JP2005285896A - Method of automatically adjusting irradiation distance and apparatus therefor - Google Patents

Method of automatically adjusting irradiation distance and apparatus therefor Download PDF

Info

Publication number
JP2005285896A
JP2005285896A JP2004094510A JP2004094510A JP2005285896A JP 2005285896 A JP2005285896 A JP 2005285896A JP 2004094510 A JP2004094510 A JP 2004094510A JP 2004094510 A JP2004094510 A JP 2004094510A JP 2005285896 A JP2005285896 A JP 2005285896A
Authority
JP
Japan
Prior art keywords
distance
stage
irradiation
difference value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004094510A
Other languages
Japanese (ja)
Other versions
JP4503328B2 (en
Inventor
Junichi Tsugita
純一 次田
Toshio Inami
俊夫 井波
Kazunori Ota
和紀 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2004094510A priority Critical patent/JP4503328B2/en
Publication of JP2005285896A publication Critical patent/JP2005285896A/en
Application granted granted Critical
Publication of JP4503328B2 publication Critical patent/JP4503328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of automatically adjusting an irradiation distance that shortens a laser irradiation processing time, and reduces the space where a distance sensor is installed. <P>SOLUTION: The apparatus for automatically adjusting an irradiation distance comprises an elevation driving device 30 for moving a stage 10 up and down; a single distance sensor 31, provided on a laser oscillation device 1 side, for changing and isolating a scan axis line x from a position, from which a pulse laser 4 irradiates the irradiated object 5, to the backside of a traveling direction of a stage 10, measuring a distance h between an irradiation position of the laser 4 and the irradiated surface of the irradiated object 5, which is apart from the irradiation position by a distance corresponding to a predetermined traveling distance L, and outputting a detected value hn; and a basic control value setting means 32 for outputting a basic control value H corresponding to an appropriate value between the irradiated object 5 and an objective 3. A difference value Δn between the basic control value H and the detected value hn is continuously obtained, a control difference value δ derived from a difference between the previously obtained difference value Δn-1 and the difference value Δn obtained thereafter is obtained, the elevation driving device 30 is driven in response to the control difference value δ, and thereby the distance is controlled. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、照射距離自動調整方法及びその装置に関するものであり、詳しくはレーザ発振装置からのパルス・レーザを集束させる対物レンズとステージに載せた被照射物との間の照射距離自動調整方法及びその装置に関するものである。   The present invention relates to an irradiation distance automatic adjustment method and apparatus therefor, and more specifically, an irradiation distance automatic adjustment method between an objective lens for focusing a pulse laser from a laser oscillation apparatus and an irradiation object placed on a stage, and It relates to the device.

従来、例えば薄膜トランジスタの結晶化シリコンの製造に際し、ガラス基板上に薄いa−Si(アモルファスシリコン)膜を形成した被照射物にレーザ光を照射して、a−Si膜を結晶化して薄いp−Si(ポリシリコン)膜としている。このa−Si膜にレーザ光を照射する方法の一つとして、均一な強度のレーザ光をレチクル(マスク)にあてて、それを光学機器の対物レンズで被照射物のa−Si膜に投影し結像して、照射する方法が知られている。   Conventionally, for example, when manufacturing crystallized silicon for a thin film transistor, an irradiated object in which a thin a-Si (amorphous silicon) film is formed on a glass substrate is irradiated with laser light to crystallize the a-Si film to form a thin p- Si (polysilicon) film is used. As one method of irradiating the a-Si film with laser light, a uniform intensity laser light is applied to a reticle (mask) and projected onto the a-Si film of the irradiated object with an objective lens of an optical device. A method of forming an image and irradiating it is known.

これは、エキシマレーザを発生させるレーザ発振装置で生じさせたレーザ光を光学機器に導き、反射ミラーによつて適当に方向変換させると共に、整形して強度を均一化させた後、レチクル及び対物レンズを通すことにより方形のラインビーム(パルス・レーザ)に整形し、被照射物に照射して転写している。被照射物は、レーザアニール装置の真空雰囲気又は窒素雰囲気の処理室内に設置されている。   This is because the laser beam generated by a laser oscillation device that generates an excimer laser is guided to an optical device, and the direction is appropriately changed by a reflecting mirror, and after shaping and uniforming the intensity, the reticle and objective lens It is shaped into a square line beam (pulse laser) by passing through, and the object is irradiated and transferred. The irradiated object is installed in a processing chamber in a vacuum atmosphere or a nitrogen atmosphere of a laser annealing apparatus.

このような被照射物を相対移動させながらレーザを照射する場合において、対物レンズでレチクルの像を忠実に被照射物に結像させる方法として、特許文献1に記載されように、パルス・レーザの光軸から離れた位置に距離センサーを設置する方法が知られている。これは、被照射物に結像する像の大きさを変化させない方法であり、レチクルと対物レンズとの距離は一定にしておき、被照射物の位置を変えることにより、対物レンズからの被照射物までの距離を適切にして、被照射物へ結像させるものである。   In the case of irradiating a laser while relatively moving such an object to be irradiated, as described in Patent Document 1, as a method of faithfully forming an image of a reticle on an object to be irradiated with an objective lens, a pulse laser is used. A method of installing a distance sensor at a position away from the optical axis is known. This is a method that does not change the size of the image formed on the irradiated object. The distance between the reticle and the objective lens is kept constant, and the irradiated object is irradiated from the objective lens by changing the position of the irradiated object. An image is formed on the irradiated object with an appropriate distance to the object.

すなわち、図6に示すようにレーザ発振装置1と、被照射物5を載せるステージ10と、ステージ10をレーザ発振装置1に対してX軸方向に相対移動させる移動装置20とを備え、レチクル21及び対物レンズ3を順次に通して対物レンズ3によつて集束させたレーザ発振装置1からのパルス・レーザ4を、ステージ10に載せた被照射物5に所定間隔毎に照射させる照射距離自動調節方法において、
レーザ発振装置1、レチクル21及び対物レンズ3に対してステージ10を相対的に昇降移動させる昇降駆動装置30と、
パルス・レーザ4の前記被照射物5への照射位置からステージ10の進行方向後側に所定距離L1を隔てて基台22側となるレーザ発振装置1側に設けられ、前記被照射物5のパルス・レーザ4の照射面との距離hを次々に測定し、検出値hnを出力する距離センサー131と、ステージ10に載せた被照射物5と対物レンズ3との間の適正な距離に対応する基本制御値Hを出力する基本制御値設定手段32とを有し、
基本制御値Hと検出値hnとの差値Δnを次々に求めると共に、前に求めた差値Δn−1とその次に求めた差値Δnとの差からなる制御差値δを求め、この制御差値δを、前記所定距離L1をステージ10が移動するのに要する時間だけ遅延させて出力させるようにし、
制御差値δに応じて昇降駆動装置30を駆動することにより、レチクル21と対物レンズ3との間隔を一定に維持したままで、対物レンズ3とステージ10に載せた被照射物5のパルス・レーザ4の照射面との距離を制御することを特徴とする照射距離自動調節方法である。
That is, as shown in FIG. 6, a laser oscillation device 1, a stage 10 on which an object 5 is placed, and a moving device 20 that moves the stage 10 relative to the laser oscillation device 1 in the X-axis direction are provided. And the irradiation distance automatic adjustment for irradiating the irradiation object 5 placed on the stage 10 with the pulse laser 4 from the laser oscillation device 1 which is sequentially focused through the objective lens 3 and focused by the objective lens 3 at predetermined intervals. In the method
A raising / lowering driving device 30 for moving the stage 10 up and down relatively with respect to the laser oscillation device 1, the reticle 21 and the objective lens 3;
Provided on the side of the laser oscillation device 1 on the base 22 side at a predetermined distance L1 from the irradiation position of the pulse laser 4 to the irradiated object 5 and behind the stage 10 in the traveling direction. The distance h from the irradiation surface of the pulse laser 4 is measured one after another, and the distance sensor 131 that outputs the detection value hn corresponds to an appropriate distance between the object 5 placed on the stage 10 and the objective lens 3. Basic control value setting means 32 for outputting a basic control value H to be
A difference value Δn between the basic control value H and the detected value hn is obtained one after another, and a control difference value δ consisting of a difference between the previously obtained difference value Δn−1 and the next obtained difference value Δn is obtained. The control difference value δ is output after being delayed by the time required for the stage 10 to move the predetermined distance L1,
By driving the lifting / lowering driving device 30 according to the control difference value δ, the pulse of the object 5 placed on the objective lens 3 and the stage 10 is maintained while the distance between the reticle 21 and the objective lens 3 is kept constant. It is an irradiation distance automatic adjustment method characterized by controlling the distance to the irradiation surface of the laser 4.

しかして、被照射物を相対移動させながらレーザを照射する場合において、パルス・レーザの光軸から離した位置に距離センサーを設置して、レチクルと対物レンズとの間隔は一定に保持しながら、被照射物の位置を相対的に変えることにより、対物レンズから被照射物の照射面までの距離を適正かつ一定となるように調節・補正し、対物レンズによつてレチクルの像を良好に被照射物に結像させることができる。これにより、パルス・レーザを被照射物に比較的正確に照射させて高品質の製品を得ることが可能になる。
特開2003−282477号公報
Therefore, when irradiating the laser while relatively moving the object to be irradiated, a distance sensor is installed at a position away from the optical axis of the pulsed laser, while keeping the distance between the reticle and the objective lens constant, By relatively changing the position of the irradiated object, the distance from the objective lens to the irradiated surface of the irradiated object is adjusted and corrected so as to be appropriate and constant, and the reticle image is satisfactorily covered by the objective lens. An image can be formed on the irradiated object. As a result, it is possible to obtain a high-quality product by relatively accurately irradiating the irradiated object with the pulse laser.
JP 2003-282477 A

距離センサー131は、レーザ発振装置1側に設けられ、移動装置20による所定距離L1だけパルス・レーザ4の照射位置から隔たる位置の被照射物5のパルス・レーザ4の照射面との距離hを次々に測定し、検出値hnを出力するが、図7に示す平面視で、パルス・レーザ4の照射位置となるスキャン軸線xと同一スキャン軸線x上に配設され、パルス・レーザ4の被照射物5へのスキャン軸線xとスキャン軸線xを異ならせて離隔していない。従つて、距離センサー131は、パルス・レーザ4の照射が現に行われている1つのスキャン軸線x上での距離hを測定する。   The distance sensor 131 is provided on the laser oscillation device 1 side, and the distance h from the irradiation surface of the pulse laser 4 of the irradiated object 5 at a position separated from the irradiation position of the pulse laser 4 by a predetermined distance L1 by the moving device 20. Are measured one after another, and a detection value hn is output. In the plan view shown in FIG. 7, the detection value hn is disposed on the same scan axis x as the irradiation position of the pulse laser 4, and the pulse laser 4 The scan axis line x and the scan axis line x to the irradiation object 5 are not different from each other. Accordingly, the distance sensor 131 measures the distance h on one scan axis x where the pulse laser 4 is actually irradiated.

