JP2005291546A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2005291546A
JP2005291546A JP2004103676A JP2004103676A JP2005291546A JP 2005291546 A JP2005291546 A JP 2005291546A JP 2004103676 A JP2004103676 A JP 2004103676A JP 2004103676 A JP2004103676 A JP 2004103676A JP 2005291546 A JP2005291546 A JP 2005291546A
Authority
JP
Japan
Prior art keywords
plate
heat exchanger
exchanger according
plates
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004103676A
Other languages
Japanese (ja)
Inventor
Kenji Miyamoto
健二 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004103676A priority Critical patent/JP2005291546A/en
Publication of JP2005291546A publication Critical patent/JP2005291546A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent damage by repetitive deformation and fatigue by fluid pressure, in a heat exchanger for laminating plates forming fluid passages on a surface. <P>SOLUTION: This heat exchanger having a multilayer structure is constituted by arranging clearance between a wall surface top part 12c between adjacent grooves of the plates and the other plate opposed to the top part, by defining the fluid passages 14 and 15 between the adjacent plates by laminating a plurality of plates 12 forming a plurality of grooves 12a on the surface. Here, a wall surface of the plates positioned on the outermost side of one end or both ends of the multilayer structure, is formed into a structure of allowing its top part to abut on opposed end part members. Thus, even when a fluid passage forming plate is extremely thin, the plate can be restrained from being deformed in the laminating direction by the fluid pressure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は熱交換器に関し、詳しくは表面に流体通路となる多数の溝を形成したプレートを積層してなる熱交換器の構造的改良に関する。   The present invention relates to a heat exchanger, and more particularly to a structural improvement of a heat exchanger formed by laminating a plate having a plurality of grooves formed as fluid passages on the surface.

多数のフィンまたは波型断面を有するプレートを積層した構造を有する熱交換器が知られている(特許文献1参照)。このような積層構造の熱交換器において、内部を流れる流体との熱の授受によりプレートに発生する熱応力を緩和するために、前記フィンや波型プレートの他のプレートと対向する部分を相互に接続せずに隙間を設けたものが提案されている。
特開平2002−203586号公報
A heat exchanger having a structure in which a large number of fins or plates having corrugated cross sections are stacked is known (see Patent Document 1). In such a heat exchanger having a laminated structure, in order to relieve the thermal stress generated in the plate due to the transfer of heat with the fluid flowing inside, the portions facing the fins and the other plates of the corrugated plate are mutually connected. The thing which provided the clearance gap without connecting is proposed.
Japanese Patent Laid-Open No. 2002-203586

しかしながら、このように隙間を設けると熱交換器を構成する積層体の内部の剛性が低下してしまい、流体からの内圧による変形が生じやすくなる。内圧による変形が繰り返されると金属疲労により構造的信頼性が損なわれかねない。   However, when such a gap is provided, the internal rigidity of the laminate constituting the heat exchanger is lowered, and deformation due to internal pressure from the fluid is likely to occur. When deformation due to internal pressure is repeated, structural reliability may be impaired by metal fatigue.

また、マイクロチャンネルによる高い熱交換性能を利用した蒸発器では、液体の蒸発部を形成する流体の流路は通常の熱交換器に比べて極めて狭く、加えて小型化を図るために板の厚みは通常の熱交換器よりも薄くなっている。板の両面の流体通路には高温流体と低温流体が流れ、板のフィンのない部位は熱交換性能を優先するためにさらに薄くなっているので、前記のような隙間を有する積層構造の熱交換器を適用すると、前記内部圧力による変形に加え、熱膨張による変形も繰り返されることから、信頼性の確保がより難しくなる。   In addition, in the evaporator using the high heat exchange performance by the microchannel, the flow path of the fluid forming the liquid evaporation section is extremely narrow compared to the normal heat exchanger, and in addition, the thickness of the plate is reduced for miniaturization. Is thinner than a normal heat exchanger. High temperature fluid and low temperature fluid flow through the fluid passages on both sides of the plate, and the plateless fins are made thinner to prioritize heat exchange performance. When a vessel is applied, since deformation due to thermal expansion is repeated in addition to deformation due to the internal pressure, it becomes more difficult to ensure reliability.

