist gas near the laser irradiated part, problems such as absorption of the laser beam by the scattered resin and other removed resin are also easy. Can be solved.

また、樹脂のレーザアブレーションしきい値レーザフルエンスは1J/cm2 以下であり、また数J/cm2 程度で充分なレーザアブレーション能力があるが、この様な低レーザフルエンスはメッキ等の下地表面処理のダメージしきい値以下である。従って、本発明ではレーザフルエンスを適当に選ぶことで下地表面処理にダメージを与えることなく、表層の樹脂のみを選択的に除去することができる。 Also, the laser ablation threshold laser fluence of the resin is 1 J / cm 2 or less, and several J / cm 2 is sufficient for laser ablation. However, such low laser fluence is a surface treatment such as plating. Below the damage threshold. Therefore, in the present invention, by appropriately selecting the laser fluence, only the surface resin can be selectively removed without damaging the base surface treatment.

金属板は樹脂との密着性としごき加工性能が確保されるものであれば、特に規定するものではないが、容器用金属帯で従来から幅広く適用されている手法として、密着性確保のためにクロム酸、重クロム酸、燐酸、有機酸等であらかじめ表面処理しておくことが望ましい。適用例としては、アルミニウム、アルミニウム合金、ティンフリー、クロムメッキ鋼板、ニッケルメッキ鋼板、燐酸処理鋼板、有機燐酸樹脂処理鋼板、錫メッキ鋼板、錫ニッケルメッキ鋼板がある。
ここではPET樹脂の除去を例にとり説明したが、図7に示すようにPP樹脂においても赤外波長域に吸収を持つ。従って、PPその他樹脂被覆金属板に使用される樹脂で赤外波長域に吸収を持つ樹脂の除去にも採用可能である。また、塗装金属板に対しても採用可能である。
The metal plate is not particularly defined as long as it can adhere to the resin and ensure ironing performance, but as a technique widely applied to metal strips for containers, It is desirable to perform surface treatment with chromic acid, dichromic acid, phosphoric acid, organic acid or the like in advance. Application examples include aluminum, aluminum alloys, tin-free, chromium-plated steel sheets, nickel-plated steel sheets, phosphoric acid-treated steel sheets, organophosphoric acid resin-treated steel sheets, tin-plated steel sheets, and tin-nickel plated steel sheets.
Here, the removal of the PET resin has been described as an example, but the PP resin also has absorption in the infrared wavelength region as shown in FIG. Therefore, the resin used for PP and other resin-coated metal plates can be used to remove a resin having absorption in the infrared wavelength region. It can also be applied to painted metal plates.

以下、実施例にて、本発明の方法の効果を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお本実施例で行った成型法・評価法は以下の通りである。 (1)絞りしごき缶成型はブランク径142mmでブランキングドローを行い、1st絞り比1.6でカップを成型後、2nd絞り比1.3で再絞りし、3工程のしごき成形を行い、缶胴径65.8mmの絞りしごき缶を成形した。再絞りと3工程のしごき成形の成形速度は100cpmである。総しごき率は30、45、66.7%の3条件とした。
(2)缶蓋の成形はブランク径85mmでブランキングドローを行い、φ200の缶蓋を成形した。
(3)ヘアの評価方法は、3工程のしごき成形後に、缶体端面を目視観察し、ヘアの有無を評価した。
(4)樹脂皮膜厚みは金属板を塩酸で溶解し、単離したフィルムの厚みをマイクロメーターで測定した。
Hereinafter, the effects of the method of the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto. The molding method / evaluation method performed in this example is as follows. (1) For drawing and ironing can molding, blank drawing is performed with a blank diameter of 142mm, a cup is molded with a first drawing ratio of 1.6, then redrawing with a 2nd drawing ratio of 1.3, and ironing is performed in three steps. A drawn and ironed can with a body diameter of 65.8 mm was formed. The forming speed of redrawing and three-step ironing is 100 cpm. The total ironing rate was three conditions of 30, 45, and 66.7%.
(2) The can lid was formed by blanking draw with a blank diameter of 85 mm to form a can lid of φ200.
(3) The hair evaluation method evaluated the presence or absence of hair by visually observing the end face of the can body after the ironing forming in three steps.
(4) The resin film thickness was obtained by dissolving a metal plate with hydrochloric acid and measuring the thickness of the isolated film with a micrometer.

