JP2005288219A - Water supply system - Google Patents

Water supply system Download PDF

Info

Publication number
JP2005288219A
JP2005288219A JP2004103269A JP2004103269A JP2005288219A JP 2005288219 A JP2005288219 A JP 2005288219A JP 2004103269 A JP2004103269 A JP 2004103269A JP 2004103269 A JP2004103269 A JP 2004103269A JP 2005288219 A JP2005288219 A JP 2005288219A
Authority
JP
Japan
Prior art keywords
water
water supply
corrosion
filtration
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004103269A
Other languages
Japanese (ja)
Other versions
JP4996812B2 (en
Inventor
Takeshi Yoneda
剛 米田
Atsuyuki Manabe
敦行 真鍋
Hayato Watanabe
隼人 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2004103269A priority Critical patent/JP4996812B2/en
Publication of JP2005288219A publication Critical patent/JP2005288219A/en
Application granted granted Critical
Publication of JP4996812B2 publication Critical patent/JP4996812B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water supply system which can suppress corrosion due to lowering of pH of water supplied into equipment such as thermal equipment and water treatment equipment. <P>SOLUTION: The water supply system 3 for supplying water to a boiler 2 as thermal equipment is constituted by providing a water supply line 4 for making supply water flow, a straining treatment section 8 which is installed in the water supply line 4 and which performs straining treatment with a filtering member for catching corrosion propagating components causing corrosion of the boiler 2, a bypass line 10 which makes water flow through the water supply line 4 at an upstream side of the straining treatment section 8 bypass to the water supply line 4 at a downstream side of the straining treatment section 8, a stop valve 11 installed in the bypass line 10 and a controlling section 14 which controls opening/closing of the stop valve 11 so that water flowing at the downstream side of the straining treatment section 8 and supplied to the boiler 2 has predetermined M alkalinity. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、原水を改質して生成された処理水を給水として熱機器、水処理機器等の機器へ供給する給水システムに関する。   The present invention relates to a water supply system for supplying treated water generated by reforming raw water to equipment such as heat equipment and water treatment equipment as feed water.

例えば、蒸気ボイラ、温水ボイラ、クーリングタワー、給湯器等の熱機器には、原水から不純物等や溶存気体を除去し改質した処理水が使用されている。   For example, in the heat equipment such as a steam boiler, a hot water boiler, a cooling tower, and a water heater, treated water obtained by removing impurities and / or dissolved gas from raw water is used.

従来、前記原水を改質して生成された処理水を熱機器へ供給する給水システムとしては、一般に逆浸透膜を用いた逆浸透膜部により原水中に含まれている不純物等を濾過し、次に原水中の溶存気体を脱気処理部によって除去し、機器での使用に適した水質に改質するものが知られている(例えば、特許文献1参照。)。
特開平5−220480号公報
Conventionally, as a water supply system for supplying treated water generated by reforming the raw water to a thermal device, generally, impurities and the like contained in the raw water are filtered by a reverse osmosis membrane portion using a reverse osmosis membrane, Next, what dissolve | melts the dissolved gas in raw | natural water by a deaeration process part and modify | reforms it to the water quality suitable for use with an apparatus is known (for example, refer patent document 1).
Japanese Patent Laid-Open No. 5-220480

しかし、上記給水システムによれば、前記逆浸透膜により、原水中に含まれているアルカリ成分も捕捉されてしまう。このようにアルカリ成分が除去された給水が熱機器へ供給された場合、熱機器内における給水のpHが上昇せず、これが原因で熱機器の腐食が促進されることがある。このような場合、濾過処理部を通る前の給水にはアルカリ成分が含まれていることから、特に、逆浸透膜部によって濾過処理された後の処理水の水質に余裕がある場合などにあっては、かかる逆浸透膜部を通る前の給水を有効に利用することが考えられる。   However, according to the water supply system, the reverse osmosis membrane also captures alkaline components contained in the raw water. Thus, when the water supply from which the alkaline component was removed is supplied to the heat equipment, the pH of the water supply in the heat equipment does not increase, which may promote corrosion of the heat equipment. In such a case, since the water supply before passing through the filtration treatment unit contains an alkali component, it is particularly suitable when the quality of the treated water after the filtration treatment by the reverse osmosis membrane unit has a margin. Therefore, it is conceivable to effectively use the water supply before passing through the reverse osmosis membrane portion.

本発明の目的は、熱機器、水処理機器等の機器へ供給された給水のpHの低下による腐食を抑制することができる給水システムを提供することにある。   The objective of this invention is providing the water supply system which can suppress the corrosion by the fall of pH of the feed water supplied to apparatuses, such as a thermal apparatus and a water treatment apparatus.

上記課題を解決するために、請求項1に記載の発明は、機器へ給水を供給するための給水システムであって、前記給水を流す給水ラインと、該給水ラインに設けられた濾過処理部と、該濾過処理部をバイパスするバイパスラインと、該バイパスラインに設けられた開閉弁と、前記濾過処理部の下流側を流れる給水が所定のMアルカリ度となるよう前記開閉弁を開閉制御する制御部と、を備えて構成することを特徴とする。   In order to solve the above-mentioned problem, the invention described in claim 1 is a water supply system for supplying water to equipment, wherein a water supply line for flowing the water supply, and a filtration processing unit provided in the water supply line, , A bypass line for bypassing the filtration processing unit, an on-off valve provided on the bypass line, and a control for opening / closing the on-off valve so that water supplied downstream of the filtration processing unit has a predetermined M alkalinity And a portion.

このような請求項1に記載の発明に係る給水システムでは、給水ラインを流れる給水は、前記濾過処理部へ供給され、濾過処理部では、供給された給水中に含まれる不純物が除去される。   In the water supply system according to the first aspect of the present invention, the feed water flowing through the feed water line is supplied to the filtration processing unit, and the filtration processing unit removes impurities contained in the supplied feed water.

そして、不純物が除去された給水、すなわち濾過処理部の下流側を流れ機器へと供給される給水のMアルカリ度が低い場合には、前記制御部によって開閉弁を開き、濾過処理部へ流入する前の給水を前記バイパスラインから濾過処理部の下流側へと流入させる。そして、前記給水が所定のMアルカリ度になったときに、前記制御部は開閉弁を閉じる。   When the M alkalinity of the feed water from which impurities have been removed, that is, the feed water supplied to the flow equipment downstream of the filtration processing unit is low, the control unit opens the on-off valve and flows into the filtration processing unit. The previous water supply is allowed to flow from the bypass line to the downstream side of the filtration unit. When the water supply reaches a predetermined M alkalinity, the control unit closes the on-off valve.

請求項2に記載の発明は、請求項1に記載の前記濾過処理部の下流側の前記給水ラインに、脱気処理部を備えたことを特徴とする。   The invention described in claim 2 is characterized in that a degassing processing section is provided in the water supply line on the downstream side of the filtration processing section described in claim 1.

このような請求項2に記載の発明に係る給水システムでは、濾過処理部を透過した透過水中に含まれる溶存気体が除去される。これにより、不純物と溶存気体とが除去された処理水が生成される。   In such a water supply system according to the second aspect of the invention, the dissolved gas contained in the permeated water that has permeated through the filtration unit is removed. Thereby, the treated water from which impurities and dissolved gas are removed is generated.