本発明は、表面に複数の溝を形成したプレートを複数個積層して隣接するプレート間に流体通路を画成し、前記プレートの隣接する溝間の壁面の頂部と該頂部と対向する他のプレートとの間に間隙を設けた積層構造の熱交換器を基本構成として、前記積層構造の一方端または両端の最外側に位置するプレートの壁面は、その頂部を対向する端部部材に当接させた構造とする。   According to the present invention, a plurality of plates having a plurality of grooves formed on the surface are stacked to define a fluid passage between adjacent plates, and the top of the wall surface between the adjacent grooves of the plate and the other facing the top Based on a laminated heat exchanger with a gap between the plates, the wall surface of the plate located on the outermost side of one or both ends of the laminated structure is in contact with the opposite end member. The structure is the same.

最外側のプレートの壁面頂部を端部部材と当接させた前記構成により、熱交換器を形成する積層体の積層方向の剛性を高めることができ、これにより流体通路を形成するプレートが極めて薄い場合においても流体圧力によりプレートが積層方向に膨張ないし変形するのを抑制して、変形の繰り返しによる信頼性の低下を防ぐことができる。   With the above-described configuration in which the top of the wall surface of the outermost plate is in contact with the end member, the rigidity in the stacking direction of the stacked body forming the heat exchanger can be increased, whereby the plate forming the fluid passage is extremely thin Even in the case, it is possible to prevent the plate from expanding or deforming in the stacking direction due to the fluid pressure, and to prevent a decrease in reliability due to repeated deformation.

以下、本発明の実施形態を図面に基づいて説明する。図1において、11は熱交換器の本体またはコアを構成する積層体を示している。積層体11は、複数個(図では6枚)のプレート12とその両側に設けられたエンドプレート(端部部材)13からなっている。プレート12は、図2−1〜図2−3に示したように板状部材の両面に流体通路を構成する多数の溝12aがエッチング加工等により形成されている。両面の溝12aは、面方向から見たときに互いに直交するように異なる向きに形成されている。このプレート12を、その溝12aが隣接する他のプレート12の溝12aと向きが一致するように積層してゆくことで、各プレート12間に向きが異なる2系統の流体通路14と15が交互に画成されるようにしている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 11 denotes a laminated body constituting the main body or core of the heat exchanger. The laminated body 11 includes a plurality (six in the figure) of plates 12 and end plates (end members) 13 provided on both sides thereof. In the plate 12, as shown in FIGS. 2-1 to 2-3, a large number of grooves 12a constituting fluid passages are formed on both surfaces of the plate-like member by etching or the like. The grooves 12a on both surfaces are formed in different directions so as to be orthogonal to each other when viewed from the surface direction. By laminating this plate 12 so that the direction of the groove 12a coincides with the direction of the groove 12a of the other adjacent plate 12, two fluid passages 14 and 15 having different orientations alternate between the plates 12. To be defined.

隣接するプレート12間では溝12a同士が対向することにより略円形断面の流体通路14または15が並行に多数形成されるが、隣り合う溝12aと溝12aとの間の壁面12bは、その頂部12cの高さが、隣接する他のプレート12の壁面頂部12cとの間に所定の間隙が生じるように設定されている。前述したとおり、この間隙により熱応力を吸収する作用を得ている。   A large number of fluid passages 14 or 15 having a substantially circular cross section are formed in parallel between the adjacent plates 12 because the grooves 12a face each other. The wall surface 12b between the adjacent grooves 12a and 12a has a top portion 12c. Is set so that a predetermined gap is formed between the top surface 12c of the wall surface of another adjacent plate 12. As described above, an effect of absorbing thermal stress is obtained by this gap.

