JP2005291879A - Measuring method of walking data for walking robot - Google Patents

Measuring method of walking data for walking robot Download PDF

Info

Publication number
JP2005291879A
JP2005291879A JP2004106516A JP2004106516A JP2005291879A JP 2005291879 A JP2005291879 A JP 2005291879A JP 2004106516 A JP2004106516 A JP 2004106516A JP 2004106516 A JP2004106516 A JP 2004106516A JP 2005291879 A JP2005291879 A JP 2005291879A
Authority
JP
Japan
Prior art keywords
marker
data
walking robot
measuring
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004106516A
Other languages
Japanese (ja)
Other versions
JP2005291879A5 (en
JP4512875B2 (en
Inventor
Shigeo Hirose
茂男 廣瀬
Toshihito Okamoto
岡本俊仁
Yasushi Fukuda
靖 福田
Takahiro Doi
隆宏 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2004106516A priority Critical patent/JP4512875B2/en
Publication of JP2005291879A publication Critical patent/JP2005291879A/en
Publication of JP2005291879A5 publication Critical patent/JP2005291879A5/ja
Application granted granted Critical
Publication of JP4512875B2 publication Critical patent/JP4512875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Manipulator (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method of walking data for a walking robot enabling the walking robot to walk smoothly and automatically, by measuring topography on the three-dimensional position of a lattice-shaped frame formed on a slope face or on the three-dimensional position in the frame or the like, and by measuring the three-dimensional position and the attitude of the walking robot positioned on the lattice-shaped frame. <P>SOLUTION: A marker is placed at least on one spot on an intersection point of the lattice-shaped frame formed on the slope face and on the ground in the frame, and the topography is measured by using a tracking type three-dimensional position sensor. While moving a marker of the walking robot on some fixed track, the marker is tracked by the tracking type three-dimensional position sensor. Position measurement is continued for a fixed period, and the position and the attitude of the walking robot are measured by observation in the position measuring process and a track drawn by the marker in a robot coordinate system. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は格子状のフレームが形成された法面等で作業する歩行ロボット用歩行データの測定方法に関する。   The present invention relates to a method for measuring walking data for a walking robot that works on a slope or the like on which a lattice frame is formed.

従来、格子状のフレームが形成された法面で歩行ロボットを歩行させるには、歩行ロボットのフレームを挟着する挟着装置が先端部に取付けられた脚部材をオペレータが操作して、所定位置に移動させるとともに、挟着装置もオペレータの操作で挟着、挟着解除等の作業を行なわなければならなかった。   Conventionally, in order to make a walking robot walk on a slope with a grid-like frame formed, an operator operates a leg member attached to the distal end of a walking device for clamping the frame of the walking robot, so that a predetermined position is reached. In addition, the clamping device must also perform operations such as clamping and releasing the clamping by the operation of the operator.

このため、歩行ロボットの近くにオペレータがいなければ歩行させることができないという欠点があるとともに、法面が急傾斜である場合には、オペレータも急傾斜部位での操作が必要で、危険な作業になるという欠点があった。
特になし。
For this reason, there is a disadvantage that the robot cannot be walked unless there is an operator near the walking robot, and when the slope is steep, the operator also needs to operate at a steep slope, which is dangerous work. There was a drawback of becoming.
nothing special.

本発明は以上のような従来の欠点に鑑み、法面に形成された格子状のフレームの三次元位置やフレーム内の三次元位置等の地形を計測するとともに、該格子状のフレームに位置する歩行ロボットの三次元位置と姿勢を計測して、歩行ロボットの歩行をスムーズに自動的に行なうことができる歩行ロボット用歩行データの測定方法を提供することを目的としている。   In view of the above-described conventional drawbacks, the present invention measures the topography such as the three-dimensional position of the grid-like frame formed on the slope and the three-dimensional position in the frame, and is positioned on the grid-like frame. An object of the present invention is to provide a method for measuring walking data for a walking robot, which can measure the three-dimensional position and orientation of the walking robot and can smoothly and automatically walk the walking robot.

本発明の前記ならびにそのほかの目的と新規な特徴は次の説明を添付図面と照らし合わせて読むと、より完全に明らかになるであろう。
ただし、図面はもっぱら解説のためのものであって、本発明の技術的範囲を限定するものではない。
The above and other objects and novel features of the present invention will become more fully apparent when the following description is read in conjunction with the accompanying drawings.
However, the drawings are for explanation only and do not limit the technical scope of the present invention.