請求項3に記載の発明は、請求項2に記載の前記バイパスラインは、前記濾過処理部の上流側の給水ラインと該濾過処理部と前記脱気処理部の間の給水ラインとを接続するよう構成したことを特徴とする。   According to a third aspect of the present invention, the bypass line according to the second aspect connects a water supply line on the upstream side of the filtration processing unit and a water supply line between the filtration processing unit and the deaeration processing unit. It is characterized by having comprised as follows.

このような請求項3に記載の発明に係る給水システムでは、濾過処理部の上流側から下流側へバイパスされた給水は、前記脱気処理部を通って機器へ供給される。   In such a water supply system according to the third aspect of the present invention, the water supply bypassed from the upstream side to the downstream side of the filtration processing unit is supplied to the equipment through the deaeration processing unit.

請求項1に記載の発明によれば、濾過処理部の下流側に流入される前記濾過処理部の上流側の給水に含まれる炭酸水素塩、炭酸塩、水酸化物などのアルカリ成分により、濾過処理部の下流側を流れ機器へと供給される給水のMアルカリ度を上昇させることができる。これにより、機器内に供給された給水のpHの低下を防止することができ、機器の腐食を効果的に抑制することができる。   According to the first aspect of the present invention, filtration is performed by an alkaline component such as bicarbonate, carbonate, hydroxide, etc. contained in the water supply upstream of the filtration unit that flows into the downstream side of the filtration unit. The M alkalinity of the feed water supplied to the flow equipment on the downstream side of the processing unit can be increased. Thereby, the fall of pH of the feed water supplied in the apparatus can be prevented, and corrosion of an apparatus can be suppressed effectively.

請求項2に記載の発明によれば、機器へ供給される給水中の溶存気体が除去されていることから、機器の腐食抑制効果を向上させることができる。   According to invention of Claim 2, since the dissolved gas in the feed water supplied to an apparatus is removed, the corrosion inhibitory effect of an apparatus can be improved.

請求項3に記載の発明によれば、前記脱気処理部により、濾過処理部の上流側からバイパスされた給水中に含まれる溶存気体が除去されることから、機器の腐食抑制効果を向上させることができる。   According to invention of Claim 3, since the dissolved gas contained in the feed water bypassed from the upstream of the filtration process part is removed by the said deaeration process part, the corrosion inhibitory effect of an apparatus is improved. be able to.

以下、本発明に係る給水システムを実施するための最良の形態を説明する。
(実施の形態1)
本例の給水システムは、機器へ給水を供給するための給水システムであって、前記給水を流す給水ラインと、該給水ラインに設けられた濾過処理部と、該濾過処理部をバイパスするバイパスラインと、該バイパスラインに設けられた開閉弁と、前記濾過処理部の下流側を流れる給水が所定のMアルカリ度となるよう前記開閉弁を開閉制御する制御部と、を備えて構成することを特徴としている。
Hereinafter, the best mode for carrying out the water supply system according to the present invention will be described.
(Embodiment 1)
The water supply system of this example is a water supply system for supplying water to equipment, and includes a water supply line through which the water supply flows, a filtration processing unit provided in the water supply line, and a bypass line that bypasses the filtration processing unit And an opening / closing valve provided in the bypass line, and a control unit that controls the opening / closing of the opening / closing valve so that water supplied downstream of the filtration processing unit has a predetermined M alkalinity. It is a feature.

前記濾過処理部は、濾過膜により、前記給水ラインを流れる給水中に含まれる不純物の除去を行う。濾過膜としては、ナノ濾過膜やRO膜などを挙げることができる。かかる濾過膜によって除去される不純物には、炭酸水素塩、炭酸塩、水酸化物などのアルカリ成分も含まれる。   The said filtration process part removes the impurity contained in the water supply which flows through the said water supply line with a filter membrane. Examples of filtration membranes include nanofiltration membranes and RO membranes. Impurities removed by such a filtration membrane also include alkali components such as bicarbonates, carbonates and hydroxides.

そして、このようなアルカリ成分を始めとする不純物が除去された透過水、すなわち濾過処理部の下流側を流れ機器へと供給される給水のMアルカリ度が低い場合には、前記制御部によって開閉弁を開き、濾過処理部へ流入する前の給水を前記バイパスラインから濾過処理部の下流側へと流入させる。このバイパスラインから流入された給水中に含まれるアルカリ成分により、濾過処理部の下流側を流れ機器へと供給される給水のMアルカリ度を上昇させることができる。これにより、機器内に供給された給水のpHの低下を防止することができ、機器の腐食を効果的に抑制することができる。   When the permeated water from which impurities such as alkali components have been removed, that is, when the M alkalinity of the feed water supplied to the flow equipment on the downstream side of the filtration processing unit is low, it is opened and closed by the control unit. The valve is opened, and the feed water before flowing into the filtration processing unit is caused to flow from the bypass line to the downstream side of the filtration processing unit. The alkalinity component contained in the feed water flowing in from the bypass line can increase the M alkalinity of the feed water supplied to the flow equipment downstream of the filtration unit. Thereby, the fall of pH of the feed water supplied in the apparatus can be prevented, and corrosion of an apparatus can be suppressed effectively.

(実施の形態2)
本例の給水システムは、機器へ給水を供給するための給水システムであって、前記給水を流す給水ラインと、該給水ラインに設けられた濾過処理部と、該濾過処理部の下流側の前記給水ラインに設けられた脱気処理部と、前記濾過処理部をバイパスし、濾過処理部の上流側の給水ラインと濾過処理部と脱気処理部の間の給水ラインとを接続するバイパスラインと、該バイパスラインに設けられた開閉弁と、前記濾過処理部の下流側を流れる給水が所定のMアルカリ度となるよう前記開閉弁を開閉制御する制御部と、を備えて構成することを特徴としている。
(Embodiment 2)
The water supply system of this example is a water supply system for supplying water to equipment, and includes a water supply line through which the water supply flows, a filtration processing unit provided in the water supply line, and the downstream of the filtration processing unit. A deaeration unit provided in the water supply line; a bypass line that bypasses the filtration unit and connects a water line on the upstream side of the filtration unit and a water line between the filtration unit and the deaeration unit; And an opening / closing valve provided in the bypass line, and a control unit that controls opening / closing of the opening / closing valve so that water supplied downstream of the filtration processing unit has a predetermined M alkalinity. It is said.

このような本例の給水システムでは、前記濾過処理部において、濾過膜により、前記給水ラインを流れる給水中に含まれる不純物の除去を行い、前記脱気処理部において給水中の溶存気体の除去を行う。前記濾過膜としては、実施の形態1と同様、ナノ濾過膜やRO膜などを挙げることができる。   In such a water supply system of this example, in the filtration processing unit, the filtration membrane removes impurities contained in the feed water flowing through the feed water line, and the degassing processing unit removes dissolved gas in the feed water. Do. Examples of the filtration membrane include nanofiltration membranes and RO membranes as in the first embodiment.