このため、往復でパルス・レーザ4を照射する往復スキャン方式を採用し、被照射物5(又は被照射物5の照射範囲)の全面つまり全てのスキャン軸線x上の前記距離hを測定するためには、パルス・レーザ4の照射位置の前後にそれぞれ距離センサー131(S1,S2)を設けなければならず、距離センサー131の個数が2個になるのみならず、2つの距離センサー131(S1,S2)を設置するスペースを確保する必要を生ずる。具体的には、パルス・レーザ4の被照射物5への照射位置、つまりレチクル21及び対物レンズ3の光軸からステージ10の進行方向の前後両側に対称に距離センサー131(S1,S2)を設けることになり、構造が複雑化する。   For this reason, a reciprocating scanning method in which the pulse laser 4 is irradiated in a reciprocating manner is adopted to measure the distance h on the entire surface of the irradiation object 5 (or the irradiation range of the irradiation object 5), that is, on all the scan axes x. In this case, distance sensors 131 (S1, S2) must be provided before and after the irradiation position of the pulse laser 4, respectively, and the number of distance sensors 131 is not only two but two distance sensors 131 (S1). , S2) needs to be secured. Specifically, the distance sensor 131 (S1, S2) is symmetrically applied to the irradiation position of the pulse laser 4 on the irradiation object 5, that is, from the optical axis of the reticle 21 and the objective lens 3 to both the front and rear sides in the traveling direction of the stage 10. Therefore, the structure becomes complicated.

加えて、往路及び復路でそれぞれ専用の距離センサー131(S1,S2)を用いるとき、往路と復路とで使用する距離センサー131(S1,S2)の切換えが必要になるのみならず、被照射物5における同一の位置において、往路用・復路用それぞれの距離センサー131(S1,S2)で距離hを計測した際、同一の値が得られるように2つの距離センサー131(S1,S2)による測定値を較正する必要があり、煩雑化する。   In addition, when the dedicated distance sensors 131 (S1, S2) are used for the forward path and the return path, it is not only necessary to switch the distance sensors 131 (S1, S2) used for the forward path and the return path, but also the irradiated object. 5, when the distance h is measured by the distance sensor 131 (S1, S2) for each of the outward path and the return path, the two distance sensors 131 (S1, S2) are measured so that the same value is obtained. The value needs to be calibrated, which complicates.

更に、距離センサー131(S1,S2)によつて被照射物5(又は被照射物5の照射範囲)の端部から計測するときには、距離センサー131(S1,S2)による測定位置からレーザ照射位置(4)までの距離だけ余分に被照射物5を相対移動させなければならず、無駄な照射処理時間を多大に要していた。すなわち、図6において、距離センサー131は被照射物5の左端部の距離hから測定を開始するから、パルス・レーザ4は、被照射物5の左端から距離L1だけ離れた位置から照射が始まる。このため、2つの距離センサー131(S1,S2)を備え、往復でパルス・レーザ4を射する往復スキャン方式を採用したとき、往路及び復路の各先端部となる被照射物5から外れた箇所(図8に斜線を付して示す部分D1,D2)への余分な照射処理を伴うことになり、無駄な照射処理時間が多くなる。   Further, when the distance sensor 131 (S1, S2) is used to measure from the end of the irradiation object 5 (or the irradiation range of the irradiation object 5), the laser irradiation position is determined from the measurement position by the distance sensor 131 (S1, S2). The irradiated object 5 has to be relatively moved by an extra distance up to (4), which requires a lot of useless irradiation processing time. That is, in FIG. 6, since the distance sensor 131 starts measurement from the distance h of the left end portion of the irradiated object 5, the pulse laser 4 starts irradiation from a position separated from the left end of the irradiated object 5 by the distance L1. . Therefore, when two distance sensors 131 (S1, S2) are provided and a reciprocating scanning method in which the pulse laser 4 is emitted in a reciprocating manner is adopted, a place deviated from the irradiated object 5 serving as each front end portion of the forward path and the return path This is accompanied by an extra irradiation process (parts D1 and D2 indicated by hatching in FIG. 8), which increases the useless irradiation process time.

本発明は、このような従来の技術的課題を解決するためになされたものであり、パルス・レーザ4の被照射物5のスキャン軸線x上への照射位置からステージ10の進行方向後側に前記スキャン軸線を異ならせて離隔し、照射範囲におけるレーザの走査方向にほぼ直角の方向に距離センサーを1つだけ設けることにより、レーザ照射処理時間が短く距離センサーの設置スペースが小さい照射距離自動調整方法を提供することをその目的としている。   The present invention has been made to solve such a conventional technical problem, and from the irradiation position of the pulse laser 4 on the scan axis x of the object 5 to be irradiated to the rear side in the traveling direction of the stage 10. Automatic adjustment of the irradiation distance with a short distance between the scanning axes and by providing only one distance sensor in a direction substantially perpendicular to the scanning direction of the laser in the irradiation range. Its purpose is to provide a method.

本発明の構成は、次の通りである。
請求項1の発明は、レーザ発振装置1と、被照射物5を載せるステージ10と、ステージ10をレーザ発振装置1に対して直交するX軸方向及びY軸方向に相対移動させる移動装置20とを備え、
ステージ10をX軸方向の往路を移動させた後にY軸方向にスキャン間隔yに応じて変位させてX軸方向の復路を移動させる動作を連続的に行いながら、レチクル21及び対物レンズ3を順次に通して対物レンズ3によつて集束させたレーザ発振装置1からのパルス・レーザ4をステージ10に載せた被照射物5のスキャン軸線x上に所定間隔毎に照射させる照射距離自動調整方法において、
レーザ発振装置1、レチクル21及び対物レンズ3に対してステージ10を相対的に昇降移動させる昇降駆動装置30と、
レーザ発振装置1側に設けられ、パルス・レーザ4の前記被照射物5のスキャン軸線x上への照射位置からステージ10の進行方向後側に前記スキャン軸線xを異ならせて離隔し、前記移動装置20による所定距離Lに対応する距離だけパルス・レーザ4の照射位置から隔たる位置の前記被照射物5のパルス・レーザ4の照射面との距離hを次々に測定し、検出値hnを出力する単一の距離センサー31と、
ステージ10に載せた被照射物5と対物レンズ3との間の適正な距離に対応する基本制御値Hを出力する基本制御値設定手段32とを有し、
基本制御値Hと検出値hnとの差値Δnを次々に求めると共に、前に求めた差値Δn−1とその次に求めた差値Δnとの差からなる制御差値δを求め、この制御差値δを、前記所定距離Lをステージ10が移動するのに要する時間に応じて遅延させて出力させるようにし、
制御差値δに応じて昇降駆動装置30を駆動することにより、レチクル21と対物レンズ3との間隔を一定に維持したままで、対物レンズ3とステージ10に載せた被照射物5のパルス・レーザ4の照射面との距離を制御することを特徴とする照射距離自動調整方法である。
請求項2の発明は、レーザ発振装置1と、被照射物5を載せるステージ10と、ステージ10をレーザ発振装置1に対して直交するX軸方向及びY軸方向に相対移動させる移動装置20とを備え、ステージ10をX軸方向の往路を移動させた後にY軸方向にスキャン間隔yに応じて変位させてX軸方向の復路を移動させる動作を連続的に行いながら、レチクル21及び対物レンズ3を順次に通して対物レンズ3によつて集束させたレーザ発振装置1からのパルス・レーザ4をステージ10に載せた被照射物5のスキャン軸線x上に所定間隔毎に照射させる照射距離自動調整装置において、
レーザ発振装置1、レチクル21及び対物レンズ3に対してステージ10を相対的に昇降移動させる昇降駆動装置30と、
レーザ発振装置1側に設けられ、パルス・レーザ4の前記被照射物5のスキャン軸線x上への照射位置からステージ10の進行方向後側に前記スキャン軸線xを異ならせて離隔し、前記移動装置20による所定距離Lに対応する距離だけパルス・レーザ4の照射位置から隔たる位置の前記被照射物5のパルス・レーザ4の照射面との距離hを次々に測定し、検出値hnを出力する単一の距離センサー31と、
ステージ10に載せた被照射物5と対物レンズ3との間の適正な距離に対応する基本制御値Hを出力する基本制御値設定手段32と、
基本制御値Hと検出値hnとの差値Δnを次々に求める第1演算手段33と、
前に求めた差値Δn−1を記憶する記憶手段35と、
前に求めた差値Δn−1とその次に求めた差値Δnとの差からなる制御差値δを求める第2演算手段36と、
この制御差値δを前記所定距離Lをステージ10が移動するのに要する時間に応じて遅延させて出力させるための遅延手段34とを有し、
制御差値δに応じて昇降駆動装置30を駆動し、レチクル21と対物レンズ3との間隔を一定に維持したままで、対物レンズ3とステージ10に載せた被照射物5のパルス・レーザ4の照射面との距離を制御することを特徴とする照射距離自動調整装置である。
請求項3の発明は、遅延手段34が、第1のFIFOメモリー45によつて構成され、検出値hnを前記所定距離Lをステージ10が移動するのに要する時間に応じて遅延させて出力させ、制御差値δの出力を遅延させることを特徴とする請求項2の照射距離自動調整装置である。
請求項4の発明は、記憶手段35が、第2のFIFOメモリー46によつて構成されることを特徴とする請求項2又は3の照射距離自動調整装置である。
The configuration of the present invention is as follows.
The invention of claim 1 includes a laser oscillation device 1, a stage 10 on which an object 5 is placed, and a moving device 20 that relatively moves the stage 10 in the X-axis direction and the Y-axis direction orthogonal to the laser oscillation device 1. With
The reticle 21 and the objective lens 3 are sequentially moved while the stage 10 is moved in the forward direction in the X-axis direction and then moved in the Y-axis direction according to the scan interval y to continuously move the return path in the X-axis direction. In a method for automatically adjusting the irradiation distance, the pulse laser 4 from the laser oscillation device 1 focused through the objective lens 3 is irradiated onto the scan axis x of the irradiation object 5 placed on the stage 10 at predetermined intervals. ,
A raising / lowering driving device 30 for moving the stage 10 up and down relatively with respect to the laser oscillation device 1, the reticle 21 and the objective lens 3;
Provided on the laser oscillation device 1 side, the scan axis x is different from the irradiation position of the pulse laser 4 on the scan axis x of the irradiated object 5 on the scan axis x and moved backward in the direction of travel of the stage 10, and the movement The distance h between the irradiation object 5 and the irradiation surface of the pulse laser 4 at a position separated from the irradiation position of the pulse laser 4 by a distance corresponding to the predetermined distance L by the apparatus 20 is measured one after another, and a detection value hn is obtained. A single distance sensor 31 to output;
Basic control value setting means 32 for outputting a basic control value H corresponding to an appropriate distance between the irradiation object 5 placed on the stage 10 and the objective lens 3;
A difference value Δn between the basic control value H and the detected value hn is obtained one after another, and a control difference value δ consisting of a difference between the previously obtained difference value Δn−1 and the next obtained difference value Δn is obtained. The control difference value δ is output with a delay according to the time required for the stage 10 to move the predetermined distance L,
By driving the lifting / lowering driving device 30 according to the control difference value δ, the pulse of the object 5 placed on the objective lens 3 and the stage 10 is maintained while the distance between the reticle 21 and the objective lens 3 is kept constant. It is an irradiation distance automatic adjustment method characterized by controlling the distance to the irradiation surface of the laser 4.
The invention of claim 2 includes a laser oscillation device 1, a stage 10 on which an object 5 is placed, and a moving device 20 that relatively moves the stage 10 in the X-axis direction and the Y-axis direction orthogonal to the laser oscillation device 1. And moving the stage 10 in the X-axis direction and then displacing the stage 10 in the Y-axis direction according to the scan interval y to continuously move the X-axis direction in the X-axis direction. 3 is sequentially irradiated with a pulse laser 4 from the laser oscillation device 1 focused by the objective lens 3 onto the scanning axis x of the object 5 placed on the stage 10 at predetermined intervals. In the adjustment device,
A raising / lowering driving device 30 for moving the stage 10 up and down relatively with respect to the laser oscillation device 1, the reticle 21 and the objective lens 3;
Provided on the laser oscillation apparatus 1 side, the scan axis line x is different from the irradiation position of the pulse laser 4 on the scan axis line x of the irradiated object 5 to the rear side in the traveling direction of the stage 10, and the movement The distance h from the irradiation surface of the pulse laser 4 of the irradiated object 5 at a position separated from the irradiation position of the pulse laser 4 by a distance corresponding to the predetermined distance L by the apparatus 20 is measured one after another, and the detected value hn is obtained. A single distance sensor 31 to output;
Basic control value setting means 32 for outputting a basic control value H corresponding to an appropriate distance between the irradiation object 5 placed on the stage 10 and the objective lens 3;
First calculating means 33 for successively obtaining a difference value Δn between the basic control value H and the detected value hn;
Storage means 35 for storing the previously obtained difference value Δn−1;
A second calculating means 36 for obtaining a control difference value δ comprising a difference between the previously obtained difference value Δn−1 and the next obtained difference value Δn;
Delay means 34 for outputting the control difference value δ with a delay in accordance with the time required for the stage 10 to move the predetermined distance L;
The raising / lowering driving device 30 is driven according to the control difference value δ, and the pulse laser 4 of the irradiation object 5 placed on the objective lens 3 and the stage 10 is maintained while keeping the distance between the reticle 21 and the objective lens 3 constant. It is an irradiation distance automatic adjustment device characterized by controlling the distance to the irradiation surface.
According to the third aspect of the present invention, the delay means 34 is constituted by the first FIFO memory 45, and the detection value hn is output after being delayed according to the time required for the stage 10 to move the predetermined distance L. 3. The irradiation distance automatic adjustment device according to claim 2, wherein the output of the control difference value δ is delayed.
The invention according to claim 4 is the irradiation distance automatic adjusting device according to claim 2 or 3, wherein the storage means 35 is constituted by the second FIFO memory 46.