(実施例1)
図5により実施例1について説明する。
樹脂被覆金属板1には、母材として厚さ0.23mmの電解クロム酸処理鋼板を用いた。金属クロムの付着量は110mg/m2 、水和酸化クロムの付着量は金属クロムに換算して15mg/m2 である。この鋼板片面に25μmPETフィルムを他の片面に15μmmPETフィルムを熱ラミ法によりラミネートとした。この樹脂被覆金属板の両面に内径がφ137mm、外径がφ146mmの環状に赤外パルスレーザを表裏の中心が一致するように照射した。赤外パルスレーザ装置2にはTEACO2 レーザを用いた。パルスエネルギーは2.5J/pulseであり、ピーク出力は約20MWである。本レーザ装置はレーザ共振器の全反射ミラーを波長選択素子としての回折格子に置き換え、レーザ発振波長の選択が可能である。
(Example 1)
Example 1 will be described with reference to FIG.
For the resin-coated metal plate 1, an electrolytic chromic acid-treated steel plate having a thickness of 0.23 mm was used as a base material. The adhesion amount of metallic chromium is 110 mg / m 2 , and the adhesion amount of hydrated chromium oxide is 15 mg / m 2 in terms of metallic chromium. A 25 μm PET film was laminated on one side of the steel plate and a 15 μm PET film was laminated on the other side by a thermal lamination method. Both surfaces of this resin-coated metal plate were irradiated with an infrared pulse laser in an annular shape having an inner diameter of φ137 mm and an outer diameter of φ146 mm so that the front and back centers coincided. A TEACO 2 laser was used as the infrared pulse laser device 2. The pulse energy is 2.5 J / pulse and the peak power is about 20 MW. In this laser apparatus, the total reflection mirror of the laser resonator is replaced with a diffraction grating as a wavelength selection element, and the laser oscillation wavelength can be selected.

本実施例では、図2のPETの赤外光透過率特性において比較的光の吸収係数の高い波長域(B)に属する波長9.2715μm(波数1078.57cm-1)にレーザ発振波長を選択した。図5に示すようにレーザビームを円周スキャン照射した。図示されないCO2 レーザ装置から出力されたビームは、2枚のスキャニングミラーによって反射させ、反射ビームはfθレンズで樹脂被覆金属板に集光され、ここで2枚のスキャニングミラーは図示されないガルバノモータによって、それぞれ直交する方向に振動し、その振動角度を電気的に制御することで、照射平面上でレーザビームは円環状に走査した。なお、レーザフルエンスはレーザアブレーションが充分起こり得る3.6J/cm2 に調整した。照射部分の樹脂皮膜はほぼ完全蒸発除去されていた。前述の、成形条件で、100缶缶体を成形し、ヘアの発生状況を評価したところ全く発生は観察されなかった。 In this embodiment, the laser oscillation wavelength is selected at a wavelength of 9.2715 μm (wave number 1078.57 cm −1 ) belonging to the wavelength region (B) having a relatively high light absorption coefficient in the infrared light transmittance characteristics of PET in FIG. did. As shown in FIG. 5, the laser beam was irradiated with a circumferential scan. A beam output from a CO 2 laser device (not shown) is reflected by two scanning mirrors, and the reflected beam is focused on a resin-coated metal plate by an fθ lens. By oscillating in directions orthogonal to each other and electrically controlling the oscillation angle, the laser beam was scanned in an annular shape on the irradiation plane. The laser fluence was adjusted to 3.6 J / cm 2 at which laser ablation can occur sufficiently. The resin film on the irradiated part was almost completely removed by evaporation. When 100 cans were molded under the molding conditions described above and the occurrence of hair was evaluated, no generation was observed.

