JP2005294681A - Bonding wire for semiconductor element, and manufacturing method thereof - Google Patents

Bonding wire for semiconductor element, and manufacturing method thereof Download PDF

Info

Publication number
JP2005294681A
JP2005294681A JP2004109853A JP2004109853A JP2005294681A JP 2005294681 A JP2005294681 A JP 2005294681A JP 2004109853 A JP2004109853 A JP 2004109853A JP 2004109853 A JP2004109853 A JP 2004109853A JP 2005294681 A JP2005294681 A JP 2005294681A
Authority
JP
Japan
Prior art keywords
bonding wire
wire
mass ppm
bonding
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004109853A
Other languages
Japanese (ja)
Inventor
Hideyuki Yamashita
秀幸 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004109853A priority Critical patent/JP2005294681A/en
Publication of JP2005294681A publication Critical patent/JP2005294681A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012033N purity grades, i.e. 99.9%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Extraction Processes (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a bonding wire for semiconductor elements wherein the rectilinear advance quality, the elongation percentage, and the tensile strength of the bonding wire are excellent, and its leaning faultiness can be suppressed. <P>SOLUTION: In the wire-diameter contracting and wire drawing works of a bonding wire, the area degression factors of the dies of the respective works are set to 5-25%, and the bonding wire is subjected to the wire-diameter contracting and wire drawing works under the condition of the difference between the maximum and minimum values of the area degression factors being not larger than 12%. Further, a mean area degression factor, an annealing speed in a final continuous anneal, and a furnace length satisfy the relation of the annealing speed (m/min)≤ the furnace length (cm)/(the mean area degression factor (%)/5)<SP>2</SP>. Hereupon, it is desirable to add to the bonding wire Be of 2-15 mass ppm and rare earth elements of 10-50 mass ppm in total of them. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体素子上の電極と、パッケージ等の外部電極とを、電気的に接続するために用いる半導体素子用ボンディングワイヤおよびその製造方法に関する。   The present invention relates to a bonding wire for a semiconductor element used for electrically connecting an electrode on a semiconductor element and an external electrode such as a package, and a method for manufacturing the same.

従来、半導体素子上の電極と、外部リードとを電気的に接続するために用いられるボンディングワイヤは、溶解および鋳造した後に、ロール加工を施して、所定組成のワイヤ鋳造材を作製し、ダイヤモンドダイス等によって、例えば15μmφや30μmφなどの所定線径まで縮径伸線加工を施し、さらに、最終連続焼鈍により加工歪みを除去して製造されている。   Conventionally, a bonding wire used to electrically connect an electrode on a semiconductor element and an external lead is melted and cast, and then subjected to roll processing to produce a wire casting material having a predetermined composition. For example, the diameter is reduced and drawn to a predetermined wire diameter such as 15 μmφ or 30 μmφ, and the processing strain is removed by final continuous annealing.

このようにして製造されるボンディングワイヤは、半導体素子並びにパッケージのサイズの小型縮小化に対応させるため、細線化と共に、より高い引張強度の実現が図られてきた。すなわち、半導体素子が小さくなると、素子上の電極も小さくなるため、小さくなった電極に合わせて、ワイヤボンディングの際にボンディングワイヤの先端に溶融形成されるボールのサイズも小さくしなければならない。そのため、ボンディングワイヤの線径も細線化しなければならず、細くなったボンディングワイヤの断線を防止するために、単位面積当たりの引張強度を20kg/mm2に高めることが必要である。 The bonding wires manufactured in this way have been made to realize higher tensile strength as well as thinning in order to cope with the reduction in size of semiconductor elements and packages. That is, as the semiconductor element becomes smaller, the electrodes on the element also become smaller. Therefore, the size of the ball that is melt-formed at the tip of the bonding wire at the time of wire bonding must be reduced in accordance with the reduced electrode. Therefore, the wire diameter of the bonding wire must also be reduced, and the tensile strength per unit area needs to be increased to 20 kg / mm 2 in order to prevent disconnection of the thinned bonding wire.

近年、半導体素子の高集積化並びにパッケージの小型縮小化の進行に伴って、ワイヤ間隔(ボンディングピッチ)が狭まり、また、ボンディングワイヤのループ長も4mmや5mmのように長くなってきた。このため、角度にして極めて小さな曲がりやリーニングであっても、隣り合うボンディングワイヤ同士が接触し易くなり、ショート不良が多発するという問題が発生している。   In recent years, with the progress of high integration of semiconductor elements and miniaturization of packages, the wire interval (bonding pitch) has been narrowed, and the loop length of the bonding wire has become as long as 4 mm or 5 mm. For this reason, even if it is an extremely small bend or leaning at an angle, adjacent bonding wires are likely to come into contact with each other, causing a problem that short-circuit defects frequently occur.