請求項1,2によれば、パルス・レーザ4の照射位置に対して単一の距離センサー31を設けるのみで、往復でパルス・レーザ4を照射する往復スキャン方式を採用し、被照射物5の全面つまり全てのスキャン軸線x上の距離hを測定することができる。これにより、距離センサー31の個数が減少し、使用する複数の距離センサー31の切換え及び測定値同士の較正が不要になり、構造が著しく簡素化する。加えて、距離センサー31が1つで済むので、その設置空間ひいてはステージ10を収容する処理室の容積を削減することができる。   According to the first and second aspects, the reciprocating scanning method in which the pulse laser 4 is irradiated in a reciprocating manner only by providing the single distance sensor 31 with respect to the irradiation position of the pulse laser 4 is employed. The distance h on the entire surface, that is, on all the scan axes x can be measured. As a result, the number of distance sensors 31 is reduced, switching between a plurality of distance sensors 31 to be used and calibration of measured values are not required, and the structure is remarkably simplified. In addition, since only one distance sensor 31 is required, the installation space, and thus the volume of the processing chamber that accommodates the stage 10 can be reduced.

更に、被照射物5から外れた箇所への余分な距離センサー31による計測及びパルス・レーザ4の照射を削減することが可能であり、計測・照射処理時間を短縮することができる。   Furthermore, it is possible to reduce the measurement by the extra distance sensor 31 and the irradiation of the pulse laser 4 to a place off the irradiated object 5, and the measurement / irradiation processing time can be shortened.

図1〜図5は、本発明に係る照射距離自動調節装置の1実施の形態を示す。図2,図4中において符号10はステージであり、図2に示すように基板からなる被照射物5をステージ10上に載せた状態で、移動装置20によりステージ10をレーザ発振装置1からのパルス・レーザ4に対して直交するX軸方向及びY軸方向に相対移動させる。   1 to 5 show an embodiment of an automatic irradiation distance adjusting device according to the present invention. 2 and 4, reference numeral 10 denotes a stage. As shown in FIG. 2, the stage 10 is moved from the laser oscillation device 1 by the moving device 20 with the irradiated object 5 made of a substrate placed on the stage 10. Relative movement is performed in the X-axis direction and the Y-axis direction orthogonal to the pulse laser 4.

レーザ発振装置1は、図4(イ)に示すように基台22に固設され、パルス・レーザからなるエキシマレーザを発生させ、発生させたレーザ光A1をレチクル21及び対物レンズ3を含む光学機器9に導き、反射ミラー7で方向転換させ、長軸ホモジナイザー2a及び短軸ホモジナイザー2bを通して整形して強度を均一化させた後、再度、反射ミラー8で方向転換させ、レチクル21及び対物レンズ3を通すことにより、方形のラインビームからなるパルス・レーザ4に整形し、ステージ10上に載せた被照射物5に投影・結像するように、照射している。レチクル21及び対物レンズ3は、光軸を一致させて所定間隔に固定して配置され、この光軸(Z軸方向)が被照射物5の照射面と直交している。被照射物5は、レーザアニール装置の真空雰囲気又は窒素雰囲気の処理室内に設置されている。   The laser oscillation device 1 is fixed to a base 22 as shown in FIG. 4A, generates an excimer laser composed of a pulsed laser, and the generated laser light A1 includes an optical system including a reticle 21 and an objective lens 3. The light is guided to the device 9, changed in direction by the reflection mirror 7, shaped through the long axis homogenizer 2 a and the short axis homogenizer 2 b to equalize the intensity, and then again changed in direction by the reflection mirror 8, the reticle 21 and the objective lens 3. By passing through, the laser beam is shaped into a pulse laser 4 composed of a square line beam, and irradiated so as to be projected and imaged onto the irradiated object 5 placed on the stage 10. The reticle 21 and the objective lens 3 are arranged with their optical axes aligned and fixed at a predetermined interval, and this optical axis (Z-axis direction) is orthogonal to the irradiation surface of the irradiated object 5. The irradiated object 5 is installed in a processing chamber in a vacuum atmosphere or a nitrogen atmosphere of a laser annealing apparatus.

被照射物5は、図4に示すようにガラス基板6上に薄いa−Si(アモルファスシリコン)膜5aを形成したもので、このa−Si膜5aにパルス・レーザ4を照射することで、a−Si膜5aを結晶化して薄いp−Si(ポリシリコン)膜5bとしている。   As shown in FIG. 4, the irradiated object 5 is formed by forming a thin a-Si (amorphous silicon) film 5a on a glass substrate 6. By irradiating the a-Si film 5a with a pulse laser 4, The a-Si film 5a is crystallized to form a thin p-Si (polysilicon) film 5b.

ステージ10は、X軸方向のスキャン軸線xからなる往路又は復路に沿つて移動させながらパルス・レーザ4を照射させさせた後、ステージ10をスキャン軸線xと直交するY軸方向にスキャン間隔yだけ変位させ、被照射物5に復路又は往路の全幅に渡つてパルス・レーザ4を照射させる往復スキャン方式を行う。この動作の連続により、被照射物5の全面(照射範囲)にパルス・レーザ4を照射させ、全面が所定の照射回数(1〜20回)に達した被照射物5を交換し、次々に被照射物5にパルス・レーザ4を照射させる。従つて、X軸方向は、一連のショットからなるパルス・レーザ4の照射部位を通る水平なスキャン軸線xの方向と一致し、また、パルス・レーザ4のY軸方向の幅であるスキャン軸線xの幅は、パルス・レーザ4のY軸方向への変位量であるスキャン間隔y又はそれ以上の大きさを有し、パルス・レーザ4同士がY軸方向で重なり合うようになつている。   The stage 10 irradiates the pulse laser 4 while moving along the forward path or the backward path consisting of the scan axis x in the X-axis direction, and then the stage 10 is scanned by the scan interval y in the Y-axis direction orthogonal to the scan axis x. A reciprocating scanning method is performed in which the object 5 is irradiated with the pulse laser 4 over the entire width of the return path or the forward path. By continuation of this operation, the entire surface (irradiation range) of the irradiation object 5 is irradiated with the pulsed laser 4, and the irradiation object 5 whose entire surface has reached the predetermined number of irradiations (1 to 20 times) is exchanged. The pulsed laser 4 is irradiated on the object 5 to be irradiated. Accordingly, the X-axis direction coincides with the direction of the horizontal scan axis x passing through the irradiation site of the pulse laser 4 consisting of a series of shots, and the scan axis x which is the width of the pulse laser 4 in the Y-axis direction. Has a scan interval y, which is the amount of displacement of the pulse laser 4 in the Y-axis direction, or larger, and the pulse lasers 4 overlap each other in the Y-axis direction.

移動装置20は、具体的には図3に示すX軸サーボ55を有している。すなわち、サーボモータ40を備え、サーボモータ40の正逆の回転により、図外のボールねじ機構を介してステージ10を所定間隔毎に間欠的又は連続的にX軸方向に往路移動させる。   Specifically, the moving device 20 has an X-axis servo 55 shown in FIG. In other words, the servo motor 40 is provided, and the stage 10 is moved in the X-axis direction intermittently or continuously at predetermined intervals via a ball screw mechanism (not shown) by forward and reverse rotation of the servo motor 40.

移動装置20のサーボモータ40は、図3に示す駆動信号R4に基づいて、サーボ制御装置60によつて駆動され、駆動信号R4から移動信号Znを減算して零になつたときに停止し、ステージ10及び被照射物5も停止する。その後、図外のY軸サーボにより、ステージ10をスキャン間隔yで間欠的にY軸方向の1側に移動させる。   The servo motor 40 of the moving device 20 is driven by the servo control device 60 based on the driving signal R4 shown in FIG. 3, and stops when the moving signal Zn is subtracted from the driving signal R4 to become zero, The stage 10 and the irradiated object 5 are also stopped. Thereafter, the stage 10 is intermittently moved to one side in the Y-axis direction at a scan interval y by a Y-axis servo (not shown).

続いて、サーボモータ40が逆回転駆動され、駆動信号R4から移動信号Znを減算して零になつたときに再度停止し、復路移動するステージ10及び被照射物5も停止する。その後、図外のY軸サーボにより、ステージ10をスキャン間隔yで間欠的にY軸方向の1側に移動させる。   Subsequently, the servo motor 40 is driven in reverse rotation, and when the movement signal Zn is subtracted from the drive signal R4 and becomes zero, the servo motor 40 stops again, and the stage 10 and the irradiated object 5 that move in the backward direction also stop. Thereafter, the stage 10 is intermittently moved to one side in the Y-axis direction at a scan interval y by a Y-axis servo (not shown).

この繰り返しにより、ステージ10上の被照射物5がレーザ発振装置1からのパルス・レーザ4に対してX軸方向に相対往復移動する。   By repeating this, the irradiated object 5 on the stage 10 reciprocates relative to the pulse laser 4 from the laser oscillation device 1 in the X-axis direction.