そして、アルカリ成分を始めとする不純物が除去された透過水、すなわち濾過処理部の下流側を流れ機器へと供給される給水のMアルカリ度が低い場合には、前記制御部によって開閉弁を開き、濾過処理部へ流入する前の給水を前記バイパスラインから濾過処理部と脱気処理部の間の給水ラインへと流入させる。このバイパスラインから流入された給水中に含まれるアルカリ成分により、濾過処理部の下流側を流れ機器へと供給される給水のMアルカリ度を上昇させることができる。また、バイパスラインから流入する給水及び濾過処理部を透過した透過水は脱気処理部によって脱気処理され、溶存気体が除去される。これにより、機器内に供給された給水のpHの低下を防止することができ、さらに溶存気体も除去することができるので、機器の腐食を効果的に抑制することができる。   When the permeated water from which impurities such as alkali components have been removed, that is, when the M alkalinity of the feed water supplied to the flow equipment on the downstream side of the filtration processing unit is low, the control unit opens the on-off valve. The feed water before flowing into the filtration processing unit is caused to flow from the bypass line to the feed water line between the filtration processing unit and the deaeration processing unit. The alkalinity component contained in the feed water flowing in from the bypass line can increase the M alkalinity of the feed water supplied to the flow equipment downstream of the filtration unit. Further, the feed water flowing from the bypass line and the permeated water that has passed through the filtration processing unit are deaerated by the deaeration processing unit, and the dissolved gas is removed. Thereby, since the fall of pH of the feed water supplied in the apparatus can be prevented, and also dissolved gas can be removed, corrosion of an apparatus can be suppressed effectively.

次に、本発明の具体的な実施例を図面により詳細に説明する。以下に説明する実施例では、機器をボイラとし、濾過処理部を、ナノろ過膜を用いた濾過処理部とした。
先ず、本発明の第1実施例について説明する。図1は本発明の給水システムを含むボイラシステムの第1実施例を示す構成図である。
Next, specific embodiments of the present invention will be described in detail with reference to the drawings. In the examples described below, the equipment is a boiler, and the filtration processing unit is a filtration processing unit using a nanofiltration membrane.
First, a first embodiment of the present invention will be described. FIG. 1 is a block diagram showing a first embodiment of a boiler system including a water supply system of the present invention.

図において、符号1で示されるボイラシステムは、給水を加熱して蒸気を生成するボイラ2と、ボイラ2へ給水を供給する給水システム3とを備えている。給水システム3は、給水ライン4を備え、この給水ライン4上において給水の水質を改質して生成された処理水を前記給水として前記ボイラ2へ供給するようになっている。   In the figure, a boiler system denoted by reference numeral 1 includes a boiler 2 that heats feed water to generate steam, and a feed water system 3 that supplies feed water to the boiler 2. The water supply system 3 includes a water supply line 4, and treated water generated by reforming the quality of the water supply water on the water supply line 4 is supplied to the boiler 2 as the water supply.

前記ボイラ2は、水管ボイラと称される多管式の貫流ボイラであって、このボイラ2は、特に図示しないが、所定の間隔で上下に配置される環状の下部ヘッダ及び環状の上部ヘッダと、これらの間に配置される複数の伝熱管と、複数の伝熱管により区画形成される燃焼室と、燃焼室の上方に配置され、各伝熱管内の給水を加熱して蒸気を発生させるバーナ等の加熱装置とを備えて構成されている周知構造のボイラである。前記給水ライン4は、ボイラ2の前記下部ヘッダに接続されている。   The boiler 2 is a multi-tube type once-through boiler called a water tube boiler, and this boiler 2 is not particularly shown, but includes an annular lower header and an annular upper header arranged vertically at predetermined intervals. , A plurality of heat transfer tubes disposed between them, a combustion chamber defined by the plurality of heat transfer tubes, and a burner disposed above the combustion chamber and generating steam by heating the feed water in each heat transfer tube It is the boiler of the well-known structure comprised including heating apparatuses, such as. The water supply line 4 is connected to the lower header of the boiler 2.

前記複数の伝熱管等は、非不動態化金属を用いて形成されている。ここで、非不動態化金属について説明すると、この非不動態化金属は、中性水溶液中において自然には不動態化しない金属をいい、通常は、ステンレス鋼、チタン、アルミニウム、クロム、ニッケル、及びジルコニウム等を除く金属である。具体的には、炭素鋼、鋳鉄、銅、及び銅合金等である。前記炭素鋼は、中性水溶液中においても、高濃度のクロム酸イオンの存在下では不動態化する場合があるが、この不動態化はクロム酸イオンの影響によるものであって中性水溶液中での自然な不動態化とは言い難い。従って、炭素鋼は、ここでの非不動態化金属の範疇に属する。また、銅及び銅合金は、電気化学列(emf series)が貴な位置にあるため、通常は水分の影響による腐食が生じ難い金属と考えられているが、中性水溶液中において自然に不動態化するものではないので、ここでの非不動態化金属の範疇に属する。   The plurality of heat transfer tubes and the like are formed using a non-passivated metal. Here, the non-passivated metal will be described. The non-passivated metal refers to a metal that does not passivate naturally in a neutral aqueous solution. Usually, stainless steel, titanium, aluminum, chromium, nickel, And metals other than zirconium and the like. Specifically, carbon steel, cast iron, copper, copper alloy, and the like. The carbon steel may be passivated in the presence of a high concentration of chromate ions even in a neutral aqueous solution, but this passivation is due to the effects of chromate ions. It ’s hard to say that it ’s a natural passivation. Carbon steel therefore belongs to the category of non-passivated metals here. In addition, copper and copper alloys are considered to be metals that are unlikely to corrode due to the influence of moisture because of the noble position of the electrochemical series (emf series), but they are naturally passive in neutral aqueous solutions. It belongs to the category of non-passivated metals here.

前記給水システム3には、水道水、工業用水、地下水等の水源から供給される原水が貯留されている図示しない原水タンクから、給水が供給されるようになっている。そして、給水システム3は、給水ライン4に活性炭濾過処理部5と、軟水化処理部6と、プレフィルタ7と、濾過処理部8と、給水タンク9とを上流側から下流側に向かってこの順に備えている。また、かかる給水システム3には、軟水化処理部6とプレフィルタ7の間の給水ライン4と、給水タンク9とを繋ぐバイパスライン10が設けられ、このバイパスライン10には、開閉弁11が設けられている。   The water supply system 3 is supplied with water from a raw water tank (not shown) in which raw water supplied from water sources such as tap water, industrial water, and groundwater is stored. Then, the water supply system 3 moves the activated carbon filtration processing unit 5, the water softening processing unit 6, the prefilter 7, the filtration processing unit 8, and the water supply tank 9 to the water supply line 4 from the upstream side toward the downstream side. In order. Further, the water supply system 3 is provided with a bypass line 10 that connects the water supply line 4 between the water softening processing unit 6 and the pre-filter 7 and the water supply tank 9, and the bypass line 10 has an on-off valve 11. Is provided.

前記活性炭濾過処理部5は、給水中に溶存する次亜塩素酸ソーダ等の酸化剤を吸着除去するための装置として構成されている。上記酸化剤、すなわち残留塩素は、活性炭濾過処理部5の下流側に配置される軟水化処理部6のイオン交換樹脂(図示省略)を酸化させてイオン交換能力を早期に劣化させるおそれがあり、また、さらに下流に配置された濾過処理部8の後述するナノ濾過膜(図示省略)を酸化させて濾過能力を早期に劣化させるおそれがある。そこで、このような酸化による早期の能力劣化を防止するために、上記残留塩素を活性炭で吸着して除去することにより、上記イオン交換能力の早期劣化を防止するとともに上記濾過能力の早期劣化を防止し、給水の処理効率の向上、安定化等を図るようにしている。   The activated carbon filtration unit 5 is configured as an apparatus for adsorbing and removing an oxidizing agent such as sodium hypochlorite dissolved in the water supply. The oxidizing agent, that is, residual chlorine may oxidize the ion exchange resin (not shown) of the water softening treatment unit 6 disposed on the downstream side of the activated carbon filtration treatment unit 5 to deteriorate the ion exchange capability at an early stage. Moreover, there is a possibility that the nanofiltration membrane (not shown), which will be described later, of the filtration processing unit 8 arranged further downstream is oxidized to deteriorate the filtration capability at an early stage. Therefore, in order to prevent such early deterioration of capacity due to oxidation, the residual chlorine is adsorbed and removed by activated carbon, thereby preventing the early deterioration of the ion exchange capacity and the early deterioration of the filtering capacity. In addition, the water treatment efficiency is improved and stabilized.