上記目的を達成するために、本発明は法面に形成された格子状のフレームの交点にマーカーを置き、追尾型三次元位置センサを用いて、その三次元位置を計測する交点の三次元位置計測工程、前記格子状のフレーム内の地面の少なくとも1箇所にマーカーを置き、追尾型三次元位置センサを用いて、格子内の三次元位置を計測する格子内の三次元位置計測工程、前記交点の三次元位置計測工程の交点データを線でつなぎ、網目を作り、そこにフレームの幅だけ肉付けしてフレームデータを作成するフレームデータ作成工程、前記格子内の三次元位置計測工程の格子内データの起伏が急に変化したところを計測データにより補正する補正データ作成工程とを用いた地形計測工程と、この地形計測工程で計測した格子状のフレームに位置させた、B座標系でマーカーをある軌道上で動かすことができる歩行ロボットと、A座標系の観測点に固定した追尾型三次元位置計測センサを静止させ、該歩行ロボットのマーカーをB座標系に対し、ある決まった軌道上で動かし、該追尾型三次元位置計測センサで前記マーカーを追尾し、一定期間位置計測を続ける位置計測工程、この位置計測工程でのAB両座標系におけるマーカーが描く軌跡により、前記歩行ロボットの姿勢を計測する姿勢計測工程を用いた歩行ロボットの位置姿勢計測工程とで歩行ロボット用歩行データの測定方法を構成している。   In order to achieve the above object, the present invention places a marker at the intersection of a grid-like frame formed on a slope and uses a tracking type three-dimensional position sensor to measure the three-dimensional position of the intersection. A step of measuring, a three-dimensional position measurement step in a lattice, wherein a marker is placed on at least one place on the ground in the lattice-shaped frame, and a three-dimensional position in the lattice is measured using a tracking type three-dimensional position sensor; Frame data creation process for creating frame data by connecting the intersection data of the 3D position measurement process with a line, creating a mesh, and fleshing the frame width there, data in the grid of the 3D position measurement process in the grid The terrain measurement process using the correction data creation process that corrects the sudden change in the undulation of the measurement data based on the measurement data, and the grid-shaped frame measured in this terrain measurement process, A walking robot that can move a marker on a certain trajectory in the coordinate system and a tracking type three-dimensional position measurement sensor fixed to the observation point of the A coordinate system are stationary, and the marker of the walking robot is located with respect to the B coordinate system. It moves on a fixed trajectory, tracks the marker with the tracking type three-dimensional position measurement sensor, continues the position measurement for a certain period of time, and the trajectory drawn by the marker in the AB coordinate system in this position measurement process The walking robot position / orientation measurement process using the attitude measurement process for measuring the attitude of the walking robot constitutes a walking robot walking data measurement method.

本発明は法面に形成された格子状のフレームの交点にマーカーを置き、追尾型三次元位置センサを用いて、その三次元位置を計測する交点の三次元位置計測工程、前記格子状のフレーム内の地面の少なくとも1箇所にマーカーを置き、追尾型三次元位置センサを用いて、格子内の三次元位置を計測する格子内の三次元位置計測工程、前記交点の三次元位置計測工程の交点データを線でつなぎ、網目を作り、そこにフレームの幅だけ肉付けしてフレームデータを作成するフレームデータ作成工程、前記格子内の三次元位置計測工程の格子内データの起伏が急に変化したところを計測データにより補正する補正データ作成工程とを用いた地形計測工程と、この地形計測工程で計測した格子状のフレームに位置させた追尾型三次元位置計測センサをA座標系で固定した歩行ロボットと、B座標系でマーカーを軌道上で動かすことができる固定点を静止させ、該固定点のマーカーをB座標系に対し、ある決まった軌道上で動かし、該追尾型三次元位置計測センサで前記マーカーを追尾し、一定期間位置計測を続ける位置計測工程、この位置計測工程でのAB両座標系におけるマーカーが描く軌跡により、前記歩行ロボットの姿勢を計測する姿勢計測工程を用いた歩行ロボットの位置姿勢計測工程とで歩行ロボット用歩行データの測定方法を構成している。   The present invention provides a three-dimensional position measuring step of an intersection for measuring a three-dimensional position using a tracking type three-dimensional position sensor by placing a marker at the intersection of the lattice-shaped frame formed on the slope, the lattice-shaped frame 3D position measurement step in the grid, which measures a 3D position in the grid using a tracking type 3D position sensor by placing a marker on at least one place on the ground inside the intersection, the intersection of the 3D position measurement process of the intersection Frame data creation process that connects data with lines, creates a mesh, and fills the frame width to create frame data, where the undulation of the data in the grid of the 3D position measurement process in the grid suddenly changes A terrain measurement process using a correction data creation process for correcting the measurement data based on the measurement data, and a tracking type three-dimensional position measurement sensor positioned on the grid frame measured in the terrain measurement process. The walking robot fixed in the coordinate system and the fixed point where the marker can be moved in the trajectory in the B coordinate system are stopped, the marker at the fixed point is moved in a predetermined trajectory with respect to the B coordinate system, and the tracking is performed. Posture measurement that measures the posture of the walking robot based on a position measurement process in which the marker is tracked by a three-dimensional position measurement sensor and the position measurement is continued for a certain period of time, and the trajectory drawn by the marker in both AB coordinate systems in this position measurement process The walking robot position / orientation measurement step using the process constitutes a walking robot walking data measurement method.

本発明は法面に形成された格子状のフレームの交点にマーカーを置き、追尾型三次元位置センサを用いて、その三次元位置を計測する交点の三次元位置計測工程、前記格子状のフレーム内の地面の少なくとも1箇所にマーカーを置き、追尾型三次元位置センサを用いて、格子内の三次元位置を計測する格子内の三次元位置計測工程、前記交点の三次元位置計測工程の交点データを線でつなぎ、網目を作り、そこにフレームの幅だけ肉付けしてフレームデータを作成するフレームデータ作成工程、前記格子内の三次元位置計測工程の格子内データの起伏が急に変化したところを計測データにより補正する補正データ作成工程とで歩行ロボット用歩行データの測定方法を構成している。   The present invention provides a three-dimensional position measuring step of an intersection for measuring a three-dimensional position using a tracking type three-dimensional position sensor by placing a marker at the intersection of the lattice-shaped frame formed on the slope, the lattice-shaped frame 3D position measurement step in the grid, which measures a 3D position in the grid using a tracking type 3D position sensor by placing a marker on at least one place on the ground inside the intersection, the intersection of the 3D position measurement process of the intersection Frame data creation process that connects data with lines, creates a mesh, and fills the frame width to create frame data, where the undulation of the data in the grid of the 3D position measurement process in the grid suddenly changes The method for measuring walking data for walking robots is constituted by a correction data creating step for correcting the above by measurement data.