移動信号Znは、サーボモータ40の回転数(回転角度)をロータリエンコーダ41によつて検出し、その検出パルスが第1のカウンター42によつて計数され、ステージ10の移動長さが所定値となる毎にパルス信号として得られる。従つて、移動信号Znは、1つのパルス毎にステージ10の所定の移動長さに対応している。   The movement signal Zn detects the number of rotations (rotation angle) of the servo motor 40 by the rotary encoder 41, the detection pulse is counted by the first counter 42, and the movement length of the stage 10 becomes a predetermined value. It is obtained as a pulse signal every time. Therefore, the movement signal Zn corresponds to a predetermined movement length of the stage 10 for each pulse.

X軸サーボ55により図4(イ)上で左から右へ移動するステージ10の具体的な速度は100〜800mm/sec程度である。間欠的に照射されるパルス・レーザ4は、例えば毎秒50〜1,000回発光し、1ショットの発光している時間は2nsec〜10μsec程度である。このように、ステージ10の移動速度に比較してパルス・レーザ4が発光している時間は非常に短いため、ステージ10を連続移動させながらでも、X軸サーボ55に設けられてX軸方向の位置を示す第1カウンター42の値によつて、パルス・レーザ4を等間隔に照射することができる。すなわち、サーボモータ40によるステージ10の駆動は、一々照射する場所で一旦停止させて照射させる間欠的照射をしなくても事実上問題なく照射ができる。   The specific speed of the stage 10 that moves from left to right in FIG. 4 (a) by the X-axis servo 55 is about 100 to 800 mm / sec. The pulsed laser 4 irradiated intermittently emits, for example, 50 to 1,000 times per second, and the time during which one shot is emitted is about 2 nsec to 10 μsec. Thus, since the time during which the pulse laser 4 emits light is very short compared to the moving speed of the stage 10, the X-axis servo 55 is provided in the X-axis direction even when the stage 10 is continuously moved. Depending on the value of the first counter 42 indicating the position, the pulse laser 4 can be irradiated at equal intervals. That is, the drive of the stage 10 by the servo motor 40 can irradiate practically without any problem even if intermittent irradiation is performed by stopping and irradiating at a place where irradiation is performed one by one.

この移動信号Znは、第2のカウンター43によつてカウントされ、計数値1/N1になる毎に、ステージ10の所定間隔の移動毎として、パルス・レーザ4を発振させる信号Iを出力し、この信号Iによつてレーザ発振装置1を駆動させ、パルス・レーザ4を照射させる。従つて、ステージ10上の被照射物5に対し、所定の間隔の距離・位置に次々にパルス・レーザ4が照射される。   This movement signal Zn is counted by the second counter 43 and outputs a signal I for oscillating the pulse laser 4 every time the stage 10 moves at a predetermined interval every time the count value 1 / N1 is reached. The laser I is driven by this signal I, and the pulse laser 4 is irradiated. Accordingly, the pulse laser 4 is irradiated one after another on the object 5 on the stage 10 at a predetermined distance and position.

そして、図1に示すように、昇降駆動装置30、距離センサー31、基本制御値設定手段32、第1演算手段33、遅延手段34、記憶手段35及び第2演算手段36を設ける。   And as shown in FIG. 1, the raising / lowering drive apparatus 30, the distance sensor 31, the basic control value setting means 32, the 1st calculating means 33, the delay means 34, the memory | storage means 35, and the 2nd calculating means 36 are provided.

昇降駆動装置30は、レーザ発振装置1、レチクル21及び対物レンズ3に対してステージ10を相対的に昇降移動させる機能を有し、図2に示す正逆に回転駆動されるサーボモータ53により、ボール・スクリュ機構37を介して第1傾斜ブロック38を水平方向に進退駆動させる。これにより、第1傾斜ブロック38に傾斜面で係合する第2傾斜ブロック39が昇降するので、第2傾斜ブロック39と一体のステージ10がZ軸方向に昇降する。第1傾斜ブロック38は、基台22側に水平方向の摺動自在に支持され、ステージ10は、基台22側に上下方向の摺動自在に支持されている。   The raising / lowering drive device 30 has a function of moving the stage 10 up and down relatively with respect to the laser oscillation device 1, the reticle 21 and the objective lens 3, and is driven by a servo motor 53 that is rotated in the forward and reverse directions shown in FIG. The first inclined block 38 is driven forward and backward in the horizontal direction via the ball screw mechanism 37. As a result, the second inclined block 39 engaged with the first inclined block 38 on the inclined surface moves up and down, so that the stage 10 integrated with the second inclined block 39 moves up and down in the Z-axis direction. The first inclined block 38 is supported slidably in the horizontal direction on the base 22 side, and the stage 10 is supported slidable in the vertical direction on the base 22 side.

距離センサー31は、パルス・レーザ4の被照射物5への照射位置に対し、平面視でスキャン軸線xと直交する方向に位置し、図2に示すようにパルス・レーザ4のステージ10に載せた被照射物5への照射位置から、ステージ10の進行方向後側に所定距離Lを隔てて、基台22側となるレーザ発振装置1側に設けられ、被照射物5のパルス・レーザ4の照射面との間のZ軸方向の距離hを測定する。この所定距離Lは、移動装置20によりステージ10が移動する距離であり、具体的には図5に示すように2つのスキャン軸線x及び2つのスキャン間隔yの長さに対応する距離である。この所定距離Lをパルス・レーザ4の発光(1ショット)で進むステージ10の移動距離の整数倍に正確に合致させれば、距離センサー31による測定位置にパルス・レーザ4を照射させることが可能になるが、整数倍に正確に合致させることは必須ではない。また、平面視で距離センサー31とパルス・レーザ4の被照射物5への照射位置との間のY軸方向の距離をスキャン軸線xの間隔(スキャン間隔y)の整数倍に正確に合致させれば、距離センサー31による測定位置にパルス・レーザ4を照射させることが可能になるが、整数倍に正確に合致させることは必須ではない。   The distance sensor 31 is positioned in a direction perpendicular to the scan axis x in plan view with respect to the irradiation position of the pulse laser 4 to the irradiation object 5, and is placed on the stage 10 of the pulse laser 4 as shown in FIG. The pulse laser 4 of the irradiated object 5 is provided on the laser oscillation device 1 side, which is the base 22 side, with a predetermined distance L from the irradiation position of the irradiated object 5 to the rear side in the traveling direction of the stage 10. The distance h in the Z-axis direction from the irradiation surface is measured. The predetermined distance L is a distance that the stage 10 is moved by the moving device 20, and specifically, is a distance corresponding to the length of two scan axes x and two scan intervals y as shown in FIG. If the predetermined distance L is accurately matched with an integral multiple of the moving distance of the stage 10 that is advanced by light emission (one shot) of the pulse laser 4, the pulse laser 4 can be irradiated to the measurement position by the distance sensor 31. However, it is not essential to match the integer multiple exactly. Further, the distance in the Y-axis direction between the distance sensor 31 and the irradiation position of the pulse laser 4 on the object 5 to be irradiated is accurately matched with an integral multiple of the interval of the scan axis x (scan interval y) in plan view. Then, it becomes possible to irradiate the measurement position by the distance sensor 31 with the pulsed laser 4, but it is not essential to accurately match the integral multiple.

距離センサー31によつて測定される距離hは、レチクル21及び対物レンズ3を通過後、被照射物5に照射されるパルス・レーザ4の光軸と平行に位置している。この距離センサー31により、被照射物5のパルス・レーザ4の照射面との距離hが所定間隔で次々に測定され、検出値hnが次々に出力される。しかして、距離センサー31は、レーザ発振装置1側に設けられ、パルス・レーザ4の被照射物5のスキャン軸線x上への照射位置からステージ10の進行方向後側にスキャン軸線xを異ならせて離隔し、移動装置20による所定距離Lに対応する距離だけパルス・レーザ4の照射位置から隔たる位置の被照射物5のパルス・レーザ4の照射面との距離hを次々に測定し、検出値hnを出力する。   The distance h measured by the distance sensor 31 is positioned in parallel with the optical axis of the pulsed laser 4 irradiated to the irradiated object 5 after passing through the reticle 21 and the objective lens 3. The distance sensor 31 sequentially measures the distance h between the irradiation object 5 and the irradiation surface of the pulse laser 4 at predetermined intervals, and outputs the detection values hn one after another. Thus, the distance sensor 31 is provided on the laser oscillation device 1 side, and the scan axis line x is changed from the irradiation position of the pulse laser 4 on the scan axis line x of the irradiated object 5 to the rear side in the traveling direction of the stage 10. The distance h from the irradiation surface of the pulse laser 4 of the irradiated object 5 at a position separated from the irradiation position of the pulse laser 4 by a distance corresponding to the predetermined distance L by the moving device 20 is measured one after another. The detection value hn is output.

基本制御値設定手段32、遅延手段34、第1演算手段33、記憶手段35及び第2演算手段36は、マイクロコンピュータによつて構成される。基本制御値設定手段32は、被照射物5の表面が凹凸のない平坦であるときに、均一厚さのステージ10に載せた被照射物5と対物レンズ3との間の適正な距離に対応する基本制御値Hを出力する。つまり、基本制御値Hは、レチクル21が被照射物5上に正しく結像しているときのステージ10に載せた被照射物5の初期状態の位置設定値であり、一度設定すれば変更する必要はない。この被照射物5のパルス・レーザ4の照射面と対物レンズ3との間の適正な距離は、距離センサー31によつて計測される適正な距離hと対応している。   The basic control value setting means 32, the delay means 34, the first calculation means 33, the storage means 35, and the second calculation means 36 are configured by a microcomputer. The basic control value setting means 32 corresponds to an appropriate distance between the irradiation object 5 placed on the stage 10 having a uniform thickness and the objective lens 3 when the surface of the irradiation object 5 is flat without unevenness. The basic control value H to be output is output. That is, the basic control value H is a position setting value in the initial state of the irradiation object 5 placed on the stage 10 when the reticle 21 is correctly imaged on the irradiation object 5, and is changed once set. There is no need. The appropriate distance between the irradiation surface of the pulse laser 4 of the irradiation object 5 and the objective lens 3 corresponds to the appropriate distance h measured by the distance sensor 31.

遅延手段34は、距離センサー31の検出値hnを、前記所定距離Lをステージ10が移動するのに要する所定時間に応じて遅延させて出力し、前記所定距離Lをステージ10が移動したときに被照射物5のパルス・レーザ4の照射面との距離hを適正にする。但し、遅延手段34は、最終的に後記する制御差値δを所定時間に応じて遅延させて昇降駆動装置30に出力するように設ければよい。従つて、遅延手段34は、第2演算手段36と昇降駆動装置30との間に配置することも可能である。   The delay means 34 outputs the detection value hn of the distance sensor 31 by delaying the predetermined distance L according to a predetermined time required for the stage 10 to move, and when the stage 10 has moved the predetermined distance L. The distance h from the irradiation surface of the object 5 to be irradiated with the pulse laser 4 is made appropriate. However, the delay means 34 may be provided so that a control difference value δ, which will be described later, is finally delayed by a predetermined time and output to the elevating drive device 30. Therefore, the delay means 34 can be disposed between the second calculation means 36 and the elevating drive device 30.