リーニング不良とは、図1に示すように、ワイヤボンディング後のボンディングワイヤ(1)をループの伸長方向から観察したときに、半導体素子(4)のパッドに接着したボール(2)の直上の部分であるボール直上部(3)から上方が横方向に傾斜し、傾斜したループ上部(1a)が、隣接するループ上部(1b)に近接している状態をいう。リーニング不良は、電気的ショートの原因となるため、リーニング不良の発生したパッケージは、不良品として処理され、製品歩留りを大きく低下させる要因となっている。   As shown in FIG. 1, the leaning failure is a portion immediately above the ball (2) bonded to the pad of the semiconductor element (4) when the bonding wire (1) after wire bonding is observed from the extending direction of the loop. The top of the ball (3) is inclined in the horizontal direction, and the inclined loop upper portion (1a) is close to the adjacent loop upper portion (1b). Since the leaning failure causes an electrical short circuit, the package in which the leaning failure has occurred is treated as a defective product, which is a factor that greatly reduces the product yield.

なお、最終連続焼鈍により、伸び率を7〜10%に高めて柔らかくしたボンディングワイヤでは、リーニング不良が低下する傾向が認められる。しかしながら、その最終連続焼鈍によって、同時にボンディングワイヤの引張強度が例えば25μmφで10g以下まで低下してしまうため、後の樹脂モールド工程において、ワイヤ流れが発生しやすくなり、ネック倒れ不良を引き起こすという問題があった。   In addition, in the bonding wire softened by increasing the elongation rate to 7 to 10% by the final continuous annealing, a tendency that the leaning defect tends to decrease is recognized. However, since the final continuous annealing simultaneously reduces the tensile strength of the bonding wire to 10 g or less, for example, at 25 μmφ, the wire flow is likely to occur in the subsequent resin molding process, causing a problem of neck collapse failure. there were.

ネック倒れ不良とは、図2に示すように、ワイヤボンディング後のボンディングワイヤ(1)をループの面方向から観察したときに、半導体素子(4)のパッドに接着したボール(2)のボール直上部(3)から上方がループの伸長方向に傾斜し、傾斜した外側ワイヤ(1c)が、隣接する内側ワイヤ(1d)に近接している状態をいう。   As shown in FIG. 2, when the bonding wire (1) after wire bonding is observed from the surface direction of the loop, the neck collapse failure means that the ball (2) bonded directly to the pad of the semiconductor element (4) The upper part from the upper part (3) is inclined in the extending direction of the loop, and the inclined outer wire (1c) is close to the adjacent inner wire (1d).

ここでいうルーピング特性は、リーニングであり=ネック倒れである。   The looping characteristic here is leaning = neck collapse.

これに対して、特開2002−319597号公報には、ワイヤ鋳造材を縮径伸線して最終焼鈍する際に、縮径伸線の途中に少なくとも1回の途中焼鈍を行うと共に、途中焼鈍を経て最終焼鈍に至る各焼鈍時までのワイヤの面積加工率({1−(伸線縮径後の線径/伸線縮径前の線径)2 }×100)を75〜99.997%とするボンディングワイヤの製造方法が開示されている。しかし、工程の数が増えるという問題がある。 On the other hand, in Japanese Patent Application Laid-Open No. 2002-319597, when a wire casting material is subjected to diameter reduction drawing and final annealing, at least one intermediate annealing is performed in the middle of the diameter reduction drawing, and intermediate annealing is performed. 75 to 99.997 for the wire area processing rate ({1- (wire diameter after wire drawing / wire diameter before wire drawing) 2 } × 100) until each annealing through the final annealing. %, A method for manufacturing a bonding wire is disclosed. However, there is a problem that the number of processes increases.

また、特開2004−31469号公報には、ボンディングワイヤの長手方向断面の結晶粒組織において、ワイヤの半径をRとして、該ワイヤの中心からR/2までの部分を中心部、その外側を外周部としたとき、中心部におけるワイヤ長手方向の結晶方向の内、[100]方位を有する結晶粒の面積に対する[111]方位を有する結晶粒の面積の割合Rcと、外周部におけるワイヤ長手方向の結晶方位の内、[100]方位を有する結晶粒の面積に対する[111]方位を有する結晶粒の面積の割合Rsについて、両者の差分比率の絶対値|1−Rc/Rs|×100(%)が30%以上であるとするボンディングワイヤの製造方法が開示されている。しかし、同様に工程数が増えるという問題がある。   Japanese Patent Application Laid-Open No. 2004-31469 discloses that in the crystal grain structure of the bonding wire in the longitudinal direction, the radius of the wire is R, the portion from the center of the wire to R / 2 is the center, and the outside is the outer periphery. Portion, the ratio Rc of the area of the crystal grains having the [111] orientation to the area of the crystal grains having the [100] orientation out of the crystal orientation of the wire longitudinal direction in the central portion, and the wire longitudinal direction in the outer peripheral portion Of the crystal orientations, the ratio Rs of the area of the crystal grains having the [111] orientation to the area of the crystal grains having the [100] orientation is the absolute value of the difference ratio between the two | 1-Rc / Rs | × 100 (%) A method for manufacturing a bonding wire is disclosed in which the ratio is 30% or more. However, there is a problem that the number of processes increases similarly.

