JP2005285624A - Secondary battery with self-restoration type safety mechanism - Google Patents

Secondary battery with self-restoration type safety mechanism Download PDF

Info

Publication number
JP2005285624A
JP2005285624A JP2004099326A JP2004099326A JP2005285624A JP 2005285624 A JP2005285624 A JP 2005285624A JP 2004099326 A JP2004099326 A JP 2004099326A JP 2004099326 A JP2004099326 A JP 2004099326A JP 2005285624 A JP2005285624 A JP 2005285624A
Authority
JP
Japan
Prior art keywords
secondary battery
self
safety mechanism
movable arm
connection terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004099326A
Other languages
Japanese (ja)
Inventor
Toshiharu Saito
年治 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004099326A priority Critical patent/JP2005285624A/en
Publication of JP2005285624A publication Critical patent/JP2005285624A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To consume energy inside a secondary battery quickly and safely when internal temperature of the battery rises. <P>SOLUTION: This secondary battery with the self-restoration type safety mechanism is provided with the secondary battery, a movable arm having an electrical connection contact for connecting electrically with the outside in an end part and deforming by corresponding to temperature change, and a fixed connection terminal in contact with the electrical connection contact of the movable arm. The movable arm and the fixed connection terminal are stored in a case body. When temperature of the case body exceeds predetermined temperature, the electrical connection contact of the movable arm and the fixed connection terminal come into contact mutually to short circuit the secondary battery with the outside. When temperature of the case body is less than the predetermined temperature, contact of the electrical connection contact and the fixed connection terminal is released to shut off short circuit with the outside. This secondary battery with the self-restoration type safety mechanism has resistance for reducing a current value when short circuiting with the outside, and the resistance is arranged at a position where generated Joule heat does not affect operation of the movable arm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電池の内部温度が上昇したときに、電池内部のエネルギーを速やかに且つ安全に消費する自己復帰型安全機構付き二次電池に関する。   The present invention relates to a secondary battery with a self-returning safety mechanism that quickly and safely consumes energy inside the battery when the internal temperature of the battery rises.

近年、携帯電話、ノートパソコン、PDA等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化、高エネルギー密度化が要求されている。リチウムイオン二次電池に代表される非水電解質二次電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。   In recent years, mobile information terminals such as mobile phones, notebook computers, and PDAs have been rapidly reduced in size and weight, and batteries as drive power sources are required to have higher capacity and higher energy density. A non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery has a high energy density and a high capacity, and is therefore widely used as a driving power source for the mobile information terminal as described above.

このような非水電解質二次電池に用いられる活物質は、充電状態での熱安定性が低く、充電状態で高温条件に晒されると、活物質の結晶構造が崩壊して、熱暴走に至ったり、電池性能を劣化させたりするという問題があった。   Active materials used in such non-aqueous electrolyte secondary batteries have low thermal stability in the charged state, and when exposed to high temperature conditions in the charged state, the crystal structure of the active material collapses, leading to thermal runaway. Or the battery performance deteriorates.

ところで、温度上昇時の電池の安全性を向上させる技術としては、下記特許文献1−3が挙げられる。   By the way, the following patent documents 1-3 are mentioned as a technique which improves the safety | security of the battery at the time of a temperature rise.

特開平10−326610号公報(第2頁、図1)Japanese Patent Laid-Open No. 10-326610 (second page, FIG. 1) 特開2002−298807号公報(第2−3頁)JP 2002-298807 A (page 2-3) 特開平11−162449号公報(段落0005−0018)JP-A-11-162449 (paragraphs 0005-0018)

上記特許文献1には、電池ケースの封口部に熱応動バイメタルスイッチによる端子間をオン、オフする安全装置を設置し、電池の異常温度上昇時に正負極間を短絡させることにより、バイメタルスイッチに短絡電流を流して電池内の温度上昇を抑制できる電池が記載されている。
しかし、この技術ではバイメタルスイッチと電池とが並列に接続されているので、バイメタルスイッチが作動しても、当該電池には電流が流れる。この電流によって、電池内部の活物質や電解液等が劣化するので、再び当該電池を用いることができないという課題を有している。
In the above-mentioned Patent Document 1, a safety device that turns on and off between terminals by a thermally responsive bimetal switch is installed in the sealing part of the battery case, and the positive and negative electrodes are short-circuited when the battery temperature rises abnormally, thereby short-circuiting the bimetal switch A battery is described in which a current can be passed to suppress a temperature rise in the battery.
However, in this technique, since the bimetal switch and the battery are connected in parallel, even if the bimetal switch is operated, a current flows through the battery. This current degrades an active material, an electrolyte solution, and the like inside the battery, so that the battery cannot be used again.