本発明は格子状のフレームに位置させた、B座標系でマーカーをある軌道上で動かすことができる歩行ロボットと、A座標系の観測点に固定した追尾型三次元位置計測センサを静止させ、該歩行ロボットのマーカーをB座標系に対し、ある決まった軌道上で動かし、該追尾型三次元位置計測センサで前記マーカーを追尾し、一定期間位置計測を続ける位置計測工程、この位置計測工程でのAB両座標系におけるマーカーが描く軌跡により、前記歩行ロボットの姿勢を計測する姿勢計測工程を用いた歩行ロボットの位置姿勢計測工程とで歩行ロボット用歩行データの測定方法を構成している。   The present invention stops a walking robot that is positioned on a grid-like frame and can move a marker on a certain trajectory in the B coordinate system, and a tracking type three-dimensional position measurement sensor fixed to an observation point in the A coordinate system, In this position measurement process, the marker of the walking robot is moved on a predetermined trajectory with respect to the B coordinate system, the marker is tracked by the tracking type three-dimensional position measurement sensor, and the position measurement is continued for a certain period of time. A measuring method of walking data for a walking robot is constituted by a position and orientation measurement step of the walking robot using a posture measurement step of measuring the posture of the walking robot by a trajectory drawn by the markers in both of the AB coordinate systems.

本発明は格子状のフレームに位置させた追尾型三次元位置計測センサをA座標系で固定した歩行ロボットと、B座標系でマーカーを軌道上で動かすことができる固定点を静止させ、該固定点のマーカーをB座標系に対し、ある決まった軌道上で動かし、該追尾型三次元位置計測センサで前記マーカーを追尾し、一定期間位置計測を続ける位置計測工程、この位置計測工程でのAB両座標系におけるマーカーが描く軌跡により、前記歩行ロボットの姿勢を計測する姿勢計測工程を用いた歩行ロボットの位置姿勢計測工程とで歩行ロボット用歩行データの測定方法を構成している。   According to the present invention, a walking robot in which a tracking type three-dimensional position measurement sensor positioned on a lattice frame is fixed in an A coordinate system, and a fixed point where a marker can be moved on a trajectory in a B coordinate system are stationary. A position measuring step of moving a point marker on a predetermined trajectory with respect to the B coordinate system, tracking the marker with the tracking type three-dimensional position measuring sensor, and continuing position measurement for a certain period of time, AB in this position measuring step The walking robot's walking data measurement method is configured by a trajectory drawn by the markers in both coordinate systems and the walking robot's position / orientation measuring step using the posture measuring step for measuring the posture of the walking robot.

以上の説明から明らかなように、本発明にあっては次に列挙する効果が得られる。   As is clear from the above description, the present invention has the following effects.

(1)法面の格子状のフレームの三次元位置および格子内の三次元位置の地形を計測できるとともに、格子状のフレームに位置する歩行ロボットの三次元位置と姿勢を計測することができる。
したがって、歩行ロボットをスムーズに自動的に歩行させることができる。
(1) It is possible to measure the three-dimensional position of the grid frame on the slope and the topography of the three-dimensional position in the grid, and it is possible to measure the three-dimensional position and posture of the walking robot located on the grid frame.
Therefore, the walking robot can be walked smoothly and automatically.

(2)前記(1)によって、格子状のフレームの三次元位置を容易に確実に計測することができる. (2) According to (1), the three-dimensional position of the lattice frame can be easily and reliably measured.

(3)前記(1)によって、格子状のフレームに位置する歩行ロボットの三次元位置と姿勢とを容易に確実に計測することができる. (3) According to the above (1), the three-dimensional position and posture of the walking robot located on the lattice frame can be easily and reliably measured.

(4)請求項2も前記(1)〜(3)と同様な効果が得られる。 (4) In claim 2, the same effects as in the above (1) to (3) can be obtained.

以下、図面に示す本発明を実施するための最良の形態により、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the best mode for carrying out the invention shown in the drawings.

図1ないし図8に示す本発明を実施するための最良の第1の形態において、1は格子状のフレーム2が形成された法面3で歩行ロボット4を歩行させて作業を行なう場合に使用する本発明の歩行ロボット用歩行データの測定方法で、この歩行ロボット用歩行データの測定方法1は地形計測工程5と、この地形計測工程5で計測された格子状のフレーム2に位置する歩行ロボット4の位置と姿勢を計測する位置姿勢計測工程6とで構成されている。   In the best mode for carrying out the present invention shown in FIGS. 1 to 8, reference numeral 1 is used when a walking robot 4 is walked on a slope 3 on which a grid-like frame 2 is formed to perform work. The walking robot walking data measuring method 1 according to the present invention includes a terrain measuring step 5 and a walking robot located in a grid frame 2 measured in the terrain measuring step 5. 4 and a position / orientation measurement step 6 for measuring the position and orientation.