本発明では途中焼鈍を行う制約を設けなくても効果が期待できる。   In the present invention, an effect can be expected without providing a restriction for annealing in the middle.

特開2002−319597号公報JP 2002-319597 A

特開2004−31469号公報JP 2004-31469 A

本発明は、このような従来の事情に鑑み、直進性に優れていて、リーニング不良を抑制することができ、伸び率が4〜6%であるとともに、引張強度が例えば25μmφで15g以上である優れた半導体素子用ボンディングワイヤおよび製造方法を提供することを目的とする。   In view of such a conventional situation, the present invention is excellent in straightness, can suppress leaning defects, has an elongation of 4 to 6%, and has a tensile strength of, for example, 15 g or more at 25 μmφ. An object of the present invention is to provide an excellent bonding wire for a semiconductor element and a manufacturing method.

本発明の半導体素子用ボンディングワイヤは、Auを主成分とし、各々のダイスでの減面率を5〜25%とし、減面率の最大値と最小値の差が12%以下の条件で縮径伸線加工が施され、かつ、前記縮径伸線加工における平均減面率と最終連続焼鈍における焼鈍速度および炉長の関係が次式(数3)を満たす条件で最終連続焼鈍が施されて、かつ、伸び率が4〜6%であることを特徴とする。   The bonding wire for a semiconductor device of the present invention is mainly composed of Au, the area reduction rate of each die is 5 to 25%, and the difference between the maximum value and the minimum value of the area reduction rate is 12% or less. Radial wire drawing is performed, and final continuous annealing is performed under the condition that the relationship between the average area reduction ratio in the reduced diameter wire drawing, the annealing speed in the final continuous annealing, and the furnace length satisfies the following formula (Equation 3). And elongation rate is 4 to 6%, It is characterized by the above-mentioned.

Figure 2005294681
Figure 2005294681

なお、上記式(数3)における右辺を計算速度と称する。   The right side in the above equation (Equation 3) is referred to as a calculation speed.

上記条件で縮径伸線加工および最終連続焼鈍を施されたボンディングワイヤはその強度(25μmφで15g以上)および伸び率(4〜6%)を維持しつつ、リーニング不良の発生をきわめて低く抑えることが可能となる。   Bonding wire that has been subjected to reduced diameter drawing and final continuous annealing under the above conditions should maintain the strength (at least 15 g at 25 μmφ) and the elongation (4-6%), while minimizing the occurrence of leaning defects. Is possible.

なお、本発明の半導体素子用ボンディングワイヤは、Auを主原料とするが、Be:2質量ppm〜15質量ppmが添加されていることが望ましい。さらに、希土類元素:10質量ppm〜50質量ppm(総計)が添加されていることが望ましい。Beと希土類元素は、同時に添加されてもよく、その他、所定量のCaやPdが添加されていてもよい。   In addition, although the bonding wire for semiconductor elements of this invention uses Au as a main raw material, it is desirable that Be: 2 mass ppm-15 mass ppm is added. Furthermore, it is desirable to add rare earth elements: 10 mass ppm to 50 mass ppm (total). Be and the rare earth element may be added simultaneously, or a predetermined amount of Ca or Pd may be added.

本発明の半導体素子用ボンディングワイヤの製造方法は、縮径伸線加工における各々のダイスでの減面率が5〜25%の範囲で、減面率の最大値と最小値の差が12%以下の条件で、Auを主成分とするワイヤ鋳造材に縮径伸線加工を施し、かつ、前記縮径伸線加工における平均減面率と最終連続焼鈍における焼鈍速度および炉長の関係が上記式(数3)を満たす。   In the method for manufacturing a bonding wire for a semiconductor element of the present invention, the difference between the maximum value and the minimum value of the area reduction rate is 12% in the range of 5 to 25% area reduction in each die in the diameter reduction drawing process. Under the following conditions, the wire casting material containing Au as a main component is subjected to diameter reduction drawing, and the relationship between the average area reduction ratio in the diameter reduction drawing, the annealing speed in the final continuous annealing, and the furnace length is as described above. The expression (Equation 3) is satisfied.

ワイヤ鋳造材に、Be:2質量ppm〜15質量ppmを添加することが望ましい。さらに、希土類元素:10質量ppm〜50質量ppm(総計)を添加することが望ましい。Beと希土類元素を、同時に添加してもよく、その他、所定量のCaやPdを添加してもよい。   It is desirable to add Be: 2 mass ppm to 15 mass ppm to the wire casting material. Furthermore, it is desirable to add rare earth elements: 10 mass ppm to 50 mass ppm (total). Be and the rare earth element may be added simultaneously, or a predetermined amount of Ca or Pd may be added.