ただし、積層体11の端部に位置するプレート11については、その外側を向いた壁面12の頂部12cがエンドプレート13の表面に当接するように形成されている。エンドプレート13はプレート12に比較して高い剛性を有する厚板で形成されている。このように、最外側のプレート12の壁面頂部12cを高い曲げ剛性を有するエンドプレート13と当接させた構成により、プレート12が極めて薄い場合においても流体圧力により積層体11が積層方向に膨張変形するのを抑制することができる。特に、低温流体と高温流体の圧力差があって、積層体の最も外側の通路15を流れる流体の圧力が比較的低い場合においても、内側層のプレート12の変形を効果的に抑制することができる。   However, the plate 11 positioned at the end of the laminated body 11 is formed such that the top portion 12c of the wall surface 12 facing the outside contacts the surface of the end plate 13. The end plate 13 is formed of a thick plate having higher rigidity than the plate 12. As described above, the structure in which the wall surface top portion 12c of the outermost plate 12 is in contact with the end plate 13 having high bending rigidity allows the laminate 11 to be expanded and deformed in the stacking direction by fluid pressure even when the plate 12 is extremely thin. Can be suppressed. In particular, even when there is a pressure difference between the low temperature fluid and the high temperature fluid and the pressure of the fluid flowing through the outermost passage 15 of the laminate is relatively low, the deformation of the inner layer plate 12 can be effectively suppressed. it can.

図3〜図6に前記エンドプレート13に関する他の実施形態を示す。図1と異なる部分について説明すると、図3に示したものではエンドプレート13を隣接するプレート12の個々の壁面頂部12cとロウ付け等により接合した一体化した構成となっている。これにより、エンドプレート13とこれに隣接するプレート12とが一体となって高剛性を発揮するので、エンドプレート13を図1のものに比較して薄く、軽量にすることができる。図4に示したものでは、エンドプレート13を、2枚の薄板13aの間に多孔質構造からなる中間層13bを挟持した構成としている。中間層13bとしては、例えば発泡金属板やハニカム構造体を適用することができる。この構成によれば、軽量・高剛性化を図れると共に、多孔質構造の中間層13bが断熱作用を有することから熱交換器としての効率も向上する。図5に示したものでは、エンドプレート13の内側面に、プレート12の溝12aと対向するように多数の溝13cを形成して、積層体11の最外側部の流体通路15’の断面積を、内側層のものと同等に確保できるようにしている。ただし内側層の流体通路15とは異なり、溝13c間の壁面頂部は対向する溝12a間の壁面頂部と接合させて所要の剛性を確保するようにしている。図6−1と図6−2は、エンドプレート13のプレート12とは反対側の表面に、エッチング加工により縦横にリブ13dを形成したものである。このようにエンドプレート13の外側面にリブ構造を設けることにより、エンドプレート13自体の剛性を向上させつつ軽量化を図ることができる。   3 to 6 show other embodiments relating to the end plate 13. A different part from FIG. 1 will be described. In the structure shown in FIG. 3, the end plate 13 is integrated with individual wall tops 12c of the adjacent plates 12 by brazing or the like. Thereby, since the end plate 13 and the plate 12 adjacent to the end plate 13 are integrated to exhibit high rigidity, the end plate 13 can be made thinner and lighter than that of FIG. In the structure shown in FIG. 4, the end plate 13 has a structure in which an intermediate layer 13b having a porous structure is sandwiched between two thin plates 13a. As the intermediate layer 13b, for example, a metal foam plate or a honeycomb structure can be applied. According to this configuration, light weight and high rigidity can be achieved, and the efficiency as a heat exchanger is improved because the porous intermediate layer 13b has a heat insulating action. In the example shown in FIG. 5, a large number of grooves 13 c are formed on the inner surface of the end plate 13 so as to face the grooves 12 a of the plate 12, and the cross-sectional area of the fluid passage 15 ′ at the outermost portion of the laminate 11 is formed. Can be secured equivalent to that of the inner layer. However, unlike the fluid passage 15 in the inner layer, the top of the wall surface between the grooves 13c is joined to the top of the wall surface between the opposing grooves 12a to ensure the required rigidity. 6A and 6B, ribs 13d are formed vertically and horizontally on the surface of the end plate 13 opposite to the plate 12 by etching. By providing the rib structure on the outer surface of the end plate 13 in this way, it is possible to reduce the weight while improving the rigidity of the end plate 13 itself.