前記地形計測工程5は図2に示すように、前記法面3に形成された格子状のフレーム2の交点にマーカー7を置き、追尾型三次元位置センサ8を用いて、その三次元位置を計測する交点の三次元位置計測工程9と、前記格子状のフレーム2内の地面の少なくとも1箇所に、図3に示すようにマーカー7を置き、追尾型三次元位置センサ8を用いて格子内の三次元位置を計測する格子内の三次元位置計測工程10と、前記交点の三次元位置計測工程9の交点データを線でつなぎ、図4に示すように網目を作り、そこにフレーム2の幅だけ図5に示すように肉付けしてフレームデータを作成するフレームデータ作成工程11と、前記格子内の三次元位置計測工程10の格子内のデータの起伏が急に変化したところを計測データにより補正する補正データ作成工程12で構成されている。   As shown in FIG. 2, the terrain measurement step 5 places a marker 7 at the intersection of the grid frame 2 formed on the slope 3 and uses a tracking type three-dimensional position sensor 8 to determine the three-dimensional position. As shown in FIG. 3, a three-dimensional position measuring step 9 for the intersection to be measured and a marker 7 as shown in FIG. The three-dimensional position measurement process 10 in the lattice for measuring the three-dimensional position of the above and the intersection data of the three-dimensional position measurement process 9 of the intersection are connected by a line to form a mesh as shown in FIG. As shown in FIG. 5, the frame data creation step 11 for creating the frame data by fleshing as much as the width, and the measurement data shows the sudden change in the undulation of the data in the lattice in the three-dimensional position measurement step 10 in the lattice. Correction to be corrected Is composed of over data create process 12.

前記位置姿勢計測工程6は図6に示すように、格子状のフレーム2に位置する歩行ロボット4にB座標系でマーカー7をある軌道上で動かすことができるように設置し、A座標系の観測点に固定した追尾型三次元位置計測センサ8を静止させ、歩行ロボット4のマーカー7をB座標系に対し、ある決まった軌道上で動かし、追尾型三次元位置計測センサ8で前記マーカー7を追尾し、一定期間位置計測を続ける位置計測工程13と、この位置計測工程13でのAB両座標系におけるマーカー7が描く軌跡により、前記歩行ロボット4の姿勢を計測する姿勢計測工程14とで構成されている。   As shown in FIG. 6, the position and orientation measurement step 6 is installed on the walking robot 4 located on the grid frame 2 so that the marker 7 can be moved on a certain trajectory in the B coordinate system. The tracking type three-dimensional position measurement sensor 8 fixed to the observation point is stopped, the marker 7 of the walking robot 4 is moved on a predetermined trajectory with respect to the B coordinate system, and the tracking type three-dimensional position measurement sensor 8 uses the marker 7. And a posture measurement step 14 for measuring the posture of the walking robot 4 based on the locus drawn by the marker 7 in the AB coordinate system in the position measurement step 13. It is configured.