本発明により、直進性に優れていてリーニング不良を抑制でき、伸び率とともに、引張強度に優れた半導体素子用ボンディングワイヤの製造方法を提供することができる。   According to the present invention, it is possible to provide a method for manufacturing a bonding wire for a semiconductor element that is excellent in straight running performance, can suppress leaning defects, and has excellent tensile strength as well as elongation.

従って、半導体素子の高集積化並びにパッケージの小型縮小化に対応し、100μm以下の狭いボンディングピッチであっても、ワイヤボンディング工程および樹脂モールド工程における不良を低減させ、半導体素子の組立工程における製品の歩留および信頼性の向上を達成することができる。   Therefore, in response to high integration of semiconductor elements and miniaturization of packages, even in a narrow bonding pitch of 100 μm or less, defects in the wire bonding process and resin molding process are reduced, and the product in the semiconductor element assembly process is reduced. Increased yield and reliability can be achieved.

本発明の半導体素子用ボンディングワイヤの製造方法は、縮径伸線工程における各々のダイスでの減面率が5〜25%の範囲にあり、減面率のばらつき(減面率の最大値と最小値の差)が12%以下である縮径伸線加工を施し、その後、最終連続焼鈍を行う際に、前記縮径伸線加工における平均減面率(%)により、最終連続焼鈍における焼鈍速度(m/min)および炉長(cm)とを調節する。   In the method of manufacturing a bonding wire for a semiconductor device according to the present invention, the area reduction rate of each die in the diameter reduction drawing process is in the range of 5 to 25%, and the variation in area reduction rate (the maximum value of area reduction rate and When the diameter reduction drawing with a minimum value of 12% or less is performed and then the final continuous annealing is performed, annealing in the final continuous annealing is performed according to the average area reduction ratio (%) in the diameter reduction drawing. The speed (m / min) and furnace length (cm) are adjusted.

本明細書において、ワイヤの減面率(%)とは、次式(数4)で定義される。   In this specification, the area reduction rate (%) of the wire is defined by the following equation (Equation 4).

Figure 2005294681
Figure 2005294681

また、ボンディングワイヤの減面率のばらつきとは、縮径伸線加工に使用するすべてのダイスにおける減面率について、最大値(%)および最小値(%)を求めて、最大値(%)−最小値(%)であらわす。また、平均減面率(%)とは、加工中の減面率各々の平均値である。   The variation in bonding wire surface area reduction is the maximum value (%) obtained by calculating the maximum value (%) and the minimum value (%) for the surface area reduction ratio of all dies used for wire drawing. -Expressed as the minimum value (%). Further, the average area reduction rate (%) is an average value of each area reduction rate during processing.

ダイス当たりの減面率は、最小値を5%以上とし、最大値を25%以下とするのは、減面率がこの範囲から外れると、いずれもボンディングワイヤに強度が出ないためである。   The reason why the area reduction rate per die is 5% or more and the maximum value is 25% or less is that if the area reduction is out of this range, the bonding wire does not have any strength.

ワイヤボンディング時には、キャピラリー動作によってボール直上部に塑性変形が加えられ、ボンディングワイヤのループが形成されるため、リーニング不良は、ボール直上部に残存する加工歪が関係する。すなわち、最終連続焼鈍によって加工歪が十分に除去されないと、ループに予期しない癖がつき、リーニング不良を代表とするルーピング不良を引き起こすものと考えられる。   At the time of wire bonding, plastic deformation is applied to the upper part of the ball by the capillary operation and a loop of the bonding wire is formed. Therefore, the leaning defect is related to the working strain remaining immediately above the ball. That is, if the processing strain is not sufficiently removed by the final continuous annealing, it is considered that the loop is unexpectedly wrinkled and causes a looping failure represented by a leaning failure.

熱処理による加工歪の除去は、高温であるほど、もしくは熱の印加時間(炉長/速度)が長いほど、効果が高いが、高温にすると、ボンディングワイヤの強度は失われる。しかし、強度の低下を避けるために、熱の印加時間を短くすれば、ボンディングワイヤの外周部の焼鈍効果のみが大きく、中心部の残留歪の除去は不十分となる。反対に、熱の印加時間を長くすることにより、ボンディングワイヤ中心部の歪除去を行うこととすれば、焼鈍温度を上昇させずに、ボンディングワイヤの強度は維持される。   The effect of removing the processing strain by heat treatment is higher as the temperature is higher or the heat application time (furnace length / speed) is longer. However, the strength of the bonding wire is lost at higher temperatures. However, if the heat application time is shortened in order to avoid a decrease in strength, only the effect of annealing the outer peripheral portion of the bonding wire is large, and the removal of residual strain at the central portion is insufficient. On the contrary, if the strain is removed at the center of the bonding wire by extending the heat application time, the strength of the bonding wire is maintained without increasing the annealing temperature.