上記特許文献2には、電池に過電流が流れ、あるいは電池温度が設定温度よりも高くなると、オフに切り替えられて電池を保護するブレーカを備え、前記ブレーカがケーシングに固定してなる複数の半田端子を有し、ひとつまたは複数の半田端子をプリント基板にリフロー半田して固定しており、プリント基板がリードを介して電池に接続されると共に、ケース内の定位置に配設され、このプリント基板を介してブレーカをケース内の定位置に固定されたパック電池が記載されている。
この技術によると、組み立てが簡単で、ブレーカを正確な位置に配置でき、ブレーカを正確に作動させて電池を有効に保護して安全に使用できるとされる。しかし、電池内部のエネルギーが高い状態でブレーカが作動すると、上述した電池性能の劣化、熱暴走という問題が生じる。
Patent Document 2 includes a plurality of solders provided with a breaker that is switched off to protect the battery when an overcurrent flows through the battery or the battery temperature becomes higher than a set temperature, and the breaker is fixed to a casing. It has terminals, and one or more solder terminals are fixed to the printed circuit board by reflow soldering, and the printed circuit board is connected to the battery via the leads and disposed at a fixed position in the case. A battery pack in which a breaker is fixed at a fixed position in a case through a substrate is described.
According to this technology, it is easy to assemble, the breaker can be placed in an accurate position, and the breaker can be accurately operated to effectively protect the battery and be used safely. However, if the breaker operates in a state where the energy inside the battery is high, the above-described problems of battery performance degradation and thermal runaway occur.

上記特許文献3には、二次電池内部の温度を検出する温度検出手段と、二次電池の内部抵抗に比し十分低い抵抗体を備える放電手段と、前記温度検出手段が正常温度信号を出力するのに応動して導通作動し二次電池の正負極間電源と外部回路との閉ループ回路を形成させる作動切替手段とを要素部材に含み、前記二次電池のケース内に収設されてなる二次電池が記載されている。
この技術によると、二次電池内部における温度上昇現象が暴爆を引き起こす温度点に達するまでにその原因である化学反応をいち早く、しかも確実に停止させることができるとされる。
In Patent Document 3, temperature detection means for detecting the temperature inside the secondary battery, discharge means including a resistor sufficiently lower than the internal resistance of the secondary battery, and the temperature detection means outputs a normal temperature signal. The element member includes an operation switching means that is electrically connected in response to the operation and forms a closed loop circuit between the positive and negative power sources of the secondary battery and an external circuit, and is housed in the case of the secondary battery. A secondary battery is described.
According to this technology, it is said that the chemical reaction that is the cause can be stopped quickly and surely until the temperature rise phenomenon in the secondary battery reaches the temperature point causing the explosion.

しかし、危険温度に達したことにより異常温度信号が出力されると、作動切替手段が作動して、放電手段と二次電池との閉ループ回路が形成されるが、この閉ループ回路によって電池が0Vまで放電される(段落0015)。充電された二次電池が0Vまで放電されると、電池内部の活物質が劣化するので、再び当該電池を用いることができないという課題を有している。   However, when an abnormal temperature signal is output due to reaching the dangerous temperature, the operation switching means is activated to form a closed loop circuit between the discharging means and the secondary battery, and the battery is reduced to 0 V by this closed loop circuit. It is discharged (paragraph 0015). When the charged secondary battery is discharged to 0 V, the active material inside the battery deteriorates, so that the battery cannot be used again.

本発明は、以上の事情に鑑みなされたものであって、高温条件に晒されたときの安全性が高く、且つ二次電池を劣化させない安全機構付き二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a secondary battery with a safety mechanism that has high safety when exposed to high temperature conditions and does not deteriorate the secondary battery. .

上記課題を解決するための本発明は、二次電池と、外部に電気接続するための電気接続接点を端部に有し、温度変化に対応して変形する可動アームと、前記可動アームの電気接続接点と接触する固定接続端子と、を備え、前記可動アームと前記固定接続端子とは筺体に収容され、当該筺体は前記二次電池の近傍に配置され、かつ前記二次電池の一方の電極と前記可動アームとが電気的に接続され、前記二次電池の他方の電極と前記固定接続端子とが電気的に接続され、前記筺体が所定温度以上となると、前記可動アームの電気接続接点と前記固定接続端子とが接触して前記二次電池を外部短絡させ、前記筺体が所定温度未満になると、前記電気接続接点と前記固定接続端子との接触が解除されて前記外部短絡が遮断される構造の自己復帰型安全機構付き二次電池であって、前記自己復帰型安全機構付き二次電池は、更に外部短絡時の電流値を下げる抵抗を有し、かつ当該抵抗は、当該抵抗から発生するジュール熱が前記可動アームの動作に影響を与えない位置に配置されていることを特徴とする。   In order to solve the above problems, the present invention provides a secondary battery, a movable arm having an electrical connection contact for electrical connection to the outside, and deformed in response to a temperature change, and the electrical power of the movable arm. A fixed connection terminal in contact with a connection contact, wherein the movable arm and the fixed connection terminal are accommodated in a casing, the casing is disposed in the vicinity of the secondary battery, and one electrode of the secondary battery And the movable arm are electrically connected, the other electrode of the secondary battery and the fixed connection terminal are electrically connected, and when the casing is at a predetermined temperature or higher, the electrical connection contact of the movable arm When the fixed connection terminal comes into contact and externally shorts the secondary battery, and the casing is below a predetermined temperature, the contact between the electrical connection contact and the fixed connection terminal is released and the external short circuit is cut off. Self-return type of structure A secondary battery with a mechanism, wherein the secondary battery with a self-recovering safety mechanism further has a resistor that lowers a current value at the time of an external short circuit, and the resistor has a movable Joule heat generated from the resistor. It is characterized by being arranged at a position that does not affect the operation of the arm.