(実施例2)カップへのレーザ照射の例を示す。使用カップは両面に付着量500mg/m2 のNiめっきを行った後、電解クロム酸処理を行った表面処理鋼板の片面にアルミ顔料入りに厚み3μmの塗装を施し、他の片面には25μ厚みのPET樹脂フィルムを積層した鋼板から作成した。なお、カップの径は85mmで、PET樹脂フィルム積層面をカップの内面とした。図6は構成装置の例であり、レーザ光としてQスイッチCO2 レーザを用いてカップ内面の上端部に連続的に一定幅レーザ照射した。パルスエネルギーは100mJ/pulse、ピーク出力は350kWである。レーザ波長は実施例1と同様に波長9.2715μm(波数1078.57cm-1)に選択した。 (Example 2) An example of laser irradiation to a cup is shown. The used cup was plated with Ni of 500 mg / m 2 on both sides, then coated with aluminum pigment on one side of the surface-treated steel sheet that had been subjected to electrolytic chromic acid treatment, and 25 μm thick on the other side. It produced from the steel plate which laminated | stacked this PET resin film. In addition, the diameter of the cup was 85 mm, and the PET resin film lamination surface was used as the inner surface of the cup. FIG. 6 shows an example of a configuration apparatus, in which a Q-switched CO 2 laser is used as laser light, and the upper end portion of the cup inner surface is continuously irradiated with a constant width laser. The pulse energy is 100 mJ / pulse and the peak output is 350 kW. The laser wavelength was selected to be a wavelength of 9.2715 μm (wave number 1078.57 cm −1 ) as in Example 1.

レーザビームをカップ高さ方向の径を5mm、円周方向の径を0.8mmの楕円径に調整し、照射位置でレーザアブレーションしきい値を越えるレーザフルエンスが得られている。また、レーザパルスの繰り返し周波数は6.25kHzに調整し、照射速度30m/minにおいて同一位置に10パルス以上のレーザ光が照射される設定とした。照射速度30m/minになるようにカップを回転させながらカップの上端から4.5mmの部分に照射した。照射部分の樹脂皮膜はほぼ完全蒸発除去されていた。前述の、成形条件で、カップ成形以降の100缶缶体を成形し、ヘアの発生状況を評価したところ全く発生は観察されなかった。   A laser fluence exceeding the laser ablation threshold at the irradiation position is obtained by adjusting the laser beam to an elliptical diameter of 5 mm in the cup height direction and 0.8 mm in the circumferential direction. Further, the repetition frequency of the laser pulse was adjusted to 6.25 kHz, and the laser beam of 10 pulses or more was irradiated to the same position at the irradiation speed of 30 m / min. While rotating the cup so that the irradiation speed was 30 m / min, the 4.5 mm portion was irradiated from the upper end of the cup. The resin film on the irradiated part was almost completely removed by evaporation. 100 cans after cup molding were molded under the molding conditions described above, and the occurrence of hair was evaluated, and no generation was observed.