以上のように、熱の印加時間を調節することによって、ボンディングワイヤの強度を維持しつつ、ルーピング不良を低減することが可能な製造条件を調査した。現状、使用されているボンディングワイヤは、10μmφ〜40μmφであり、この範囲では、考慮すべき製造条件の因子としては、線径の効果は小さい。考慮すべき主な因子は、最終連続線径までに施される縮径伸線加工において、引き抜き加工時のダイスでの減面率と、最終連続焼鈍における焼鈍時間、または炉長と焼鈍速度の比の2つである。   As described above, the manufacturing conditions that can reduce the looping failure while maintaining the strength of the bonding wire by adjusting the heat application time were investigated. At present, the bonding wires used are 10 μmφ to 40 μmφ, and in this range, the effect of the wire diameter is small as a factor of manufacturing conditions to be considered. The main factors to be considered are the reduction in area of the die during drawing, the annealing time in the final continuous annealing, or the furnace length and annealing speed in the reduced diameter drawing performed up to the final continuous wire diameter. The ratio is two.

理想的には、最終連続焼鈍における焼鈍時間が、十分に長いことが好ましいが、製造されるボンディングワイヤは、1スプール当たり数kmであり、歪の除去される再結晶温度近傍では、焼鈍時間を長くすると、ボンディングワイヤの接触部がくっつきを起こす。このため、必要以上に焼鈍時間が長くすることは、現実的ではない。   Ideally, it is preferable that the annealing time in the final continuous annealing is sufficiently long. However, the produced bonding wire is several km per spool, and the annealing time is set near the recrystallization temperature where the strain is removed. If it is longer, the contact portion of the bonding wire will stick. For this reason, it is not realistic to make the annealing time longer than necessary.

そこで、試験的に、3時間の焼鈍を施して理想ワイヤとして少量作成したものを基準として、この理想ワイヤと同等の効果を得られる条件を調べたところ、前述の2つの因子の間に、次式(数5)のような関係が成り立つことが、必要条件であることがわかった。   Therefore, as a test, the conditions under which an effect equivalent to that of an ideal wire was obtained on the basis of a small amount of an ideal wire that was annealed for 3 hours were examined. It was found that a necessary condition is that the relationship represented by the formula (Equation 5) is established.

Figure 2005294681
Figure 2005294681

本発明のボンディングワイヤは、上記式(数5)を満たす範囲で、最終連続焼鈍されることにより、理想的に歪が除去されたボンディングワイヤと同等のルーピング特性を持つこととなり、また、異常な高温を印加しないため、優れた引張強度も維持することとなる。すなわち、本発明では伸び率を7〜10%に高めて強度を犠牲にすること無しにルーピング特性と強度を併せ持つボンディングワイヤを得ることができる。   The bonding wire of the present invention has a looping characteristic equivalent to that of a bonding wire from which distortion is ideally removed by final continuous annealing within a range satisfying the above formula (Equation 5), and is abnormal. Since high temperature is not applied, excellent tensile strength is also maintained. That is, in the present invention, a bonding wire having both looping characteristics and strength can be obtained without increasing the elongation rate to 7 to 10% and sacrificing strength.

ボンディングワイヤの組成に関しては、Auを主成分とする。Auを主成分とするボンディングワイヤは、ボンディングワイヤ内に良好な繊維組織を有するため、直進性が高く、リーニング不良の少ないループを、安定して得ることができる。   Regarding the composition of the bonding wire, Au is the main component. Since the bonding wire containing Au as a main component has a good fiber structure in the bonding wire, it is possible to stably obtain a loop having high straightness and few leaning defects.

添加するBe、Ca、Ce、LaおよびPdなどの微量成分は、添加量の増大と共に、ボンディングワイヤの強度を向上させるが、多く添加し過ぎると、ワイヤボンディング中に接合不良を起こす等の不具合が生じるので、添加量を適宜、調整することが好ましい。具体的には、Beは2質量ppm〜15質量ppm、希土類元素は総計で10質量ppm〜50質量ppmの範囲に調整することが好ましい。なお、本明細書では、希土類元素とはYとランタノイドを意味するが、主として上記したCe、Laが挙げられる。また、Caは1質量ppm〜50質量ppm、Pdは1質量ppm〜10000質量ppmの範囲に調整することが好ましい。   Minor components such as Be, Ca, Ce, La, and Pd to be added increase the strength of the bonding wire as the amount added increases. However, if too much is added, problems such as poor bonding occur during wire bonding. Therefore, it is preferable to adjust the addition amount as appropriate. Specifically, Be is preferably adjusted to a range of 2 to 15 ppm by mass, and rare earth elements are adjusted to a total of 10 to 50 ppm by mass. In the present specification, rare earth elements mean Y and lanthanoids, and mainly include Ce and La described above. Moreover, it is preferable to adjust Ca to 1 mass ppm to 50 mass ppm and Pd to 1 mass ppm to 10000 mass ppm.

