JP2005293942A - Method for manufacturing negative electrode for secondary battery - Google Patents

Method for manufacturing negative electrode for secondary battery Download PDF

Info

Publication number
JP2005293942A
JP2005293942A JP2004105014A JP2004105014A JP2005293942A JP 2005293942 A JP2005293942 A JP 2005293942A JP 2004105014 A JP2004105014 A JP 2004105014A JP 2004105014 A JP2004105014 A JP 2004105014A JP 2005293942 A JP2005293942 A JP 2005293942A
Authority
JP
Japan
Prior art keywords
negative electrode
coupling agent
secondary battery
metal oxide
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004105014A
Other languages
Japanese (ja)
Other versions
JP4852824B2 (en
Inventor
Hirochika Yamamoto
博規 山本
Mariko Miyaji
麻里子 宮地
Masahiro Suguro
雅博 須黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2004105014A priority Critical patent/JP4852824B2/en
Publication of JP2005293942A publication Critical patent/JP2005293942A/en
Application granted granted Critical
Publication of JP4852824B2 publication Critical patent/JP4852824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a negative electrode for secondary batteries having superior coherency and high capacity. <P>SOLUTION: An active material layer on a collector is formed through a process for manufacturing slurry containing at least a carbon material, a metal oxide, and a coupling agent, a process for applying the slurry onto the collector, and a process for drying the slurry. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二次電池用負極の製造方法に関し、さらに詳しくは、電極の密着性に優れた二次電池用負極の製造方法に関する。   The present invention relates to a method for producing a negative electrode for a secondary battery, and more particularly to a method for producing a negative electrode for a secondary battery having excellent electrode adhesion.

携帯電話やノートパソコン等のモバイル端末の普及により、その電力源となる二次電池の役割が重要視されている。二次電池には、小型・軽量化、高容量化、高エネルギー密度化及び長寿命化が求められている。これらの要求を満たすため、特に、電極について種々の改良がなされている。   With the widespread use of mobile terminals such as mobile phones and laptop computers, the role of secondary batteries that serve as the power source has become important. Secondary batteries are required to be smaller, lighter, have higher capacity, have higher energy density, and have a longer life. In order to satisfy these requirements, various improvements have been made particularly on the electrodes.

電極は、活物質材料、導電剤及び結着剤を含む活物質層と集電体とから構成されているが、高容量化を目的として、例えば活物質層中の結着剤の割合が少なく活物質材料の割合の多い電極や、活物質材料として高容量材料を用いた電極等が検討されている。   The electrode is composed of an active material layer containing an active material, a conductive agent and a binder, and a current collector. For the purpose of increasing the capacity, for example, the ratio of the binder in the active material layer is small. An electrode having a high proportion of the active material, an electrode using a high-capacity material as the active material, and the like are being studied.

しかしながら、結着剤の割合が少ない電極や高容量材料を用いた電極を用いた二次電池は、その充放電時に活物質材料が電極から剥離し易いという問題がある。こうした問題は、二次電池の充放電時に、活物質材料がリチウムイオンを吸蔵放出することにより活物質材料の体積が変化することが原因である。結着剤の割合が少ない電極は、活物質材料同士の密着力又は活物質材料と集電体との密着力が弱くなる。また、高容量材料を用いた電極は、活物質材料がリチウムイオンを吸蔵放出する際の活物質材料の体積変化が大きくなる。したがって、これら結着剤の割合が少ない電極や高容量材料を用いた電極は、活物質材料の体積が変化する際に、活物質材料が互いに分離、又は活物質材料が集電体から分離し易くなるという難点がある。このため、二次電池の充放電が繰り返されることにより、活物質材料間の密着性又は活物質材料と集電体との密着性(以下、電極の密着性という。)が悪化するので、徐々に電極の容量が低くなる。その結果、こうした電極を用いた二次電池は、サイクル特性が悪くなるという問題がある。   However, a secondary battery using an electrode with a small binder ratio or an electrode using a high-capacity material has a problem that the active material easily peels off from the electrode during charge and discharge. Such a problem is caused by the volume of the active material changing due to the occlusion and release of lithium ions by the active material during charging and discharging of the secondary battery. An electrode with a small proportion of the binder has a weak adhesion between the active material materials or between the active material and the current collector. In addition, an electrode using a high-capacity material has a large volume change of the active material when the active material absorbs and releases lithium ions. Therefore, these electrodes with a low binder ratio and electrodes using a high-capacity material separate the active material from each other or the active material from the current collector when the volume of the active material changes. There is a difficulty that it becomes easy. For this reason, since the charge / discharge of the secondary battery is repeated, the adhesion between the active material or the adhesion between the active material and the current collector (hereinafter referred to as electrode adhesion) gradually deteriorates. In addition, the capacity of the electrode is lowered. As a result, a secondary battery using such an electrode has a problem that cycle characteristics are deteriorated.

一方、電極の密着性を向上させるため、例えば、集電体にカップリング剤層を介して活物質層を形成した電極が報告されている(特許文献1を参照)。この電極は、活物質層の集電体に対する密着性が優れるので、活物質層の剥離、脱落及びひび割れが防止できることが記載されている。また、活物質層又は活物質材料をカップリング剤で処理した電極が記載されている(特許文献2を参照)。この電極は、特許文献2の記載によれば、高い充放電効率と優れたサイクル特性を有することが記載されている。
特開平9−237625号公報(請求項1、段落番号0034参照) 特開平11−354104号公報(請求項1、請求項15、段落番号0014、段落番号0039〜0046参照)
On the other hand, in order to improve the adhesiveness of an electrode, for example, an electrode in which an active material layer is formed on a current collector via a coupling agent layer has been reported (see Patent Document 1). It is described that since this electrode has excellent adhesion of the active material layer to the current collector, it is possible to prevent peeling, dropping and cracking of the active material layer. Moreover, the electrode which processed the active material layer or the active material with the coupling agent is described (refer patent document 2). According to the description of Patent Document 2, this electrode is described as having high charge / discharge efficiency and excellent cycle characteristics.
JP-A-9-237625 (see claim 1, paragraph number 0034) JP 11-354104 A (refer to claim 1, claim 15, paragraph number 0014, paragraph numbers 0039 to 0046)

カップリング剤は無機反応基と有機反応基を有しているので、図3に示すように、無機反応基が無機材料と結合し、有機反応基Xが有機材料と結合することにより、無機材料と有機材料とが密着する。このとき、カップリング剤の無機反応基と無機材料との間には強い結合が形成され、カップリング剤の有機反応基と有機材料との間には弱い結合が形成される。   Since the coupling agent has an inorganic reactive group and an organic reactive group, the inorganic reactive group is bonded to the inorganic material and the organic reactive group X is bonded to the organic material as shown in FIG. And organic materials adhere to each other. At this time, a strong bond is formed between the inorganic reactive group of the coupling agent and the inorganic material, and a weak bond is formed between the organic reactive group of the coupling agent and the organic material.

このため、特許文献1及び2に記載された電極が、活物質材料として炭素材料を用いた場合は、カップリング剤の有機反応基と炭素材料との間に弱い結合が形成されるので、二次電池の充放電の際に、電極から炭素材料が剥離し易く、二次電池の充放電が繰り返されることにより、徐々に電極の密着性が悪化するおそれがある。さらに、こうした電極を用いた二次電池は、サイクル特性が悪化し易いという問題がある。   For this reason, when the electrode described in Patent Documents 1 and 2 uses a carbon material as an active material, a weak bond is formed between the organic reactive group of the coupling agent and the carbon material. When the secondary battery is charged / discharged, the carbon material is easily peeled from the electrode, and the secondary battery is repeatedly charged / discharged, whereby the electrode adhesion may gradually deteriorate. Furthermore, a secondary battery using such an electrode has a problem that cycle characteristics are likely to deteriorate.