(実施例3)
連続波CO2 レーザのパルス変調発振モードを用いて、図5と同じ照射装置で両面に付着量500mg/m2 のNiめっきを行った後、電解クロム酸処理を行った表面処理鋼板の片面にアルミ顔料入りに厚み3μmの塗装を施し、他の片面には25μ厚みのPET樹脂フィルムを積層した鋼板のPET樹脂フィルム面にレーザ照射を行った。使用したパルスレーザのピーク出力は6.4kW、パルスエネルギーは100mJ、パルス時間幅は25μs、パルス繰り返し周波数は5kHzである。レーザ波長、レーザビームをレーザの進行方向の径を0.4mm、直角方向の径を0.2mmの楕円径に調整した。照射速度は30m/minであり、同一点への入射パルス数は約10パルスである。外径141.9mmで内径141.5mmのリング状に照射した。照射部分の樹脂皮膜はほぼ完全蒸発除去されていた。前述の、成形条件でPET樹脂フィルム面が缶内面となるように、かつ、カップの成形時に、レーザ照射時に想定していたカップの剪断線が、一致するようにカップの成形を行ない、100缶缶体を成形し、ヘアの発生状況を評価したところ全く発生は観察されなかった。
(Example 3)
Using the pulse modulation oscillation mode of the continuous wave CO 2 laser, after applying Ni plating with an adhesion amount of 500 mg / m 2 on both sides with the same irradiation device as in FIG. 5, on one side of the surface-treated steel sheet subjected to electrolytic chromic acid treatment Laser irradiation was performed on the PET resin film surface of a steel sheet in which a 3 μm thick coating was applied with an aluminum pigment and a 25 μm thick PET resin film was laminated on the other side. The peak output of the used pulse laser is 6.4 kW, the pulse energy is 100 mJ, the pulse time width is 25 μs, and the pulse repetition frequency is 5 kHz. The laser wavelength and laser beam were adjusted to an elliptical diameter of 0.4 mm in the laser traveling direction and 0.2 mm in the perpendicular direction. The irradiation speed is 30 m / min, and the number of incident pulses to the same point is about 10 pulses. Irradiation was performed in a ring shape having an outer diameter of 141.9 mm and an inner diameter of 141.5 mm. The resin film on the irradiated part was almost completely removed by evaporation. The cup is molded so that the PET resin film surface becomes the inner surface of the can under the molding conditions described above, and the cup shear line assumed at the time of laser irradiation coincides when the cup is molded. When a can body was molded and the occurrence of hair was evaluated, no occurrence was observed.

(実施例4)
連続波CO2 レーザのパルス変調発振モードを用いて、図6と同じ照射装置で、片面に12μ厚のPET樹脂フィルムを他の片面に25μm厚のポリプロピレン系の樹脂フィルムを被覆したアルミ板(板厚0.32)を成形して作成したカップの両面にレーザ照射した。使用したパルスレーザのピーク出力は6.4kW、パルスエネルギーは100mJ、パルス時間幅は25μs、パルス繰り返し周波数は5kHzである。レーザビームをカップ高さ方向の径を10mm、円周方向の径を0.8mmの楕円径に調整し、照射速度は30m/minであり、同一点への入射パルス数は約10パルスである。
Example 4
Using pulse modulation oscillation mode of a continuous wave CO 2 laser, with the same irradiation apparatus and FIG. 6, an aluminum plate (plate coated with a resin film of polypropylene of 25μm thick the PET resin film of 12μ thickness on one side to the other single-sided Laser irradiation was performed on both sides of a cup formed by molding a thickness of 0.32). The peak output of the used pulse laser is 6.4 kW, the pulse energy is 100 mJ, the pulse time width is 25 μs, and the pulse repetition frequency is 5 kHz. The laser beam is adjusted to an elliptical diameter of 10 mm in the cup height direction and 0.8 mm in the circumferential direction, the irradiation speed is 30 m / min, and the number of incident pulses to the same point is about 10 pulses. .

照射部分の樹脂皮膜はPETフィルム面側がほぼ完全蒸発除去されていたが、ポリプロピレン系の樹脂フィルム側は10点平均で8μm程樹脂皮膜が残存していた。前述の、成形条件で成形条件でPET樹脂フィルム面が缶外面となるように、かつ、カップの成形時に、レーザ照射時に想定していたカップの剪断線が、一致するようにカップの成形を行い、100缶缶体を成形し、ヘアの発生状況を評価したところ全く発生は観察されなかった。   The resin film of the irradiated portion was almost completely evaporated and removed on the PET film surface side, but the resin film remained on the polypropylene resin film side on the average of 10 points by about 8 μm. The cup is molded so that the PET resin film surface is the outer surface of the can under the molding conditions described above, and the cup shear line assumed at the time of laser irradiation coincides when the cup is molded. , 100 cans were molded, and the occurrence of hair was evaluated, and no occurrence was observed.