本発明のボンディングワイヤに添加するBeは、ボンディングワイヤの強度を上昇させる添加物として既知のものであるが、最終連続焼鈍を高温にすることによって、その効果が失われやすい。従って、最終連続焼鈍の一般的な500℃以上から450℃程度まで温度を下げ、Beの添加の効果を十分に発揮させる。ただし、Beの有効添加量は2質量ppm以上であり、15質量ppmを超えると、断線しやすくなって、製造時の作業性が著しく落ちるため、好ましくない。   Be added to the bonding wire of the present invention is known as an additive for increasing the strength of the bonding wire, but its effect is easily lost by raising the final continuous annealing to a high temperature. Therefore, the temperature is lowered from the general 500 ° C. or higher of the final continuous annealing to about 450 ° C., and the effect of addition of Be is sufficiently exhibited. However, the effective addition amount of Be is 2 ppm by mass or more, and if it exceeds 15 ppm by mass, disconnection is likely to occur, and workability at the time of production is remarkably deteriorated.

さらに、ルーピング特性を向上するには、希土類元素が総計で10質量ppm〜50質量ppm、添加されていることが好ましい。希土類元素添加の効果として、ボンディングワイヤ組織の均一化があるため、本発明により歪除去を行い、組織が均一であることの効果が、ルーピング特性の良好さに現れる。   Furthermore, in order to improve looping characteristics, it is preferable that rare earth elements are added in a total amount of 10 mass ppm to 50 mass ppm. As an effect of adding rare earth elements, there is a uniform bonding wire structure. Therefore, the effect of removing the strain by the present invention and making the structure uniform appears in the good looping characteristics.

Caは50質量ppmを超えるとボールが酸化し易くなり接合性が劣化する。一方、Pdは10000重量ppmを超えると電気抵抗が上昇し実用的でない。   When Ca exceeds 50 mass ppm, the ball is easily oxidized and the bonding property is deteriorated. On the other hand, if Pd exceeds 10,000 ppm by weight, the electrical resistance increases and is not practical.

(実施例1〜4、比較例1〜6)
純度99.999質量%以上の高純度Auに、Ceを20質量ppmと、Beを10質量ppm、添加した組成「4N組成」の金合金と、同じ高純度Auに、Ceを30質量ppmと、Beを5質量ppmと、Pdを500質量ppm、添加した組成「3N組成」の金合金について、それぞれ溶解鋳造後にて直径25mmφの鋳造材を製造した。
(Examples 1-4, Comparative Examples 1-6)
A gold alloy of composition “4N composition” in which Ce is added to high-purity Au having a purity of 99.999% by mass or more, 20 mass ppm of Ce and 10 mass ppm of Be, and Ce is 30 mass ppm of the same high-purity Au. A gold alloy having a composition of “3N composition” added with 5 ppm by mass of Be and 500 ppm by mass of Pd and having a composition of “3N” was manufactured after casting by melting and casting.

得られた各々の鋳造材について溝ロール加工後、ダイヤモンドダイスを使用して、縮径伸線加工し25μmφのワイヤを得た。その後、常温での伸び率が4〜6%となるように、最終連続焼鈍を約450℃にて行った。この際、表1に示す減面率、炉長、焼鈍速度の条件を採用し試料を作成した。実施例1〜4および比較例1〜6について、前記縮径伸線加工における減面率の範囲および平均、最終連続焼鈍における炉長、焼鈍速度を、それぞれ表1に示した。なお、実施例1については、焼鈍の時間を示した。   Each of the obtained cast materials was subjected to groove roll processing and then subjected to diameter reduction drawing using a diamond die to obtain a 25 μmφ wire. Then, final continuous annealing was performed at about 450 ° C. so that the elongation at normal temperature was 4 to 6%. At this time, samples were prepared using the conditions of area reduction rate, furnace length, and annealing rate shown in Table 1. About Examples 1-4 and Comparative Examples 1-6, the range and average of the area reduction rate in the said diameter reduction wire drawing, the furnace length in the last continuous annealing, and the annealing speed were shown in Table 1, respectively. In addition, about Example 1, the time of annealing was shown.

さらに、次式(数6)により計算速度を求め、これを表1に示した。   Further, the calculation speed was obtained by the following equation (Equation 6), and this is shown in Table 1.

Figure 2005294681
Figure 2005294681

最後に、表面に、単分子膜厚相当のポリオキシレンアルキルエーテルを塗布し、ボンディングワイヤとした。   Finally, polyoxylene alkyl ether corresponding to a monomolecular film thickness was applied to the surface to obtain a bonding wire.