本発明は、上記の問題を解決するためになされたものであって、その目的は、電極の密着性に優れ、高容量の二次電池用負極を製造する方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing a high-capacity negative electrode for a secondary battery having excellent electrode adhesion.

上記課題を解決するための本発明の二次電池用負極の製造方法は、集電体上の活物質層が、少なくとも炭素材料と金属酸化物とカップリング剤とを含むスラリーを作製する工程と、作製されたスラリーを集電体上に塗布する工程と、塗布されたスラリーを乾燥する工程とを経て形成されることを特徴とする。   The method for producing a negative electrode for a secondary battery according to the present invention for solving the above-described problem includes a step of producing a slurry in which an active material layer on a current collector contains at least a carbon material, a metal oxide, and a coupling agent. The slurry is formed through a step of applying the prepared slurry onto a current collector and a step of drying the applied slurry.

この発明によれば、スラリーが少なくとも炭素材料と金属酸化物とカップリング剤とを含むので、乾燥した後の活物質層には、カップリング剤と金属酸化物とは両者が強く結合した網目状構造が形成され、しかもその網目状構造の中に炭素材料が包含された構造となる。その結果、こうした活物質層が集電体上に形成された二次電池用負極は、高容量であるともに密着性に優れたものとなる。   According to this invention, since the slurry contains at least a carbon material, a metal oxide, and a coupling agent, the active material layer after drying has a network shape in which the coupling agent and the metal oxide are both strongly bonded. A structure is formed, and a carbon material is included in the network structure. As a result, the negative electrode for a secondary battery in which such an active material layer is formed on the current collector has a high capacity and excellent adhesion.

本発明の二次電池用負極の製造方法は、上記本発明の製造方法において、前記スラリーが、少なくとも炭素材料と金属酸化物とカップリング剤とを混合したものに溶剤を加えて混合すること、又は、溶剤に少なくとも炭素材料と金属酸化物とを加えて混合すること、により作製されることを特徴とする。   The method for producing a negative electrode for a secondary battery of the present invention is the above-described production method of the present invention, wherein the slurry is mixed by adding a solvent to a mixture of at least a carbon material, a metal oxide, and a coupling agent, Alternatively, it is produced by adding at least a carbon material and a metal oxide to a solvent and mixing them.

この発明によれば、スラリー中に炭素材料と金属酸化物とカップリング剤とが分散するので、こうしたスラリーから形成された活物質層は、カップリング剤と金属酸化物とが結合した網目状構造の中に炭素材料が分散した構造となり、金属酸化物、炭素材料及び集電体それぞれと、カップリング剤との間の結合状態が良好なものとなる。その結果、得られる二次電池用負極は、高容量であるとともに密着性に優れたものとなる。   According to this invention, since the carbon material, the metal oxide, and the coupling agent are dispersed in the slurry, the active material layer formed from such a slurry has a network structure in which the coupling agent and the metal oxide are combined. In this structure, the carbon material is dispersed therein, and the coupling state between the metal oxide, the carbon material, the current collector, and the coupling agent is improved. As a result, the obtained negative electrode for a secondary battery has a high capacity and excellent adhesion.

本発明の二次電池用負極の製造方法は、上記本発明の製造方法において、前記スラリーに含まれる炭素材料と金属酸化物との質量比(炭素材料:金属酸化物)が1:9〜9:1の範囲内であることを特徴とする。   The method for producing a negative electrode for a secondary battery of the present invention is the above-described production method of the present invention, wherein the mass ratio (carbon material: metal oxide) of the carbon material and metal oxide contained in the slurry is 1: 9-9. : 1.

この発明によれば、炭素材料と金属酸化物の割合を上記範囲内とするので、金属酸化物、炭素材料及び集電体それぞれと、カップリング剤との間の結合状態が良好なものとなる。その結果、得られる二次電池用負極は、密着性に優れたものとなる。   According to this invention, since the ratio between the carbon material and the metal oxide is within the above range, the coupling state between the metal oxide, the carbon material, and the current collector, and the coupling agent is improved. . As a result, the obtained negative electrode for a secondary battery has excellent adhesion.

本発明の二次電池用負極の製造方法は、上記本発明の製造方法において、前記カップリング剤が、前記乾燥工程を経て形成される活物質層に対し0.1〜5質量%の範囲内となるようにスラリーに含まれることを特徴とする。   The manufacturing method of the negative electrode for secondary batteries of this invention is the manufacturing method of the said invention. WHEREIN: The said coupling agent exists in the range of 0.1-5 mass% with respect to the active material layer formed through the said drying process. It is contained in the slurry so that

この発明によれば、カップリング剤の量を上記範囲内とするので、活物質層が硬くなりすぎないため取り扱い易く、密着性に優れた二次電池用負極を製造することができる。   According to this invention, since the amount of the coupling agent is within the above range, the active material layer does not become too hard, and thus it is easy to handle and a negative electrode for a secondary battery excellent in adhesion can be manufactured.

本発明の二次電池用負極の製造方法は、(1)前記カップリング剤が、ビニル基、エポキシ基、アミノ基、メタクリル基及びメルカプト基のうち1種又は2種以上を含むこと、(2)前記カップリング剤が、アルコキシ基を含むこと、が好ましい。   The manufacturing method of the negative electrode for secondary batteries of this invention is (1) The said coupling agent contains 1 type (s) or 2 or more types among a vinyl group, an epoxy group, an amino group, a methacryl group, and a mercapto group, (2 It is preferable that the coupling agent contains an alkoxy group.

本発明の二次電池用負極の製造方法によれば、密着性に優れた、高容量の二次電池用負極が得られる。その結果、得られる二次電池用負極を用いた二次電池は、充放電を繰り返しても二次電池用負極の密着性が悪化し難いので、容量の劣化が起こり難い。したがって、得られる二次電池用負極を用いた二次電池は、優れたサイクル特性を実現できる。   According to the method for manufacturing a negative electrode for a secondary battery of the present invention, a high capacity negative electrode for a secondary battery having excellent adhesion can be obtained. As a result, in the secondary battery using the obtained secondary battery negative electrode, even when charging and discharging are repeated, the adhesiveness of the secondary battery negative electrode is hardly deteriorated, and therefore, the capacity is hardly deteriorated. Therefore, the secondary battery using the obtained negative electrode for a secondary battery can realize excellent cycle characteristics.

本発明の二次電池用負極の製造方法は、集電体上の活物質層が、少なくとも炭素材料と金属酸化物とカップリング剤とを含むスラリーを作製する工程(スラリー作製工程)と、作製されたスラリーを集電体上に塗布する工程(塗布工程)と、塗布されたスラリーを乾燥する工程(乾燥工程)とを経て形成される。   The method for producing a negative electrode for a secondary battery according to the present invention includes a step (slurry production step) of producing a slurry in which an active material layer on a current collector contains at least a carbon material, a metal oxide, and a coupling agent. It is formed through a step of applying the applied slurry on the current collector (application step) and a step of drying the applied slurry (drying step).

本発明の二次電池用負極の製造方法で製造される二次電池用負極は、図1に示すように、集電体4と、集電体4上に形成された活物質層5とから構成されている。活物質層5は、炭素材料1及び金属酸化物2を含み、集電体4、炭素材料1及び金属酸化物2がシランカップリング剤で結合された構造になっている。   As shown in FIG. 1, the negative electrode for a secondary battery produced by the method for producing a negative electrode for a secondary battery of the present invention comprises a current collector 4 and an active material layer 5 formed on the current collector 4. It is configured. The active material layer 5 includes a carbon material 1 and a metal oxide 2, and has a structure in which the current collector 4, the carbon material 1, and the metal oxide 2 are bonded with a silane coupling agent.