活性炭濾過処理部5のような給水中の残留塩素を除去する他の装置としては、特に図示しないが、重亜硫酸ナトリウム(SBS)を添加する薬注装置等もあり、これを活性炭濾過処理部5の替わりに適用してもよいものとする。   Other devices for removing residual chlorine in the water supply, such as the activated carbon filtration processing unit 5, include a chemical injection device that adds sodium bisulfite (SBS), although not particularly shown, and this is the activated carbon filtration processing unit 5. It may be applied instead of.

前記軟水化処理部6は、上記残留塩素が除去された給水中に含まれるカルシウム、マグネシウム等の硬度成分をイオン交換樹脂(図示省略)により除去する装置として構成されている。すなわち、軟水化処理部6は、給水中に含まれる各種の硬度成分をナトリウムイオンに置換して、給水を軟水に変換するための装置として構成されている。   The water softening treatment unit 6 is configured as a device that removes hardness components such as calcium and magnesium contained in the water supply from which the residual chlorine has been removed by using an ion exchange resin (not shown). That is, the water softening process part 6 is comprised as an apparatus for replacing various hardness components contained in water supply with sodium ion, and converting water supply into soft water.

前記プレフィルタ7は、給水中のゴミ等により、濾過処理部の濾過部材(図示省略)が目詰まり等を起こさないようにするために、軟水化処理部6で軟水化された給水中のゴミ等を濾過処理部8の前で除去するためのものである。   The pre-filter 7 is configured to prevent the clogging or the like of the filtration member (not shown) of the filtration processing unit from being clogged with dust or the like in the feed water. Etc. are removed in front of the filtration unit 8.

前記濾過処理部8は、前記ボイラの非不動態化金属の腐食を引き起こす腐食促進成分を捕捉し、前記腐食の抑制に寄与する腐食抑制成分を透過する濾過部材(図示省略)を備え、かかる濾過部材により給水を濾過処理するものとして構成されている。   The filtration processing unit 8 includes a filtration member (not shown) that captures a corrosion promoting component that causes corrosion of the non-passivated metal of the boiler and transmits the corrosion inhibiting component that contributes to the inhibition of the corrosion. It is comprised as what feeds water by a member.

前記濾過部材は、具体的には、本例では、ナノ濾過膜(NF膜、NF:Nanofiltration)である。このナノ濾過膜は、ポリアミド系、ポリエーテル系等の合成高分子膜であり、2nm程度より小さい粒子や高分子(分子量が最大数百程度のもの)の透過を阻止できる液体分離膜である。また、ナノ濾過膜は、その濾過機能の点において、分子量が1,000〜300,000程度のものをろ別可能な膜(UF膜)と、分子量が数十程度のものをろ別可能な膜(RO膜)との中間に位置する機能を有する液体分離膜である。ちなみに、ナノ濾過膜は、各社から市販されており、容易に入手することができる。   Specifically, the filtration member is a nanofiltration membrane (NF membrane, NF: Nanofiltration) in this example. This nanofiltration membrane is a synthetic polymer membrane such as polyamide-based or polyether-based, and is a liquid separation membrane that can prevent permeation of particles and polymers (molecular weight of about several hundreds at the maximum) smaller than about 2 nm. In addition, the nanofiltration membrane can be separated from a membrane having a molecular weight of about 1,000 to 300,000 (UF membrane) and a membrane having a molecular weight of about several tens in terms of filtration function. It is a liquid separation membrane having a function located in the middle of the membrane (RO membrane). Incidentally, nanofiltration membranes are commercially available from various companies and can be easily obtained.

このようなナノ濾過膜は、腐食促進成分を捕捉する。ここで、腐食促進成分について説明すると、この腐食促進成分とは、ボイラ2の上記各伝熱管(図示省略)の腐食が発生し易い部位、特に、内側に水分(ここでは缶水)が付着し、且つ外側から加熱される各伝熱管(図示省略)の内面に作用してその腐食を促進するものを言い、通常、硫酸イオン(SO 2−)、塩化物イオン(Cl)、及びその他の成分を含んでいる。ちなみに、腐食促進成分として重要なものは、硫酸イオン、塩化物イオンの両者である。ところで、日本工業規格JIS B 8223:1999は、貫流ボイラを含む特殊循環ボイラの腐食を抑制する観点から、当該ボイラの缶水の水質に関する各種の管理項目及び推奨基準を規定している。そして、その規定の中で、塩化物イオン濃度の規制値を設けているが、缶水の硫酸イオン濃度については言及していない(言い換えれば、硫酸イオンが腐食に関与するものとは認識していない)。しかしながら、本願出願人の会社の研究者等は、缶水の水質と腐食との関係を長年にわたって研究した成果として、缶水に含まれる硫酸イオンが腐食促進成分として上記各伝熱管(図示省略)等に作用していることを確認している。 Such a nanofiltration membrane captures corrosion promoting components. Here, the corrosion promoting component will be described. The corrosion promoting component means that moisture (here, canned water) adheres to the portion of the boiler 2 where corrosion of the heat transfer tubes (not shown) is likely to occur, particularly inside. , And the one that acts on the inner surface of each heat transfer tube (not shown) that is heated from the outside and promotes its corrosion. Usually, sulfate ions (SO 4 2− ), chloride ions (Cl ), and others Contains ingredients. Incidentally, both sulfate ions and chloride ions are important as corrosion promoting components. By the way, Japanese Industrial Standard JIS B 8223: 1999 specifies various management items and recommended standards regarding the water quality of the boiler water from the viewpoint of suppressing the corrosion of the special circulation boiler including the once-through boiler. In the regulations, the regulation value of chloride ion concentration is set, but it does not mention the sulfate ion concentration in canned water (in other words, it is recognized that sulfate ions are involved in corrosion). Absent). However, as a result of researches on the relationship between water quality and corrosion of can water over many years, the researchers of the applicant's company have found that each of the above heat transfer tubes (not shown) is sulfate ions contained in can water as a corrosion promoting component. It has been confirmed that it is acting on etc.

また、前記ナノ濾過膜は、炭酸水素塩、炭酸塩、水酸化物などのアルカリ成分をも捕捉する。   The nanofiltration membrane also captures alkali components such as bicarbonate, carbonate, hydroxide.