ここで、幾何学関係について説明すると、
A座標系から見たマーカー7の位置をPA、B座標系から見たマーカー7の位置をPBとしたとき、
A座標系からB座標系への並進ベクトルtABは
tAB=PB−PA
より容易に求まる。
ここでA座標系からB座標系への回転行列が問題になるが、これは各座標系内の2つの独立な方向ベクトルV、Vを用いて、
S=(v、v、v×v
なる行列を考え、これを用いて
−1
のように表せる。
もしBに固定された3点P、Q、RのB座標系での位置が既知(p、q、r)であり、その位置がA座標系からの観測できた(p、q、r)とすると、V=q−p、V=r−pを使ってを求めることができる。
ここで行列Aが逆行列を持つ(正則である)ためには、点P、Q、Rは同一線上にない3点でなければならない。
また、2点P、Qと重力方向gを利用して、V=q−p、V=gとして上記方法でを求めることも可能である。
これはベクトルPQと重力方向gとが一致しない場合にのみ使用可能である。
すなわち、物体AB間の座標変換を求めるには
AB両座標系における3点、もしくはAB両座標系における2点と、その2点が作る方向ベクトルと異なる方向の方向ベクトル情報(重力ベクトル等)が必要である。
また、マーカー7の動かし方は、
マーカー7を、例えば図7に示すように、上下左右に非対称図形の軌道に沿って動かした場合、センサ8からは点P、Q、Rを区別することができ、3点の対応から座標変換が求まる。
この時、重力方向の情報は必要ない。
これに対し、マーカー7を図8に示すように、円弧のような対称な形状の軌道に沿って動かした場合、対称性より円弧上の点は区別がつかない。
このため、センサ8から得られる情報は対称中心点、回転面の法線ベクトルの2点のみとなり、重力方向を利用した姿勢推定が必要になる。
なお、B座標系でのマーカー7の軌道が時系列で明らかになっていれば、軌道の形状が対称であっても、時々刻々のマーカー7の位置をA、B両座標で一致させることができる。
したがって、同一線上にない任意の3点を選ぶことによって、重力の情報を使わずに座標変換を求めることができる。
[発明を実施するための異なる形態]
Here, the geometric relationship is explained.
When the position of the marker 7 viewed from the A coordinate system is PA and the position of the marker 7 viewed from the B coordinate system is PB,
The translation vector tAB from the A coordinate system to the B coordinate system is tAB = PB-PA
It is determined more easily.
Here, the rotation matrix B R A from the A coordinate system to the B coordinate system becomes a problem, and this uses two independent direction vectors V 1 and V 2 in each coordinate system, and
S = (v 1 , v 2 , v 1 × v 2 )
And use this
B R A = B S A S -1
It can be expressed as
If the positions of the three points P, Q, and R fixed to B in the B coordinate system are known (p B , q B , r B ), the positions can be observed from the A coordinate system (p A , q A , r A ), B R A can be obtained using V 1 = q−p and V 2 = r−p.
Here, in order for the matrix A to have an inverse matrix (regular), the points P, Q, and R must be three points that are not on the same line.
Further, two points P, with Q and gravity direction g, it is also possible to determine the B R A at V 1 = q-p, the method as V 2 = g.
This can be used only when the vector PQ and the gravity direction g do not match.
That is, in order to obtain the coordinate transformation between the objects AB, three points in both AB coordinate systems, or two points in both AB coordinate systems, and direction vector information (gravity vector, etc.) in a direction different from the direction vector created by the two points. is necessary.
Also, how to move the marker 7
For example, as shown in FIG. 7, when the marker 7 is moved up and down, right and left along the trajectory of the asymmetric figure, the points P, Q, and R can be distinguished from the sensor 8, and the coordinate conversion is performed from the correspondence of the three points. Is obtained.
At this time, information on the direction of gravity is not necessary.
On the other hand, when the marker 7 is moved along a symmetrical orbit like a circular arc as shown in FIG. 8, the point on the circular arc cannot be distinguished from the symmetry.
For this reason, the information obtained from the sensor 8 is only two points of the symmetry center point and the normal vector of the rotation surface, and posture estimation using the direction of gravity is necessary.
If the trajectory of the marker 7 in the B coordinate system is clarified in time series, even if the trajectory shape is symmetric, the position of the marker 7 from time to time can be matched in both the A and B coordinates. it can.
Therefore, by selecting any three points that are not on the same line, coordinate transformation can be obtained without using gravity information.
[Different forms for carrying out the invention]

次に、図9および図10に示す本発明を実施するための異なる形態につき説明する。なお、この本発明を実施するための異なる形態の説明に当って、前記本発明を実施するための最良の第1の形態と同一構成部分には同一符号を付して重複する説明を省略する。   Next, different modes for carrying out the present invention shown in FIGS. 9 and 10 will be described. In the description of the different modes for carrying out the present invention, the same components as those in the best mode for carrying out the present invention are denoted by the same reference numerals, and redundant description is omitted. .

図9および図10に示す本発明を実施するための第2の形態において、前記本発明を実施するための最良の第1の形態と主に異なる点は、歩行ロボット4に追尾型三次元位置計測センサ8をA座標系で固定し、固定点でマーカー7をB座標系に対し、ある決まった軌道上で動かし、位置計測工程13Aと姿勢計測工程14Aを用いた位置姿勢計測工程6Aを用いた点で、このような位置姿勢計測工程6Aを用いて構成した歩行ロボット用歩行データの測定方法1Aを行なっても、前記本発明を実施するための最良の第1の形態と同様な作用効果が得られるとともに、歩行ロボット4に追尾型三次元位置計測センサ8を設けているため、該追尾型三次元位置計測センサ8と歩行ロボット4との間での計測データの通信が不要となり、構造の簡素化および正確な計測を行なうことができる。   The second embodiment for carrying out the present invention shown in FIG. 9 and FIG. 10 is mainly different from the first embodiment for carrying out the present invention in that the walking robot 4 has a tracking type three-dimensional position. The measurement sensor 8 is fixed in the A coordinate system, the marker 7 is moved on a fixed orbit with respect to the B coordinate system at a fixed point, and the position / orientation measurement process 6A using the position measurement process 13A and the attitude measurement process 14A is used. In this respect, even if the walking robot walking data measuring method 1A configured using the position / orientation measuring step 6A is performed, the same function and effect as those of the first embodiment for carrying out the present invention are applicable. Since the tracking type three-dimensional position measurement sensor 8 is provided in the walking robot 4, communication of measurement data between the tracking type three-dimensional position measurement sensor 8 and the walking robot 4 becomes unnecessary, and the structure The simplicity of And it is possible to perform accurate measurement.

本発明は格子状のフレームが形成された法面で作業する歩行ロボットを製造する産業で利用される。   INDUSTRIAL APPLICABILITY The present invention is used in an industry for manufacturing a walking robot that works on a slope with a grid-like frame.