このような二次電池用負極を製造する方法について、以下、スラリー作製工程、塗布工程及び乾燥工程についてそれぞれ詳細に説明する。   Hereinafter, a method for producing such a negative electrode for a secondary battery will be described in detail with respect to the slurry preparation step, the coating step, and the drying step.

<スラリー作製工程>
スラリー作製工程は、少なくとも炭素材料1と金属酸化物2とカップリング剤とを含むスラリーを作製する工程である。スラリーは、炭素材料1、金属酸化物2及びカップリング剤に溶剤を加えて混合し、必要に応じて導電付与剤と結着剤とを添加して作製される。又は、スラリーは、溶剤に炭素材料1、金属酸化物2及びカップリング剤を加えて混合し、必要に応じて導電付与剤と結着剤とを添加して作製される。
<Slurry production process>
The slurry production step is a step of producing a slurry containing at least the carbon material 1, the metal oxide 2, and the coupling agent. The slurry is prepared by adding a solvent to the carbon material 1, the metal oxide 2, and the coupling agent and mixing them, and adding a conductivity-imparting agent and a binder as necessary. Alternatively, the slurry is prepared by adding the carbon material 1, the metal oxide 2 and the coupling agent to a solvent and mixing them, and adding a conductivity-imparting agent and a binder as necessary.

混合する方法としては、炭素材料1、金属酸化物2及びカップリング剤等をスラリー中に均一に分散させることができれば特に制限されないが、例えばホモジナイザー等を用いて混合することができる。このように、炭素材料1、金属酸化物2及びカップリング剤等が均一に分散したスラリーが、活物質層5の形成材料として用いられる。   The mixing method is not particularly limited as long as the carbon material 1, the metal oxide 2, the coupling agent, and the like can be uniformly dispersed in the slurry. For example, they can be mixed using a homogenizer or the like. Thus, the slurry in which the carbon material 1, the metal oxide 2, the coupling agent, and the like are uniformly dispersed is used as a material for forming the active material layer 5.

炭素材料1は、リチウムイオンを吸蔵放出する活物質材料であり、二次電池用負極の容量を向上させるために用いられる。炭素材料1としては、人造黒鉛、天然黒鉛、非晶質黒鉛、カーボンファイバー、カーボンナノチューブ及びフラーレン等の粉末又は粒子が挙げられる。なお、これら粉末又は粒子に予め特別な処理を施す必要はなく、そのまま用いることができる。炭素材料1の平均粒径は、通常1〜50μmである。なお、本願において、粒径とは、粒度分布計で測定された積算分布の50%に対応する粒度であるD50のことをいう。   The carbon material 1 is an active material that occludes and releases lithium ions, and is used to improve the capacity of the secondary battery negative electrode. Examples of the carbon material 1 include powder or particles such as artificial graphite, natural graphite, amorphous graphite, carbon fiber, carbon nanotube, and fullerene. Note that these powders or particles do not need to be specially treated in advance, and can be used as they are. The average particle diameter of the carbon material 1 is usually 1 to 50 μm. In addition, in this application, a particle size means D50 which is a particle size corresponding to 50% of the integrated distribution measured with the particle size distribution analyzer.

金属酸化物2は、リチウムイオンを吸蔵放出する活物質材料であり、二次電池用負極の容量を向上させるために用いられる。金属酸化物2としては、ケイ素酸化物及びスズ酸化物の粒子又は粉末が挙げられる。具体的には、SiO、LiSiO(0<x≦4、0<y≦2)、SnO、LiSnO(0<x≦4、0<y≦2)、SiFe(0<b≦1、0<c≦2)、SiNi(0<b≦1、0<c≦2)、SnCo(0<b≦4、0<c≦2)、SiCu(0<b≦4、0<c≦2)、SiFe(0<b≦4、0<c≦2)等の粒子又は粉末が挙げられ、なかでもSiO、LiSiO(0<x≦4、0<y≦2)、SnO又はLiSnO(0<x≦4、0<y≦2)を用いることが好ましい。金属酸化物2の平均粒径は、通常0.1〜50μmである。また、二次電池用負極の容量を向上させるために、金属酸化物2にリチウム吸蔵能力の高い材料を含有させることもできる。 The metal oxide 2 is an active material that absorbs and releases lithium ions, and is used to improve the capacity of the negative electrode for a secondary battery. Examples of the metal oxide 2 include silicon oxide and tin oxide particles or powder. Specifically, SiO, Li x SiO y (0 <x ≦ 4, 0 <y ≦ 2), SnO, Li x SnO y (0 <x ≦ 4, 0 <y ≦ 2), SiFe b O c ( 0 <b ≦ 1, 0 <c ≦ 2), SiNi b O c (0 <b ≦ 1, 0 <c ≦ 2), SnCo b O c (0 <b ≦ 4, 0 <c ≦ 2), SiCu Examples thereof include particles or powders such as b O c (0 <b ≦ 4, 0 <c ≦ 2), SiFe b O c (0 <b ≦ 4, 0 <c ≦ 2), and among others, SiO, Li x SiO It is preferable to use y (0 <x ≦ 4, 0 <y ≦ 2), SnO or Li x SnO y (0 <x ≦ 4, 0 <y ≦ 2). The average particle diameter of the metal oxide 2 is usually 0.1 to 50 μm. Moreover, in order to improve the capacity | capacitance of the negative electrode for secondary batteries, the metal oxide 2 can also be made to contain a material with high lithium occlusion ability.

炭素材料1と金属酸化物2の重量比(炭素材料:金属酸化物)は、1:9〜9:1の範囲であることが好ましい。炭素材料1と金属酸化物2の重量比を上記範囲とすることにより、炭素材料1、金属酸化物2及び集電体4それぞれと、カップリング剤との間の結合状態を維持することができる。炭素材料1と金属酸化物2の重量比が上記の範囲外である場合は、炭素材料1、金属酸化物2及び集電体4それぞれと、カップリング剤との結合状態が悪くなるため、得られる二次電池用負極の密着性が悪くなることがある。   The weight ratio of carbon material 1 to metal oxide 2 (carbon material: metal oxide) is preferably in the range of 1: 9 to 9: 1. By setting the weight ratio of the carbon material 1 and the metal oxide 2 within the above range, the bonding state between the carbon material 1, the metal oxide 2, and the current collector 4 and the coupling agent can be maintained. . When the weight ratio of the carbon material 1 and the metal oxide 2 is outside the above range, the bonding state between the carbon material 1, the metal oxide 2 and the current collector 4 and the coupling agent is deteriorated. Adhesiveness of the negative electrode for a secondary battery may be deteriorated.

カップリング剤は、無機反応基と有機反応基を有している。本発明においては、カップリング剤の有機反応基が炭素材料1に結合し、カップリング剤の無機反応基が金属酸化物2及び集電体4のそれぞれに結合するので、炭素材料1及び金属酸化物2間の密着性、並びに、炭素材料1及び金属酸化物2それぞれと集電体4との密着性を向上させることができる。カップリング剤としては、シランカップリング剤、チタネートカップリング剤及びアルミニウムカップリング剤が挙げられ、なかでも、シランカップリング剤を用いることが好ましい。   The coupling agent has an inorganic reactive group and an organic reactive group. In the present invention, the organic reactive group of the coupling agent is bonded to the carbon material 1, and the inorganic reactive group of the coupling agent is bonded to the metal oxide 2 and the current collector 4, respectively. The adhesion between the objects 2 and the adhesion between the current collector 4 and the carbon material 1 and the metal oxide 2 can be improved. Examples of the coupling agent include a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent. Among them, it is preferable to use a silane coupling agent.