Figure 2005294681
Figure 2005294681

得られたボンディングワイヤについて、内径30μmのキャピラリーを用いて、ワイヤ間隔60μm、ループ長5mmにて、3820本のワイヤボンディングを行った後、隣接するボンディングワイヤ同士のループ上部の間隔を、測定顕微鏡で測定し、測定された間隔が40μm以下をリーニング不良と判定して、リーニング不良と判定された本数から、リーニング率を算出し、表1に示した。なお、ワイヤボンダーには、新川社製、UTC400を用い、ループモードを「SQR」、ループ高さは280μmに設定した。また、伸び率及び引張強度についてはサンプルをそれぞれ10cm採取しテンシロンで測定した。   About the obtained bonding wire, after performing 3820 wire bondings using a capillary with an inner diameter of 30 μm with a wire interval of 60 μm and a loop length of 5 mm, the interval between adjacent bonding wires is measured with a measuring microscope. The measured interval was determined to be a leaning defect when the measured interval was 40 μm or less, and the leaning rate was calculated from the number determined to be the leaning defect. The wire bonder was made by Shinkawa Co., Ltd., UTC400, the loop mode was set to “SQR”, and the loop height was set to 280 μm. Further, the elongation percentage and the tensile strength were each measured by 10 cm of a sample taken with Tensilon.

以上の結果から分るように、本発明の実施例1〜4のボンディングワイヤでは、引張強度を維持しつつ、リーニング率が3000ppm以下と少なかった。   As can be seen from the above results, in the bonding wires of Examples 1 to 4 of the present invention, the leaning rate was as low as 3000 ppm or less while maintaining the tensile strength.

一方、前記式(数5)を満足しなかった比較例1、4、5、および前記式(数5)を満足するが、減面率のばらつきが大きい比較例2は、リーニング率が10000ppmを超えていた。   On the other hand, Comparative Examples 1, 4, and 5 that did not satisfy the above equation (Equation 5) and Comparative Example 2 that satisfied the above equation (Equation 5) but had a large variation in the area reduction rate had a leaning rate of 10,000 ppm. It was over.

前記式(数5)を満足するが、減面率の最小が5%未満の比較例3、および、減面率の最大が25%を超えた比較例4は、強度が実施例と比較して1g以上低下し、前記式(数5)を満足するが、減面率の最大が25%を超えた比較例6も、強度が実施例と比較して低かった。   Comparative Example 3 that satisfies the above formula (Equation 5) but has a minimum area reduction rate of less than 5% and Comparative Example 4 that has a maximum area reduction rate of more than 25% has a strength higher than that of the example. However, the strength of Comparative Example 6 in which the maximum area reduction rate exceeded 25% was lower than that of the Example.

ボンディングワイヤのリーニング不良の状態を模式的に示す側面図である。It is a side view which shows typically the state of the leaning defect of a bonding wire. ボンディングワイヤのネック倒れ不良の状態を模式的に示す側面図である。It is a side view which shows typically the state of the neck fall failure of a bonding wire.

符号の説明Explanation of symbols

1 ボンディングワイヤ
1a、1b ループ上部
1c 外側ワイヤ
1d 内側ワイヤ
2 ボール
3 ボール直上部
4 半導体素子
5 リードフレーム
DESCRIPTION OF SYMBOLS 1 Bonding wire 1a, 1b Upper part of loop 1c Outer wire 1d Inner wire 2 Ball 3 Right above ball 4 Semiconductor element 5 Lead frame

Claims (6)