本発明を実施するための最良の第1の形態の工程図。FIG. 3 is a process diagram of the best first embodiment for carrying out the present invention. 本発明を実施するための最良の第1の形態の交点の三次元位置計測工程の説明図。Explanatory drawing of the three-dimensional position measurement process of the intersection of the best 1st form for implementing this invention. 本発明を実施するための最良の第1の形態の格子内の三次元位置計測工程の説明図。Explanatory drawing of the three-dimensional position measurement process in the grating | lattice of the best 1st form for implementing this invention. 本発明を実施するための最良の第1の形態の交点データでの網目を作る説明図。Explanatory drawing which makes the mesh | network by the intersection data of the best 1st form for implementing this invention. 本発明を実施するための最良の第1の形態のフレームデータの説明図。Explanatory drawing of the frame data of the best 1st form for implementing this invention. 本発明を実施するための最良の第1の形態の位置姿勢計測工程の説明図。Explanatory drawing of the position and orientation measurement process of the best 1st form for implementing this invention. 本発明を実施するための最良の第1の形態のマーカーの軌道の説明図。Explanatory drawing of the track | orbit of the marker of the best 1st form for implementing this invention. 本発明を実施するための最良の第1の形態のマーカーの異なる軌道の説明図。Explanatory drawing of the different track | orbits of the marker of the best 1st form for implementing this invention. 本発明を実施するための第2の形態の工程図。Process drawing of the 2nd form for implementing this invention. 本発明を実施するための第2の形態の位置姿勢計測工程の説明図。Explanatory drawing of the position and orientation measurement process of the 2nd form for implementing this invention.

符号の説明Explanation of symbols

1、1A:歩行ロボット用歩行データの測定方法、
2:格子状のフレーム、 3:法面、
4:歩行ロボット、 5:地形計測工程、
6、6A:位置姿勢計測工程、 7:マーカー、
8:追尾型三次元位置センサ、 9:交点の三次元位置計測工程、
10:格子内の三次元位置計測工程、
11:フレームデータ作成工程、 12:補正データ作成工程、
13、13A:位置計測工程、 14、14A:姿勢計測工程。
1, 1A: Measuring method of walking data for walking robot,
2: grid frame, 3: slope,
4: Walking robot, 5: Topographic measurement process,
6, 6A: Position and orientation measurement process, 7: Marker,
8: Tracking type three-dimensional position sensor, 9: Three-dimensional position measurement process of intersection,
10: Three-dimensional position measurement process in the lattice,
11: Frame data creation process, 12: Correction data creation process,
13, 13A: Position measurement process, 14, 14A: Posture measurement process.

Claims (5)