カップリング剤は、無機反応基であるアルコキシ基を含むことが好ましく、有機反応基である、ビニル基、エポキシ基、アミノ基、メタクリル基及びメルカプト基のうち1種又は2種以上を含むことが好ましい。   The coupling agent preferably includes an alkoxy group that is an inorganic reactive group, and includes one or more of a vinyl group, an epoxy group, an amino group, a methacryl group, and a mercapto group that are organic reactive groups. preferable.

好適なカップリング剤としては、例えば、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メタクリロクシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン及びN−フェニル−γ−アルミノプロピルトリメトキシシランが挙げられる。   Suitable coupling agents include, for example, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ- Examples include methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltris (β-methoxyethoxy) silane and N-phenyl-γ-aluminopropyltrimethoxysilane.

カップリング剤は、乾燥工程を経て形成される活物質層5に対し0.1〜5質量%の範囲内となるようにスラリーに含まれることが好ましい。カップリング剤が、上記範囲内となるようにスラリーを作製することによって、得られる二次電池用負極の密着性を向上させ、二次電池を作製する際に二次電池用負極を取り扱い易くすることができる。カップリング剤が、乾燥工程を経て形成される活物質層5に対して0.1質量%未満となるようにスラリーに含まれる場合は、得られる二次電池用負極は、金属酸化物、炭素材料及び集電体それぞれと、カップリング剤との間の結合状態が悪くなるため、密着性が悪くなることがある。また、カップリング剤が、乾燥工程を経て形成される活物質層5に対して5質量%を超えるようにスラリーに含まれる場合は、得られる二次電池用負極は、活物質層5が硬くなりすぎて、二次電池を作製する際に捲回が困難となり、二次電池用負極の取り扱いが困難となることがある。   The coupling agent is preferably contained in the slurry so as to be in the range of 0.1 to 5% by mass with respect to the active material layer 5 formed through the drying step. By preparing the slurry so that the coupling agent is within the above range, the adhesion of the obtained negative electrode for the secondary battery is improved, and the secondary battery negative electrode is made easier to handle when producing the secondary battery. be able to. When the coupling agent is contained in the slurry so as to be less than 0.1% by mass with respect to the active material layer 5 formed through the drying step, the obtained negative electrode for the secondary battery is a metal oxide, carbon Since the bonding state between the material and the current collector and the coupling agent is deteriorated, adhesion may be deteriorated. Moreover, when the coupling agent is contained in the slurry so as to exceed 5 mass% with respect to the active material layer 5 formed through the drying step, the active material layer 5 is hard in the obtained negative electrode for a secondary battery. Therefore, it may be difficult to wind the secondary battery when manufacturing the secondary battery, and it may be difficult to handle the negative electrode for the secondary battery.

溶剤は、炭素材料1、金属酸化物2及びカップリング剤等を均一に混合するために添加される。溶剤としては、N−メチル−2−ピロリドン(NMP)又はフッ素樹脂等を用いることができ、予め後述する結着剤と混合したものを、炭素材料1、金属酸化物2及びカップリング剤等に加えて混合してもよい。   A solvent is added in order to mix the carbon material 1, the metal oxide 2, a coupling agent, etc. uniformly. As the solvent, N-methyl-2-pyrrolidone (NMP), a fluororesin, or the like can be used, and what is previously mixed with a binder described later is used as a carbon material 1, a metal oxide 2, a coupling agent, and the like. In addition, they may be mixed.

導電付与剤は、二次電池用負極の導電性を向上させるために任意成分として用いることができる。導電付与剤としては、得られる二次電池用負極で構成された二次電池において、化学変化を起こさない電子伝導性材料であれば特に制限なく使用できる。例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛等)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉、金属繊維、ポリフェニレン誘導体及びポリアセチレン等から選ばれる1種又は2種以上の電子伝導性材料を用いることができる。導電付与剤は、乾燥工程を経て形成される活物質層5に対し、二次電池用負極の導電性を向上させつつ、二次電池用負極の密着性を悪化させない観点から、例えば0.01〜50質量%、好ましくは0.4〜10質量%となるように添加される。   The conductivity-imparting agent can be used as an optional component in order to improve the conductivity of the negative electrode for a secondary battery. As the conductivity-imparting agent, any electron conductive material that does not cause a chemical change in the secondary battery constituted by the obtained negative electrode for a secondary battery can be used without particular limitation. For example, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder, metal fiber, polyphenylene derivative, polyacetylene, etc. Alternatively, two or more kinds of electron conductive materials can be used. The conductivity-imparting agent is, for example, 0.01% from the viewpoint of improving the conductivity of the secondary battery negative electrode with respect to the active material layer 5 formed through the drying step, while not deteriorating the adhesion of the secondary battery negative electrode. It is added to ˜50 mass%, preferably 0.4 to 10 mass%.

結着剤は、二次電池用負極の密着性をさらに向上させるために任意成分として用いることができる。結着剤としては、ポリアクリル酸、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、ポリビニルアルコール、澱粉、ジアセチルセルロース、ヒドロキシプロピルセルロース、ポリビニルクロリド、ポリビニルピロリドン、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、エチレンプロピレンゴム(EPDM)、スルホン化エチレンプロピレンゴム(スルホン化EPDM)、フッ素ゴム、ポリブタジエン及びポリエチレンオキシドを挙げることができ、これらの中で、ポリアクリル酸、カルボキシメチルセルロース、ポリテトラフルオロエチレン又はポリフッ化ビニリデン(PVDF)が好ましい。結着剤は、乾燥工程を経て形成される活物質層5に対し、二次電池用負極の密着性を向上させつつ、二次電池を作製する際に二次電池用負極を取り扱い易くする観点から、例えば1〜20質量%、好ましくは2〜8質量%となるように添加される。   The binder can be used as an optional component in order to further improve the adhesion of the secondary battery negative electrode. Binders include polyacrylic acid, carboxymethyl cellulose, polytetrafluoroethylene, polyvinylidene fluoride (PVDF), polyvinyl alcohol, starch, diacetyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, polyvinyl pyrrolidone, polyethylene, polypropylene, styrene butadiene rubber (SBR), ethylene propylene rubber (EPDM), sulfonated ethylene propylene rubber (sulfonated EPDM), fluororubber, polybutadiene and polyethylene oxide, among these, polyacrylic acid, carboxymethylcellulose, polytetrafluoro Ethylene or polyvinylidene fluoride (PVDF) is preferred. The viewpoint of making the secondary battery negative electrode easy to handle when producing the secondary battery while improving the adhesion of the secondary battery negative electrode to the active material layer 5 formed through the drying step. From 1 to 20% by mass, preferably 2 to 8% by mass.

<塗布工程>
塗布工程は、上述のスラリー作製工程で作製したスラリーを集電体4上に塗布する工程である。
<Application process>
The application step is a step of applying the slurry prepared in the above-described slurry preparation step onto the current collector 4.

集電体4は、二次電池の充放電の際に電流を取り出したり供給したりするものであり、通常、金属箔が用いられる。金属箔の材質としては、導電性のあるものであれば特に制限されないが、銅、ニッケル、鉄、コバルト及びステンレスが挙げられる。集電体4の厚みは、5μm以上30μm以下であることが好ましい。   The current collector 4 is used to take out or supply current when charging / discharging the secondary battery, and a metal foil is usually used. The material of the metal foil is not particularly limited as long as it is conductive, and examples thereof include copper, nickel, iron, cobalt, and stainless steel. The thickness of the current collector 4 is preferably 5 μm or more and 30 μm or less.

スラリーを集電体4上に塗布する方法としては、ドクターブレード法又はスプレー塗布等を用いることができる。   As a method of applying the slurry onto the current collector 4, a doctor blade method, spray coating, or the like can be used.