縮径伸線加工における各々のダイスでの減面率を5〜25%とし、減面率の最大値と最小値の差が12%以下の条件で縮径伸線加工が施され、かつ、前記縮径伸線加工における平均減面率と最終連続焼鈍における焼鈍速度および炉長の関係が次式(数1)を満たす条件で最終連続焼鈍が施され、かつ、伸び率が4〜6%であることを特徴とするAuを主成分とする半導体素子用ボンディングワイヤ。
Figure 2005294681
The area reduction rate of each die in the diameter reduction drawing process is 5 to 25%, and the diameter reduction drawing process is performed under the condition that the difference between the maximum value and the minimum value of the area reduction rate is 12% or less, and The final continuous annealing is performed under the condition that the relationship between the average area reduction ratio in the diameter reduction drawing, the annealing speed in the final continuous annealing, and the furnace length satisfies the following formula (Equation 1), and the elongation is 4 to 6%. A bonding wire for a semiconductor element, the main component of which is Au.
Figure 2005294681
Be:2質量ppm〜15質量ppmが添加されていることを特徴とする請求項1に記載のボンディングワイヤ。   The bonding wire according to claim 1, wherein Be: 2 mass ppm to 15 mass ppm is added. 希土類元素:10質量ppm〜50質量ppmが添加されていることを特徴とする請求項1または2に記載のボンディングワイヤ。   Rare earth element: 10 mass ppm-50 mass ppm is added, The bonding wire of Claim 1 or 2 characterized by the above-mentioned. 縮径伸線加工における各々のダイスでの減面率が5〜25%の範囲で、減面率の最大値と最小値の差が12%以下の条件でAuを主成分とするワイヤ鋳造材に縮径伸線加工を施し、かつ、前記縮径伸線加工における平均減面率と最終連続焼鈍における焼鈍速度および炉長の関係が次式(数2)を満たす条件で最終連続焼鈍を施すことを特徴とする半導体素子用ボンディングワイヤの製造方法。
Figure 2005294681
Wire casting material mainly composed of Au under the condition that the area reduction rate of each die in diameter reduction drawing is in the range of 5 to 25% and the difference between the maximum value and the minimum value of the area reduction rate is 12% or less. , And the final continuous annealing is performed under the condition that the relationship between the average area reduction rate in the reduced diameter drawing, the annealing speed in the final continuous annealing, and the furnace length satisfies the following formula (Equation 2). A method of manufacturing a bonding wire for a semiconductor element, wherein:
Figure 2005294681
ワイヤ鋳造材にBeを2質量ppm〜15質量ppm添加することを特徴とする請求項4に記載のボンディングワイヤの製造方法。   The method for manufacturing a bonding wire according to claim 4, wherein Be is added to the wire casting material in an amount of 2 mass ppm to 15 mass ppm. ワイヤ鋳造材に希土類元素を10質量ppm〜50質量ppm添加することを特徴とする請求項4または5に記載のボンディングワイヤの製造方法。   The method for producing a bonding wire according to claim 4 or 5, wherein rare earth elements are added to the wire casting material in an amount of 10 mass ppm to 50 mass ppm.
JP2004109853A 2004-04-02 2004-04-02 Bonding wire for semiconductor element, and manufacturing method thereof Pending JP2005294681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004109853A JP2005294681A (en) 2004-04-02 2004-04-02 Bonding wire for semiconductor element, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004109853A JP2005294681A (en) 2004-04-02 2004-04-02 Bonding wire for semiconductor element, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005294681A true JP2005294681A (en) 2005-10-20

Family

ID=35327249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004109853A Pending JP2005294681A (en) 2004-04-02 2004-04-02 Bonding wire for semiconductor element, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005294681A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111248A1 (en) * 2006-03-24 2007-10-04 Nippon Steel Materials Co., Ltd. Gold wire for semiconductor element connection
CN102115833B (en) * 2009-12-30 2013-11-27 北京有色金属与稀土应用研究所 Gold beryllium alloy material for semiconductor devices and preparation method and application thereof
KR101513493B1 (en) 2013-02-19 2015-04-20 엠케이전자 주식회사 Silver alloy bonding wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111248A1 (en) * 2006-03-24 2007-10-04 Nippon Steel Materials Co., Ltd. Gold wire for semiconductor element connection
US8415797B2 (en) 2006-03-24 2013-04-09 Nippon Steel & Sumikin Materials Co., Ltd. Gold wire for semiconductor element connection
CN102115833B (en) * 2009-12-30 2013-11-27 北京有色金属与稀土应用研究所 Gold beryllium alloy material for semiconductor devices and preparation method and application thereof
KR101513493B1 (en) 2013-02-19 2015-04-20 엠케이전자 주식회사 Silver alloy bonding wire

Similar Documents

Publication Publication Date Title
JP4866490B2 (en) Copper alloy bonding wire for semiconductors
JP5010495B2 (en) Gold wire for semiconductor element connection
JP3367544B2 (en) Gold alloy fine wire for bonding and method of manufacturing the same
JPS62278241A (en) Bonding wire
JPH0786325A (en) Copper wire for electronic device
JP4694908B2 (en) Manufacturing method of Au fine wire for ball bonding
JP3494175B2 (en) Bonding wire and manufacturing method thereof
JP2005294681A (en) Bonding wire for semiconductor element, and manufacturing method thereof
JPH07335686A (en) Gold alloy wire for bonding
JP4641248B2 (en) Gold alloy wire for bonding wires with excellent bondability, straightness and resin flow resistance
JP5166738B2 (en) Gold wire for semiconductor element connection
JP3500518B2 (en) Manufacturing method of ultrafine gold alloy wire
JP2017520121A (en) Method for producing thick copper wire for bonding applications
JP3602892B2 (en) Manufacturing method of bonding wire
JP4232731B2 (en) Bonding wire
JPH06145842A (en) Bonding gold alloy thin wire
JP3426397B2 (en) Gold alloy fine wire for semiconductor devices
JP3985743B2 (en) Manufacturing method of bonding wire for semiconductor element and bonding wire for semiconductor element
JP2661247B2 (en) Gold alloy fine wire for semiconductor element bonding
JP2006073693A (en) Bonding wire
JP3059314B2 (en) Gold alloy fine wire for bonding
JP3639662B2 (en) Gold alloy fine wire for semiconductor devices
JPH08316263A (en) Bonding wire
JP2003023030A (en) Bonding wire and manufacturing method therefor
JPS63247325A (en) Fine copper wire and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408