法面に形成された格子状のフレームの交点にマーカーを置き、追尾型三次元位置センサを用いて、その三次元位置を計測する交点の三次元位置計測工程、前記格子状のフレーム内の地面の少なくとも1箇所にマーカーを置き、追尾型三次元位置センサを用いて、格子内の三次元位置を計測する格子内の三次元位置計測工程、前記交点の三次元位置計測工程の交点データを線でつなぎ、網目を作り、そこにフレームの幅だけ肉付けしてフレームデータを作成するフレームデータ作成工程、前記格子内の三次元位置計測工程の格子内データの起伏が急に変化したところを計測データにより補正する補正データ作成工程とを用いた地形計測工程と、この地形計測工程で計測した格子状のフレームに位置させた、B座標系でマーカーをある軌道上で動かすことができる歩行ロボットと、A座標系の観測点に固定した追尾型三次元位置計測センサを静止させ、該歩行ロボットのマーカーをB座標系に対し、ある決まった軌道上で動かし、該追尾型三次元位置計測センサで前記マーカーを追尾し、一定期間位置計測を続ける位置計測工程、この位置計測工程でのAB両座標系におけるマーカーが描く軌跡により、前記歩行ロボットの姿勢を計測する姿勢計測工程を用いた歩行ロボットの位置姿勢計測工程とを含むことを特徴とする歩行ロボット用歩行データの測定方法。 Place a marker at the intersection of the grid frame formed on the slope, and use the tracking type 3D position sensor to measure the 3D position, the 3D position measurement process of the intersection, the ground in the grid frame A marker is placed in at least one of the points, and a tracking type three-dimensional position sensor is used to measure the three-dimensional position in the lattice. Connect the data, create a mesh, frame data creation process to create the frame data by fleshing the width of the frame, measurement data where the undulation of the data in the grid in the three-dimensional position measurement process in the grid suddenly changed The terrain measurement process using the correction data creation process to be corrected in accordance with the above, and the marker is moved on a certain trajectory in the B coordinate system, which is positioned on the grid frame measured in the terrain measurement process. The walking robot and a tracking type three-dimensional position measurement sensor fixed at the observation point of the A coordinate system are stopped, the marker of the walking robot is moved on a predetermined trajectory with respect to the B coordinate system, and the tracking is performed. Posture measurement that measures the posture of the walking robot based on a position measurement process in which the marker is tracked by a three-dimensional position measurement sensor and the position measurement is continued for a certain period of time, and the trajectory drawn by the marker in both AB coordinate systems in this position measurement process A method for measuring walking data for a walking robot, comprising a step of measuring a position and orientation of the walking robot using a process. 法面に形成された格子状のフレームの交点にマーカーを置き、追尾型三次元位置センサを用いて、その三次元位置を計測する交点の三次元位置計測工程、前記格子状のフレーム内の地面の少なくとも1箇所にマーカーを置き、追尾型三次元位置センサを用いて、格子内の三次元位置を計測する格子内の三次元位置計測工程、前記交点の三次元位置計測工程の交点データを線でつなぎ、網目を作り、そこにフレームの幅だけ肉付けしてフレームデータを作成するフレームデータ作成工程、前記格子内の三次元位置計測工程の格子内データの起伏が急に変化したところを計測データにより補正する補正データ作成工程とを用いた地形計測工程と、この地形計測工程で計測した格子状のフレームに位置させた追尾型三次元位置計測センサをA座標系で固定した歩行ロボットと、B座標系でマーカーを軌道上で動かすことができる固定点を静止させ、該固定点のマーカーをB座標系に対し、ある決まった軌道上で動かし、該追尾型三次元位置計測センサで前記マーカーを追尾し、一定期間位置計測を続ける位置計測工程、この位置計測工程でのAB両座標系におけるマーカーが描く軌跡により、前記歩行ロボットの姿勢を計測する姿勢計測工程を用いた歩行ロボットの位置姿勢計測工程とを含むことを特徴とする歩行ロボット用歩行データの測定方法。 Place a marker at the intersection of the grid frame formed on the slope, and use the tracking type 3D position sensor to measure the 3D position, the 3D position measurement process of the intersection, the ground in the grid frame A marker is placed in at least one of the points, and a tracking type three-dimensional position sensor is used to measure the three-dimensional position in the lattice. Connect the data, create a mesh, frame data creation process to create the frame data by fleshing the width of the frame, measurement data where the undulation of the data in the grid in the three-dimensional position measurement process in the grid suddenly changed A topographic measurement process using a correction data creation process to be corrected according to the above, and a tracking type three-dimensional position measurement sensor positioned on a grid-like frame measured in the topographic measurement process. A fixed walking robot and a fixed point where the marker can be moved on the trajectory in the B coordinate system are stopped, the marker at the fixed point is moved on a predetermined trajectory with respect to the B coordinate system, and the tracking type three-dimensional A position measurement step of tracking the marker with a position measurement sensor and continuing position measurement for a certain period of time, and a posture measurement step of measuring the posture of the walking robot by a trajectory drawn by a marker in the AB coordinate system in this position measurement step. A method for measuring walking data for a walking robot, comprising the step of measuring a position and orientation of a walking robot. 法面に形成された格子状のフレームの交点にマーカーを置き、追尾型三次元位置センサを用いて、その三次元位置を計測する交点の三次元位置計測工程、前記格子状のフレーム内の地面の少なくとも1箇所にマーカーを置き、追尾型三次元位置センサを用いて、格子内の三次元位置を計測する格子内の三次元位置計測工程、前記交点の三次元位置計測工程の交点データを線でつなぎ、網目を作り、そこにフレームの幅だけ肉付けしてフレームデータを作成するフレームデータ作成工程、前記格子内の三次元位置計測工程の格子内データの起伏が急に変化したところを計測データにより補正する補正データ作成工程とを用いたことを特徴とする歩行ロボット用歩行データの測定方法。 Place a marker at the intersection of the grid frame formed on the slope, and use the tracking type 3D position sensor to measure the 3D position, the 3D position measurement process of the intersection, the ground in the grid frame A marker is placed in at least one of the points, and a tracking type three-dimensional position sensor is used to measure the three-dimensional position in the lattice. Connect the data, create a mesh, frame data creation process to create the frame data by fleshing the width of the frame, measurement data where the undulation of the data in the grid in the three-dimensional position measurement process in the grid suddenly changed A method for measuring walking data for a walking robot, characterized in that a correction data creating step for correcting the walking data is used. 格子状のフレームに位置させた、B座標系でマーカーをある軌道上で動かすことができる歩行ロボットと、A座標系の観測点に固定した追尾型三次元位置計測センサを静止させ、該歩行ロボットのマーカーをB座標系に対し、ある決まった軌道上で動かし、該追尾型三次元位置計測センサで前記マーカーを追尾し、一定期間位置計測を続ける位置計測工程、この位置計測工程でのAB両座標系におけるマーカーが描く軌跡により、前記歩行ロボットの姿勢を計測する姿勢計測工程を用いた歩行ロボットの位置姿勢計測工程とを用いたことを特徴とする歩行ロボット用歩行データの測定方法。 A walking robot that can move a marker on a certain trajectory in the B coordinate system and a tracking type three-dimensional position measurement sensor that is fixed to an observation point in the A coordinate system, which are positioned on a lattice frame, are stationary. A position measuring step of moving the marker on a certain trajectory with respect to the B coordinate system, tracking the marker with the tracking type three-dimensional position measuring sensor, and continuing position measurement for a certain period of time, both AB in this position measuring step 2. A walking robot walking data measuring method using a walking robot position / orientation measuring step using a posture measuring step of measuring a posture of the walking robot based on a locus drawn by a marker in a coordinate system. 格子状のフレームに位置させた追尾型三次元位置計測センサをA座標系で固定した歩行ロボットと、B座標系でマーカーを軌道上で動かすことができる固定点を静止させ、該固定点のマーカーをB座標系に対し、ある決まった軌道上で動かし、該追尾型三次元位置計測センサで前記マーカーを追尾し、一定期間位置計測を続ける位置計測工程、この位置計測工程でのAB両座標系におけるマーカーが描く軌跡により、前記歩行ロボットの姿勢を計測する姿勢計測工程を用いた歩行ロボットの位置姿勢計測工程とを用いたことを特徴とする歩行ロボット用歩行データの測定方法。 A walking robot in which a tracking type three-dimensional position measurement sensor positioned on a grid frame is fixed in the A coordinate system, and a fixed point where the marker can be moved on the trajectory in the B coordinate system are stationary, and the fixed point marker Is moved along a predetermined trajectory with respect to the B coordinate system, the marker is tracked by the tracking type three-dimensional position measurement sensor, and the position measurement process of continuing the position measurement for a certain period of time, the AB coordinate system in this position measurement process A method for measuring walking data for a walking robot, comprising: a position and orientation measurement step for a walking robot using a posture measurement step for measuring the posture of the walking robot based on a locus drawn by a marker.
JP2004106516A 2004-03-31 2004-03-31 Measuring method of walking data for walking robot Expired - Lifetime JP4512875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106516A JP4512875B2 (en) 2004-03-31 2004-03-31 Measuring method of walking data for walking robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004106516A JP4512875B2 (en) 2004-03-31 2004-03-31 Measuring method of walking data for walking robot