<乾燥工程>
乾燥工程は、集電体4上に塗布されたスラリーを乾燥して、炭素材料1、金属酸化物2及び集電体4それぞれとカップリング剤との間に結合を形成させる工程である。
<Drying process>
A drying process is a process of drying the slurry apply | coated on the electrical power collector 4, and forming a coupling | bonding between each of the carbon material 1, the metal oxide 2, and the electrical power collector 4, and a coupling agent.

スラリーを乾燥する方法としては、真空乾燥又は加熱乾燥等の公知の乾燥方法を用いることができる。スラリーを乾燥した後、活物質層5を所望の密度となるようにプレスして二次電池用負極が作製される。さらにその後、乾燥処理を行ってもよい。   As a method for drying the slurry, a known drying method such as vacuum drying or heat drying can be used. After drying the slurry, the active material layer 5 is pressed to a desired density to produce a secondary battery negative electrode. Furthermore, you may perform a drying process after that.

以上説明した、スラリー作製工程、塗布工程及び乾燥工程を経て、活物質層5が集電体4上に形成される。   The active material layer 5 is formed on the current collector 4 through the slurry preparation process, the application process, and the drying process described above.

活物質層5は、炭素材料1及び金属酸化物2を含み、カップリング剤と金属酸化物2からなる網目状構造の中に炭素材料1が包含される構造となっていると考えられる。なお、活物質層5は、集電体4の片面に形成されていてもよく、両面に形成されていてもよい。   The active material layer 5 includes the carbon material 1 and the metal oxide 2 and is considered to have a structure in which the carbon material 1 is included in a network structure including the coupling agent and the metal oxide 2. The active material layer 5 may be formed on one side of the current collector 4 or may be formed on both sides.

このような活物質層5中の、炭素材料1、金属酸化物2及び集電体4それぞれとカップリング剤との結合状態を、カップリング剤としてシランカップリング剤を用いた場合を例に挙げて、詳細に説明する。   In such an active material layer 5, the bonding state of each of the carbon material 1, the metal oxide 2 and the current collector 4 and the coupling agent is taken as an example when a silane coupling agent is used as the coupling agent. This will be described in detail.

スラリーに含まれるシランカップリング剤の無機反応基は、大気中又はスラリー中に存在する水、若しくは集電体4表面に存在する水により加水分解されてヒドロキシル基(OH基)となる。このヒドロキシル基(OH基)が、無機材料表面(集電体4や金属酸化物2の表面)に水素結合する。このとき同時に、シランカップリング剤は、部分的に縮合してオリゴマーの状態となる。このスラリーを乾燥処理することにより、水素結合しているシランカップリング剤のヒドルロキシル基と無機材料表面(集電体4や金属酸化物2の表面)から、脱水縮合反応が起こり強固な結合が形成される。   The inorganic reactive group of the silane coupling agent contained in the slurry is hydrolyzed to form hydroxyl groups (OH groups) with water present in the atmosphere or in the slurry, or with water present on the surface of the current collector 4. This hydroxyl group (OH group) is hydrogen-bonded to the surface of the inorganic material (the surface of the current collector 4 or the metal oxide 2). At the same time, the silane coupling agent is partially condensed into an oligomer state. By drying this slurry, a dehydration condensation reaction occurs from the hydroxyl group of the hydrogen-bonded silane coupling agent and the surface of the inorganic material (the surface of the current collector 4 or metal oxide 2) to form a strong bond. Is done.

したがって、本発明の二次電池用負極の製造方法によれば、少なくともシランカップリング剤と炭素材料1と金属酸化物2とを含むスラリーを作製し、このスラリーを集電体上に塗布して乾燥処理を施しているので、図2に示すように、オリゴマーとなったシランカップリング剤3のヒドロキシル基(OH基)が、分散した金属酸化物2と強固な結合を形成して、網目状に広がった構造をしていると考えられる。また、シランカップリング剤3のヒドロキシル基(OH基)は、集電体4と強固な結合を形成している。   Therefore, according to the method for manufacturing a negative electrode for a secondary battery of the present invention, a slurry containing at least a silane coupling agent, a carbon material 1 and a metal oxide 2 is prepared, and this slurry is applied on a current collector. Since the drying process is performed, the hydroxyl group (OH group) of the oligomerized silane coupling agent 3 forms a strong bond with the dispersed metal oxide 2 as shown in FIG. It is thought that it has a structure spread to. The hydroxyl group (OH group) of the silane coupling agent 3 forms a strong bond with the current collector 4.

さらに、シランカップリング剤3の有機反応基Xは、炭素材料1と結合しているが、この有機反応基Xと炭素材料1との結合は、シランカップリング剤3と金属酸化物2の結合やシランカップリング剤3と集電体4との結合に比べ弱い結合である。しかしながら、炭素材料1は、シランカップリング剤3と金属酸化物2からなる網目状構造中に包含される構造となるため、炭素材料1が二次電池用負極から剥離し難くなり、二次電池用負極の密着性が向上すると考えられる。   Furthermore, the organic reactive group X of the silane coupling agent 3 is bonded to the carbon material 1, and the bond between the organic reactive group X and the carbon material 1 is the bond between the silane coupling agent 3 and the metal oxide 2. The bond is weaker than the bond between the silane coupling agent 3 and the current collector 4. However, since the carbon material 1 has a structure included in the network structure composed of the silane coupling agent 3 and the metal oxide 2, the carbon material 1 is difficult to peel from the negative electrode for the secondary battery, and the secondary battery It is thought that the adhesiveness of the negative electrode for use is improved.

以上説明したように、本発明の二次電池用負極の製造方法によれば、活物質層5が、高容量材料である炭素材料1及び金属酸化物2を含むので、得られる二次電池用負極は高容量である。また、活物質層5は、カップリング剤と金属酸化物2からなる網目状構造の中に炭素材料1が包含される構造となっているので、得られる二次電池用負極は、高容量であるとともに密着性に優れたものとなる。したがって、本発明により得られた二次電池用負極を用いた二次電池は、充放電を繰り返しても二次電池用負極の密着性が維持されるので、容量の劣化が起こり難くく優れたサイクル特性を実現できる。   As described above, according to the method for manufacturing a negative electrode for a secondary battery of the present invention, the active material layer 5 includes the carbon material 1 and the metal oxide 2 that are high-capacity materials. The negative electrode has a high capacity. Moreover, since the active material layer 5 has a structure in which the carbon material 1 is included in a network structure composed of a coupling agent and the metal oxide 2, the obtained negative electrode for a secondary battery has a high capacity. In addition to being excellent in adhesion. Therefore, the secondary battery using the secondary battery negative electrode obtained by the present invention is excellent in that the capacity of the secondary battery negative electrode is hardly deteriorated because the adhesion of the secondary battery negative electrode is maintained even after repeated charge and discharge. Cycle characteristics can be realized.

このような二次電池は、例えば、正極と上述した二次電池用負極とを、セパレータを介して積層した後又は積層したものを捲回した後に、容器に収容して電解液を注液し、封口することによって製造される。   Such a secondary battery is, for example, after laminating the positive electrode and the above-described negative electrode for a secondary battery via a separator, or after winding the laminated one, and containing the electrolyte in a container. Manufactured by sealing.

このような二次電池の形状としては、特に制限はないが、例えば、円筒型、角型、コイン型等が挙げられる。また、容器の材質としては、金属缶や合成樹脂と金属箔との積層体からなる可とう性フィルム等が挙げられる。   The shape of the secondary battery is not particularly limited, and examples thereof include a cylindrical shape, a square shape, and a coin shape. Moreover, as a material of a container, the flexible film etc. which consist of a laminated body of a metal can or a synthetic resin and metal foil are mentioned.