(実施例5)
樹脂被覆金属板には、母材として厚さ0.19mmの電解クロム酸処理鋼板を用いた。金属クロムの付着量は110mg/m2 、水和酸化クロムの付着量は金属クロムに換算して15mg/m2 である。この鋼板片面に5μmmの塗装を行った後、他の片面に12μmPETフィルムを熱ラミ法によりラミネートした。この樹脂被覆金属板のPET面に内径がφ83mm、外径がφ86mmの環状に赤外パルスレーザを実施例1と同様に照射した。照射部分の樹脂皮膜はほぼ完全蒸発除去されていた。
前述の、成形条件でPET樹脂フィルム面が缶内面となるように、かつ、缶蓋の成形時に、レーザ照射時に想定していた缶蓋ブランクの剪断線が、一致するように缶蓋の成形を行い、100缶缶体を成形し、ヘアの発生状況を評価したところ全く発生は観察されなかった。
(Example 5)
For the resin-coated metal plate, an electrolytic chromate-treated steel plate having a thickness of 0.19 mm was used as a base material. The adhesion amount of metallic chromium is 110 mg / m 2 , and the adhesion amount of hydrated chromium oxide is 15 mg / m 2 in terms of metallic chromium. After coating 5 μmm on one side of the steel plate, a 12 μm PET film was laminated on the other side by a thermal lamination method. In the same manner as in Example 1, the resin-coated metal plate was irradiated with an infrared pulse laser in a ring shape having an inner diameter of φ83 mm and an outer diameter of φ86 mm. The resin film on the irradiated part was almost completely removed by evaporation.
The can lid is molded so that the PET resin film surface becomes the inner surface of the can under the molding conditions described above, and the shear line of the can lid blank, which was assumed at the time of laser irradiation, coincides when the can lid is molded. When 100 cans were molded and the occurrence of hair was evaluated, no occurrence was observed.

パルスレーザの場合のフルエンス説明図である。It is fluence explanatory drawing in the case of a pulse laser. PET樹脂の赤外光透過特性を示す図である。It is a figure which shows the infrared-light transmission characteristic of PET resin. PET樹脂膜のTEACO2 レーザによるレーザアブレーションに於けるレーザフルエンスと単一パルスによるPET樹脂膜除去深さの関係を示す図である。It is a diagram showing the relationship between the PET resin film removal depth of the laser ablation by TEACO 2 laser according to at laser fluence and the single pulse of the PET resin film. 連続波レーザの場合のフルエンス説明図である。It is fluence explanatory drawing in the case of a continuous wave laser. 本発明の樹脂被覆金属板にレーザを照射する製缶方法に用いる装置の構成図である。It is a block diagram of the apparatus used for the can manufacturing method which irradiates a laser to the resin coating metal plate of this invention. 本発明の樹脂被覆金属板からなるカップの上端にレーザを照射する製缶方法に用いる装置の構成図である。It is a block diagram of the apparatus used for the can manufacturing method which irradiates a laser to the upper end of the cup which consists of a resin coating metal plate of this invention. PP樹脂の赤外光透過特性を示す図である。It is a figure which shows the infrared-light transmission characteristic of PP resin. 本発明のレーザ照射位置の例を示す図である。It is a figure which shows the example of the laser irradiation position of this invention.