図7以下に、プレート12の通路構造に関する他の実施形態を示す。図1と異なる部分について説明すると、図7に示したものでは、積層体11の最外側に位置するプレート12は、その溝12a内に流体の流れ方向に沿ってフィン状の薄いリブ12dが形成されている。これにより当該プレート12の剛性を高め、かつ伝熱面積を大きく確保して、放熱により損失を生じやすい外側プレート部分での熱交換効率を向上させている。図8〜図9は、積層体11の最外側に位置するプレート12に形成した複数の溝12aのうち、低温流体の出口領域付近のものにのみ前記同様のリブ12dを形成したものである。図8は前記積層体11の構成を、図9−1と図9−2は前記積層体11を熱交換器ハウジング20に収装した蒸発器の構成を、それぞれ示している。低温流体として水を流体通路15に、高温流体として燃焼ガスを流体通路14にそれぞれ供給する場合、水が燃焼ガスから受熱して蒸気化する出口付近での剛性を前記リブ12dにより確保するものである。詳細には、低温流体である水については、図9−1に示したように、複数の通路15の途中に仕切部21を設けて、ハウジング20の一端部に設けられた入口部20aからの水の流れを入口側通路群15Aを介して反対側のチャンバ部20bに導き、該チャンバ部20bから出口側通路群15Bへと流れを反転させ、その間に蒸気化した水を出口部20cから取り出すようになっている。一方、高温流体である燃焼ガスは図9−2に示したように、前記低温流体通路15と交差する高温流体通路14に一方向流として供給するようになっている。この構成によれば、熱的な影響により剛性確保上不利になる低温流体出口領域のみをリブ12dにより効果的に補強することができる。図10は前記低温流体出口領域の剛性を重点的に確保するための他の実施形態であり、これは図示したようにエンドプレート13の前記低温流体出口領域に相当する表面において、他の部分よりもリブ間隔が密となるようにリブ13dを形成したものである。図中の符号15A、15Bはそれぞれ図9−1に示した低温流体の入口側通路群、出口側通路群の位置を表している。   FIG. 7 and subsequent figures show other embodiments relating to the passage structure of the plate 12. The portion different from FIG. 1 will be described. In the structure shown in FIG. 7, the plate 12 located on the outermost side of the laminated body 11 has fin-shaped thin ribs 12d formed in the grooves 12a along the fluid flow direction. Has been. As a result, the rigidity of the plate 12 is increased, a large heat transfer area is secured, and the heat exchange efficiency at the outer plate portion where loss is easily caused by heat radiation is improved. FIGS. 8 to 9 show the same rib 12d formed only in the vicinity of the low temperature fluid outlet region among the plurality of grooves 12a formed in the plate 12 positioned on the outermost side of the laminated body 11. FIGS. 8 shows the configuration of the laminate 11, and FIGS. 9-1 and 9-2 show the configuration of an evaporator in which the laminate 11 is housed in the heat exchanger housing 20, respectively. When water is supplied to the fluid passage 15 as a low-temperature fluid and combustion gas is supplied to the fluid passage 14 as a high-temperature fluid, the rib 12d ensures rigidity near the outlet where water receives heat from the combustion gas and vaporizes. is there. Specifically, as shown in FIG. 9A, the water that is a low-temperature fluid is provided with a partition portion 21 in the middle of the plurality of passages 15, and from an inlet portion 20 a provided at one end portion of the housing 20. The flow of water is guided to the opposite chamber portion 20b through the inlet side passage group 15A, the flow is reversed from the chamber portion 20b to the outlet side passage group 15B, and the vaporized water is taken out from the outlet portion 20c. It is like that. On the other hand, the combustion gas, which is a high-temperature fluid, is supplied as a one-way flow to the high-temperature fluid passage 14 intersecting with the low-temperature fluid passage 15 as shown in FIG. According to this configuration, it is possible to effectively reinforce only the low-temperature fluid outlet region, which is disadvantageous in securing rigidity due to thermal influence, by the ribs 12d. FIG. 10 shows another embodiment for preferentially securing the rigidity of the cryogenic fluid outlet region. This is because the surface of the end plate 13 corresponding to the cryogenic fluid outlet region as shown in FIG. Also, ribs 13d are formed so that the rib interval is close. Reference numerals 15A and 15B in the figure respectively represent the positions of the cryogenic fluid inlet side passage group and the outlet side passage group shown in FIG.

なお、前記実施形態の構成において、2系統の流体通路14と15の何れを低温流体通路または高温流体通路としてもよいが、剛性および強度に対する熱的な影響を排除する観点からは、積層体11の最外側に位置することになる流体通路15を低温流体通路として適用することが望ましい。   In the configuration of the embodiment, any of the two fluid passages 14 and 15 may be a low temperature fluid passage or a high temperature fluid passage. However, from the viewpoint of eliminating the thermal influence on rigidity and strength, the laminate 11 It is desirable to apply the fluid passage 15 which will be located on the outermost side of the gas passage as a cryogenic fluid passage.

また、前記各実施形態では、プレート12の両面に溝12aを形成しているが、これに限られず一方の面にのみ溝12aを形成したものを積層して熱交換器を構成してもよい。ただし、エッチング加工により溝12aを形成する場合は、加工上その深さに制約を有するので、実施形態として示したように両面に形成する構成としたほうが、流体通路面積ないし伝熱面積と剛性を確保する上で有利であり、また熱交換器としての部品点数を節約することができる。   Moreover, in each said embodiment, although the groove | channel 12a is formed in both surfaces of the plate 12, it is not restricted to this, You may comprise a heat exchanger by laminating | stacking what formed the groove | channel 12a only in one surface. . However, when the groove 12a is formed by etching, the depth of the process is limited. Therefore, the structure formed on both sides as shown in the embodiment has a fluid passage area or heat transfer area and rigidity. It is advantageous in securing the number of parts, and the number of parts as a heat exchanger can be saved.

本発明に係る熱交換器(積層体)の第1の実施形態の縦断面図。The longitudinal cross-sectional view of 1st Embodiment of the heat exchanger (laminated body) which concerns on this invention. 前記実施形態のプレートの平面図。The top view of the plate of the said embodiment. 図2−1のA−A断面図。AA sectional drawing of FIGS. 2-1. 図2−1のB−B断面図。BB sectional drawing of FIGS. 2-1. 本発明に係る熱交換器(積層体)の第2の実施形態の縦断面図。The longitudinal cross-sectional view of 2nd Embodiment of the heat exchanger (laminated body) which concerns on this invention. 本発明に係る熱交換器(積層体)の第3の実施形態の縦断面図。The longitudinal cross-sectional view of 3rd Embodiment of the heat exchanger (laminated body) which concerns on this invention. 本発明に係る熱交換器(積層体)の第4の実施形態の縦断面図。The longitudinal cross-sectional view of 4th Embodiment of the heat exchanger (laminated body) which concerns on this invention. エンドプレートに関する他の実施形態の平面図。The top view of other embodiment regarding an end plate. エンドプレートに関する他の実施形態の正面図。The front view of other embodiment regarding an end plate. 本発明に係る熱交換器(積層体)の第5の実施形態の縦断面図。The longitudinal cross-sectional view of 5th Embodiment of the heat exchanger (laminated body) which concerns on this invention. 本発明に係る熱交換器(積層体)の第6の実施形態の縦断面図。The longitudinal cross-sectional view of 6th Embodiment of the heat exchanger (laminated body) which concerns on this invention. 前記第6の実施形態の熱交換器としての構成例を示す第1の縦断面図。The 1st longitudinal cross-sectional view which shows the structural example as a heat exchanger of the said 6th Embodiment. 前記第6の実施形態の熱交換器としての構成例を示す第2の縦断面図。The 2nd longitudinal cross-sectional view which shows the structural example as a heat exchanger of the said 6th Embodiment. 図8の熱交換器(積層体)に適用するエンドプレートの平面図。The top view of the end plate applied to the heat exchanger (laminated body) of FIG.

符号の説明Explanation of symbols

11 熱交換器(積層体)
12 プレート
12a 溝
12b 壁面
12c 頂部
12d 溝内のリブ
13 エンドプレート(端部部材)
13b 多孔質構造
13c 溝
13d リブ
14 流体通路
15 流体通路
20 熱交換器のハウジング
11 Heat exchanger (laminate)
12 Plate 12a Groove 12b Wall 12c Top 12d Rib in Groove 13 End Plate (End Member)
13b Porous structure 13c Groove 13d Rib 14 Fluid passage 15 Fluid passage 20 Heat exchanger housing

Claims (11)

表面に複数の溝を形成したプレートを複数個積層して隣接するプレート間に流体通路を画成し、かつ前記プレートの隣接する溝間の壁面の頂部と該頂部と対向する他のプレートとの間に間隙を設けた熱交換器において、
前記積層構造の最外側に位置するプレートの壁面はその頂部を対向する端部部材に当接させたことを特徴とする熱交換器。
A plurality of plates having a plurality of grooves formed on a surface thereof are stacked to define a fluid passage between adjacent plates, and a top of a wall surface between the adjacent grooves of the plate and another plate facing the top In a heat exchanger with a gap in between,
The wall surface of the plate located on the outermost side of the laminated structure has its top portion in contact with an opposing end member.
前記端部部材は、該プレートの壁面頂部に接合する板状部材である請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the end member is a plate-like member joined to the top of the wall surface of the plate. 前記端部部材は、該プレートよりも高い曲げ剛性を有する請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the end member has higher bending rigidity than the plate. 前記端部部材は、該プレートの壁面頂部との当接部間に流体通路を構成する溝が形成されている請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the end member is formed with a groove forming a fluid passage between contact portions with the top of the wall surface of the plate. 前記最外側のプレートが形成する流体通路は低温流体通路である請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the fluid passage formed by the outermost plate is a cryogenic fluid passage. 前記最外側のプレートは、流れ方向に沿って前記溝内にリブが形成されている請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the outermost plate has ribs formed in the grooves along a flow direction. 前記溝内のリブは、低温流体の出口領域の溝に形成されている請求項6に記載の熱交換器。   The heat exchanger according to claim 6, wherein the rib in the groove is formed in a groove in an outlet region of the cryogenic fluid. 前記端部部材は、該プレートとは反対側の表面にリブ構造が形成されている請求項1の記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the end member has a rib structure formed on a surface opposite to the plate. 前記リブ構造は、低温流体の出口領域にてリブ間隔が密になるように形成されている請求項8に記載の熱交換器。   The heat exchanger according to claim 8, wherein the rib structure is formed so that a rib interval is close in a cold fluid outlet region. 前記端部部材は、多孔質構造を有している請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the end member has a porous structure. 前記プレートは、その両面に溝が形成されている請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the plate has grooves formed on both sides thereof.
JP2004103676A 2004-03-31 2004-03-31 Heat exchanger Pending JP2005291546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004103676A JP2005291546A (en) 2004-03-31 2004-03-31 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004103676A JP2005291546A (en) 2004-03-31 2004-03-31 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2005291546A true JP2005291546A (en) 2005-10-20

Family

ID=35324674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004103676A Pending JP2005291546A (en) 2004-03-31 2004-03-31 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2005291546A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062802A1 (en) * 2006-11-21 2008-05-29 Kabushiki Kaisha Toshiba Heat exchanger
KR101080236B1 (en) 2011-06-13 2011-11-08 한국기계연구원 Micro channel heat exchanger
KR101218967B1 (en) * 2010-12-29 2013-01-07 한국수력원자력 주식회사 Heat exchanger for very high temperature nuclear reactor
KR101376531B1 (en) 2012-11-22 2014-03-19 주식회사 코헥스 Liquefied natural gas evaporating system for natural gas fueled ship
JP2015105760A (en) * 2013-11-28 2015-06-08 株式会社前川製作所 Heat exchanger
EP3220088A1 (en) * 2016-03-17 2017-09-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Stacked type fluid heater and method of heating fluid with stacked type fluid heater
KR20180095869A (en) * 2015-12-18 2018-08-28 가부시키가이샤 고베 세이코쇼 Medium medium vaporizer
JP2018141602A (en) * 2017-02-28 2018-09-13 株式会社富士通ゼネラル Micro flow passage heat exchanger
JP2019211166A (en) * 2018-06-06 2019-12-12 株式会社神戸製鋼所 Stacked heat exchanger