正極は、正極活物質と導電付与剤と結着剤とを分散して混練したものを集電体に塗布し、正極活物質層を形成して作製される。正極活物質としては、例えば、LiCoO、LixCo1−y、LiNiO、LixMnO、LixMnF、LixMnS、LixMn1−y、LixMn1−y、LixMn1−y2−z、LixMn1−y2−z、LixMn、LixMn、LixMn、LixMn2−y、LixMn2−y4−z及びLixMn2−y4−z(0<x≦1.5、0<y<1.0、Z≦1.0、Mは少なくとも1つ以上の遷移金属を表す。)が挙げられる。このとき、正極活物質層の厚さは、通常10〜500μmである。なお、導電付与剤、結着剤及び集電体は、上述の本発明の二次電池用負極の製造方法で用いたものと同様のものを用いることができる。 The positive electrode is produced by applying a positive electrode active material, a conductivity-imparting agent, and a binder dispersed and kneaded to a current collector to form a positive electrode active material layer. As the positive electrode active material, for example, LiCoO 2, LixCo 1-y M y O 2, Li 2 NiO 2, LixMnO 2, LixMnF 2, LixMnS 2, LixMn 1-y M y O 2, LixMn 1-y M y O 2, LixMn 1-y M y O 2-z F z, LixMn 1-y M y O 2-z S z, LixMn 2 O 4, LixMn 2 F 4, LixMn 2 S 4, LixMn 2-y M y O 4, LixMn 2-y M y O 4-z F z and LixMn 2-y M y O 4 -z S z (0 <x ≦ 1.5,0 <y <1.0, Z ≦ 1.0, M represents at least one or more transition metals.). At this time, the thickness of the positive electrode active material layer is usually 10 to 500 μm. In addition, the thing similar to what was used with the manufacturing method of the negative electrode for secondary batteries of the above-mentioned this invention can be used for a conductive provision agent, a binder, and a collector.

セパレータは、負極と正極の間に設けられ、絶縁性とイオン伝導性があるものが用いられる。このようなセパレータとしては、ポリプロピレン、ポリエチレン等のポリオレフィン多孔性フィルムが挙げられる。   The separator is provided between the negative electrode and the positive electrode, and one having insulation and ion conductivity is used. Examples of such a separator include polyolefin porous films such as polypropylene and polyethylene.

電解液としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、N−メチル−2−ピロリドン(NMP)等の非プロトン性有機溶媒から選ばれる1種又は2種以上の溶媒を用いることができ、これらの溶媒に溶解するリチウム塩を溶解させて用いる。   Examples of the electrolyte solution include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate ( EMC), chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, 1,2-ethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylform Amide, dioxolane, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2- One or more solvents selected from aprotic organic solvents such as oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone, anisole, N-methyl-2-pyrrolidone (NMP) The lithium salt that dissolves in these solvents is dissolved and used.

リチウム塩としては、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCFCO、Li(CFSO、LiN(CFSO、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl及びイミド類等が挙げられる。また、電解液に代えてポリマー電解質を用いてもよい。 Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl and imides. Further, a polymer electrolyte may be used instead of the electrolytic solution.

以下、実施例及び比較例を挙げて本発明をさらに具体的に説明する   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

(実施例1)
炭素材料である人造黒鉛と、金属酸化物であるケイ素酸化物(SiO)と、導電付与剤であるカーボンブラックと、結着剤であるポリフッ化ビニリデン(PVDF)と、カップリング剤であるN−β−(アミノエチル)−γ−アミノプロピルトリメトキシシランとを混合し、溶剤であるN−メチル−2−ピロリドン(NMP)を加えてスラリーを作製した。このスラリーをドクターブレード法を用いて銅箔からなる集電体上に塗布した。このとき、溶剤を除いたスラリーの重量に対して、炭素材料が9.2重量%、金属酸化物が79.3重量%、カップリング剤が5重量%、導電付与剤が0.5重量%、結着剤が6質量%、となるようにした。
Example 1
Artificial graphite, which is a carbon material, silicon oxide (SiO), which is a metal oxide, carbon black, which is a conductivity-imparting agent, polyvinylidene fluoride (PVDF), which is a binder, and N-, which is a coupling agent. β- (Aminoethyl) -γ-aminopropyltrimethoxysilane was mixed and N-methyl-2-pyrrolidone (NMP) as a solvent was added to prepare a slurry. This slurry was applied onto a current collector made of copper foil using a doctor blade method. At this time, the carbon material is 9.2% by weight, the metal oxide is 79.3% by weight, the coupling agent is 5% by weight, and the conductivity imparting agent is 0.5% by weight with respect to the weight of the slurry excluding the solvent. The binder was 6% by mass.

次に、このスラリーを乾燥しN−メチル−2−ピロリドン(NMP)を蒸発させて活物質層を形成した後、この活物質層の密度が1.3〜1.5g/ccとなるようにプレスを行った。さらにその後、カップリング剤の脱水縮合反応を速めるため、120℃で10時間保持して、二次電池用負極を作製した。   Next, after drying this slurry and evaporating N-methyl-2-pyrrolidone (NMP) to form an active material layer, the density of this active material layer was adjusted to 1.3 to 1.5 g / cc. Pressed. Furthermore, in order to accelerate the dehydration condensation reaction of the coupling agent, the negative electrode for a secondary battery was produced by holding at 120 ° C. for 10 hours.

(実施例2〜7及び比較例1〜3)
実施例1において、炭素材料、金属酸化物及びカップリング剤を表1に示す割合で混合した以外は実施例1と同様にして、実施例2〜7及び比較例1〜3の二次電池用負極を作製した。
(Examples 2-7 and Comparative Examples 1-3)
In Example 1, for the secondary batteries of Examples 2 to 7 and Comparative Examples 1 to 3, in the same manner as in Example 1 except that the carbon material, the metal oxide, and the coupling agent were mixed in the ratio shown in Table 1. A negative electrode was produced.

(剥離強度試験)
実施例1〜7及び比較例1〜3の二次電池用負極を20mm×5mmに裁断し、これらの二次電池用負極を長手方向10mmのところで活物質層が形成された面が外側になるようにして90°に折り曲げた。この二次電池用負極を図4のように両面テープで固定した。その後、これらの二次電池用負極を固定面に対して垂直に引き上げ、二次電池用負極から両面テープを剥がす際に必要な力の最大値を剥離強度とした。この剥離強度試験の結果を表1に示す。
(Peel strength test)
The negative electrodes for secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3 were cut into 20 mm × 5 mm, and the surface on which the active material layer was formed at the longitudinal direction of these secondary battery negative electrodes was 10 mm. In this way, it was bent at 90 °. This negative electrode for secondary battery was fixed with double-sided tape as shown in FIG. Then, these negative electrodes for secondary batteries were pulled up perpendicularly to the fixed surface, and the maximum value of the force required to peel the double-sided tape from the secondary battery negative electrode was defined as the peel strength. The results of this peel strength test are shown in Table 1.

表1の結果から炭素材料と金属酸化物の重量比が1:9〜9:1であれば剥離強度が向上していることが判明した。その理由は、カップリング剤と金属酸化物間で良好な網目構造が形成されたためと考えられる。   From the results in Table 1, it was found that the peel strength was improved when the weight ratio of the carbon material to the metal oxide was 1: 9 to 9: 1. The reason is considered that a good network structure was formed between the coupling agent and the metal oxide.