ここで、二次電池の近傍とは、二次電池の温度と筐体との温度が略同等となる位置のことを意味し、具体的には二次電池の外装体に直接また熱伝導性の高い部材を介して接触する位置のことを意味する。   Here, the vicinity of the secondary battery means a position where the temperature of the secondary battery and the temperature of the casing are substantially equal, and specifically, directly or thermally conductively on the exterior body of the secondary battery. It means a position that contacts through a member having a high height.

また、前記抵抗が、前記固定接続端子と、前記固定接続端子が接続されている電極との間に配置されている構成とすることができる。   The resistor may be arranged between the fixed connection terminal and an electrode to which the fixed connection terminal is connected.

また、前記抵抗が、前記筐体の外に配置されている構成とすることができる。   Further, the resistor can be arranged outside the casing.

また、前記可動アームが、バイメタルからなる構成とすることができる。   Further, the movable arm can be made of bimetal.

また、前記可動アームが、可動アーム本体とバイメタルスイッチからなり、前記可動アーム本体が前記バイメタルスイッチによって可動する構成とすることができる。   The movable arm may be composed of a movable arm body and a bimetal switch, and the movable arm body may be moved by the bimetal switch.

また、前記所定温度が60〜100℃である構成とすることができる。   Moreover, it can be set as the structure whose said predetermined temperature is 60-100 degreeC.

また、前記二次電池が、非水電解質二次電池である構成とすることができる。   The secondary battery may be a nonaqueous electrolyte secondary battery.

上記本発明によると、図1(a)に示すように、通常の温度条件では可動アーム2の電気接続接点2aと固定接続端子3とが接続していないが、筐体が所定の温度に達すると、図1(b)に示すように可動アーム2の電気接続接点2aと固定接続端子3とが電気的に接続され、二次電池1が外部短絡する。   According to the present invention, as shown in FIG. 1A, the electrical connection contact 2a of the movable arm 2 and the fixed connection terminal 3 are not connected under normal temperature conditions, but the casing reaches a predetermined temperature. Then, as shown in FIG.1 (b), the electrical connection contact 2a of the movable arm 2 and the fixed connection terminal 3 are electrically connected, and the secondary battery 1 is externally short-circuited.

この外部短絡電流は、抵抗4を通過することにより、活物質や電解液を劣化させない程度にまで小さくなる。   This external short-circuit current is reduced to such an extent that the active material and the electrolytic solution are not deteriorated by passing through the resistor 4.

また、抵抗4は、当該抵抗4から発生するジュール熱が前記可動アーム2の動作に影響を与えない位置に配置されているので、二次電池1が再び所定温度以下となると、速やかに可動アーム2の電気接続接点2aと固定接続端子3との接触を解除し、外部短絡が遮断される。そして、二次電池1は、外部短絡により充電レベルが安全なレベルにまで低下するが、過放電状態となる前に外部短絡が終了する。したがって、当該二次電池1を再び用いることが可能となる。   Further, since the resistor 4 is arranged at a position where Joule heat generated from the resistor 4 does not affect the operation of the movable arm 2, when the secondary battery 1 again becomes a predetermined temperature or less, the movable arm is quickly The contact between the second electrical connection contact 2a and the fixed connection terminal 3 is released, and the external short circuit is interrupted. In the secondary battery 1, the charge level is reduced to a safe level due to the external short circuit, but the external short circuit is completed before the secondary battery 1 is overdischarged. Therefore, the secondary battery 1 can be used again.

また、前記抵抗によるジュール熱が前記可動アームの動作に影響を与えない位置としては、前記固定接続端子と、前記固定接続端子が接続されている電極との間や、前記筐体の外が例示できる。   Further, examples of the position where the Joule heat due to the resistance does not affect the operation of the movable arm are between the fixed connection terminal and the electrode to which the fixed connection terminal is connected, or outside the casing. it can.

また、可動アームがバイメタルからなる通電方式や、可動アームが可動アーム本体とバイメタルスイッチとからなる無通電方式を用いると、低コストで且つ容易に可動アームの電気接続接点と固定接続端子とを接触・解除させることができる。   In addition, when the energization method in which the movable arm is made of bimetal or the non-energization method in which the movable arm is made of the movable arm body and the bimetal switch, the electric connection contact and the fixed connection terminal of the movable arm can be easily contacted at low cost.・ Can be released.

また、二次電池に用いられるセパレータは、電池温度が約130〜150℃に達すると、溶融(シャットダウン)して正負極間の電流を遮断することにより、安全性が高められているが、シャットダウン後の二次電池は、再び使用することはできない。しかし、前記所定温度が60〜100℃であると、二次電池がシャットダウンする前に電池を外部短絡させて安全性を高めることができるので、二次電池がシャットダウンすることがなく、電池として再使用が可能となる。   Moreover, the separator used for the secondary battery is improved in safety by melting (shutdown) and shutting off the current between the positive and negative electrodes when the battery temperature reaches about 130 to 150 ° C. The later secondary battery cannot be used again. However, if the predetermined temperature is 60 to 100 ° C., the battery can be externally short-circuited before the secondary battery shuts down to improve safety, so the secondary battery does not shut down and can be re-used as a battery. Can be used.