そして、前記ナノ濾過膜は、腐食を抑制する成分である腐食抑制成分を透過する。腐食抑制成分とは、ボイラ2の上記各伝熱管(図示省略)の腐食が発生し易い部位、特に、各伝熱管(図示省略)の内面に作用し、そこに生じる腐食を抑制可能なものを言い、通常、シリカ(すなわち、二酸化ケイ素(SiO))を含んでいる。このシリカは、給水として用いる水道水、工業用水、地下水等において、通常含有されている成分であり、通常、各伝熱管(図示省略)におけるスケール発生成分と認識されていて、通常は可能な限りその濃度を抑制することが好ましいと考えられている。しかし、本願出願人の会社の研究者等は、缶水の水質と腐食との関係を長年にわたって研究した成果として、缶水に含まれるシリカが腐食抑制成分として上記各伝熱管(図示省略)等に作用していることを確認している。 And the said nanofiltration membrane permeate | transmits the corrosion inhibitory component which is a component which suppresses corrosion. The corrosion inhibiting component is a part that acts on the inner surface of each heat transfer tube (not shown) of the boiler 2 where corrosion of the heat transfer tube (not shown) is likely to occur, and can suppress the corrosion generated there. That is, it usually contains silica (ie, silicon dioxide (SiO 2 )). This silica is a component usually contained in tap water, industrial water, groundwater, etc. used as water supply, and is usually recognized as a scale generating component in each heat transfer tube (not shown), and is usually as much as possible. It is considered preferable to suppress the concentration. However, as a result of researches on the relationship between water quality and corrosion of can water over many years, the researchers of the applicant's company have made silica contained in can water as a corrosion-inhibiting component, and the above heat transfer tubes (not shown), etc. It is confirmed that it is acting on.

濾過処理部8の下流側に備えられている前記給水タンク9には、軟水化処理部6で軟水化され、濾過処理部8において腐食促進成分とアルカリ成分が捕捉され腐食抑制成分が透過して生成された処理水が給水ライン4から流れ込むようになっている。   The water supply tank 9 provided on the downstream side of the filtration treatment unit 8 is softened by the water softening treatment unit 6, and the corrosion treatment component and the alkali component are captured in the filtration treatment unit 8, and the corrosion inhibition component is permeated. The generated treated water flows from the water supply line 4.

また、給水タンク9には、水質検知手段として電気伝導度計12が設けられている。この電気伝導度計12で計測された電気伝導度は、信号線13を介して、水質検知信号として制御部14に入力されるようになっている。制御部14は、電気伝導度計12で計測された電気伝導度に基づいて、信号線15を介して前記開閉弁11を開閉して給水タンク9内のMアルカリ度が最適となるようフィードバック制御を行うようになっている(後述のバイパス運転)。   The water supply tank 9 is provided with an electric conductivity meter 12 as a water quality detection means. The electrical conductivity measured by the electrical conductivity meter 12 is input to the control unit 14 as a water quality detection signal via the signal line 13. Based on the electrical conductivity measured by the electrical conductivity meter 12, the control unit 14 opens and closes the on-off valve 11 via the signal line 15 so as to optimize the M alkalinity in the water supply tank 9. (Bypass operation described later).

続いて、上記構成に基づきながらボイラ2の運転時の流れについて説明する。ボイラ2を運転する場合には、図示しない原水タンクから供給される給水の水質を改質して処理水を生成し、その処理水をボイラ2用の給水として給水タンク9に貯留する必要がある。ここまでの過程について説明すると、給水ライン4を流れる給水は、図示しない原水タンクから所定の吐出圧を有する給水ポンプ(図示省略)により所定の圧力で流出する。その流出する給水の圧力は、下流側に配置された活性炭濾過処理部5、軟水化処理部6、プレフィルタ7、濾過処理部8の各部における圧損等を考慮して設定される。そして、図示しない原水タンクから流出した給水は、先ず、活性炭濾過処理部5を通過し、残留塩素が除去された状態となる。次に、その給水は、軟水化処理部6を通過して軟水となる。続いて、その軟水である給水は、濾過処理部8において、ナノ濾過膜を通過する際に、硫酸イオン、塩化物イオン等の腐食促進成分、及び、炭酸水素塩、炭酸塩、水酸化物などのアルカリ成分がナノ濾過膜により捕捉される。すなわち、腐食促進成分及びアルカリ成分が軟水から除去される。一方、軟水に含まれるシリカ、すなわち腐食抑制成分は、軟水と共にナノ濾過膜を透過する。このようにして濾過処理された濾過処理後の軟水は、ボイラ2へ供給される給水として給水タンク9に貯留される。   Next, the flow during operation of the boiler 2 will be described based on the above configuration. When the boiler 2 is operated, it is necessary to reform the quality of feed water supplied from a raw water tank (not shown) to generate treated water, and to store the treated water in the feed water tank 9 as feed water for the boiler 2. . The process up to this point will be described. Water supplied through the water supply line 4 flows out from a raw water tank (not shown) at a predetermined pressure by a water supply pump (not shown) having a predetermined discharge pressure. The pressure of the water supply flowing out is set in consideration of pressure loss and the like in each part of the activated carbon filtration processing unit 5, the water softening processing unit 6, the prefilter 7, and the filtration processing unit 8 arranged on the downstream side. And the feed water which flowed out from the raw | natural water tank which is not illustrated first passes the activated carbon filtration process part 5, and will be in the state from which the residual chlorine was removed. Next, the water supply passes through the water softening treatment unit 6 and becomes soft water. Subsequently, when the water supply, which is soft water, passes through the nanofiltration membrane in the filtration unit 8, corrosion promoting components such as sulfate ions and chloride ions, and bicarbonates, carbonates, hydroxides, etc. The alkali component is captured by the nanofiltration membrane. That is, the corrosion promoting component and the alkali component are removed from the soft water. On the other hand, silica contained in the soft water, that is, the corrosion inhibiting component permeates the nanofiltration membrane together with the soft water. The filtered soft water that has been filtered in this way is stored in the water supply tank 9 as water supplied to the boiler 2.

給水タンク9に貯留された処理水(給水)は、給水タンク9及びボイラ2の間に配置される給水ポンプ(図示省略)を介してボイラ2へ供給され、下部ヘッダ内において缶水として貯留される。貯留された缶水は、加熱装置により加熱されながら各伝熱管内を上昇し、徐々に蒸気になる。そして、各伝熱管内において生成された蒸気は、上部ヘッダにおいて集められ、負荷装置へと供給される。   The treated water (water supply) stored in the water supply tank 9 is supplied to the boiler 2 via a water supply pump (not shown) disposed between the water supply tank 9 and the boiler 2 and stored as can water in the lower header. The The stored can water rises in each heat transfer tube while being heated by the heating device, and gradually becomes steam. And the steam produced | generated in each heat exchanger tube is collected in an upper header, and is supplied to a load apparatus.

ところで、ボイラ2の運転中において、各伝熱管は、その下端部分、すなわち下部ヘッダとの連結部分が缶水と継続的に接触することになる。そのため、各伝熱管は、上記下端部分において、通常、缶水の影響を受け腐食し易くなる。特に、各伝熱管は、下端部分において、内周面の減肉的な腐食に加えて局部的な腐食が生じ易く、それが原因で微少な穴開きを起こして破損する場合がある。   By the way, during the operation of the boiler 2, each heat transfer tube has its lower end portion, that is, the connection portion with the lower header, continuously in contact with the can water. Therefore, each heat transfer tube is likely to corrode under the influence of can water at the lower end portion. In particular, each heat transfer tube is liable to cause local corrosion in addition to thinning corrosion on the inner peripheral surface at the lower end portion, and may cause breakage due to minute holes.