また、カップリング剤が、カップリング剤を含む活物質層に対し、0.1質量%未満である二次電池用負極は、十分な剥離強度が得られなかった。さらに、カップリング剤が、カップリング剤を含む活物質層に対し、5質量%以内である二次電池用負極は、二次電池を作製する際に良好に捲回を行うことができた。   Moreover, sufficient peel strength was not obtained for the negative electrode for secondary batteries in which the coupling agent was less than 0.1% by mass with respect to the active material layer containing the coupling agent. Furthermore, the negative electrode for secondary batteries in which the coupling agent was within 5% by mass with respect to the active material layer containing the coupling agent was able to be wound well when producing the secondary battery.

(サイクル特性試験)
実施例1〜7及び比較例1〜3の二次電池用負極を正極と組み合わせて円筒型の二次電池を作製し、二次電池の充放電を容量維持率が80%以下となるまで繰り返した。このとき、二次電池の初回の充放電の際に、1時間で充電でき1時間で放電できる電流値を採用した。正極活物質には、LiCoOを用いた。また、電解液には、LiPFを含むエチルカーボネート(EC)とジエチルカーボネート(DEC)を混合したものを用いた。
(Cycle characteristic test)
Cylindrical secondary batteries were prepared by combining the negative electrodes for secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3 with the positive electrode, and charging and discharging of the secondary batteries were repeated until the capacity retention rate became 80% or less. It was. At this time, when charging / discharging the secondary battery for the first time, a current value that can be charged in 1 hour and discharged in 1 hour was adopted. LiCoO 2 was used as the positive electrode active material. Further, the electrolytic solution was a mixture of ethyl carbonate containing LiPF 6 and (EC) and diethyl carbonate (DEC).

サイクル特性の結果を表1に示す。上記の剥離強度試験の結果で剥離強度の小さい電極は、良好なサイクル特性を得ることができなかった。   The results of the cycle characteristics are shown in Table 1. As a result of the above-mentioned peel strength test, an electrode having a small peel strength could not obtain good cycle characteristics.

Figure 2005293942
Figure 2005293942

本発明の二次電池用負極の一例を示す拡大断面図である。It is an expanded sectional view showing an example of the negative electrode for secondary batteries of the present invention. 本発明の二次電池用負極において、集電体、炭素材料及び金属酸化物それぞれと、カップリング剤とが結合した様子を示した模式図である。In the negative electrode for secondary batteries of this invention, it is the schematic diagram which showed a mode that the electrical power collector, each of the carbon material, and the metal oxide, and the coupling agent couple | bonded. 従来の電極において、集電体及び炭素材料の両者と、カップリング剤とが結合した様子を示した模式図である。In the conventional electrode, it is the schematic diagram which showed a mode that both the electrical power collector and the carbon material and the coupling agent couple | bonded. 実施例において剥離強度試験の様子を示した概略図である。It is the schematic which showed the mode of the peel strength test in the Example.

符号の説明Explanation of symbols

1 炭素材料
2 金属酸化物
3 カップリング剤
4 集電体
5 活物質層
DESCRIPTION OF SYMBOLS 1 Carbon material 2 Metal oxide 3 Coupling agent 4 Current collector 5 Active material layer

Claims (6)

集電体上の活物質層が、少なくとも炭素材料と金属酸化物とカップリング剤とを含むスラリーを作製する工程と、作製されたスラリーを集電体上に塗布する工程と、塗布されたスラリーを乾燥する工程とを経て形成されることを特徴とする二次電池用負極の製造方法。   A step of producing a slurry in which the active material layer on the current collector contains at least a carbon material, a metal oxide, and a coupling agent; a step of applying the produced slurry onto the current collector; and the applied slurry A method for producing a negative electrode for a secondary battery, comprising: 前記スラリーが、少なくとも炭素材料と金属酸化物とカップリング剤とを混合したものに溶剤を加えて混合すること、又は、溶剤に少なくとも炭素材料と金属酸化物とを加えて混合すること、により作製されることを特徴とする請求項1に記載の二次電池用負極の製造方法。   The slurry is prepared by adding and mixing a solvent to a mixture of at least a carbon material, a metal oxide, and a coupling agent, or mixing at least a carbon material and a metal oxide in a solvent. The manufacturing method of the negative electrode for secondary batteries of Claim 1 characterized by the above-mentioned. 前記スラリーに含まれる炭素材料と金属酸化物との質量比(炭素材料:金属酸化物)が1:9〜9:1の範囲内であることを特徴とする請求項1又は2に記載の二次電池用負極の製造方法。   The mass ratio (carbon material: metal oxide) of the carbon material and the metal oxide contained in the slurry is within a range of 1: 9 to 9: 1. The manufacturing method of the negative electrode for secondary batteries. 前記カップリング剤が、前記乾燥工程を経て形成される活物質層に対し0.1〜5質量%の範囲内となるようにスラリーに含まれることを特徴とする請求項1〜3のいずれか1項に記載の二次電池用負極の製造方法。   The said coupling agent is contained in a slurry so that it may exist in the range of 0.1-5 mass% with respect to the active material layer formed through the said drying process. The manufacturing method of the negative electrode for secondary batteries of Claim 1. 前記カップリング剤が、ビニル基、エポキシ基、アミノ基、メタクリル基及びメルカプト基のうち1種又は2種以上を含むことを特徴とする請求項1〜4のいずれか1項に記載の二次電池用負極の製造方法。   5. The secondary according to claim 1, wherein the coupling agent contains one or more of a vinyl group, an epoxy group, an amino group, a methacryl group, and a mercapto group. A method for producing a negative electrode for a battery. 前記カップリング剤が、アルコキシ基を含むことを特徴とする請求項1〜5のいずれか1項に記載の二次電池用負極の製造方法。
The said coupling agent contains an alkoxy group, The manufacturing method of the negative electrode for secondary batteries of any one of Claims 1-5 characterized by the above-mentioned.
JP2004105014A 2004-03-31 2004-03-31 Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery Expired - Lifetime JP4852824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105014A JP4852824B2 (en) 2004-03-31 2004-03-31 Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004105014A JP4852824B2 (en) 2004-03-31 2004-03-31 Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011164330A Division JP5365668B2 (en) 2011-07-27 2011-07-27 Lithium secondary battery and method for producing negative electrode thereof

Publications (2)

Publication Number Publication Date
JP2005293942A true JP2005293942A (en) 2005-10-20
JP4852824B2 JP4852824B2 (en) 2012-01-11