Claims (7)

少なくとも片面を樹脂被膜で被覆された金属板を剪断後、絞り成形、絞りしごき成形を行い金属容器を製造するに際し、絞り成形前或いは絞り成形後に、レーザ照射処理を行い、剪断部近傍の樹脂層の少なくとも一部を除去することを特徴とするヘア発生を防止した製缶方法。 Resin layer near the sheared part is subjected to laser irradiation treatment before or after drawing, when producing a metal container by shearing a metal plate coated with a resin coating on at least one side and then drawing and drawing and ironing. A can-making method in which hair generation is prevented, wherein at least a part of the hair is removed. 絞り成形前にレーザ照射する場合は、少なくとも金属板の片面に、絞り成形時の剪断線と該剪断線より金属板板厚分内側の線との間の領域の少なくとも一部を全周に渡って含み、0.1〜10mm幅のリング状にレーザ照射を行なって、金属板表面樹脂層の少なくとも一部を除去し、剪断を受ける部分に残存した樹脂被膜厚みを0〜10μmとすることを特徴とする請求項1記載のヘア発生を防止した製缶方法。 When laser irradiation is performed before drawing, at least a part of the area between the shear line at the time of drawing and the line inside the thickness of the metal plate from the shear line is spread over the entire circumference on at least one side of the metal plate. In this case, laser irradiation is performed in a ring shape having a width of 0.1 to 10 mm to remove at least a part of the resin layer on the metal plate surface, and the thickness of the resin film remaining on the portion subjected to shearing is set to 0 to 10 μm. The can manufacturing method which prevented hair generation | occurrence | production of Claim 1 characterized by the above-mentioned. 絞り成形後にレーザ照射する場合は、少なくとも絞り成形された金属カップの片面に、カップ上端部を含み、上端より0.1〜10mm幅にレーザ照射を行なうことにより、金属カップ表面樹脂層の少なくとも一部を除去し、カップ上端部に残存した樹脂被膜厚みを0〜10μm以下とすることを特徴とする請求項1記載のヘア発生を防止した製缶方法。 When the laser irradiation is performed after the drawing, at least one of the resin layers on the metal cup surface is formed by performing laser irradiation at least on one side of the drawn metal cup including a cup upper end and a width of 0.1 to 10 mm from the upper end. The can manufacturing method according to claim 1, wherein the thickness of the resin film remaining on the upper end of the cup is 0 to 10 μm or less. 前記レーザ光が樹脂の赤外域の吸収を示す波長で発振するCO2 レーザ光であることを特徴とする請求項1〜3記載のヘア発生を防止した製缶方法。 The can manufacturing method according to claim 1, wherein the laser beam is a CO 2 laser beam that oscillates at a wavelength indicating absorption in the infrared region of the resin. 前記レーザ光が樹脂の赤外域の吸収を示す波長で発振するTEAまたはQスイッチCO2 レーザ、または連続波CO2 レーザのパルス変調発振モード、または連続波CO2 レーザであることを特徴とする請求項1〜4記載のヘア発生を防止した製缶方法。 Claims, characterized in that the laser light is TEA, or Q-switched CO 2 laser or a continuous wave CO 2 laser pulse modulation oscillation mode, or a continuous wave CO 2 laser oscillates at a wavelength showing an absorption in the infrared region of the resin Item 5. A can-making method in which hair generation is prevented. 前記レーザ光でありレーザフルエンスが樹脂の蒸発気化しきい値以上であり、且つ樹脂被覆金属板の母材の表面ダメージのしきい値以下であることを特徴とする請求項1〜5記載のヘア発生を防止した製缶方法。 6. The hair according to claim 1, wherein the laser light has a laser fluence that is not less than a threshold value for vaporization of the resin and not more than a threshold value for surface damage of the base material of the resin-coated metal plate. A can-making method that prevents generation. 被覆樹脂がポリエステル系樹脂、ポリプロピレン系またはポリエチレン系の高分子材料であることを特徴とする請求項1〜6記載のヘア発生を防止した製缶方法。
The can-making method according to claim 1, wherein the coating resin is a polyester-based resin, a polypropylene-based or a polyethylene-based polymer material.
JP2004116306A 2004-04-12 2004-04-12 A can-making method that prevents hair generation Expired - Fee Related JP4336238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116306A JP4336238B2 (en) 2004-04-12 2004-04-12 A can-making method that prevents hair generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116306A JP4336238B2 (en) 2004-04-12 2004-04-12 A can-making method that prevents hair generation