第1演算手段33は、基本制御値設定手段32によつて設定される基本制御値Hと距離センサー31の検出値hnとの差値Δnを、H−hn=Δnによつて求め、差値Δnを出力する。   The first calculation means 33 obtains a difference value Δn between the basic control value H set by the basic control value setting means 32 and the detected value hn of the distance sensor 31 by H−hn = Δn, and the difference value Δn is output.

記憶手段35は、第1演算手段33から次々に出力される差値Δnの内、前回求めた差値Δn−1を次々に記憶する。第2演算手段36は、記憶手段35に記憶させた前に求めた差値Δn−1と、次に求めた差値Δnとの差からなる制御差値δを、Δn−(Δn−1)=δによつて演算する。   The storage means 35 successively stores the difference value Δn−1 obtained last time among the difference values Δn output one after another from the first calculation means 33. The second calculation means 36 obtains a control difference value δ, which is the difference between the difference value Δn−1 obtained before being stored in the storage means 35 and the difference value Δn obtained next, by Δn− (Δn−1). = Δ is calculated.

そして、制御差値δに応じて昇降駆動装置30を駆動し、レチクル21と対物レンズ3との間の距離を一定に維持したままで、ステージ10に載せた被照射物5のパルス・レーザ4の照射面との距離h、ひいては対物レンズ3とステージ10に載せた被照射物5のパルス・レーザ4の照射面との距離を適正となるように制御する。   Then, the raising / lowering driving device 30 is driven in accordance with the control difference value δ, and the pulse laser 4 of the irradiation object 5 placed on the stage 10 while maintaining the distance between the reticle 21 and the objective lens 3 constant. And the distance h between the objective lens 3 and the irradiation surface of the pulse laser 4 of the irradiation object 5 placed on the stage 10 is controlled appropriately.

照射距離自動調節装置の具体的な構成について図3を参照して説明する。照射距離自動調節装置は、第1のFIFO(First In First Out)メモリー45及び第2のFIFOメモリー46を用いた信号処理部57、ステージ10を上下方向に駆動するZ軸サーボ56及び距離センサー31を有する。FIFOメモリー45,46は、フィールド画像メモリーともいわれ、データを格納し、取り出して使用する場合に、格納した順番に先のデータから取り出せるメモリーである。   A specific configuration of the irradiation distance automatic adjusting device will be described with reference to FIG. The automatic irradiation distance adjustment device includes a signal processing unit 57 using a first FIFO (First In First Out) memory 45 and a second FIFO memory 46, a Z-axis servo 56 that drives the stage 10 in the vertical direction, and a distance sensor 31. Have The FIFO memories 45 and 46 are also called field image memories. When storing, retrieving, and using data, the FIFO memories 45 and 46 are memories that can be retrieved from the previous data in the order of storage.

FIFOメモリー45,46を用いた信号処理部57では、予め、前記移動信号Znが第3カウンター44によつて計数され、計数値1/N2になる毎にパルス信号Jを出力し、パルス信号Jが出力されたときに、信号処理部57が動作し、FIFOメモリー45,46を用いた計算などを行う。従つて、パルス信号Jは、駆動信号R4に基づいて発生する。   In the signal processing unit 57 using the FIFO memories 45 and 46, the movement signal Zn is previously counted by the third counter 44, and the pulse signal J is output every time the count value 1 / N2 is reached. Is output, the signal processing unit 57 operates and performs calculations using the FIFO memories 45 and 46. Therefore, the pulse signal J is generated based on the drive signal R4.

ここで、移動装置20によつてステージ10をX軸方向に移動させれば、移動信号Znのパルスが発生し、1パルス(P)当たりのステージ10の移動距離は、0.01〜10μm/P程度である。例えば、移動信号Znが1μm/Pの場合で説明を続ける。第2のカウンター43は移動信号Znのパルスを計数してN1カウント毎にパルス信号Iを一つレーザ発振装置1へ出力してパルス・レーザ4を発光させる。具体例としてN1は1,000で1mmおきにパルス・レーザ4を照射させる。一方、第3のカウンター44はN2カウント毎にパルス信号Jを出力し、パルス信号Jが出力されたときに、信号処理部57の計算などを行う。   Here, if the stage 10 is moved in the X-axis direction by the moving device 20, a pulse of the movement signal Zn is generated, and the movement distance of the stage 10 per one pulse (P) is 0.01 to 10 μm / It is about P. For example, the description is continued when the movement signal Zn is 1 μm / P. The second counter 43 counts the pulses of the movement signal Zn and outputs one pulse signal I to the laser oscillation device 1 every N1 counts to cause the pulse laser 4 to emit light. As a specific example, N1 is 1,000 and the pulse laser 4 is irradiated every 1 mm. On the other hand, the third counter 44 outputs a pulse signal J every N2 counts, and when the pulse signal J is output, the signal processing unit 57 performs calculations.

一般的に、第1のFIFOメモリー45の段数(図3の第1のFIFOメモリー45ではn段)をMとし、図2の距離Lmm(2x +y)から、L/Mmm毎に距離センサー31の検出値hnを第1のFIFOメモリー45から取り出して計算させれば、距離センサー31の検出値hnを前記所定距離Lをステージ10が移動するのに要する時間に応じて遅延させて計算させることができる。従つて、第3カウンター44のカウント数N2の値を、L/M/1μmに設定すれば、ステージ10の移動に合わせて昇降駆動装置30の駆動を行うことができる。N2の値をN1の値に一致させて同一にすれば、パルス・レーザ4の発光に合わせて、距離センサー31の検出値hnに基づく昇降駆動装置30の駆動を行うことができる。但し、パルス・レーザ4の発光(1ショット)に合わせて、昇降駆動装置30の駆動を行うことは、必須ではない。   In general, the number of stages of the first FIFO memory 45 (n stages in the first FIFO memory 45 in FIG. 3) is M, and the distance sensor 31 of each distance sensor 31 is determined from the distance Lmm (2x + y) in FIG. If the detection value hn is extracted from the first FIFO memory 45 and calculated, the detection value hn of the distance sensor 31 can be calculated by delaying the predetermined distance L according to the time required for the stage 10 to move. it can. Therefore, if the value of the count number N2 of the third counter 44 is set to L / M / 1 μm, the lifting drive device 30 can be driven in accordance with the movement of the stage 10. If the value of N2 is made equal to the value of N1, the elevation drive device 30 can be driven based on the detection value hn of the distance sensor 31 in accordance with the light emission of the pulse laser 4. However, it is not essential to drive the elevating drive device 30 in accordance with the light emission (one shot) of the pulse laser 4.

第1のFIFOメモリー45は、距離センサー31の検出値hnが所定時間経過毎(N2カウント毎)に入力され、これが順次にM1,M2,M3・・・Mnへと移動し、検出値hnが所定時間に応じて遅延してMnから出力させる。従つて、第1のFIFOメモリー45は、距離センサー31の検出値hnを前記所定距離Lをステージ10が移動するのに要する時間に応じて遅延させて出力させる遅延手段34として機能する。但し、この距離センサー31の検出値hnは、後に制御差値δに変化するので、制御差値δを前記所定距離Lをステージ10が移動するのに要する時間に応じて遅延させて出力させても作用は同様である。   In the first FIFO memory 45, the detection value hn of the distance sensor 31 is inputted every predetermined time (every N2 count), and this is sequentially moved to M1, M2, M3. The output is outputted from Mn with a delay according to a predetermined time. Accordingly, the first FIFO memory 45 functions as a delay means 34 that outputs the detection value hn of the distance sensor 31 with a delay in accordance with the time required for the stage 10 to move the predetermined distance L. However, since the detection value hn of the distance sensor 31 is changed to the control difference value δ later, the control difference value δ is output after being delayed according to the time required for the stage 10 to move the predetermined distance L. The action is the same.

第1のFIFOメモリー45から取り出された検出値hnは、図3に示す第1演算手段33に至り、基本制御値設定手段32から出力される基本制御値Hと検出値hnとの差値Δnを、H−hn=Δnとして次々に求める。   The detection value hn extracted from the first FIFO memory 45 reaches the first calculation means 33 shown in FIG. 3, and the difference value Δn between the basic control value H output from the basic control value setting means 32 and the detection value hn. Are successively obtained as H−hn = Δn.

第2のFIFOメモリー46は、第1演算手段33から出力される差値Δnを次々に格納・記憶する。そして、次のパルス信号Jが出力されたときに、第1のFIFOメモリー45から今回出力された距離センサー31の検出値hnと基本制御値Hとの差値Δnが求められ、この差値Δnが、第2のFIFOメモリー46に格納・記憶されると共に、第2のFIFOメモリー46を迂回し、図3に示す第2演算手段36に至る。   The second FIFO memory 46 stores and stores the difference value Δn output from the first calculation means 33 one after another. When the next pulse signal J is output, a difference value Δn between the detection value hn of the distance sensor 31 output this time and the basic control value H is obtained from the first FIFO memory 45, and this difference value Δn Is stored / stored in the second FIFO memory 46, bypasses the second FIFO memory 46, and reaches the second computing means 36 shown in FIG.

第2演算手段36では、第2のFIFOメモリー46から取り出された前回の差値Δn−1と今回の差値Δnとの差からなる制御差値δが、Δn−(Δn−1)=δとして次々に求められる。従つて、第2のFIFOメモリー46は、前に求めた差値Δn−1を記憶する記憶手段35として機能する。   In the second calculation means 36, the control difference value δ, which is the difference between the previous difference value Δn−1 taken out from the second FIFO memory 46 and the current difference value Δn, is Δn− (Δn−1) = δ. As one after another. Therefore, the second FIFO memory 46 functions as the storage means 35 that stores the previously obtained difference value Δn−1.

制御差値δは、Z軸サーボ56に入力する。Z軸サーボ56は、サーボモータ53を備え、サーボモータ53を正又は逆回転させ、図2に示すボールねじ機構37を介してステージ10を上下移動させる。   The control difference value δ is input to the Z-axis servo 56. The Z-axis servo 56 includes a servo motor 53, and rotates the servo motor 53 forward or backward to move the stage 10 up and down via the ball screw mechanism 37 shown in FIG.

Z軸サーボ56のサーボモータ53は、図3に示す制御差値δに基づいて、サーボ制御装置61によつて制御されながら駆動され、駆動信号となる制御差値δから昇降移動信号Zn2を減算して零になつたときに停止し、ステージ10及び被照射物5も停止する。昇降移動信号Zn2は、サーボモータ53の回転数(回転角度)をロータリエンコーダ51によつて検出し、その検出パルスが第4のカウンター52によつて計数され、ステージ10の昇降移動長さが所定値となる毎にパルス信号として得られる。従つて、昇降移動信号Zn2は、1つのパルス毎にステージ10の所定の昇降移動長さに対応している。   The servo motor 53 of the Z-axis servo 56 is driven while being controlled by the servo controller 61 on the basis of the control difference value δ shown in FIG. 3, and subtracts the lifting / lowering movement signal Zn2 from the control difference value δ serving as a drive signal. Then, when it reaches zero, the stage 10 and the irradiated object 5 are also stopped. The up / down movement signal Zn2 is detected by the rotary encoder 51 by detecting the number of rotations (rotation angle) of the servo motor 53, the detected pulses are counted by the fourth counter 52, and the up / down movement length of the stage 10 is predetermined. Every time it becomes a value, it is obtained as a pulse signal. Therefore, the up / down movement signal Zn2 corresponds to a predetermined up / down movement length of the stage 10 for each pulse.