上記局部的な腐食とは、各伝熱管の缶水との接触面側から厚さ方向の反対側へ向かう孔状の腐食、すなわち各伝熱管の厚さ(肉厚)方向に発生する孔状の腐食を言う。以下、このような局部的腐食の発生現象を「孔食」と言い、この孔食により生じた孔状の腐食を「食孔」と言う。ちなみに、孔食は、通常、缶水中の溶存酸素の影響により発生するものと理解されている。   The above-mentioned local corrosion is a hole-shaped corrosion from the contact surface side of each heat transfer tube with the can water toward the opposite side of the thickness direction, that is, a hole shape generated in the thickness (thickness) direction of each heat transfer tube. Say no corrosion. Hereinafter, such a local corrosion occurrence phenomenon is referred to as “pitting corrosion”, and pitting corrosion caused by this pitting corrosion is referred to as “corrosion”. Incidentally, it is understood that pitting corrosion usually occurs due to the influence of dissolved oxygen in the can water.

しかしながら、本例によれば、ボイラ2の運転中において、各伝熱管に対し、腐食抑制成分を含む軟水が缶水として供給されることになるので、缶水に含まれる腐食抑制成分が各伝熱管の下端部分に作用し、当該部分の腐食を抑制するようになる。より具体的には、腐食抑制成分は、各伝熱管の缶水との接触部分における減肉的な腐食を抑制するとともに、食孔の発生及び成長も抑制し、腐食(特に食孔)による伝熱管の破損を抑制する。この際、缶水は、濾過処理部8により腐食促進成分が除去されるため、腐食抑制成分による上記のような腐食抑制作用は、腐食促進成分により阻害され難く、効果的に発揮されるようになる。   However, according to this example, during operation of the boiler 2, soft water containing a corrosion inhibiting component is supplied to each heat transfer tube as canned water, so that the corrosion inhibiting component contained in the canned water is transferred to each heat transfer tube. It acts on the lower end portion of the heat pipe and suppresses corrosion of the portion. More specifically, the corrosion-inhibiting component suppresses thinning corrosion at the contact portion of each heat transfer tube with the can water, and also suppresses the generation and growth of pits. Suppresses damage to heat tubes. At this time, since the corrosion promoting component is removed from the can water by the filtration processing unit 8, the above-described corrosion inhibiting action by the corrosion inhibiting component is hardly inhibited by the corrosion promoting component and is effectively exhibited. Become.

さて、缶水に含まれる腐食抑制成分により、各伝熱管の腐食が抑制されるのは、缶水に含まれる溶存酸素等(各伝熱管の腐食促進成分)の影響により、各伝熱管から溶出する成分に腐食抑制成分(特にシリカ)が作用し、各伝熱管の内面に耐食性の皮膜(防食皮膜)が形成されるためと考えられる。特に、溶存酸素は、各伝熱管に局部的なアノードを発現させ、これにより孔食を進行させる場合があるが、缶水に含まれる腐食抑制成分(シリカ)は、アニオン又は負電荷のミセルとして存在するため、上記のようなアノードに吸着し易く、当該部分で選択的に防食皮膜を形成し易い。そのため、缶水に含まれる腐食抑制成分(シリカ)は、各伝熱管における孔食の進行を特に効果的に抑制することができるものと考えられる。   Now, corrosion of each heat transfer tube is suppressed by the corrosion-inhibiting component contained in the can water, and it is eluted from each heat transfer tube due to the influence of dissolved oxygen, etc. (corrosion promoting component of each heat transfer tube) contained in the can water This is probably because a corrosion-inhibiting component (particularly silica) acts on the component to form a corrosion-resistant film (corrosion-resistant film) on the inner surface of each heat transfer tube. In particular, dissolved oxygen may cause a local anode to appear in each heat transfer tube, thereby causing pitting corrosion, but the corrosion inhibiting component (silica) contained in the can water is an anion or a negatively charged micelle. Since it exists, it is easy to adsorb | suck to the above anodes and it is easy to selectively form an anticorrosion film in the said part. Therefore, it is considered that the corrosion inhibiting component (silica) contained in the can water can effectively suppress the progress of pitting corrosion in each heat transfer tube.

前記濾過処理部8においては、ナノろ過膜により給水中のアルカリ成分が捕捉される。したがって、特に、給水中のアルカリ成分が少ない水質となっている地域では、伝熱管内の缶水のpHが上昇しないおそれもある。伝熱管内の缶水のpHが所定よりも低い場合には、伝熱管が腐食しやすい。そこで、給水タンク8内の処理水の電気伝導度に基づき、給水内のMアルカリ度が所定よりも低いと検出したときは、前記開閉弁11を開閉し、これによって濾過処理部8へ流入する前の給水をバイパスライン10からバイパスさせるバイパス運転を行う。   In the filtration processing unit 8, an alkaline component in the feed water is captured by the nanofiltration membrane. Therefore, there is a possibility that the pH of the can water in the heat transfer tubes may not increase, particularly in an area where the water quality is low with less alkaline components in the feed water. When the pH of the can water in the heat transfer tube is lower than a predetermined value, the heat transfer tube is easily corroded. Therefore, when it is detected that the M alkalinity in the feed water is lower than a predetermined value based on the electrical conductivity of the treated water in the feed water tank 8, the on-off valve 11 is opened and closed, thereby flowing into the filtration processing unit 8. A bypass operation for bypassing the previous water supply from the bypass line 10 is performed.

このバイパス運転について詳しく説明すると、電気伝導度計12で計測された給水タンク9内の電気伝導度は、信号線13を介して水質検知信号として制御部14に入力される。水質検知信号を受けた制御部14は、開閉弁11を開閉して給水タンク9内の処理水のMアルカリ度が最適となるようフィードバック制御を行う。すなわち、電気伝導度計12で検知された水質検知信号は、信号線13を介して制御部14に入力され、制御部14は、入力された電気伝導度が所定値よりも小さいと判断した場合には、開閉弁11を開く。これにより、バイパスライン10から給水タンク9内に、濾過処理部8で濾過処理される前の給水が流れ込む。この給水は、濾過処理部8によってアルカリ成分が捕捉されていないことから、かかる給水が流れ込んだ給水タンク9内のMアルカリ度は上昇する。そして、制御部14は、電気伝導度計12からの水質検知信号に基づき、所定の電気伝導度に達したと判断した場合に開閉弁11を閉じる。   The bypass operation will be described in detail. The electrical conductivity in the water supply tank 9 measured by the electrical conductivity meter 12 is input to the control unit 14 as a water quality detection signal via the signal line 13. Upon receiving the water quality detection signal, the control unit 14 opens and closes the on-off valve 11 and performs feedback control so that the M alkalinity of the treated water in the water supply tank 9 is optimized. That is, the water quality detection signal detected by the electrical conductivity meter 12 is input to the control unit 14 via the signal line 13, and the control unit 14 determines that the input electrical conductivity is smaller than a predetermined value. The on-off valve 11 is opened. Thereby, the water supply before being filtered by the filtration processing unit 8 flows into the water supply tank 9 from the bypass line 10. Since the alkaline component is not captured by the filtration processing unit 8 in this water supply, the M alkalinity in the water supply tank 9 into which the water supply has flowed increases. Then, the control unit 14 closes the on-off valve 11 when determining that the predetermined electrical conductivity has been reached based on the water quality detection signal from the electrical conductivity meter 12.

以上説明してきたように、ボイラシステム1の給水ライン4に、ボイラ2の非不動態化金属体の腐食を引き起こす腐食促進成分を捕捉し、腐食の抑制に寄与する腐食抑制成分を透過するナノ濾過膜を用いて濾過処理を行う濾過処理部8を備えることよって、ボイラ2の伝熱管等に生じる腐食を薬剤を用いずに抑制することができる。   As described above, the nanofiltration that captures the corrosion promoting component that causes the corrosion of the non-passivated metal body of the boiler 2 in the water supply line 4 of the boiler system 1 and permeates the corrosion inhibiting component that contributes to the suppression of the corrosion. By providing the filtration processing unit 8 that performs filtration using a membrane, corrosion that occurs in the heat transfer tube of the boiler 2 can be suppressed without using any chemicals.

また、給水タンク9内の処理水の電気伝導度が所定値よりも小さくなった場合、前記開閉弁11を開いて、濾過処理部8を通る前のアルカリ成分が捕捉されていない状態の給水をバイパスライン10から給水タンク9内へ流入させることから、給水タンク9内の処理水のMアルカリ度を上昇させ、缶水のpHの低下を防止することができる。   Further, when the electrical conductivity of the treated water in the water supply tank 9 becomes smaller than a predetermined value, the on-off valve 11 is opened to supply the water in a state where the alkali component before passing through the filtration processing unit 8 is not captured. Since it flows into the water supply tank 9 from the bypass line 10, the M alkalinity of the treated water in the water supply tank 9 can be raised, and the fall of the pH of can water can be prevented.

上記実施例では、バイパスライン10によって濾過処理部8の上流側の給水をバイパスさせる位置は、給水タンク9となっているが、このような場合に限られるものではなく、例えば、濾過処理部8と給水タンク9の間の給水ライン4へバイパスさせてもよい。   In the said Example, although the position which bypasses the water supply of the upstream of the filtration process part 8 by the bypass line 10 is the water supply tank 9, it is not restricted to such a case, For example, the filtration process part 8 And the water supply line 4 between the water supply tank 9 and the water supply tank 9 may be bypassed.

次に、図2に基づいて本発明の第2実施例について説明する。図2は本発明の給水システムを含むボイラシステムの第2実施例を示す構成図である。以下の説明では、上記第1実施例と同様の構成については同一の符号を付して説明を省略する。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a block diagram showing a second embodiment of the boiler system including the water supply system of the present invention. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

本例の給水システム20は、濾過処理部8と給水タンク9との間に脱気処理部21を備えている。そして、バイパスライン10は、軟水化処理部6とプレフィルタ7の間の給水ライン4と、濾過処理部8と脱気処理部21の間の給水ライン4とを繋ぐように構成され、濾過処理部8で濾過処理される前の給水が、濾過処理部8の下流であって脱気処理部21の手前へバイパスされるようになっている。   The water supply system 20 of this example includes a deaeration processing unit 21 between the filtration processing unit 8 and the water supply tank 9. And the bypass line 10 is comprised so that the water supply line 4 between the water softening process part 6 and the pre filter 7 and the water supply line 4 between the filtration process part 8 and the deaeration process part 21 may be connected, and a filtration process is carried out. The water supply before being filtered in the unit 8 is bypassed downstream of the filtering unit 8 and before the deaeration unit 21.

前記脱気処理部21は、濾過処理部8で濾過処理された透過水及びバイパスライン10から流入する給水に含まれる溶存酸素を機械的に除去するものである。この脱気処理部9は、脱気膜(図示省略)を備え、かかる脱気膜の一方に透過水を流通させ、他方を真空ポンプなどの真空排気手段により真空吸引することで、透過水中の溶存酸素を脱気する周知構成のものである。   The deaeration unit 21 mechanically removes the dissolved oxygen contained in the permeated water filtered by the filtration unit 8 and the feed water flowing from the bypass line 10. The deaeration processing unit 9 includes a deaeration membrane (not shown), and circulates the permeate through one of the deaeration membranes, and sucks the other with a vacuum exhaust means such as a vacuum pump. It has a well-known configuration for degassing dissolved oxygen.

このような本例の給水システム20では、図示しない原水タンクから供給される給水は、活性炭濾過処理部5、軟水化処理部6、プレフィルタ7、濾過処理部8を通ることにより、上記第1実施例と同様、軟水となり腐食促進成分が捕捉され腐食抑制成分が透過し、さらにこの給水が脱気処理部21へ供給されて溶存酸素が脱気処理される。脱気処理後の腐食抑制成分を含む軟水となる処理水は、ボイラ2へ供給される給水として給水タンク9に貯留される。   In such a water supply system 20 of this example, water supplied from a raw water tank (not shown) passes through the activated carbon filtration processing unit 5, the water softening processing unit 6, the prefilter 7, and the filtration processing unit 8, thereby Similar to the embodiment, the water becomes soft water, the corrosion promoting component is captured and the corrosion inhibiting component permeates, and this water supply is supplied to the deaeration treatment unit 21 to deaerate dissolved oxygen. Treated water that is soft water containing the corrosion inhibiting component after the deaeration treatment is stored in the feed water tank 9 as feed water supplied to the boiler 2.

本例では、電気伝導度計12で計測された給水タンク9内の電気伝導度に基づいて開閉弁11を開けることにより、軟水化処理部6とプレフィルタ7の間の給水ライン4を流れる給水が、バイパスライン10を通って濾過処理部8と脱気処理部21の間の給水ライン4へ流入する。これにより、上記第1実施例と同様、給水タンク9内のMアルカリ度を上昇させることができる。   In this example, the water supply which flows through the water supply line 4 between the water softening process part 6 and the pre filter 7 by opening the on-off valve 11 based on the electrical conductivity in the water supply tank 9 measured with the electric conductivity meter 12. However, it flows into the water supply line 4 between the filtration processing unit 8 and the deaeration processing unit 21 through the bypass line 10. Thereby, the M alkalinity in the water supply tank 9 can be raised like the said 1st Example.

以上説明した本例の給水システム20によれば、腐食促進成分が捕捉され、腐食抑制成分が透過した給水がボイラ2へ供給されるため、ボイラ2の伝熱管等に生じる腐食を薬剤を用いずに抑制することができ、また、缶水のpHの低下を防止することができる。また、濾過処理部8で濾過処理された透過水及びバイパスライン10からの給水に溶存する溶存酸素が、脱気処理部21において除去され、腐食抑制効果を向上させることができる。   According to the water supply system 20 of the present example described above, the corrosion promoting component is captured and the water supply through which the corrosion inhibiting component is transmitted is supplied to the boiler 2, so that the corrosion that occurs in the heat transfer tube of the boiler 2 is not used. In addition, it is possible to prevent the pH of the can water from being lowered. Moreover, the dissolved oxygen dissolved in the permeated water filtered by the filtration processing unit 8 and the feed water from the bypass line 10 is removed in the degassing processing unit 21, and the corrosion inhibition effect can be improved.

本発明の給水システムを含むボイラシステムの第1実施例を示す構成図。The block diagram which shows 1st Example of the boiler system containing the water supply system of this invention. 本発明の給水システムを含むボイラシステムの第2実施例を示す構成図。The block diagram which shows 2nd Example of the boiler system containing the water supply system of this invention.

符号の説明Explanation of symbols

1 ボイラシステム
2 ボイラ
3,20 給水システム
4 給水ライン
5 活性炭濾過処理部
6 軟水化処理部
7 プレフィルタ
8 濾過処理部
9 給水タンク
10 バイパスライン
11 開閉弁
12 電気伝導度計
13 信号線
14 制御部
15 信号線
21 脱気処理部
DESCRIPTION OF SYMBOLS 1 Boiler system 2 Boiler 3,20 Water supply system 4 Water supply line 5 Activated carbon filtration part 6 Soft water treatment part 7 Prefilter 8 Filtration part 9 Water supply tank 10 Bypass line 11 On-off valve 12 Conductivity meter 13 Signal line 14 Control part 15 Signal line 21 Deaeration processing part

Claims (3)

機器へ給水を供給するための給水システムであって、
前記給水を流す給水ラインと、
該給水ラインに設けられた濾過処理部と、
該濾過処理部をバイパスするバイパスラインと、
該バイパスラインに設けられた開閉弁と、
前記濾過処理部の下流側を流れる給水が所定のMアルカリ度となるよう前記開閉弁を開閉制御する制御部と、
を備えて構成する
ことを特徴とする給水システム。
A water supply system for supplying water to equipment,
A water supply line for flowing the water supply;
A filtration unit provided in the water supply line;
A bypass line that bypasses the filtration unit;
An on-off valve provided in the bypass line;
A control unit that controls opening and closing of the on-off valve so that water supply flowing downstream of the filtration unit has a predetermined M alkalinity;
The water supply system characterized by comprising.
前記濾過処理部の下流側の前記給水ラインに、脱気処理部を備えた
ことを特徴とする請求項1に記載の給水システム。
The water supply system according to claim 1, wherein a deaeration processing unit is provided in the water supply line on the downstream side of the filtration processing unit.
前記バイパスラインは、前記濾過処理部の上流側の給水ラインと該濾過処理部と前記脱気処理部の間の給水ラインとを接続するよう構成した
ことを特徴とする請求項2に記載の給水システム。
The water supply system according to claim 2, wherein the bypass line is configured to connect a water supply line upstream of the filtration processing unit and a water supply line between the filtration processing unit and the deaeration processing unit. system.
JP2004103269A 2004-03-31 2004-03-31 Water supply equipment Expired - Lifetime JP4996812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004103269A JP4996812B2 (en) 2004-03-31 2004-03-31 Water supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004103269A JP4996812B2 (en) 2004-03-31 2004-03-31 Water supply equipment

Publications (2)

Publication Number Publication Date
JP2005288219A true JP2005288219A (en) 2005-10-20
JP4996812B2 JP4996812B2 (en) 2012-08-08

Family

ID=35321779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004103269A Expired - Lifetime JP4996812B2 (en) 2004-03-31 2004-03-31 Water supply equipment

Country Status (1)

Country Link
JP (1) JP4996812B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239649A (en) * 2005-03-07 2006-09-14 Miura Co Ltd Water supply device for boiler
JP2008051437A (en) * 2006-08-25 2008-03-06 Kurita Water Ind Ltd Treatment method for boiler feed water
JP2008121942A (en) * 2006-11-09 2008-05-29 Miura Co Ltd Method of operating steam boiler device
JP2008157579A (en) * 2006-12-26 2008-07-10 Miura Co Ltd Make-up water supply method for boiler feed-water
JP2008157580A (en) * 2006-12-26 2008-07-10 Miura Co Ltd Make-up water supply method for boiler feed-water
JP2009530082A (en) * 2006-03-13 2009-08-27 ハイドラノーティックス Device for measuring the permeate flow rate and permeate conductivity of individual reverse osmosis membrane elements
JP2010234240A (en) * 2009-03-31 2010-10-21 Miura Co Ltd Water treatment system
JP2011036809A (en) * 2009-08-11 2011-02-24 Miura Co Ltd Water treatment system
US8617397B2 (en) 2005-09-07 2013-12-31 Hydranautics Reverse osmosis filtration devices with RFID tag-powered flow and conductivity meters
JP6114437B1 (en) * 2016-05-09 2017-04-12 新菱冷熱工業株式会社 Corrosive anion removing apparatus and method for regenerating anion exchange resin
KR20180067529A (en) 2015-10-14 2018-06-20 쿠리타 고교 가부시키가이샤 Boiler water supply water treatment system and operation method of boiler
CN115448512A (en) * 2022-04-08 2022-12-09 上海力脉环保设备有限公司 Method for treating wastewater produced by producing white carbon black by carbonization method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239649A (en) * 2005-03-07 2006-09-14 Miura Co Ltd Water supply device for boiler
US8617397B2 (en) 2005-09-07 2013-12-31 Hydranautics Reverse osmosis filtration devices with RFID tag-powered flow and conductivity meters
JP2009530082A (en) * 2006-03-13 2009-08-27 ハイドラノーティックス Device for measuring the permeate flow rate and permeate conductivity of individual reverse osmosis membrane elements
JP2008051437A (en) * 2006-08-25 2008-03-06 Kurita Water Ind Ltd Treatment method for boiler feed water
JP2008121942A (en) * 2006-11-09 2008-05-29 Miura Co Ltd Method of operating steam boiler device
JP2008157579A (en) * 2006-12-26 2008-07-10 Miura Co Ltd Make-up water supply method for boiler feed-water
JP2008157580A (en) * 2006-12-26 2008-07-10 Miura Co Ltd Make-up water supply method for boiler feed-water
JP2010234240A (en) * 2009-03-31 2010-10-21 Miura Co Ltd Water treatment system
JP2011036809A (en) * 2009-08-11 2011-02-24 Miura Co Ltd Water treatment system
KR20180067529A (en) 2015-10-14 2018-06-20 쿠리타 고교 가부시키가이샤 Boiler water supply water treatment system and operation method of boiler
JP6114437B1 (en) * 2016-05-09 2017-04-12 新菱冷熱工業株式会社 Corrosive anion removing apparatus and method for regenerating anion exchange resin
JP2017202432A (en) * 2016-05-09 2017-11-16 新菱冷熱工業株式会社 Corrosive anion removing device and method for reproducing anion exchange resin
CN115448512A (en) * 2022-04-08 2022-12-09 上海力脉环保设备有限公司 Method for treating wastewater produced by producing white carbon black by carbonization method

Also Published As

Publication number Publication date
JP4996812B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP5158341B2 (en) Preparation method for boiler feedwater
JP4687249B2 (en) Water treatment system
JP4996812B2 (en) Water supply equipment
JP2006305499A (en) Operating method of membrane filtration system
JP2010120015A (en) Method of membrane filtration
JP4817046B2 (en) Operation method of membrane filtration system
JP4650740B2 (en) Operation method of water treatment system
JP2006305500A (en) Water treatment method
JP5013063B2 (en) Supplying water for boiler feed water
JP2009192193A (en) Boiler system
JP4544020B2 (en) Operation method of membrane filtration system
JP5013064B2 (en) Supplying water for boiler feed water
JP4165273B2 (en) Boiler system
JP4238654B2 (en) Boiler feed water treatment method and treatment apparatus
JP2009192194A (en) Boiler system
JP2007175603A (en) Method for operating membrane filtration system
JP2005313034A (en) Water supply system
JP5013062B2 (en) Supplying water for boiler feed water
JP2008121941A (en) Method of operating steam boiler device
JP4375104B2 (en) Boiler water supply system
JP2008157577A (en) Makeup water supply method for boiler water supply
JP2005296944A (en) Water quality improving system
JP2005319426A (en) System for modifying water quality
JP4631313B2 (en) Water supply system
JP4082258B2 (en) Boiler system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091005

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4996812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250