また、非水電解質二次電池は、電解質に可燃性の有機溶媒を用いているので、電池が高温条件に晒された場合の危険性が高い。この非水電解質二次電池に本発明に係る自己復帰型安全機構を取り付けると、高温条件でも安全な自己復帰型安全機構付き非水電解質二次電池が得られる。   Moreover, since the nonaqueous electrolyte secondary battery uses a flammable organic solvent for the electrolyte, there is a high risk when the battery is exposed to high temperature conditions. When the self-returning safety mechanism according to the present invention is attached to this non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery with a self-returning safety mechanism that is safe even under high temperature conditions can be obtained.

本発明を実施するための最良の形態を、図面に基づいて説明する。なお、本発明は下記の形態に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   The best mode for carrying out the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following form, In the range which does not change the summary, it can change suitably and can implement.

(実施の形態1)
図1(a)に示すように、実施の形態1に係る安全機構付き二次電池は、二次電池1と、外部に電気接続するための電気接続接点2aを端部に有し、温度変化に対応して変形する可動アーム2と、可動アームの電気接続接点2aと接触する固定接続端子3とを備えている。そして、二次電池の負極1aと可動アーム2とが電気的に接続され、二次電池の正極1bと固定接続端子3とが電気的に接続されている。
(Embodiment 1)
As shown in FIG. 1 (a), the secondary battery with a safety mechanism according to the first embodiment has the secondary battery 1 and an electrical connection contact 2a for electrical connection to the outside, and changes in temperature. The movable arm 2 is deformed corresponding to the above, and the fixed connection terminal 3 is in contact with the electrical connection contact 2a of the movable arm. The negative electrode 1a of the secondary battery and the movable arm 2 are electrically connected, and the positive electrode 1b of the secondary battery and the fixed connection terminal 3 are electrically connected.

また、可動アーム2と前記固定接続端子3とは筺体5に収容され、当該筺体5は前記二次電池と接触する位置に配置されている。
更に、抵抗4を有し、かつ当該抵抗4は、当該抵抗4から発生するジュール熱が前記可動アーム2の動作に影響を与えないように、筐体5の外に配置されている。
Further, the movable arm 2 and the fixed connection terminal 3 are accommodated in a casing 5, and the casing 5 is disposed at a position in contact with the secondary battery.
Furthermore, the resistor 4 is provided, and the resistor 4 is disposed outside the housing 5 so that Joule heat generated from the resistor 4 does not affect the operation of the movable arm 2.

また、前記可動アーム2は、可動アーム本体21と、バイメタルスイッチ22とからなる。   The movable arm 2 includes a movable arm main body 21 and a bimetal switch 22.

そして、二次電池1の温度が所定温度に達すると、筐体5も同時に所定温度に達し、図1(b)に示すようにバイメタルスイッチ22が熱により反転して可動アームの電気接続接点2aと固定接続端子3とが接触し、二次電池1が外部短絡する。この外部短絡時の電流値は、抵抗4によって電池に悪影響を及ぼさないレベルにまで下げられる。   When the temperature of the secondary battery 1 reaches a predetermined temperature, the housing 5 also reaches the predetermined temperature at the same time. As shown in FIG. 1B, the bimetal switch 22 is reversed by heat and the electric connection contact 2a of the movable arm. And the fixed connection terminal 3 come into contact with each other, and the secondary battery 1 is externally short-circuited. The current value at the time of this external short circuit is lowered to a level that does not adversely affect the battery by the resistor 4.

また、抵抗4は筐体5の外に配置されているので、そのジュール熱はバイメタルスイッチ22に与える影響が小さい。したがって、二次電池1の温度が所定温度以下となると、速やかにバイメタルスイッチ22が可動アームの電気接続接点2aと固定接続端子3との接触を遮断し、図1(a)に示すように通常状態に復帰する。   In addition, since the resistor 4 is disposed outside the housing 5, the Joule heat has little influence on the bimetal switch 22. Therefore, when the temperature of the secondary battery 1 becomes equal to or lower than the predetermined temperature, the bimetal switch 22 immediately cuts off the contact between the electric connection contact 2a of the movable arm and the fixed connection terminal 3, and as shown in FIG. Return to the state.

上述したように、二次電池1が過放電に至る前に通常状態に速やかに自己復帰するため、当該二次電池1の活物質が劣化することがなく、再び電池として用いることができる。   As described above, since the secondary battery 1 quickly self-resets to the normal state before overdischarge occurs, the active material of the secondary battery 1 is not deteriorated and can be used again as a battery.

(実施の形態2)
実施の形態2では、可動アームがバイメタルである例について説明する。
(Embodiment 2)
In the second embodiment, an example in which the movable arm is a bimetal will be described.

実施の形態2は、図2(a)に示すように可動アーム2がバイメタルである点、及び抵抗4が固定接続端子3と正極1bとの間に配置されている点以外は、実施の形態1と同様の構成である。   The second embodiment is different from the second embodiment except that the movable arm 2 is a bimetal as shown in FIG. 2A and the resistor 4 is disposed between the fixed connection terminal 3 and the positive electrode 1b. 1 is the same configuration.

そして、二次電池1の温度が所定の温度に達すると、図2(b)に示すようにバイメタルからなる可動アームの電気接続接点2aと固定接続端子3とが接触し、二次電池1が外部短絡する。この外部短絡電流は、抵抗4によって電池に悪影響を及ぼさないレベルにまで下げられる。   When the temperature of the secondary battery 1 reaches a predetermined temperature, the electric connection contact 2a of the movable arm made of bimetal and the fixed connection terminal 3 come into contact with each other as shown in FIG. External short circuit. This external short-circuit current is lowered to a level that does not adversely affect the battery by the resistor 4.

また、抵抗4は筐体5の外部且つ正極1bと固定接続端子3との間に配置されているので、そのジュール熱はバイメタルからなる可動アーム2に与える影響が小さい。したがって、二次電池1の温度が所定温度以下となると、速やかにバイメタルからなる可動アームの電気接続接点2aと固定接続端子3との接続を遮断するように作動し、図2(a)に示すように通常状態に復帰する。   Further, since the resistor 4 is disposed outside the housing 5 and between the positive electrode 1b and the fixed connection terminal 3, the Joule heat has little influence on the movable arm 2 made of bimetal. Therefore, when the temperature of the secondary battery 1 becomes equal to or lower than the predetermined temperature, the secondary battery 1 operates to quickly cut off the connection between the electric connection contact 2a of the movable arm made of bimetal and the fixed connection terminal 3, as shown in FIG. 2 (a). To return to the normal state.

上述したように、二次電池1が過放電に至る前に通常状態に速やかに自己復帰するため、当該二次電池1の活物質が劣化することがなく、再び電池として用いることができる。   As described above, since the secondary battery 1 quickly self-resets to the normal state before overdischarge occurs, the active material of the secondary battery 1 is not deteriorated and can be used again as a battery.

(実施例)
以下、二次電池として非水電解質二次電池を用いた実施例により、本発明をさらに詳細に説明する。
(Example)
Hereinafter, the present invention will be described in more detail with reference to examples using a nonaqueous electrolyte secondary battery as a secondary battery.

(実施例1)
コバルト酸リチウムを有する正極と、黒鉛を有する負極と、ポリエチレン製微多孔膜(融点:130℃)と、を巻回して電極体となした。
(Example 1)
A positive electrode having lithium cobaltate, a negative electrode having graphite, and a polyethylene microporous film (melting point: 130 ° C.) were wound to form an electrode body.

別途作製した角型の外装缶内に上記電極体を挿入し、エチレンカーボネートとジエチルカーボネートとを体積比1:1で混合した混合溶媒にLiPF6を1モル/リットルの割合で溶解した電解液を注液した。この後、外装缶の開口部をレーザー溶接により封口して、非水電解質二次電池を作製した。この非水電解質二次電池の理論容量は1000mAhである。   The electrode assembly was inserted into a separately prepared rectangular outer can, and an electrolytic solution in which LiPF6 was dissolved at a ratio of 1 mol / liter was mixed in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1. Liquid. Then, the opening part of the armored can was sealed by laser welding, and the nonaqueous electrolyte secondary battery was produced. The theoretical capacity of this nonaqueous electrolyte secondary battery is 1000 mAh.

この非水電解質二次電池に、上記実施の形態1に係る安全機構を、図3に示すように取り付け、実施例1に係る自己復帰型安全機構付き二次電池を作製した。なお、バイメタルの作動温度は70℃であり、抵抗は2Ωである。   The safety mechanism according to the first embodiment was attached to the non-aqueous electrolyte secondary battery as shown in FIG. 3, and a secondary battery with a self-returning safety mechanism according to Example 1 was produced. The bimetal operating temperature is 70 ° C., and the resistance is 2Ω.

(実施例2)
実施の形態2に係る安全機構を、図4に示すように取り付けたこと以外は、上記実施例1と同様にして、実施例2に係る自己復帰型安全機構付き二次電池を作製した。なお、バイメタルの作動温度は80℃であり、抵抗は3Ωである。
(Example 2)
A secondary battery with a self-returning safety mechanism according to Example 2 was produced in the same manner as in Example 1 except that the safety mechanism according to Embodiment 2 was attached as shown in FIG. The bimetal operating temperature is 80 ° C. and the resistance is 3Ω.

(比較例1)
自己復帰型安全機構を取り付けなかったこと以外は、上記実施例1と同様にして、比較例1に係る二次電池を作製した。
(Comparative Example 1)
A secondary battery according to Comparative Example 1 was fabricated in the same manner as in Example 1 except that the self-returning safety mechanism was not attached.

(比較例2)
図5に示すように、抵抗104を筐体105の内部且つ可動アーム本体121と負極101aの間に配置した安全機構を用いたこと以外は、上記実施例1と同様にして、比較例2に係る自己復帰型安全機構付き二次電池を作製した。
(Comparative Example 2)
As shown in FIG. 5, Comparative Example 2 was used in the same manner as in Example 1 except that a safety mechanism was used in which the resistor 104 was arranged inside the housing 105 and between the movable arm main body 121 and the negative electrode 101 a. A secondary battery with such a self-returning safety mechanism was produced.

〔安全性試験〕
上記で作製した安全機構付き二次電池を1000mAで4.2Vとなるまで充電し、その後4.2Vで100mAとなるまで充電した。この電池を100℃のオーブン内に投入し、30分経過後、電池を取り出し、室温(25℃)まで冷却した。
[Safety test]
The secondary battery with a safety mechanism produced above was charged at 1000 mA to 4.2 V, and then charged at 4.2 V until 100 mA. This battery was put into an oven at 100 ° C., and after 30 minutes, the battery was taken out and cooled to room temperature (25 ° C.).

冷却後の電池は、実施例1では電池電圧が3.2Vであり、実施例2では3.35Vと、充電レベルが安全なレベルにまで低下していた。また、両電池ともに、その後の充放電が可能であった。   The battery after cooling had a battery voltage of 3.2 V in Example 1 and 3.35 V in Example 2, and the charge level had dropped to a safe level. Further, both batteries could be charged and discharged thereafter.

他方、安全機構を取り付けていない比較例1は、電池電圧は維持されていたが、熱によって活物質が劣化し、また電池の厚みが増加し、電池特性が70%以下と大幅に劣化していた。
また、比較例2は、電池をオーブンから取り出した後でもバイメタルが動作した状態が維持されたため、電池電圧が1.0Vまで過放電されており、その後の充放電は可能であったものの、放電容量が実施例1の50%以下と大幅に劣化していた。
On the other hand, in Comparative Example 1 in which the safety mechanism was not attached, the battery voltage was maintained, but the active material was deteriorated by heat, the thickness of the battery was increased, and the battery characteristics were greatly deteriorated to 70% or less. It was.
Further, in Comparative Example 2, since the state in which the bimetal was operated was maintained even after the battery was taken out of the oven, the battery voltage was overdischarged to 1.0 V, and the subsequent charge / discharge was possible. The capacity was greatly deteriorated to 50% or less of Example 1.

(その他の事項)
上記実施例では、角型外装缶を備えた二次電池を例として説明したが、円筒型、ラミネート外装体等であってもよい。また、本発明に用いることができる二次電池としては、非水電解質二次電池、ニッケル−カドミウム二次電池(蓄電池)、ニッケル−水素二次電池(蓄電池)等が例示できる。
(Other matters)
In the above-described embodiment, the secondary battery including the square outer can is described as an example, but a cylindrical battery, a laminate outer body, or the like may be used. Moreover, as a secondary battery which can be used for this invention, a nonaqueous electrolyte secondary battery, a nickel-cadmium secondary battery (storage battery), a nickel-hydrogen secondary battery (storage battery), etc. can be illustrated.

また、自己復帰型安全機構付き二次電池を複数個直列及び/又は並列に接続した組電池にも本発明を適用することができる。この場合、各二次電池に自己復帰型安全機構が設けられていることが好ましい。   The present invention can also be applied to an assembled battery in which a plurality of secondary batteries with a self-recovering safety mechanism are connected in series and / or in parallel. In this case, it is preferable that each secondary battery is provided with a self-returning safety mechanism.

以上に説明したように、本発明によれば、二次電池に簡易な自己復帰型安全機構を取り付けることにより、電池温度が異常に上昇した場合の安全性が高く、且つ電池温度が低下した後には当該電池を再度用いることができる。したがって、産業上の利用可能性は大きい。   As described above, according to the present invention, by attaching a simple self-recovering safety mechanism to the secondary battery, the safety when the battery temperature rises abnormally is high, and after the battery temperature falls Can use the battery again. Therefore, industrial applicability is great.

図1は、実施の形態1に係る自己復帰型安全機構の要部拡大図であって、図1(a)は通常状態を、図1(b)は電池温度上昇時を示す。FIG. 1 is an enlarged view of a main part of the self-returning safety mechanism according to the first embodiment. FIG. 1 (a) shows a normal state, and FIG. 1 (b) shows when the battery temperature rises. 図2は、実施の形態2に係る自己復帰型安全機構の要部拡大図であって、図2(a)は通常状態を、図2(b)は電池温度上昇時を示す。FIG. 2 is an enlarged view of a main part of the self-returning safety mechanism according to the second embodiment. FIG. 2 (a) shows a normal state, and FIG. 2 (b) shows when the battery temperature rises. 図3は、実施例1に係る自己復帰型安全機構付き二次電池の要部拡大図である。FIG. 3 is an enlarged view of a main part of the secondary battery with a self-returning safety mechanism according to the first embodiment. 図4は、実施例2に係る自己復帰型安全機構付き二次電池の要部拡大図である。FIG. 4 is an enlarged view of a main part of the secondary battery with a self-returning safety mechanism according to the second embodiment. 図5は、比較例2に係る自己復帰型安全機構の要部拡大図である。FIG. 5 is an enlarged view of a main part of the self-returning safety mechanism according to the second comparative example.

符号の説明Explanation of symbols

1 二次電池
2 可動アーム
3 固定接続端子
4 抵抗
5 筐体

DESCRIPTION OF SYMBOLS 1 Secondary battery 2 Movable arm 3 Fixed connection terminal 4 Resistance 5 Case

Claims (7)

二次電池と、
外部に電気接続するための電気接続接点を端部に有し、温度変化に対応して変形する可動アームと、
前記可動アームの電気接続接点と接触する固定接続端子と、
を備え、
前記可動アームと前記固定接続端子とは筺体に収容され、当該筺体は前記二次電池の近傍に配置され、
かつ前記二次電池の一方の電極と前記可動アームとが電気的に接続され、前記二次電池の他方の電極と前記固定接続端子とが電気的に接続され、前記筺体が所定温度以上となると、前記可動アームの電気接続接点と前記固定接続端子とが接触して前記二次電池を外部短絡させ、前記筺体が所定温度未満になると、前記電気接続接点と前記固定接続端子との接触が解除されて前記外部短絡が遮断される構造の自己復帰型安全機構付き二次電池であって、
前記自己復帰型安全機構付き二次電池は、更に外部短絡時の電流値を下げる抵抗を有し、かつ当該抵抗は、当該抵抗から発生するジュール熱が前記可動アームの動作に影響を与えない位置に配置されている、
ことを特徴とする自己復帰型安全機構付き二次電池。
A secondary battery,
A movable arm having an electrical connection contact for electrical connection to the outside at the end and deforming in response to a temperature change;
A fixed connection terminal in contact with an electrical connection contact of the movable arm;
With
The movable arm and the fixed connection terminal are accommodated in a casing, and the casing is disposed in the vicinity of the secondary battery,
And when one electrode of the secondary battery and the movable arm are electrically connected, the other electrode of the secondary battery and the fixed connection terminal are electrically connected, and the casing is at a predetermined temperature or higher. When the electrical connection contact of the movable arm and the fixed connection terminal come into contact with each other, the secondary battery is externally short-circuited, and the contact between the electrical connection contact and the fixed connection terminal is released when the casing is below a predetermined temperature. A secondary battery with a self-recovering safety mechanism having a structure in which the external short circuit is cut off,
The secondary battery with a self-recovering safety mechanism further has a resistor that lowers the current value at the time of external short circuit, and the resistor is a position where Joule heat generated from the resistor does not affect the operation of the movable arm. Located in the
A secondary battery with a self-returning safety mechanism.
請求項1に記載の自己復帰型安全機構付き二次電池において、
前記抵抗が、前記固定接続端子と、前記固定接続端子が接続されている電極との間に配置されている、
ことを特徴とする自己復帰型安全機構付き二次電池。
The secondary battery with a self-returning safety mechanism according to claim 1,
The resistor is disposed between the fixed connection terminal and an electrode to which the fixed connection terminal is connected;
A secondary battery with a self-returning safety mechanism.
請求項1または2に記載の自己復帰型安全機構付き二次電池において、
前記抵抗が、前記筐体の外に配置されている、
ことを特徴とする自己復帰型安全機構付き二次電池。
The secondary battery with a self-returning safety mechanism according to claim 1 or 2,
The resistor is disposed outside the housing;
A secondary battery with a self-returning safety mechanism.
請求項1、2または3に記載の自己復帰型安全機構付き二次電池において、
前記可動アームが、バイメタルからなる、
ことを特徴とする自己復帰型安全機構付き二次電池。
The secondary battery with a self-returning safety mechanism according to claim 1, 2, or 3,
The movable arm is made of bimetal;
A secondary battery with a self-returning safety mechanism.
請求項1、2または3に記載の自己復帰型安全機構付き二次電池において、
前記可動アームが、可動アーム本体とバイメタルスイッチからなり、前記可動アーム本体が前記バイメタルスイッチによって可動する、
ことを特徴とする自己復帰型安全機構付き二次電池。
The secondary battery with a self-returning safety mechanism according to claim 1, 2, or 3,
The movable arm is composed of a movable arm body and a bimetal switch, and the movable arm body is movable by the bimetal switch.
A secondary battery with a self-returning safety mechanism.
請求項1、2、3、4または5に記載の自己復帰型安全機構付き二次電池において、
前記所定の温度が60〜100℃である、
ことを特徴とする自己復帰型安全機構付き二次電池。
The secondary battery with a self-returning safety mechanism according to claim 1, 2, 3, 4 or 5,
The predetermined temperature is 60 to 100 ° C.
A secondary battery with a self-returning safety mechanism.
請求項1、2、3、4、5または6に記載の自己復帰型安全機構付き二次電池において、
前記二次電池が、非水電解質二次電池である、
ことを特徴とする自己復帰型安全機構付き二次電池。
ことを特徴とする安全機構付き二次電池。

The secondary battery with a self-returning safety mechanism according to claim 1, 2, 3, 4, 5 or 6,
The secondary battery is a non-aqueous electrolyte secondary battery.
A secondary battery with a self-returning safety mechanism.
A secondary battery with a safety mechanism.

JP2004099326A 2004-03-30 2004-03-30 Secondary battery with self-restoration type safety mechanism Pending JP2005285624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099326A JP2005285624A (en) 2004-03-30 2004-03-30 Secondary battery with self-restoration type safety mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099326A JP2005285624A (en) 2004-03-30 2004-03-30 Secondary battery with self-restoration type safety mechanism

Publications (1)

Publication Number Publication Date
JP2005285624A true JP2005285624A (en) 2005-10-13

Family

ID=35183770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099326A Pending JP2005285624A (en) 2004-03-30 2004-03-30 Secondary battery with self-restoration type safety mechanism

Country Status (1)

Country Link
JP (1) JP2005285624A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076270A (en) * 2007-09-19 2009-04-09 Mitsubishi Heavy Ind Ltd Battery and power source system using it
JP2010086875A (en) * 2008-10-01 2010-04-15 Nissan Motor Co Ltd Bipolar battery, battery pack using the same, and vehicle
KR101165514B1 (en) * 2010-01-27 2012-07-16 에스비리모티브 주식회사 Rechargeable battery
US9059456B2 (en) 2010-05-20 2015-06-16 Samsung Sdi Co., Ltd. Rechargeable battery and battery module
WO2015102708A3 (en) * 2013-10-11 2015-08-20 Ec Power, Llc All climate battery and manufacturing and using same
KR20180018050A (en) * 2016-08-12 2018-02-21 주식회사 엘지화학 Secondary Battery and Battery Pack
CN110352509A (en) * 2017-02-23 2019-10-18 罗伯特·博世有限公司 The method of the secondary battery cell and manufacture secondary battery cell of traction battery
WO2022054507A1 (en) * 2020-09-09 2022-03-17 ボーンズ株式会社 Secondary battery pack and method for manufacturing same
WO2023126273A1 (en) * 2021-12-30 2023-07-06 Polestar Performance Ab Bi-material electric vehicle battery disconnect

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076270A (en) * 2007-09-19 2009-04-09 Mitsubishi Heavy Ind Ltd Battery and power source system using it
JP2010086875A (en) * 2008-10-01 2010-04-15 Nissan Motor Co Ltd Bipolar battery, battery pack using the same, and vehicle
KR101165514B1 (en) * 2010-01-27 2012-07-16 에스비리모티브 주식회사 Rechargeable battery
US9099731B2 (en) 2010-01-27 2015-08-04 Samsung Sdi Co., Ltd. Secondary battery with a bimetal element on a top surface of a cap plate
US9059456B2 (en) 2010-05-20 2015-06-16 Samsung Sdi Co., Ltd. Rechargeable battery and battery module
WO2015102708A3 (en) * 2013-10-11 2015-08-20 Ec Power, Llc All climate battery and manufacturing and using same
KR20180018050A (en) * 2016-08-12 2018-02-21 주식회사 엘지화학 Secondary Battery and Battery Pack
KR102118549B1 (en) * 2016-08-12 2020-06-03 주식회사 엘지화학 Secondary Battery and Battery Pack
CN110352509A (en) * 2017-02-23 2019-10-18 罗伯特·博世有限公司 The method of the secondary battery cell and manufacture secondary battery cell of traction battery
WO2022054507A1 (en) * 2020-09-09 2022-03-17 ボーンズ株式会社 Secondary battery pack and method for manufacturing same
JP2022045763A (en) * 2020-09-09 2022-03-22 ボーンズ株式会社 Secondary battery pack and manufacturing method thereof
JP7510313B2 (en) 2020-09-09 2024-07-03 ボーンズ株式会社 Secondary battery pack and its manufacturing method
WO2023126273A1 (en) * 2021-12-30 2023-07-06 Polestar Performance Ab Bi-material electric vehicle battery disconnect

Similar Documents

Publication Publication Date Title
KR100929036B1 (en) Protection circuit of battery pack, battery pack having same and operation method thereof
KR101121282B1 (en) Safety element for battery and battery with the same
JP5372495B2 (en) Secondary battery protection circuit and secondary battery having the same
KR100305101B1 (en) Explosion-proof secondary battery
KR20190005403A (en) Battery module, battery pack including the same, and vehicle including the same
KR19980071780A (en) Lithium secondary battery having thermal switch
JPH10326610A (en) Non-aqueous electrolyte secondary battery
KR20040036550A (en) Rechargeable, galvanic element with at least one lithium-intercalating electrode
JP2008234903A (en) Battery and battery system
JP2005517274A (en) Lithium secondary battery with built-in protection circuit
JPH117931A (en) Secondary battery
JPH1140203A (en) Secondary battery
JP2003051304A (en) Nonaqueous electrolyte secondary battery
JP2005285624A (en) Secondary battery with self-restoration type safety mechanism
JP5177843B2 (en) Battery pack
KR20010100893A (en) Nonaqueous electrolyte secondary battery
KR20180082748A (en) Battery Cell Comprising Electrode Lead Employed with Thermal Fuse of Interrupting Electricity at High Temperature
JPH10214613A (en) Nonaqueous electrolyte secondary battery and assembled battery using the same
KR101608694B1 (en) A Safeguard Apparatus Preventing Overcharge for A Secondary Battery
KR20000038817A (en) Secondary lithium battery
JPH1140204A (en) Secondary battery
JP2004152580A (en) Secondary battery with temperature protection element unit and secondary battery pack
JP2007305323A (en) Battery
JP2005251548A (en) Square shape secondary battery
JPH117932A (en) Secondary battery