Publications (2)

Publication Number Publication Date
JP2005296998A true JP2005296998A (en) 2005-10-27
JP4336238B2 JP4336238B2 (en) 2009-09-30

Family

ID=35329178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116306A Expired - Fee Related JP4336238B2 (en) 2004-04-12 2004-04-12 A can-making method that prevents hair generation

Country Status (1)

Country Link
JP (1) JP4336238B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013666A1 (en) 2009-07-28 2011-02-03 新日本製鐵株式会社 Laser treatment device and container-producing device
JP2011194549A (en) * 2010-03-24 2011-10-06 Nisshin Steel Co Ltd Shearing method for coated steel plate
US9011609B2 (en) 2008-03-26 2015-04-21 Jfe Steel Corporation Ironing method and ironing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9011609B2 (en) 2008-03-26 2015-04-21 Jfe Steel Corporation Ironing method and ironing apparatus
WO2011013666A1 (en) 2009-07-28 2011-02-03 新日本製鐵株式会社 Laser treatment device and container-producing device
JP4719321B2 (en) * 2009-07-28 2011-07-06 新日本製鐵株式会社 Laser processing apparatus and container manufacturing apparatus
CN102470485A (en) * 2009-07-28 2012-05-23 新日本制铁株式会社 Laser treatment device and container-producing device
CN102470485B (en) * 2009-07-28 2014-12-31 新日铁住金株式会社 Laser treatment device and container-producing device
US9221123B2 (en) 2009-07-28 2015-12-29 Nippon Steel & Sumitomo Metal Corporation Laser processing apparatus and container manufacturing apparatus
JP2011194549A (en) * 2010-03-24 2011-10-06 Nisshin Steel Co Ltd Shearing method for coated steel plate

Also Published As

Publication number Publication date
JP4336238B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP6552717B2 (en) How to cut a thin glass layer
JP6705014B2 (en) Method and apparatus for cutting sapphire
Neuenschwander et al. Processing of metals and dielectric materials with ps-laserpulses: results, strategies, limitations and needs
US20070090100A1 (en) Glass cutting method and apparatus therefor
JP6064228B2 (en) Laser cutting apparatus and laser cutting method
CN108235694B (en) Method and device for blackening surface laser light, in which the laser light has a specific power density and/or a specific pulse duration
US6540952B2 (en) Laser ablation of multiple layers
EP0001198B1 (en) Process for the manufacture of articles by the thermoforming of aluminium or magnesium or of aluminium or magnesium base alloys
JP4336238B2 (en) A can-making method that prevents hair generation
JPWO2016208686A1 (en) Cutting device
JP2001300749A (en) Method of laser beam machining, method of manufacturing work with laser beam, and method of cleaning
JP4879644B2 (en) Resin-coated seamless can manufacturing method and apparatus
CN112689549A (en) Method for preparing aluminum metal part for welding
JPH07290258A (en) Production of laminated steel plate for welding
Semaltianos et al. Picosecond laser ablation of nickel-based superalloy C263
AU2016225787A1 (en) Method of removing a coating made of an organic material adhering to the surface of tin-plated sheet steel
WO1998002261A1 (en) Welding packaging containers
JP2006110597A (en) Can manufacturing method for preventing film hair
JP2005034865A (en) Apparatus and method for working roll
JP4811745B2 (en) Cutting edge processing method, blade member, punching die manufacturing method and punching die
JP4954396B2 (en) Method for forming easy-opening means and method for manufacturing pouch with easy-opening means formed
JP6428450B2 (en) Method and apparatus for remote laser cutting of thin steel sheet
JP3262060B2 (en) Easy tearable packaging bag and its manufacturing method
JP4469237B2 (en) Canning equipment to prevent hair generation
Raciukaitis et al. Micro-machining of silicon and glass with picosecond lasers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4336238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees