JP2005283712A - Charging apparatus, electrostatic latent image forming apparatus, image forming apparatus, and electrostatic latent image measurement device - Google Patents

Charging apparatus, electrostatic latent image forming apparatus, image forming apparatus, and electrostatic latent image measurement device Download PDF

Info

Publication number
JP2005283712A
JP2005283712A JP2004094245A JP2004094245A JP2005283712A JP 2005283712 A JP2005283712 A JP 2005283712A JP 2004094245 A JP2004094245 A JP 2004094245A JP 2004094245 A JP2004094245 A JP 2004094245A JP 2005283712 A JP2005283712 A JP 2005283712A
Authority
JP
Japan
Prior art keywords
sample
latent image
electrostatic latent
charging
charging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004094245A
Other languages
Japanese (ja)
Other versions
JP4478491B2 (en
Inventor
Hiroyuki Suhara
浩之 須原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004094245A priority Critical patent/JP4478491B2/en
Priority to US11/001,048 priority patent/US7239148B2/en
Publication of JP2005283712A publication Critical patent/JP2005283712A/en
Priority to US11/751,671 priority patent/US7400839B2/en
Priority to US12/143,318 priority patent/US7783213B2/en
Priority to US12/788,989 priority patent/US7869725B2/en
Application granted granted Critical
Publication of JP4478491B2 publication Critical patent/JP4478491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize high image quality, high durability, high stability, etc., by measuring electrostatic latent image on a photoreceptor, within a short time after the formation of a latent image in an electrophotographic system, and by providing feedback on design, the quality for each process is improved. <P>SOLUTION: An electron beam B generated from an electron gun 1 is converged by an electronic condenser lens 2, passes through a scanning lens 4 and an objective lens 5, and scans the inside of the electrified area of a sample 6. The sample 6 is charged to a predetermined potential according to the relation between a back potential Vg applied to a conductor 7 and an acceleration voltage. A light beam L, emitted from a light source 10, such as an LD, is emitted to the sample 6 via a collimating lens 11, a cylinder lens 13, etc., and forms an electrostatic latent image on the sample 6. By stopping the light emission, changing the conditions again, and scanning with an electron beam, an output corresponding to the latent image can be obtained in a charge detector. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子写真プロセスにおける静電潜像の形成装置および静電潜像の測定装置に関する。さらに、誘電体試料の表面電位分布、表面電界分布、表面電荷分布の測定方法及び装置にも応用できる技術に関する。   The present invention relates to an electrostatic latent image forming apparatus and an electrostatic latent image measuring apparatus in an electrophotographic process. Further, the present invention relates to a technique that can be applied to a measuring method and apparatus for surface potential distribution, surface electric field distribution, and surface charge distribution of a dielectric sample.

複写機やレーザープリンタといった電子写真方式における出力画像を得るためには、各工程それぞれでのプロセスファクターやプロセスクオリティが最終的な出力画像品質に大きく影響を与える。さらに近年では、高画質に加えて、高耐久、高安定、さらに省エネルギー化など環境に優しい作像プロセスの要求が高まり、各工程のプロセスクォリティを向上させる必要がある。作像プロセスにとっては、露光に伴う感光体上の静電潜像が、トナー粒子の挙動に直接影響を与えるファクターであり、その挙動を把握することが必要である。このため、感光体上の静電潜像の品質を評価する事は、極めて重要である。
感光体の静電潜像を測定して、設計にフィードバックすることにより、各工程のプロセスクォリティが向上するため、その結果、高画質、高耐久、高安定、さらに省エネルギー化の実現が期待できる。
しかしながら、静電潜像は、測定することが極めて困難というよりは、実使用上全く測定できていないのが現状である。
In order to obtain an output image in an electrophotographic system such as a copying machine or a laser printer, the process factor and process quality in each process greatly affect the final output image quality. In recent years, in addition to high image quality, there has been an increasing demand for environmentally friendly imaging processes such as high durability, high stability, and energy saving, and it is necessary to improve the process quality of each process. For the image forming process, the electrostatic latent image on the photoreceptor accompanying exposure is a factor that directly affects the behavior of the toner particles, and it is necessary to grasp the behavior. For this reason, it is extremely important to evaluate the quality of the electrostatic latent image on the photoreceptor.
By measuring the electrostatic latent image of the photoreceptor and feeding it back to the design, the process quality of each process is improved. As a result, high image quality, high durability, high stability, and further energy saving can be expected.
However, at present, the electrostatic latent image is not measured at all, rather than being extremely difficult to measure.

電子ビームによる静電潜像の観察方法としては、特許文献1などがあるが、試料としては、LSIチップや静電潜像を記憶・保持できる試料に限定されている。すなわち、暗減衰を生じる通常の感光体は、測定することができない。通常の誘電体は電荷を半永久的に保持することができるので、電荷分布を形成後、時間をかけて測定を行っても、測定結果に影響を与えることはない。しかしながら、感光体の場合は、抵抗値が無限大ではないので、電荷を長時間保持できず、暗減衰が生じ時間とともに表面電位が低下してしまう。感光体が電荷を保持できる時間は、暗室であってもせいぜい数十秒である。従って、帯電・露光後に電子顕微鏡(SEM)内で観察しようとしても、その準備段階で静電潜像は消失してしまう。
そこで、本発明者は、荷電粒子ビームを照射して、測定を行う装置内で静電潜像を形成する手段を持ち、潜像形成後の短い時間内に測定を行うことにより、静電潜像分布を測定できるようにした(例えば、特許文献2 参照。)。
As a method for observing an electrostatic latent image using an electron beam, there is Patent Document 1, but the sample is limited to an LSI chip or a sample that can store and hold an electrostatic latent image. That is, a normal photoconductor that causes dark decay cannot be measured. Since a normal dielectric can hold a charge semipermanently, even if measurement is performed over time after forming a charge distribution, the measurement result is not affected. However, in the case of a photoconductor, since the resistance value is not infinite, the charge cannot be held for a long time, dark decay occurs, and the surface potential decreases with time. The time that the photoconductor can hold the charge is at most several tens of seconds even in the dark room. Therefore, even if an attempt is made to observe in an electron microscope (SEM) after charging and exposure, the electrostatic latent image disappears at the preparation stage.
Therefore, the present inventor has means for irradiating a charged particle beam to form an electrostatic latent image in an apparatus for performing measurement, and performing the measurement within a short time after the latent image is formed. The image distribution can be measured (for example, see Patent Document 2).

特開平03−49143号公報JP 03-49143 A 特開2003−295696号公報JP 2003-295696 A

特許文献2に示した方式では帯電電位を制御するためには、入射電子の加速電圧を変える必要があるが、加速電圧を細かいステップで制御することが難しい。また、高い帯電電位を生成するためには、設定電圧を上げる必要があり、大きな消費電力を必要とする。また、静電潜像測定時においては、帯電電位が異なると観察時の加速電圧も変えなければならないなどの課題があった。   In the method shown in Patent Document 2, it is necessary to change the acceleration voltage of incident electrons in order to control the charging potential, but it is difficult to control the acceleration voltage in fine steps. Further, in order to generate a high charging potential, it is necessary to increase the set voltage, which requires large power consumption. In addition, when the electrostatic latent image is measured, there is a problem that the acceleration voltage at the time of observation must be changed if the charging potential is different.

請求項1に記載の発明では、試料に対して電子あるいはマイナスイオンなどの負の荷電粒子を照射することによって、前記試料上に帯電電荷を生成させる帯電装置であって、前記試料を帯電させる面と反対側の面(以下裏面と称す)が接地状態であるときに2次電子放出比が1となる電子の加速電圧をE(>0)、前記荷電粒子を加速させるための電圧をE(>0)、前記裏面にかける裏面電位をVgとしたときに、
>E−Vg
の条件で前記試料に所望の負の帯電電位を形成することを特徴とする。
According to the first aspect of the present invention, there is provided a charging device that generates a charged charge on the sample by irradiating the sample with negative charged particles such as electrons or negative ions, the surface for charging the sample. When the surface opposite to the surface (hereinafter referred to as the back surface) is in a grounded state, an acceleration voltage of electrons that gives a secondary electron emission ratio of 1 is E 0 (> 0), and a voltage for accelerating the charged particles is E 1 (> 0), when the back surface potential applied to the back surface is Vg,
E 1 > E 0 -Vg
A desired negative charging potential is formed on the sample under the following conditions.

請求項2に記載の発明では、請求項1に記載の帯電装置において、前記所望の帯電電位をVsとするとき、前記試料に対して
|E−E+Vg|≧|Vs|
の条件を満たす裏面電位Vgを与えることを特徴とする。
請求項3に記載の発明では、請求項2に記載の帯電装置において、前記裏面電位Vgはさらに、
|E−E+Vg|≦|Vs|+2kV
を満たすことを特徴とする。
According to a second aspect of the present invention, in the charging device according to the first aspect, when the desired charging potential is Vs, | E 1 −E 0 + Vg | ≧ | Vs |
A back surface potential Vg that satisfies the following condition is applied.
According to a third aspect of the present invention, in the charging device according to the second aspect, the back surface potential Vg is further
| E 1 −E 0 + Vg | ≦ | Vs | +2 kV
It is characterized by satisfying.

請求項4に記載の発明では、請求項1ないし3のいずれか1つに記載の帯電装置において、前記帯電電荷の生成は真空中で行うことを特徴とする。
請求項5に記載の発明では、請求項1ないし4のいずれか1つに記載の帯電装置において、前記帯電電荷の生成終了後、前記裏面電位Vgを接地状態に設定することを特徴とする。
請求項6に記載の発明では、請求項1ないし5のいずれか1つに記載の帯電装置において、前記裏面電位Vgは、前記試料に対し、空間的に相異なる値に設定する手段を有するを特徴とする。
According to a fourth aspect of the present invention, in the charging device according to any one of the first to third aspects, the charged charge is generated in a vacuum.
According to a fifth aspect of the present invention, in the charging device according to any one of the first to fourth aspects, the back surface potential Vg is set to a ground state after the generation of the charged charge is completed.
According to a sixth aspect of the present invention, in the charging device according to any one of the first to fifth aspects, the back surface potential Vg has means for setting a spatially different value with respect to the sample. Features.

請求項7に記載の発明では、請求項1ないし6のいずれか1つに記載の帯電装置と、露光光学系とを有し、該露光光学系により前記帯電された試料の面に光を照射して該試料の面に電荷分布による静電潜像を形成させることを特徴とする。
請求項8に記載の発明では、請求項7に記載の静電潜像形成装置を用いたことを特徴とする。
According to a seventh aspect of the present invention, the charging device according to any one of the first to sixth aspects and an exposure optical system are provided, and the surface of the charged sample is irradiated by the exposure optical system. Then, an electrostatic latent image is formed on the surface of the sample by charge distribution.
The invention according to claim 8 is characterized in that the electrostatic latent image forming apparatus according to claim 7 is used.

請求項9に記載の発明では、請求項7に記載の静電潜像形成装置において、前記試料面を電子ビームで走査することによって該試料面の静電潜像を測定する測定手段を有するあることを特徴とする。
請求項10に記載の発明では、請求項9に記載の静電潜像測定装置において、前記測定手段は前記試料からの放出電子を検出することを特徴とする。
According to a ninth aspect of the invention, there is provided the electrostatic latent image forming apparatus according to the seventh aspect, further comprising measuring means for measuring the electrostatic latent image on the sample surface by scanning the sample surface with an electron beam. It is characterized by that.
According to a tenth aspect of the present invention, in the electrostatic latent image measuring apparatus according to the ninth aspect, the measuring means detects emitted electrons from the sample.

本発明によれば、裏面電位Vgを適切に設定することで、試料を効率よく所望の電位に帯電させることができる。   According to the present invention, the sample can be efficiently charged to a desired potential by appropriately setting the back surface potential Vg.

図1は本発明の実施例を示す図である。
同図において符号1は電子銃、2はコンデンサレンズ、3はビームブランカ、4は走査レンズ、5は対物レンズ、6は感光体等の試料、7は導体、100は荷電粒子照射部、200は試料設置部、Bは電子ビームあるいはイオンビームをそれぞれ示す。
本実施例は、荷電粒子ビームを照射する荷電粒子照射部100と、試料設置部200からなる。
ここでいう、荷電粒子とは、電子ビームあるいはイオンビームなど電界や磁界の影響を受ける粒子を指す。
以下電子ビームを照射する実施例で説明する。
電子ビーム照射部100は電子ビームを発生させるための電子銃1と、電子銃1から発生された電子ビームを集束させるためのコンデンサレンズ2と電子ビームをON/OFFさせるためのビームブランカ3(図示せず)と、電子ビームで帯電領域内を走査させるための走査レンズ4と走査レンズを再び集光させるための対物レンズ5などの電子光学系からなる。それぞれのレンズ等には、図示しない駆動用電源が接続されている。なお、ビーム径が帯電領域に相当する場合には、走査レンズ4はなくても良い。
試料を帯電させる面と反対側の面には電位Vgを印加可能な構成となっている。電子光学系及び試料部は、電子が正確な軌道を進むように真空内に配置する。
FIG. 1 is a diagram showing an embodiment of the present invention.
In the figure, reference numeral 1 is an electron gun, 2 is a condenser lens, 3 is a beam blanker, 4 is a scanning lens, 5 is an objective lens, 6 is a sample such as a photoreceptor, 7 is a conductor, 100 is a charged particle irradiation unit, and 200 is A sample placement part B represents an electron beam or an ion beam, respectively.
The present embodiment includes a charged particle irradiation unit 100 that irradiates a charged particle beam and a sample setting unit 200.
As used herein, charged particles refer to particles that are affected by an electric or magnetic field, such as an electron beam or an ion beam.
Hereinafter, an embodiment in which an electron beam is irradiated will be described.
The electron beam irradiation unit 100 includes an electron gun 1 for generating an electron beam, a condenser lens 2 for focusing the electron beam generated from the electron gun 1, and a beam blanker 3 for turning the electron beam on and off (see FIG. And an electron optical system such as a scanning lens 4 for scanning the charged region with an electron beam and an objective lens 5 for condensing the scanning lens again. A driving power source (not shown) is connected to each lens. When the beam diameter corresponds to the charged region, the scanning lens 4 may not be provided.
A potential Vg can be applied to the surface opposite to the surface on which the sample is charged. The electron optical system and the sample portion are arranged in a vacuum so that electrons travel on an accurate trajectory.

感光体試料6に電子ビームBを照射させる。加速電圧E(>0)は、2次電子放出比δが1となる加速電圧E(>0)より高い加速電圧に設定することにより、入射電子量が、放出電子量より上回るため電子が試料に蓄積され、チャージアップを起こす。この結果、試料6はマイナスの帯電を生じることができる。加速電圧と照射時間を適切に行うことにより、所望の帯電電位を形成することができる。
ここで、2次電子放出比δは、
δ=放出電子/入射電子
と表すが、より厳密にいうと、透過電子と反射電子を考慮する必要があるので、
放出電子=透過電子+反射電子+2次電子
とするとよい。なお、試料下面が接地(GND)のとき、試料の2次電子放出比が1となる電子の加速電圧をEとする。Eは帯電開始電圧に相当する。
The photoconductor sample 6 is irradiated with an electron beam B. Acceleration voltage E 1 (> 0), by secondary electron emission ratio δ is set to an acceleration voltage E 0 (> 0) than the high acceleration voltage of 1, electronic the incident electron amount is greater than than the amount of emitted electrons Accumulates in the sample and causes charge up. As a result, the sample 6 can be negatively charged. By appropriately performing the acceleration voltage and the irradiation time, a desired charging potential can be formed.
Here, the secondary electron emission ratio δ is
δ = emitted electron / incident electron, but more strictly speaking, it is necessary to consider transmitted and reflected electrons.
Emission electron = transmission electron + reflection electron + secondary electron is preferable. Note that when the lower surface of the sample is grounded (GND), the acceleration voltage of electrons at which the secondary electron emission ratio of the sample is 1 is E 0 . E 0 corresponds to the charging start voltage.

図2は加速電圧と帯電の関係を示す図である。
図3は電子ビームの照射時間と帯電電位の関係を示す図である。
図4は加速電圧と帯電電位の関係を示す図である。
2次電子放出比δは、電子ビームのエネルギー、すなわち加速電圧に依存し、一般的に図2のような関係になっている。δ=1となる加速電圧E(>0)では、帯電が起きず、平衡状態を保っている。加速電圧E>Eの場合には、δ<1となり、入射電子数に比べ放出電子数が少ないため、負帯電となる。
加速電圧と照射時間の関係を図3に示す。電子ビーム照射直後は、急激に電荷が蓄積されていくが、時間の経過に従い、試料の負帯電電位の影響で入射電子が減速される。表面の電位ポテンシャルVp(>0)における、電子の表面到達時の速度(ランディング速度)をv、電子の質量、電荷量をそれぞれm、eとすると、
v={2e(E+Vp)}}1/2 (1)
と近似的に表すことできる。従って電荷蓄積(負帯電)に伴い、ランディング速度が減少して、単位時間あたりの電荷蓄積量が減少し、E+Vp=Eすなわち、
Vp=E−E (2)
の条件になると、平衡安定状態に達して、これ以上帯電しない状態すなわち、飽和帯電電位Vdに達する。加速電圧の飽和帯電電位の関係の一例を図4に示す。
FIG. 2 is a diagram showing the relationship between the acceleration voltage and charging.
FIG. 3 is a diagram showing the relationship between the electron beam irradiation time and the charging potential.
FIG. 4 is a diagram showing the relationship between the acceleration voltage and the charging potential.
The secondary electron emission ratio δ depends on the energy of the electron beam, that is, the acceleration voltage, and generally has a relationship as shown in FIG. At an acceleration voltage E 1 (> 0) at which δ = 1, charging does not occur and an equilibrium state is maintained. In the case of the acceleration voltage E 1 > E 0 , δ <1 and the number of emitted electrons is smaller than the number of incident electrons, so that negative charging is performed.
FIG. 3 shows the relationship between the acceleration voltage and the irradiation time. Immediately after the electron beam irradiation, charges are rapidly accumulated, but as time passes, incident electrons are decelerated due to the negatively charged potential of the sample. In the surface potential potential Vp (> 0), when the velocity (landing velocity) when the electrons reach the surface is v, the mass of the electrons and the charge amount are m and e, respectively,
v = {2e (E 1 + Vp)}} 1/2 (1)
Can be expressed approximately. Therefore, with the charge accumulation (negative charge), the landing speed decreases, the charge accumulation amount per unit time decreases, and E 1 + Vp = E 0, that is,
Vp = E 0 −E 1 (2)
In this condition, the equilibrium stable state is reached, and no further charging occurs, that is, the saturation charging potential Vd is reached. An example of the relationship between the saturation charging potential and the acceleration voltage is shown in FIG.

表面の電位ポテンシャルVpは、試料表面電荷密度Qsによって生じる電位Vsと試料電荷蓄積面と反対面の電位Vgの和すなわち
Vp=Vs+Vg (3)
で表すことができる。
但し、Vs=Q/C=d/(S×ε’×ε0)×Qs
ε’:比誘電率、ε0:真空の誘電率、Q:電荷蓄積量、S:単位面積、d:試料厚
ここでは、試料の特性値が一定と考えて良いから、
Vs ∝ Qs の関係が成立する。
The potential potential Vp on the surface is the sum of the potential Vs generated by the sample surface charge density Qs and the potential Vg on the surface opposite to the sample charge accumulation surface, that is, Vp = Vs + Vg (3)
It can be expressed as
However, Vs = Q / C = d / (S × ε ′ × ε0) × Qs
ε ′: relative dielectric constant, ε0: vacuum dielectric constant, Q: charge accumulation amount, S: unit area, d: sample thickness Here, since the characteristic value of the sample may be considered constant,
The relationship Vs Q Qs is established.

図5は本発明による測定結果を示す図である。
試料下部や背面などに電圧Vgを印加し、制御することで、試料表面電荷密度Qsによって生じる電位Vsを制御することが可能となる。
同図は、加速電圧を1.5kVで一定とし、試料下面の電位Vgを変えたときの飽和帯電電位の測定結果である。測定結果時は、Vg=0Vにしている。単位は(−V)である。Vg=0Vのとき、電位は−550Vであり、この結果この試料のE=−950Vである。Vgをプラス側に変化させると、入射電子が相対的に加速されて帯電しやすくなり、電荷蓄積量が増大し、帯電電位がマイナス方向に上昇する。また、Vgをマイナス側に変化させると、入射電子が相対的に減速されて帯電しにくくなり、電荷蓄積量が減少し、帯電電位が下がる。また、帯電電位と印加電圧の関係は、近似的に以下の関係式が成立する。
飽和帯電電位Vd(−V)
=加速電圧E(V)−帯電開始電圧E(V)+印加電圧Vg(V) (4)
従って、従来のVg=0であれば、1.5kVの加速電圧で最大−550V迄しか帯電できなかった試料でも、Vg=300Vの電圧を印可することで、−850V迄帯電させることが可能である。Vgをさらに高電圧を印可することで、さらに高帯電電位を得ることができる。
FIG. 5 is a diagram showing a measurement result according to the present invention.
By applying and controlling the voltage Vg to the lower part of the sample, the back surface, etc., the potential Vs generated by the sample surface charge density Qs can be controlled.
The figure shows the measurement result of the saturation charging potential when the acceleration voltage is constant at 1.5 kV and the potential Vg on the lower surface of the sample is changed. At the measurement result, Vg = 0V. The unit is (-V). When Vg = 0V, the potential is −550V, and as a result, E 0 of this sample is −950V. When Vg is changed to the plus side, the incident electrons are relatively accelerated and easily charged, the charge accumulation amount is increased, and the charged potential is increased in the minus direction. Further, when Vg is changed to the minus side, the incident electrons are relatively decelerated and become difficult to be charged, the charge accumulation amount is reduced, and the charging potential is lowered. The relationship between the charging potential and the applied voltage is approximately established by the following relational expression.
Saturation charging potential Vd (-V)
= Acceleration voltage E 1 (V) −Charge start voltage E 0 (V) + Applied voltage Vg (V) (4)
Therefore, if the conventional Vg = 0, even a sample that could only be charged up to -550V with an acceleration voltage of 1.5kV can be charged to -850V by applying a voltage of Vg = 300V. is there. By applying a higher voltage to Vg, a higher charging potential can be obtained.

電荷蓄積量は図3のように時間と共に変化するので、Vgと帯電時間を制御することで、 |E−E +Vg|≧|Vs|
の条件を満たす帯電電位Vsを得ることが可能である。
従来に比べて、加速電圧が低く抑えることができるので、消費電力が少なく環境にやさしい特徴があり、なおかつ制御も容易である。
加速電圧が大きくなると目標とする帯電電位に到達する時間が短くなるので制御することが難しくなるだけでなく、試料へのダメージも無視できなくなる。したがって、なるべく小さい加速電圧で、所望の帯電電位を形成できる条件が望ましく、
|Vs|≦|E−E +Vg|≦|Vs|+2kV (5)
が適切である。
今回の試料(E=−950V)で、Vs=−800Vに帯電させるために、Vg=0の場合、E=1.75〜3.75kV程度が適正範囲であるが、Vg=750Vと設定することにより、E=1〜3kVと低い加速電圧で実現することができる。
なお短い時間で帯電させるためには、電子ビームの電流密度を増大させればよい。
下部電圧印加による帯電手段は、大気中帯電方式でも適用可能であるが、真空中で有れば、荷電粒子が大気中粒子による干渉を受けないので、精度の高い帯電形成を行うことができる。
Since the charge accumulation amount changes with time as shown in FIG. 3, by controlling Vg and charging time, | E 1 −E 0 + Vg | ≧ | Vs |
It is possible to obtain a charging potential Vs that satisfies the following condition.
Compared to the conventional technology, the acceleration voltage can be kept low. Therefore, the power consumption is low and the environment is friendly, and the control is easy.
When the acceleration voltage is increased, the time to reach the target charged potential is shortened, so that it becomes difficult to control and damage to the sample cannot be ignored. Therefore, it is desirable that the desired charging potential can be formed with as small an acceleration voltage as possible.
| Vs | ≦ | E 1 −E 0 + Vg | ≦ | Vs | +2 kV (5)
Is appropriate.
In this sample (E 0 = −950V), in order to charge Vs = −800V, when Vg = 0, E 1 = 1.75-3.75 kV is an appropriate range, but Vg = 750V By setting, it can be realized with an acceleration voltage as low as E 1 = 1 to 3 kV.
In order to charge in a short time, the current density of the electron beam may be increased.
The charging means by applying the lower voltage can also be applied in the atmospheric charging method, but if it is in a vacuum, charged particles are not subject to interference by atmospheric particles, so that highly accurate charge formation can be performed.

図6は潜像形成および測定の例を説明するための図である。
図7は露光光学系の一例を示す図である。
図6において符号10は光源、11はコリメートレンズ、12はアパーチャ、13はシリンダレンズ、14は走査レンズ、15はLD制御部、16は電荷検出器、300は露光光学系をそれぞれ示す。
図7において符号20は光源、21はコリメートレンズ、23はシリンダレンズ、24は走査レンズ、26は第1の折り返しミラー、27はポリゴンミラー、28は第2の折り返しミラー、29は感光体ドラムをそれぞれ示す。
潜像形成手段を説明する。
感光体試料6に所定量の帯電後、露光光学系300により感光体試料6に露光を行う。
露光光学系300は、所望のビーム径及びビームプロファイルを形成するように調整されている。感光体試料6の感度域の波長を有するLD(レーザ ダイオード)などの光源10、コリーメートレンズ11、アパーチャ12、シリンダレンズ13、走査レンズ14などからなり、試料6上に所望のビーム径、ビームプロファイルを生成する。LD制御部15により適切な露光時間、露光エネルギーを照射できるようになっている。
図7に示すように、ポリゴンミラー27を用いたスキャニング機構を付けることにより、感光体ドラム29の母線方向に対して、ラインパターンを含めた任意の潜像パターンを形成することができる。
これにより、感光体試料に静電潜像を形成することができる。
FIG. 6 is a diagram for explaining an example of latent image formation and measurement.
FIG. 7 shows an example of an exposure optical system.
In FIG. 6, reference numeral 10 denotes a light source, 11 denotes a collimating lens, 12 denotes an aperture, 13 denotes a cylinder lens, 14 denotes a scanning lens, 15 denotes an LD control unit, 16 denotes a charge detector, and 300 denotes an exposure optical system.
In FIG. 7, reference numeral 20 is a light source, 21 is a collimating lens, 23 is a cylinder lens, 24 is a scanning lens, 26 is a first folding mirror, 27 is a polygon mirror, 28 is a second folding mirror, and 29 is a photosensitive drum. Each is shown.
The latent image forming means will be described.
After the photoconductor sample 6 is charged by a predetermined amount, the photoconductor sample 6 is exposed by the exposure optical system 300.
The exposure optical system 300 is adjusted so as to form a desired beam diameter and beam profile. It comprises a light source 10 such as an LD (laser diode) having a wavelength in the sensitivity range of the photoconductor sample 6, a collimate lens 11, an aperture 12, a cylinder lens 13, a scanning lens 14, and the like. Generate a profile. An appropriate exposure time and exposure energy can be irradiated by the LD control unit 15.
As shown in FIG. 7, by adding a scanning mechanism using a polygon mirror 27, an arbitrary latent image pattern including a line pattern can be formed in the generatrix direction of the photosensitive drum 29.
Thereby, an electrostatic latent image can be formed on the photoreceptor sample.

感光体試料の静電潜像に条件を変えて再度電子ビームで走査し、放出される2次電子を電荷検出器(シンチレータ)16で検出し、電気信号に変換して電位コントラスト像を測定する。
試料表面に電荷分布があると、空間に電荷分布に応じた電界分布が形成される。このため、入射電子によって、発生した2次電子はこの電界によって押し戻され、検出器16に到達する量が減少する。従って、電界強度が強い部分は暗く、弱い部分は明るくコントラストがつき、表面電荷分布に応じたコントラスト像を検出することができる。露光した場合には、露光部が黒、非露光部が白となる。従って、電子ビームが試料面を走査してそれによって信号検出することにより、形成された静電潜像を測定することができる。
検出器上での信号強度は、設定条件により変化する場合には補正しても良い。また、事前にキャリブレーションしてもよい。また、2次電子の代わりに、反射電子を検出しても良い。
測定終了後は、LEDなど用いて、試料面全体を照射することにより、残留電荷を除去することができる。
図6に本発明の制御部の構成を示す。
The condition is changed to the electrostatic latent image of the photoconductor sample, and the electron beam is scanned again. The emitted secondary electrons are detected by the charge detector (scintillator) 16, converted into an electric signal, and the potential contrast image is measured. .
If there is a charge distribution on the sample surface, an electric field distribution corresponding to the charge distribution is formed in the space. For this reason, the secondary electrons generated by the incident electrons are pushed back by this electric field, and the amount reaching the detector 16 is reduced. Therefore, a portion where the electric field intensity is strong is dark and a weak portion is bright and contrasted, and a contrast image corresponding to the surface charge distribution can be detected. When exposed, the exposed area is black and the non-exposed area is white. Therefore, the electrostatic latent image formed can be measured by scanning the sample surface with the electron beam and detecting the signal thereby.
The signal intensity on the detector may be corrected when it changes depending on the setting conditions. Further, calibration may be performed in advance. Moreover, you may detect a reflected electron instead of a secondary electron.
After the measurement is completed, residual charges can be removed by irradiating the entire sample surface with an LED or the like.
FIG. 6 shows the configuration of the control unit of the present invention.

図8は円筒形状の感光体の静電潜像を測定する実施例を説明するための図である。
チャンバ内には、円筒形状の感光体試料29と、感光体試料の周辺には電荷を照射させるための帯電部30、電荷分布を形成させるための露光部31、電荷を消去するための除電部32がある。
感光体29には、感光体中心軸に対して回転可能な、駆動手段が取り付けられている。駆動手段としては、ステッピングモータ、DCサーボモータなどがある。
帯電部32の帯電手段としては、電子ビーム照射による帯電や、接触帯電など、電荷注入帯電などがある。
除電部としては、LEDなどがある。
FIG. 8 is a diagram for explaining an embodiment for measuring an electrostatic latent image of a cylindrical photosensitive member.
In the chamber, a cylindrical photoconductor sample 29, a charging unit 30 for irradiating the periphery of the photoconductor sample, an exposure unit 31 for forming a charge distribution, and a charge eliminating unit for erasing the charge. There are 32.
The photosensitive member 29 is attached with driving means that can rotate with respect to the central axis of the photosensitive member. Examples of the driving means include a stepping motor and a DC servo motor.
As charging means of the charging unit 32, there are charge injection charging such as charging by electron beam irradiation and contact charging.
There exist LED etc. as a static elimination part.

この場合の動作としては、
1.帯電部において、感光体の内側、すなわち帯電表面と反対側の電圧Vgを印加可能な構成となっており、Vgの電圧を印可した状態で、感光体表面が所望の電位となるように感光体を均一に帯電させる。
2.感光体下部電極の印加電圧を接地状態(GND)に設定する。
3.露光部において、感光体に光を照射して、部分的に電荷を逃がし、静電潜像を形成する。
4.測定部において、感光体試料を電子ビームで走査し、放出される電子をシンチレータで検出し、電気信号に変換して電位コントラスト像を観察する。
5.除電部において、LEDなどを照射することにより感光体上の残留電荷を消す。
このような方法を用いることにより、円筒形状であっても感光体の静電潜像を測定することが可能である。
なお、感光体下部電極の印加電圧を接地状態(GND)に設定しているが、像形成手段によっては電圧を印加したままでも良い。
As an operation in this case,
1. The charging unit is configured to be able to apply a voltage Vg on the inner side of the photoconductor, that is, on the side opposite to the charging surface, and the photoconductor so that the surface of the photoconductor is at a desired potential with the voltage Vg applied. Is uniformly charged.
2. The voltage applied to the lower electrode of the photosensitive member is set to the ground state (GND).
3. In the exposure unit, the photosensitive member is irradiated with light to partially release the charges and form an electrostatic latent image.
4). In the measurement unit, the photosensitive member sample is scanned with an electron beam, and the emitted electrons are detected with a scintillator, converted into an electric signal, and a potential contrast image is observed.
5). In the static elimination unit, residual charges on the photoreceptor are erased by irradiating the LED or the like.
By using such a method, it is possible to measure the electrostatic latent image of the photoreceptor even in the cylindrical shape.
Although the applied voltage of the lower electrode of the photosensitive member is set to the ground state (GND), the voltage may be kept applied depending on the image forming means.

図9は他の実施例を説明するための図である。
同図において符号Pは対向電極を示す。
誘電体部である感光体ドラム29が回転し、印加する導電部は、固定となるので、各印加プロセス毎に、対向電圧を設けることにより、独立した電圧を印加することができる。
対向電極Pは感光体の周辺装置に対応して固定にしておく。
図10はさらに他の実施例を説明するための図である。
同図において符号pは対向電極をなす導体部を示す。
内側の導体部pと導体部pの間に絶縁部の隙間を設けることにより、各プロセスに独立した所望の電圧を印加する事を可能としたものである。この場合は、導体部pは、周辺装置に対応させて固定しておいても良いし、感光体と一体になって回転させても良い。
図11はさらに他の実施例を説明するための図である。
図12、13は帯電手段を説明するための図である。図12はコロトロン帯電器、図13はスコロトロン帯電器をそれぞれ示す図である。
図14は通常の画像形成装置に用いられる感光体周辺装置を示す図である。
大気中で帯電させて、差動排気機構を利用し、真空内で潜像を測定している。大気中帯電手段としては、コロナ放電を利用することができ、図12、13のようにコロトロン帯電やスコロトロン帯電なども利用することができ、これに下部に電圧を印加させることにより、上記と同じ効果を得ることができる。この場合、オゾンの発生量も少なく、環境にやさしい。なお、この帯電方式を、図14に示すような通常の画像形成装置として適用してもよい。
FIG. 9 is a diagram for explaining another embodiment.
In the figure, the symbol P indicates a counter electrode.
Since the photosensitive drum 29 as the dielectric portion rotates and the conductive portion to be applied is fixed, an independent voltage can be applied by providing a counter voltage for each application process.
The counter electrode P is fixed corresponding to the peripheral device of the photoconductor.
FIG. 10 is a diagram for explaining still another embodiment.
In the figure, the symbol p indicates a conductor portion forming a counter electrode.
By providing a gap in the insulating portion between the inner conductor portion p and the conductor portion p, it is possible to apply a desired voltage independent of each process. In this case, the conductor part p may be fixed corresponding to the peripheral device, or may be rotated integrally with the photoconductor.
FIG. 11 is a diagram for explaining still another embodiment.
12 and 13 are diagrams for explaining the charging means. FIG. 12 shows a corotron charger, and FIG. 13 shows a scorotron charger.
FIG. 14 is a diagram showing a photosensitive peripheral device used in a normal image forming apparatus.
A latent image is measured in a vacuum by charging in the atmosphere and using a differential pumping mechanism. As the atmospheric charging means, corona discharge can be used, and corotron charging and scorotron charging can also be used as shown in FIGS. 12 and 13. An effect can be obtained. In this case, the amount of ozone generated is small and environmentally friendly. Note that this charging method may be applied to a normal image forming apparatus as shown in FIG.