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062802A1 (en) * 2006-11-21 2008-05-29 Kabushiki Kaisha Toshiba Heat exchanger
JP2008128574A (en) * 2006-11-21 2008-06-05 Toshiba Corp Heat exchanger
KR101218967B1 (en) * 2010-12-29 2013-01-07 한국수력원자력 주식회사 Heat exchanger for very high temperature nuclear reactor
KR101080236B1 (en) 2011-06-13 2011-11-08 한국기계연구원 Micro channel heat exchanger
US11391518B2 (en) 2012-11-22 2022-07-19 Alfa Laval Corhex Ltd. Method of operating a heat exchanger
WO2014081182A1 (en) * 2012-11-22 2014-05-30 Corhex Corp. 3-d channel gas heat exchanger
JP2016503483A (en) * 2012-11-22 2016-02-04 アルファ・ラヴァル・コアヘクス・リミテッド 3D channel gas heat exchanger
JP2017146092A (en) * 2012-11-22 2017-08-24 アルファ・ラヴァル・コアヘクス・リミテッド Three-dimensional channel gas heat exchanger
US10365045B2 (en) 2012-11-22 2019-07-30 Alfa Laval Corhex Ltd. 3-D channel gas heat exchanger
KR101376531B1 (en) 2012-11-22 2014-03-19 주식회사 코헥스 Liquefied natural gas evaporating system for natural gas fueled ship
JP2015105760A (en) * 2013-11-28 2015-06-08 株式会社前川製作所 Heat exchanger
KR102086641B1 (en) * 2015-12-18 2020-03-09 가부시키가이샤 고베 세이코쇼 Medium Carburetor
KR20180095869A (en) * 2015-12-18 2018-08-28 가부시키가이샤 고베 세이코쇼 Medium medium vaporizer
CN107202507A (en) * 2016-03-17 2017-09-26 株式会社神户制钢所 The heating method of cascade type fluid warmer and fluid based on cascade type fluid warmer
KR102074851B1 (en) * 2016-03-17 2020-02-07 가부시키가이샤 고베 세이코쇼 Stacked type fluid heater and method of heating fluid with stacked type fluid heater
KR20170108847A (en) * 2016-03-17 2017-09-27 가부시키가이샤 고베 세이코쇼 Stacked type fluid heater and method of heating fluid with stacked type fluid heater
US10746473B2 (en) 2016-03-17 2020-08-18 Kobe Steel, Ltd. Stacked type fluid heater and method of heating fluid with stacked type fluid heater
EP3220088A1 (en) * 2016-03-17 2017-09-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Stacked type fluid heater and method of heating fluid with stacked type fluid heater
JP2018141602A (en) * 2017-02-28 2018-09-13 株式会社富士通ゼネラル Micro flow passage heat exchanger
JP2019211166A (en) * 2018-06-06 2019-12-12 株式会社神戸製鋼所 Stacked heat exchanger
WO2019235211A1 (en) * 2018-06-06 2019-12-12 株式会社神戸製鋼所 Stacked heat exchanger
CN112166295A (en) * 2018-06-06 2021-01-01 株式会社神户制钢所 Laminated heat exchanger
US11828543B2 (en) 2018-06-06 2023-11-28 Kobe Steel, Ltd. Stacked heat exchanger

Similar Documents

Publication Publication Date Title
JP4724433B2 (en) Heat exchanger
WO2017169410A1 (en) Heat exchanger
JP2007093025A (en) Heat exchanger and its manufacturing method
JPH11287580A (en) Heat exchanger
JP2007147172A (en) Heat exchanger
JP2009063223A (en) Heat exchanger
JP2005291546A (en) Heat exchanger
JP7110390B2 (en) Diffusion bonded heat exchanger
JP7315121B1 (en) Vapor chamber, electronics and method of making vapor chamber
CN113227703B (en) Heat exchanger
JP4568581B2 (en) Plate type heat exchanger
JP2007032952A (en) Header tank for heat exchanger, and heat exchanger using the same
WO2012008348A1 (en) Heat exchanger
JPH10281693A (en) Duplx type integral heat-exchanger
JP2009041797A (en) Heat exchanger
WO2014077084A1 (en) Laminated heat exchanger
JP5226342B2 (en) Cold storage / heat storage type heat exchanger
US11885569B2 (en) Heat exchanger
JP2015113983A (en) Heat exchanger
JP2018141602A (en) Micro flow passage heat exchanger
KR100666927B1 (en) Heat exchanger of header type
JP2005155996A (en) Heat exchanger
JP2006200770A (en) Stacked heat exchanger
JP2007178017A (en) Heat exchanger
JP2007187435A (en) Heat exchanger