Publications (3)

Publication Number Publication Date
JP2005291879A true JP2005291879A (en) 2005-10-20
JP2005291879A5 JP2005291879A5 (en) 2010-01-07
JP4512875B2 JP4512875B2 (en) 2010-07-28

Family

ID=35324971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106516A Expired - Lifetime JP4512875B2 (en) 2004-03-31 2004-03-31 Measuring method of walking data for walking robot

Country Status (1)

Country Link
JP (1) JP4512875B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104626206A (en) * 2014-12-17 2015-05-20 西南科技大学 Robot operation pose information measuring method under non-structural environment
JP2022172180A (en) * 2019-08-06 2022-11-15 直之 村上 Computer eye (pceye)
KR102555708B1 (en) * 2022-04-19 2023-07-13 호서대학교 산학협력단 Method of position recognition and driving control for an autonomous mobile robot that tracks tile grid pattern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178505A (en) * 1990-11-13 1992-06-25 Mitsubishi Heavy Ind Ltd Three-dimensional movement measuring device
JPH1185385A (en) * 1997-09-04 1999-03-30 Osaka Gas Co Ltd Coordinate detection system and light emission body
JP2002122415A (en) * 2000-10-12 2002-04-26 Mitsubishi Heavy Ind Ltd Visual device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178505A (en) * 1990-11-13 1992-06-25 Mitsubishi Heavy Ind Ltd Three-dimensional movement measuring device
JPH1185385A (en) * 1997-09-04 1999-03-30 Osaka Gas Co Ltd Coordinate detection system and light emission body
JP2002122415A (en) * 2000-10-12 2002-04-26 Mitsubishi Heavy Ind Ltd Visual device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010000514, 程島竜一、外5名, ""4足歩行型法面作業ロボットTITAN XIの開発"", ロボティクス・メカトロニクス講演会’03講演論文集(CD−ROM), 20030523, 2P2−1F−A2(1)〜2P2−1F−A2(2), 社団法人日本機械学会 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104626206A (en) * 2014-12-17 2015-05-20 西南科技大学 Robot operation pose information measuring method under non-structural environment
JP2022172180A (en) * 2019-08-06 2022-11-15 直之 村上 Computer eye (pceye)
JP7282964B2 (en) 2019-08-06 2023-05-29 直之 村上 Computer eyes (PCEYE)
KR102555708B1 (en) * 2022-04-19 2023-07-13 호서대학교 산학협력단 Method of position recognition and driving control for an autonomous mobile robot that tracks tile grid pattern

Also Published As

Publication number Publication date
JP4512875B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
US10800036B1 (en) Tooltip stabilization
CN110243360B (en) Method for constructing and positioning map of robot in motion area
JP5945419B2 (en) Leg motion trajectory generator for legged mobile robots.
CN102985232B (en) For being positioned at the method for the calibration of the robot on moveable platform
Buschka et al. Fuzzy landmark-based localization for a legged robot
US20160039094A1 (en) Robot System And Method For Calibration
US10059003B1 (en) Multi-resolution localization system
CN106462140A (en) Method for calibrating tool centre point for industrial robot system
KR20170088228A (en) Map building system and its method based on multi-robot localization
WO2006099589A3 (en) Three- dimensional motion capture
JP2007310866A (en) Robot using absolute azimuth and map creation method using it
Liu et al. Pose alignment of aircraft structures with distance sensors and CCD cameras
WO2022256815A1 (en) Topology processing for waypoint-based navigation maps
JP2004094399A (en) Control process for multi-joint manipulator and its control program as well as its control system
JP2008134743A (en) Self-location recognition method
CN107421545A (en) Position deviation detection method, device and the robot of a kind of robot
JP2022159504A (en) Control system and method for optimizing machine placement for additional construction operation
JP4512875B2 (en) Measuring method of walking data for walking robot
Görner et al. A leg proprioception based 6 DOF odometry for statically stable walking robots
CN116007623A (en) Robot navigation method, apparatus and computer readable storage medium
Yang Two-phase discontinuous gaits for quadruped walking machines with a failed leg
CN107977001A (en) A kind of robot and its air navigation aid, system, equipment
JP6369392B2 (en) Remote control system
US20220194245A1 (en) Robust Docking of Robots with Imperfect Sensing
JP2018084544A (en) Position estimation device, map information creation device, movable body, position estimation method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Ref document number: 4512875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term