次に、上記1実施の形態の作用について説明する。
当初、基本制御値設定手段32に基本制御値Hが設定され、ステージ10に載せた被照射物5と対物レンズ3との間の距離が、基本的厚さが同一の多数枚の被照射物5に対して適正な状態にしてある。従つて、距離センサー31の高さ位置は、適正な距離hの状態にあり、図4(イ)上で被照射物5の左端部の距離h、つまり図5上で往路照射開始位置B1から測定を開始する。このとき、パルス・レーザ4は、被照射物5から外れた処理開始位置Dにある。すなわち、平面視で、距離センサー31が、パルス・レーザ4の被照射物5への最初の照射位置となる1つのスキャン軸線x3の左端部つまり往路照射開始位置B1にあるとき、パルス・レーザ4は、スキャン軸線x3からステージ10の進行方向後側に2つのスキャン軸線を異ならせたスキャン軸線x1上に移動に要する所定距離Lとして離隔している。
Next, the operation of the first embodiment will be described.
Initially, a basic control value H is set in the basic control value setting means 32, and the distance between the object 5 placed on the stage 10 and the objective lens 3 is a large number of objects having the same basic thickness. 5 is in an appropriate state. Accordingly, the height position of the distance sensor 31 is in an appropriate distance h, and the distance h of the left end portion of the irradiation object 5 in FIG. 4 (a), that is, the forward irradiation start position B1 in FIG. Start measurement. At this time, the pulse laser 4 is at the processing start position D that is out of the irradiation object 5. That is, when the distance sensor 31 is in the left end portion of one scan axis x3 that is the first irradiation position of the pulse laser 4 to the irradiated object 5 in the plan view, that is, at the forward irradiation start position B1, the pulse laser 4 Is separated from the scan axis x3 by a predetermined distance L required for movement on the scan axis x1 obtained by making the two scan axes different from the back in the direction of travel of the stage 10.

そして、1つのスキャン軸線x3の距離hの測定が終了した後に図外のY軸サーボによつてステージ10を1つのスキャン間隔y1だけY軸方向の1側に変位させ、同様に復路照射開始位置B2を含む次のスキャン軸線x4の右端部から距離hを次々に測定する。スキャン軸線x4の左端部までの距離hを測定し終えたなら、1つのスキャン間隔y1と同じスキャン間隔y3だけY軸方向の1側に変位させ、同様に往路照射開始位置B3を含む次のスキャン軸線x5の左端部から距離hの測定を開始する。   After the measurement of the distance h of one scan axis x3 is completed, the stage 10 is displaced by one scan interval y1 to one side in the Y-axis direction by the Y-axis servo (not shown), and similarly the return irradiation start position The distance h is measured one after another from the right end of the next scan axis x4 including B2. When the distance h to the left end of the scan axis x4 has been measured, the next scan including the forward irradiation start position B3 is similarly performed by displacing the scan axis y1 by the same scan interval y3 as the one scan interval y1. The measurement of the distance h is started from the left end portion of the axis x5.

パルス・レーザ4のスキャン間隔y2の変位と同時に、パルス・レーザ4が往路照射開始位置B1に至るので、以後、パルス・レーザ4の被照射物5への照射が継続される。被照射物5上の最後のスキャン軸線xn上へのパルス・レーザ4の所定回数の照射が終了することにより、被照射物5への処理が終了する。   Simultaneously with the displacement of the scan interval y2 of the pulse laser 4, the pulse laser 4 reaches the forward irradiation start position B1, so that irradiation of the irradiation object 5 with the pulse laser 4 is continued thereafter. When the irradiation of the pulse laser 4 a predetermined number of times onto the last scan axis line xn on the irradiation object 5 is completed, the processing on the irradiation object 5 is completed.

すなわち、駆動信号R4に基づいて、移動装置20が上述したようにサーボ制御装置60によつて駆動され、ステージ10に載せた被照射物5が図5上で左右への移動を行いながら、距離センサー31により、被照射物5のパルス・レーザ4の照射面との距離hが所定間隔で次々に測定され、信号Iによつてレーザ発振装置1が駆動され、パルス・レーザ4が照射される。距離センサー31は被照射物5の往路照射開始位置B1の距離hから測定を開始するから、パルス・レーザ4は、被照射物5のへの最初の照射位置となる1つのスキャン軸線x3から距離Lだけ離れた位置つまりスキャン軸線x1上の処理開始位置Dから照射が始まる。   That is, based on the drive signal R4, the moving device 20 is driven by the servo control device 60 as described above, and the irradiated object 5 placed on the stage 10 moves left and right on FIG. The distance 31 between the irradiated object 5 and the irradiation surface of the pulse laser 4 is measured one after another at a predetermined interval by the sensor 31, the laser oscillation device 1 is driven by the signal I, and the pulse laser 4 is irradiated. . Since the distance sensor 31 starts measurement from the distance h of the forward irradiation start position B1 of the irradiation object 5, the pulse laser 4 is distanced from one scan axis x3 that is the first irradiation position to the irradiation object 5. Irradiation starts from a position separated by L, that is, a processing start position D on the scan axis x1.

一方、距離センサー31により、被照射物5のパルス・レーザ4の照射面との距離hが所定間隔で次々に測定され、検出値hnが次々に遅延手段34を介して前記所定距離Lをステージ10が移動するのに要する時間だけ遅延させて出力され、第1演算手段33に入力されると共に、基本制御値設定手段32からの基本制御値Hが第1演算手段33に入力される。第1演算手段33では、検出値hnの発生毎に、基本制御値Hと検出値hnとの差値Δnを次々に求める。   On the other hand, the distance h between the irradiation object 5 and the irradiation surface of the pulse laser 4 is successively measured by the distance sensor 31 at predetermined intervals, and the detection value hn is successively staged through the delay means 34 to the predetermined distance L. 10 is output after being delayed by the time required for movement, and is input to the first calculation means 33, and the basic control value H from the basic control value setting means 32 is input to the first calculation means 33. The first calculating means 33 obtains a difference value Δn between the basic control value H and the detected value hn one after another every time the detected value hn is generated.

この差値Δnは、記憶手段35に次々に記憶されると共に、第2演算手段36にも入り、第2演算手段36において、記憶手段35から得られる前に求めた差値Δn−1とその次に求めた差値Δnとの差からなる制御差値δ(Δn−(Δn−1)=δ)が次々に演算される。   This difference value Δn is stored one after another in the storage means 35 and also enters the second calculation means 36, and the second calculation means 36 obtains the difference value Δn−1 obtained before being obtained from the storage means 35 and its difference value Δn−1. Next, a control difference value δ (Δn− (Δn−1) = δ) consisting of a difference from the obtained difference value Δn is calculated one after another.

そして、次々に求められる制御差値δに基づいて、パルス・レーザ4の照射位置が往路照射開始位置B1を通過した後から昇降駆動装置30が次々に駆動され、レーザ発振装置1、レチクル21及び対物レンズ3に対してステージ10を相対的に昇降移動させ、ステージ10上の被照射物5の照射範囲の高さを適正にしながら、パルス・レーザ4が照射される。   Then, on the basis of the control difference value δ obtained one after another, after the irradiation position of the pulse laser 4 passes the forward irradiation start position B1, the elevating drive device 30 is driven one after another, and the laser oscillation device 1, reticle 21 and The stage 10 is moved up and down relatively with respect to the objective lens 3, and the pulse laser 4 is irradiated while making the height of the irradiation range of the irradiation object 5 on the stage 10 appropriate.

例えば、被照射物5の照射面が凹部を形成し、差値Δnがマイナスの値であるときは、昇降駆動装置30により、レチクル21及び対物レンズ3に対してステージ10を相対的に上昇移動させ、パルス・レーザ4の照射時の被照射物5の照射面の高さ位置を基本制御値Hによる適正高さに合致させる。一方、被照射物5の照射面が凸部を形成し、差値Δnがプラスの値であるときは、昇降駆動装置30により、レチクル21及び対物レンズ3に対してステージ10を相対的に下降移動させ、パルス・レーザ4の照射時の被照射物5の照射面の高さ位置を基本制御値Hによる適正高さに合致させる。かくして、レチクル21及び対物レンズ3に対して被照射物5の照射面の高さ位置が適正な状態で、パルス・レーザ4が照射され続けることになる。勿論、移動装置20は、ステージ10の昇降動作を支障しないようになつている。   For example, when the irradiation surface of the irradiation object 5 forms a recess and the difference value Δn is a negative value, the stage 10 is moved up and down relative to the reticle 21 and the objective lens 3 by the elevating drive device 30. Then, the height position of the irradiated surface of the irradiated object 5 at the time of irradiation with the pulse laser 4 is matched with the appropriate height based on the basic control value H. On the other hand, when the irradiated surface of the irradiation object 5 forms a convex portion and the difference value Δn is a positive value, the stage 10 is lowered relative to the reticle 21 and the objective lens 3 by the lifting drive device 30. The height position of the irradiated surface of the irradiation object 5 at the time of irradiation with the pulse laser 4 is matched with the appropriate height based on the basic control value H. Thus, the pulse laser 4 continues to be irradiated while the height position of the irradiation surface of the irradiation object 5 is appropriate with respect to the reticle 21 and the objective lens 3. Of course, the moving device 20 does not hinder the lifting / lowering operation of the stage 10.

このようにして、被照射物5の照射範囲の高さの調整は、往路照射開始位置B1の通過後から開始され、被照射物5上の最後のスキャン軸線xn上へのパルス・レーザ4の照射が終了するまでの間、継続して行われる。これにより、被照射物5の照射範囲の高さの測定開始と同時にパルス・レーザ4の照射を開始し、被照射物5の照射範囲の全てのパルス・レーザ4の照射が終了するまでの間で、パルス・レーザ4の照射が被照射物5の照射範囲から外れる無駄な範囲は、2つのスキャン軸線x1,x2上における照射のみにすることが可能になる。このように、パルス・レーザ4の照射が被照射物5の照射範囲から外れる無駄の範囲が、被照射物5の片側(図5上で上側)のみとなることにより、狭小とさせ、被照射物5に対する短時間の能率的な処理を可能にすることができる。   In this way, the adjustment of the height of the irradiation range of the irradiation object 5 is started after passing the forward irradiation start position B1, and the pulse laser 4 is moved onto the last scan axis line xn on the irradiation object 5. This is continued until the irradiation is completed. As a result, the irradiation of the pulse laser 4 is started simultaneously with the start of the measurement of the height of the irradiation range of the irradiation object 5 and the irradiation of all the pulse lasers 4 in the irradiation range of the irradiation object 5 is completed. Thus, the useless range in which the irradiation of the pulse laser 4 deviates from the irradiation range of the irradiation object 5 can be limited to the irradiation on the two scan axes x1 and x2. Thus, the wasteful range in which the irradiation of the pulse laser 4 deviates from the irradiation range of the irradiated object 5 is only one side of the irradiated object 5 (upper side in FIG. 5), thereby narrowing the irradiated object. It is possible to enable efficient processing of the object 5 in a short time.

次に、距離センサー31の検出値hnが図3に示すFIFOメモリー45に入力される場合について説明する。このときは、距離センサー31により、被照射物5のパルス・レーザ4の照射面との距離hが測定され、パルス信号Jが出力されたときに、検出値hnが次々に信号処理部57の第1のFIFOメモリー45に入力されると共に、FIFOメモリー45,46を用いた計算が行われる。すなわち、検出値hnが遅延手段33である第1のFIFOメモリー45に次々に入力されながら、ステージ10及び被照射物5が移動し、n+1回目の検出値hnの入力と同時に第1のFIFOメモリー45に1回目に入力された検出値hnが出力される。この遅延した検出値hnが演算手段33に至り、基本制御値設定手段32の基本制御値Hを得て、その差値Δnが演算される。この差値Δnは、記憶手段35である第2のFIFOメモリー46に記憶される。   Next, the case where the detection value hn of the distance sensor 31 is input to the FIFO memory 45 shown in FIG. 3 will be described. At this time, the distance h between the irradiation object 5 and the irradiation surface of the pulse laser 4 is measured by the distance sensor 31, and when the pulse signal J is output, the detection values hn are successively obtained from the signal processing unit 57. While being input to the first FIFO memory 45, calculation using the FIFO memories 45 and 46 is performed. That is, while the detection value hn is sequentially input to the first FIFO memory 45 that is the delay means 33, the stage 10 and the irradiated object 5 move, and the first FIFO memory is simultaneously input with the input of the (n + 1) th detection value hn. 45, the detection value hn input for the first time is output. The delayed detection value hn reaches the calculating means 33, the basic control value H of the basic control value setting means 32 is obtained, and the difference value Δn is calculated. This difference value Δn is stored in the second FIFO memory 46 which is the storage means 35.

続いて、次のパルス信号Jが出力されたときに、第1のFIFOメモリー45から次の検出値hnが出力されると共に、第2のFIFOメモリー46に記憶された差値Δnが前に求めた差値Δn−1として第2演算手段36に入り、第2演算手段36において、第2のFIFOメモリー46から得られる前回の差値Δn−1と今回の差値Δnとの差からなる制御差値δ(Δn−(Δn−1)=δ)が演算される。   Subsequently, when the next pulse signal J is output, the next detection value hn is output from the first FIFO memory 45, and the difference value Δn stored in the second FIFO memory 46 is previously obtained. The second calculation means 36 enters the second calculation means 36 as a difference value Δn−1, and the second calculation means 36 controls the difference between the previous difference value Δn−1 obtained from the second FIFO memory 46 and the current difference value Δn. The difference value δ (Δn− (Δn−1) = δ) is calculated.

この制御差値δに基づいて、昇降駆動装置30が駆動され、レーザ発振装置1、レチクル21及び対物レンズ3に対してステージ10を相対的に昇降移動させ、ステージ10上の被照射物5の照射部分(往路照射開始位置B1を通過後)の高さを適正に制御しながら、パルス・レーザ4が照射される。   Based on this control difference value δ, the elevation drive device 30 is driven, and the stage 10 is moved up and down relative to the laser oscillation device 1, the reticle 21 and the objective lens 3, and the irradiation object 5 on the stage 10 is moved. The pulse laser 4 is irradiated while appropriately controlling the height of the irradiated portion (after passing the forward irradiation start position B1).

これにより、レチクル21と対物レンズ3との間隔は一定に保持しながら、対物レンズ3から被照射物5までの距離を、被照射物5の位置を相対的に変えることにより調節・補正する。かくして、対物レンズ3によつてレチクル21の像を忠実に被照射物5に結像させることができる。しかも、距離センサー31をレチクル21及び対物レンズ3の光軸から離して配置して、常に光軸上の対物レンズ3から被照射物5の結像面(照射面)までの距離を一定に制御することができる。   Thereby, the distance from the objective lens 3 to the irradiated object 5 is adjusted / corrected by relatively changing the position of the irradiated object 5 while keeping the distance between the reticle 21 and the objective lens 3 constant. Thus, the image of the reticle 21 can be faithfully formed on the irradiated object 5 by the objective lens 3. In addition, the distance sensor 31 is arranged away from the optical axis of the reticle 21 and the objective lens 3 so that the distance from the objective lens 3 on the optical axis to the imaging surface (irradiation surface) of the irradiated object 5 is always controlled to be constant. can do.

ところで、上記1実施の形態にあつては、移動装置20により、ステージ10をレーザ発振装置1からのパルス・レーザ4に対して水平なX軸方向及びY軸方向に移動させたが、ステージ10を移動させることに代えて、レーザ発振装置1、光学機器9、レチクル21及び対物レンズ3を一体としてX軸方向及びY軸方向の反対方向に移動させることも可能である。また、昇降駆動装置30により、レーザ発振装置1、光学機器9、レチクル21及び対物レンズ3に対してステージ10を昇降移動させることに代えて、レーザ発振装置1、光学機器9、レチクル21及び対物レンズ3を一体として昇降移動させることも可能である。   By the way, in the first embodiment, the stage 10 is moved by the moving device 20 in the horizontal X-axis direction and the Y-axis direction with respect to the pulse laser 4 from the laser oscillation device 1. It is also possible to move the laser oscillation device 1, the optical device 9, the reticle 21 and the objective lens 3 together in the direction opposite to the X axis direction and the Y axis direction. Further, instead of moving the stage 10 up and down with respect to the laser oscillation device 1, the optical device 9, the reticle 21, and the objective lens 3 by the elevation drive device 30, the laser oscillation device 1, the optical device 9, the reticle 21, and the objective are moved. It is also possible to move the lens 3 up and down as a unit.

本発明の1実施の形態に係る照射距離自動調節装置の構成要素を示す図。The figure which shows the component of the irradiation distance automatic adjustment apparatus which concerns on 1 embodiment of this invention. 同じく要部を示す側面図。The side view which similarly shows the principal part. 同じくステージを移動させるX軸サーボ、照射距離自動調節装置を作動させるZ軸サーボ及びレーザ発振装置の駆動を関連させて得るための構造を示す図。The figure which similarly shows the structure for obtaining in connection with the drive of the X-axis servo which moves a stage, the Z-axis servo which operates an irradiation distance automatic adjustment apparatus, and a laser oscillation apparatus. 同じくレーザ発振装置からのパルス・レーザをステージ上の被照射物に照射する状態を示し、(イ)は正面図、(ロ)は右側面図。The state which irradiates the irradiation object on a stage similarly with the pulse laser from a laser oscillation apparatus is shown, (A) is a front view, (B) is a right view. 同じく作用説明用の平面図。The top view for action explanation similarly. 従来の対物レンズと被照射物との光軸上での距離を計測する装置を示す正面図。The front view which shows the apparatus which measures the distance on the optical axis of the conventional objective lens and to-be-irradiated object. 同じく作用説明図。FIG. 同じく作用説明図。FIG.

符号の説明Explanation of symbols

1:レーザ発振装置
3:対物レンズ
4:パルス・レーザ
5:被照射物
10:ステージ
20:移動装置
21:レチクル
30:昇降駆動装置
31:距離センサー
32:基本制御値設定手段
33:第1演算手段
34:遅延手段
35:記憶手段
36:第2演算手段
45:第1のFIFOメモリー
46:第2のFIFOメモリー
H:基本制御値
h:距離
hn:検出値
L:所定距離
δ:制御差値
Δn:差値
Δn−1:前に求めた差値
x:スキャン軸線
y:スキャン間隔
1: Laser oscillation device 3: Objective lens 4: Pulse laser 5: Irradiated object 10: Stage 20: Moving device 21: Reticle 30: Lifting drive device 31: Distance sensor 32: Basic control value setting means 33: First calculation Means 34: Delay means 35: Storage means 36: Second computing means 45: First FIFO memory 46: Second FIFO memory H: Basic control value h: Distance hn: Detection value L: Predetermined distance δ: Control difference value Δn: difference value Δn-1: previously obtained difference value x: scan axis y: scan interval

Claims (4)

レーザ発振装置(1)と、被照射物(5)を載せるステージ(10)と、ステージ(10)をレーザ発振装置(1)に対して直交するX軸方向及びY軸方向に相対移動させる移動装置(20)とを備え、
ステージ(10)をX軸方向の往路を移動させた後にY軸方向にスキャン間隔(y)に応じて変位させてX軸方向の復路を移動させる動作を連続的に行いながら、レチクル(21)及び対物レンズ(3)を順次に通して対物レンズ(3)によつて集束させたレーザ発振装置(1)からのパルス・レーザ(4)をステージ(10)に載せた被照射物(5)のスキャン軸線(x)上に所定間隔毎に照射させる照射距離自動調整方法において、
レーザ発振装置(1)、レチクル(21)及び対物レンズ(3)に対してステージ(10)を相対的に昇降移動させる昇降駆動装置(30)と、
レーザ発振装置(1)側に設けられ、パルス・レーザ(4)の前記被照射物(5)のスキャン軸線(x)上への照射位置からステージ(10)の進行方向後側に前記スキャン軸線(x)を異ならせて離隔し、前記移動装置(20)による所定距離(L)に対応する距離だけパルス・レーザ(4)の照射位置から隔たる位置の前記被照射物(5)のパルス・レーザ(4)の照射面との距離(h)を次々に測定し、検出値(hn)を出力する単一の距離センサー(31)と、
ステージ(10)に載せた被照射物(5)と対物レンズ(3)との間の適正な距離に対応する基本制御値(H)を出力する基本制御値設定手段(32)とを有し、
基本制御値(H)と検出値(hn)との差値(Δn)を次々に求めると共に、前に求めた差値(Δn−1)とその次に求めた差値(Δn)との差からなる制御差値(δ)を求め、この制御差値(δ)を、前記所定距離(L)をステージ(10)が移動するのに要する時間に応じて遅延させて出力させるようにし、
制御差値(δ)に応じて昇降駆動装置(30)を駆動することにより、レチクル(21)と対物レンズ(3)との間隔を一定に維持したままで、対物レンズ(3)とステージ(10)に載せた被照射物(5)のパルス・レーザ(4)の照射面との距離を制御することを特徴とする照射距離自動調整方法。
The laser oscillation device (1), the stage (10) on which the object (5) is placed, and the stage (10) are moved relative to the laser oscillation device (1) in the X-axis direction and the Y-axis direction. A device (20),
While continuously moving the stage (10) in the X-axis direction and then displacing it in the Y-axis direction according to the scan interval (y) and moving the return path in the X-axis direction, the reticle (21) And an object to be irradiated (5) on which a pulse laser (4) from the laser oscillation device (1) which is sequentially passed through the objective lens (3) and focused by the objective lens (3) is placed on the stage (10). In the irradiation distance automatic adjustment method of irradiating the scan axis line (x) at predetermined intervals,
An elevating drive device (30) for moving the stage (10) up and down relatively with respect to the laser oscillation device (1), the reticle (21) and the objective lens (3);
Provided on the laser oscillation device (1) side, the scan axis line from the irradiation position of the pulse laser (4) onto the scan axis (x) of the irradiated object (5) to the rear side in the traveling direction of the stage (10) The pulse of the object to be irradiated (5) at a position separated from the irradiation position of the pulsed laser (4) by a distance corresponding to a predetermined distance (L) by the moving device (20) with different (x). A single distance sensor (31) for measuring the distance (h) to the irradiation surface of the laser (4) one after another and outputting a detection value (hn);
A basic control value setting means (32) for outputting a basic control value (H) corresponding to an appropriate distance between the object to be irradiated (5) placed on the stage (10) and the objective lens (3); ,
The difference value (Δn) between the basic control value (H) and the detected value (hn) is obtained one after another, and the difference between the previously obtained difference value (Δn−1) and the next obtained difference value (Δn). A control difference value (δ) comprising: the control difference value (δ) is output with a delay in accordance with the time required for the stage (10) to move the predetermined distance (L),
By driving the lifting / lowering drive device (30) according to the control difference value (δ), the objective lens (3) and the stage (3) are maintained while keeping the distance between the reticle (21) and the objective lens (3) constant. 10. A method for automatically adjusting an irradiation distance, comprising controlling the distance of the irradiated object (5) placed on 10) to the irradiation surface of the pulse laser (4).
レーザ発振装置(1)と、被照射物(5)を載せるステージ(10)と、ステージ(10)をレーザ発振装置(1)に対して直交するX軸方向及びY軸方向に相対移動させる移動装置(20)とを備え、ステージ(10)をX軸方向の往路を移動させた後にY軸方向にスキャン間隔(y)に応じて変位させてX軸方向の復路を移動させる動作を連続的に行いながら、レチクル(21)及び対物レンズ(3)を順次に通して対物レンズ(3)によつて集束させたレーザ発振装置(1)からのパルス・レーザ(4)をステージ(10)に載せた被照射物(5)のスキャン軸線(x)上に所定間隔毎に照射させる照射距離自動調整装置において、
レーザ発振装置(1)、レチクル(21)及び対物レンズ(3)に対してステージ(10)を相対的に昇降移動させる昇降駆動装置(30)と、
レーザ発振装置(1)側に設けられ、パルス・レーザ(4)の前記被照射物(5)のスキャン軸線(x)上への照射位置からステージ(10)の進行方向後側に前記スキャン軸線(x)を異ならせて離隔し、前記移動装置(20)による所定距離(L)に対応する距離だけパルス・レーザ(4)の照射位置から隔たる位置の前記被照射物(5)のパルス・レーザ(4)の照射面との距離(h)を次々に測定し、検出値(hn)を出力する単一の距離センサー(31)と、
ステージ(10)に載せた被照射物(5)と対物レンズ(3)との間の適正な距離に対応する基本制御値(H)を出力する基本制御値設定手段(32)と、
基本制御値(H)と検出値(hn)との差値(Δn)を次々に求める第1演算手段(33)と、
前に求めた差値(Δn−1)を記憶する記憶手段(35)と、
前に求めた差値(Δn−1)とその次に求めた差値(Δn)との差からなる制御差値(δ)を求める第2演算手段(36)と、
この制御差値(δ)を前記所定距離(L)をステージ(10)が移動するのに要する時間に応じて遅延させて出力させるための遅延手段(34)とを有し、
制御差値(δ)に応じて昇降駆動装置(30)を駆動し、レチクル(21)と対物レンズ(3)との間隔を一定に維持したままで、対物レンズ(3)とステージ(10)に載せた被照射物(5)のパルス・レーザ(4)の照射面との距離を制御することを特徴とする照射距離自動調整装置。
The laser oscillation device (1), the stage (10) on which the object (5) is placed, and the stage (10) are moved relative to the laser oscillation device (1) in the X-axis direction and the Y-axis direction. And an apparatus (20) for continuously moving the stage (10) in the X-axis direction and then moving the return path in the X-axis direction by displacing the stage (10) in the Y-axis direction according to the scan interval (y). The pulse laser (4) from the laser oscillation device (1) focused by the objective lens (3) through the reticle (21) and the objective lens (3) in sequence is applied to the stage (10). In the irradiation distance automatic adjustment device that irradiates the scanning object (5) on the scanning axis (x) at predetermined intervals,
An elevating drive device (30) for moving the stage (10) up and down relatively with respect to the laser oscillation device (1), the reticle (21) and the objective lens (3);
Provided on the laser oscillation device (1) side, the scan axis line from the irradiation position of the pulse laser (4) onto the scan axis (x) of the irradiated object (5) to the rear side in the traveling direction of the stage (10) The pulse of the object to be irradiated (5) at a position separated from the irradiation position of the pulsed laser (4) by a distance corresponding to a predetermined distance (L) by the moving device (20) with different (x). A single distance sensor (31) for measuring the distance (h) to the irradiation surface of the laser (4) one after another and outputting a detection value (hn);
A basic control value setting means (32) for outputting a basic control value (H) corresponding to an appropriate distance between the irradiated object (5) placed on the stage (10) and the objective lens (3);
First calculating means (33) for successively obtaining a difference value (Δn) between the basic control value (H) and the detected value (hn);
Storage means (35) for storing the previously obtained difference value (Δn−1);
Second calculating means (36) for obtaining a control difference value (δ) comprising a difference between a previously obtained difference value (Δn−1) and a difference value (Δn) obtained next;
Delay means (34) for delaying and outputting the control difference value (δ) according to the time required for the stage (10) to move the predetermined distance (L);
The lifting / lowering driving device (30) is driven according to the control difference value (δ), and the objective lens (3) and the stage (10) are maintained while maintaining a constant distance between the reticle (21) and the objective lens (3). The irradiation distance automatic adjustment apparatus characterized by controlling the distance of the to-be-irradiated object (5) mounted on the irradiation surface of the pulse laser (4).
遅延手段(34)が、第1のFIFOメモリー(45)によつて構成され、検出値(hn)を前記所定距離(L)をステージ(10)が移動するのに要する時間に応じて遅延させて出力させ、制御差値(δ)の出力を遅延させることを特徴とする請求項2の照射距離自動調整装置。 The delay means (34) is constituted by the first FIFO memory (45), and delays the detection value (hn) according to the time required for the stage (10) to move the predetermined distance (L). 3. The irradiation distance automatic adjusting device according to claim 2, wherein the output of the control difference value (δ) is delayed. 記憶手段(35)が、第2のFIFOメモリー(46)によつて構成されることを特徴とする請求項2又は3の照射距離自動調整装置。 4. The automatic irradiation distance adjusting device according to claim 2, wherein the storage means (35) is constituted by a second FIFO memory (46).
JP2004094510A 2004-03-29 2004-03-29 Irradiation distance automatic adjustment method and apparatus Expired - Lifetime JP4503328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004094510A JP4503328B2 (en) 2004-03-29 2004-03-29 Irradiation distance automatic adjustment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004094510A JP4503328B2 (en) 2004-03-29 2004-03-29 Irradiation distance automatic adjustment method and apparatus

Publications (2)

Publication Number Publication Date
JP2005285896A true JP2005285896A (en) 2005-10-13
JP4503328B2 JP4503328B2 (en) 2010-07-14

Family

ID=35183984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004094510A Expired - Lifetime JP4503328B2 (en) 2004-03-29 2004-03-29 Irradiation distance automatic adjustment method and apparatus

Country Status (1)

Country Link
JP (1) JP4503328B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165716A (en) * 2005-12-15 2007-06-28 Advanced Lcd Technologies Development Center Co Ltd Laser crystallizing apparatus and method
JP2007200945A (en) * 2006-01-23 2007-08-09 Shimadzu Corp Crystallization equipment
JP2009010161A (en) * 2007-06-28 2009-01-15 Sumitomo Heavy Ind Ltd Laser machining device and laser machining method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243291A (en) * 1990-02-22 1991-10-30 Toshiba Corp Laser welding machine
JPH08148430A (en) * 1994-11-24 1996-06-07 Sony Corp Forming method for polycrystalline semiconductor thin film
JPH08150490A (en) * 1994-11-29 1996-06-11 Sumitomo Heavy Ind Ltd Laser beam machining equipment
JP2000306834A (en) * 1999-02-12 2000-11-02 Semiconductor Energy Lab Co Ltd Device and method for laser irradiation and semiconductor device
JP2001044136A (en) * 1999-08-02 2001-02-16 Sumitomo Heavy Ind Ltd Precision laser beam irradiation apparatus and control method
JP2003282477A (en) * 2002-03-26 2003-10-03 Japan Steel Works Ltd:The Method and apparatus for automatically adjusting irradiation distance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243291A (en) * 1990-02-22 1991-10-30 Toshiba Corp Laser welding machine
JPH08148430A (en) * 1994-11-24 1996-06-07 Sony Corp Forming method for polycrystalline semiconductor thin film
JPH08150490A (en) * 1994-11-29 1996-06-11 Sumitomo Heavy Ind Ltd Laser beam machining equipment
JP2000306834A (en) * 1999-02-12 2000-11-02 Semiconductor Energy Lab Co Ltd Device and method for laser irradiation and semiconductor device
JP2001044136A (en) * 1999-08-02 2001-02-16 Sumitomo Heavy Ind Ltd Precision laser beam irradiation apparatus and control method
JP2003282477A (en) * 2002-03-26 2003-10-03 Japan Steel Works Ltd:The Method and apparatus for automatically adjusting irradiation distance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165716A (en) * 2005-12-15 2007-06-28 Advanced Lcd Technologies Development Center Co Ltd Laser crystallizing apparatus and method
JP2007200945A (en) * 2006-01-23 2007-08-09 Shimadzu Corp Crystallization equipment
JP2009010161A (en) * 2007-06-28 2009-01-15 Sumitomo Heavy Ind Ltd Laser machining device and laser machining method

Also Published As

Publication number Publication date
JP4503328B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4956987B2 (en) Laser crystallization apparatus and crystallization method
US7847214B2 (en) Laser crystallization apparatus and crystallization method
EP2769800B1 (en) Laser processing machine
US9870961B2 (en) Wafer processing method
JP5498659B2 (en) Laser irradiation position stability evaluation method and laser irradiation apparatus
JP2011003630A (en) Laser irradiator and method for irradiating laser
TW201315554A (en) Laser processing device and laser processing method
JP4531323B2 (en) Laser device, laser irradiation method, and semiconductor device manufacturing method
KR100498831B1 (en) A method and an apparatus for automatically adjusting irradiation distance
JP2008215829A (en) Calibration tool, calibration method, and laser machining device using method
JP4503328B2 (en) Irradiation distance automatic adjustment method and apparatus
JP3410989B2 (en) Precision laser irradiation apparatus and control method
JP2000317657A (en) Laser beam marking device
KR20180111089A (en) Laser scribing appratus
JP2003234306A (en) Laser machining method and device therefor
JP2008212941A (en) Laser beam machining apparatus and its control method
JPH1147970A (en) Laser welding machine with automatic focusing device
JP5205101B2 (en) Pattern drawing apparatus and pattern drawing method
TWI222249B (en) Laser driving method and device thereof
JP2021176978A (en) Lamination molding device and method for producing three-dimensional molded part
JP2001351876A (en) Apparatus and method for laser processing
JP2010141190A (en) Laser crystallization device
KR20180104913A (en) Laser annealing apparatus and laser annealing method
JPH09168881A (en) Laser beam machine
JP2005219077A (en) Laser energy adjusting apparatus, laser energy adjusting method, and laser beam machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

R150 Certificate of patent or registration of utility model

Ref document number: 4503328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250