Family

ID=35326662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105014A Expired - Lifetime JP4852824B2 (en) 2004-03-31 2004-03-31 Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4852824B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305453A (en) * 2006-05-12 2007-11-22 Nec Tokin Corp Lithium ion polymer battery
JP2011044310A (en) * 2009-08-20 2011-03-03 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery, method of manufacturing the same, lithium ion secondary battery employing the same
JP2011228282A (en) * 2010-03-31 2011-11-10 Dainippon Printing Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery pack, and production method for electrode plate for non-aqueous electrolyte secondary battery
JP2012109237A (en) * 2010-10-26 2012-06-07 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and method for manufacturing electrode plate for nonaqueous electrolyte secondary battery
JP2013165061A (en) * 2012-02-09 2013-08-22 Samsung Sdi Co Ltd Composite binder for battery, and anode and lithium battery including the same
JP2013239378A (en) * 2012-05-16 2013-11-28 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and method for manufacturing electrode plate for nonaqueous electrolyte secondary battery
WO2014007393A1 (en) * 2012-07-06 2014-01-09 三井金属鉱業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries
JP2014150074A (en) * 2014-04-18 2014-08-21 Hitachi Vehicle Energy Ltd Rectangular lithium secondary battery
JP2014165005A (en) * 2013-02-25 2014-09-08 Toyo Ink Sc Holdings Co Ltd Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
WO2015046517A1 (en) * 2013-09-30 2015-04-02 凸版印刷株式会社 Electrode for secondary batteries, and secondary battery
JP2015185446A (en) * 2014-03-25 2015-10-22 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery negative electrode, and nonaqueous secondary battery using the same
JP2015213003A (en) * 2014-05-01 2015-11-26 凸版印刷株式会社 Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2016181890A1 (en) * 2015-05-08 2016-11-17 凸版印刷株式会社 Electrode for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell
US10044067B2 (en) 2014-04-21 2018-08-07 Murata Manufacturing Co., Ltd. Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2020098778A (en) * 2018-12-13 2020-06-25 三菱ケミカル株式会社 Nonaqueous electrolyte and nonaqueous electrolytic secondary battery
US20210328256A1 (en) * 2020-03-26 2021-10-21 Enevate Corporation Functional aliphatic and/or aromatic amine compounds or derivatives as electrolyte additives to reduce gas generation in li-ion batteries
CN114024023A (en) * 2021-10-21 2022-02-08 中国科学院上海硅酸盐研究所 All-solid-state lithium metal battery with high-strength and high-conductivity negative electrode coupling interface
CN114079051A (en) * 2020-08-18 2022-02-22 财团法人工业技术研究院 Negative electrode active material, negative electrode, and battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013873A1 (en) * 1994-10-27 1996-05-09 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell and its manufacturing method
JP2001216961A (en) * 2000-02-04 2001-08-10 Shin Etsu Chem Co Ltd Silicon oxide for lithium ion secondary battery and lithium ion secondary battery
JP2004178917A (en) * 2002-11-26 2004-06-24 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode material, manufacturing method of the same, and lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013873A1 (en) * 1994-10-27 1996-05-09 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell and its manufacturing method
JP2001216961A (en) * 2000-02-04 2001-08-10 Shin Etsu Chem Co Ltd Silicon oxide for lithium ion secondary battery and lithium ion secondary battery
JP2004178917A (en) * 2002-11-26 2004-06-24 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode material, manufacturing method of the same, and lithium ion secondary battery

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305453A (en) * 2006-05-12 2007-11-22 Nec Tokin Corp Lithium ion polymer battery
JP2011044310A (en) * 2009-08-20 2011-03-03 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery, method of manufacturing the same, lithium ion secondary battery employing the same
JP2011228282A (en) * 2010-03-31 2011-11-10 Dainippon Printing Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery pack, and production method for electrode plate for non-aqueous electrolyte secondary battery
JP2012109237A (en) * 2010-10-26 2012-06-07 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and method for manufacturing electrode plate for nonaqueous electrolyte secondary battery
JP2013165061A (en) * 2012-02-09 2013-08-22 Samsung Sdi Co Ltd Composite binder for battery, and anode and lithium battery including the same
JP2013239378A (en) * 2012-05-16 2013-11-28 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and method for manufacturing electrode plate for nonaqueous electrolyte secondary battery
GB2520193A (en) * 2012-07-06 2015-05-13 Mitsui Mining & Smelting Co Negative electrode active material for nonaqueous electrolyte secondary batteries
WO2014007393A1 (en) * 2012-07-06 2014-01-09 三井金属鉱業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries
US10483531B2 (en) 2012-07-06 2019-11-19 Mitsui Mining & Smelting Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries
JP5674964B2 (en) * 2012-07-06 2015-02-25 三井金属鉱業株式会社 Anode active material for non-aqueous electrolyte secondary battery
GB2520193B (en) * 2012-07-06 2015-11-04 Mitsui Mining & Smelting Co Negative electrode active material for nonaqueous electrolyte secondary batteries
JP2014165005A (en) * 2013-02-25 2014-09-08 Toyo Ink Sc Holdings Co Ltd Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
WO2015046517A1 (en) * 2013-09-30 2015-04-02 凸版印刷株式会社 Electrode for secondary batteries, and secondary battery
EP3054510A4 (en) * 2013-09-30 2017-03-15 Toppan Printing Co., Ltd. Electrode for secondary batteries, and secondary battery
US20160211522A1 (en) * 2013-09-30 2016-07-21 Toppan Printing Co., Ltd. Electrode for secondary battery, and secondary battery
US10411263B2 (en) 2013-09-30 2019-09-10 Toppan Printing Co., Ltd. Electrode for secondary battery, and secondary battery
JPWO2015046517A1 (en) * 2013-09-30 2017-03-09 凸版印刷株式会社 Secondary battery electrode, secondary battery
JP2015185446A (en) * 2014-03-25 2015-10-22 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery negative electrode, and nonaqueous secondary battery using the same
JP2014150074A (en) * 2014-04-18 2014-08-21 Hitachi Vehicle Energy Ltd Rectangular lithium secondary battery
US10044067B2 (en) 2014-04-21 2018-08-07 Murata Manufacturing Co., Ltd. Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2015213003A (en) * 2014-05-01 2015-11-26 凸版印刷株式会社 Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2016181890A1 (en) * 2015-05-08 2016-11-17 凸版印刷株式会社 Electrode for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell
US10608257B2 (en) 2015-05-08 2020-03-31 Toppan Printing Co., Ltd. Electrode for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell
JP2020098778A (en) * 2018-12-13 2020-06-25 三菱ケミカル株式会社 Nonaqueous electrolyte and nonaqueous electrolytic secondary battery
JP7404056B2 (en) 2018-12-13 2023-12-25 三菱ケミカル株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
US20210328256A1 (en) * 2020-03-26 2021-10-21 Enevate Corporation Functional aliphatic and/or aromatic amine compounds or derivatives as electrolyte additives to reduce gas generation in li-ion batteries
CN114079051A (en) * 2020-08-18 2022-02-22 财团法人工业技术研究院 Negative electrode active material, negative electrode, and battery
JP2022034555A (en) * 2020-08-18 2022-03-03 財團法人工業技術研究院 Negative electrode active material, negative electrode, and battery
CN114024023A (en) * 2021-10-21 2022-02-08 中国科学院上海硅酸盐研究所 All-solid-state lithium metal battery with high-strength and high-conductivity negative electrode coupling interface

Also Published As

Publication number Publication date
JP4852824B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
KR101154876B1 (en) Cathode Active Material for Lithium Secondary Battery
KR101169947B1 (en) Cathode Active Material for Lithium Secondary Battery
JP5574404B2 (en) Lithium ion secondary battery
KR101123057B1 (en) Cathode Active Material for Lithium Secondary Battery
KR101138637B1 (en) Cathode Active Material for Lithium Secondary Battery
JP4852824B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5263954B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4191456B2 (en) Non-aqueous secondary battery negative electrode, non-aqueous secondary battery, method for producing non-aqueous secondary battery negative electrode, and electronic device using non-aqueous secondary battery
WO2017158961A1 (en) Positive electrode mixture for secondary batteries, manufacturing method for positive electrodes for secondary batteries, and manufacturing method for secondary batteries
WO2014068904A1 (en) Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using same, and manufacturing method for same
JP5250948B2 (en) Nonaqueous electrolyte secondary battery
JP6801167B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
JP2009245917A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing same, and positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5365668B2 (en) Lithium secondary battery and method for producing negative electrode thereof
JP6808948B2 (en) Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery
JP5213011B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP4513385B2 (en) Negative electrode for secondary battery and secondary battery
JP7466981B2 (en) Negative electrode and secondary battery including the same
JP2012164481A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2011086455A (en) Negative electrode material for lithium secondary battery, manufacturing method therefor, and the lithium secondary battery
JP2022547501A (en) Method for manufacturing secondary battery
WO2014068905A1 (en) Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using same, and manufacturing method for same
WO2014080915A1 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery using same
TWI674699B (en) Electrode for nonaqueous electrolyte secondary battery
JP7309258B2 (en) Method for manufacturing secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4852824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150