試料が誘電体で有れば、潜像形成ユニットは、静電記録方式など、電荷分布を直接形成する方式であってもよい。試料が感光体の場合には、潜像形成ユニットは、帯電ユニットと露光ユニットからなる方式とであってもよい。
また試料が、円筒形状の感光体を測定する場合は図11のような構成をとることができる。
このような方法を用いることにより、実使用環境に近い状態で感光体の静電潜像を測定することが可能となる。またプロセススピードに相当する数百ms以下の静電潜像の分布状態を測定することが可能となる。
If the sample is a dielectric, the latent image forming unit may be a system that directly forms a charge distribution, such as an electrostatic recording system. In the case where the sample is a photoconductor, the latent image forming unit may be composed of a charging unit and an exposure unit.
When the sample is a cylindrical photoconductor, the configuration shown in FIG. 11 can be used.
By using such a method, it is possible to measure the electrostatic latent image on the photoreceptor in a state close to the actual use environment. In addition, it is possible to measure the distribution state of the electrostatic latent image of several hundred ms or less corresponding to the process speed.

本発明の実施例を示す図である。It is a figure which shows the Example of this invention. 加速電圧と帯電の関係を示す図である。It is a figure which shows the relationship between an acceleration voltage and charging. 電子ビームの照射時間と帯電電位の関係を示す図である。It is a figure which shows the relationship between the irradiation time of an electron beam, and a charging potential. 加速電圧と帯電電位の関係を示す図である。It is a figure which shows the relationship between an acceleration voltage and a charging potential. 本発明による測定結果を示す図である。It is a figure which shows the measurement result by this invention. 潜像形成および測定の例を説明するための図である。It is a figure for demonstrating the example of latent image formation and a measurement. 露光光学系の一例を示す図である。It is a figure which shows an example of an exposure optical system. 円筒形状の感光体の静電潜像を測定する実施例を説明するための図である。It is a figure for demonstrating the Example which measures the electrostatic latent image of a cylindrical-shaped photoreceptor. 他の実施例を説明するための図である。It is a figure for demonstrating another Example. さらに他の実施例を説明するための図である。It is a figure for demonstrating another Example. さらに他の実施例を説明するための図である。It is a figure for demonstrating another Example. 帯電手段を説明するための図である。It is a figure for demonstrating a charging means. 帯電手段を説明するための図である。It is a figure for demonstrating a charging means. 通常の画像形成装置に用いられる感光体周辺装置を示す図である。FIG. 3 is a diagram illustrating a photoreceptor peripheral device used in a normal image forming apparatus.

符号の説明Explanation of symbols

1 電子銃
2 コンデンサレンズ
4、14、24 走査レンズ
6 試料
10、20 光源
11、21 コリメートレンズ
15 LD制御部
27 ポリゴンミラー
29 感光体ドラム
DESCRIPTION OF SYMBOLS 1 Electron gun 2 Condenser lens 4, 14, 24 Scan lens 6 Sample 10, 20 Light source 11, 21 Collimate lens 15 LD control part 27 Polygon mirror 29 Photosensitive drum

Claims (10)

試料に対して電子あるいはマイナスイオンなどの負の荷電粒子を照射することによって、前記試料上に帯電電荷を生成させる帯電装置であって、前記試料を帯電させる面と反対側の面(以下裏面と称す)が接地状態であるときに2次電子放出比が1となる電子の加速電圧をE(>0)、前記荷電粒子を加速させるための電圧をE(>0)、前記裏面にかける裏面電位をVgとしたときに、
>E−Vg
の条件で前記試料に所望の負の帯電電位を形成することを特徴とする帯電装置。
A charging device for generating a charged charge on the sample by irradiating the sample with negative charged particles such as electrons or negative ions, the surface opposite to the surface for charging the sample (hereinafter referred to as a back surface) referred) is E the acceleration voltage of electrons secondary electron emission ratio is 1 when the ground state 0 (> 0), the voltage for accelerating the charged particles E 1 (> 0), the back surface When the back surface potential applied is Vg,
E 1 > E 0 -Vg
A charging device, wherein a desired negative charging potential is formed on the sample under the following conditions.
請求項1に記載の帯電装置において、前記所望の帯電電位をVsとするとき、前記試料に対して
|E−E+Vg|≧|Vs|
の条件を満たす裏面電位Vgを与えることを特徴とする帯電装置。
2. The charging device according to claim 1, wherein when the desired charging potential is Vs, | E 1 −E 0 + Vg | ≧ | Vs |
A charging device characterized by providing a back surface potential Vg that satisfies the following conditions.
請求項2に記載の帯電装置において、前記裏面電位Vgはさらに、
|E−E+Vg|≦|Vs|+2kV
を満たすことを特徴とする帯電装置。
The charging device according to claim 2, wherein the back surface potential Vg is further
| E 1 −E 0 + Vg | ≦ | Vs | +2 kV
A charging device characterized by satisfying
請求項1ないし3のいずれか1つに記載の帯電装置において、前記帯電電荷の生成は真空中で行うことを特徴とする帯電装置。   4. The charging device according to claim 1, wherein the generation of the charged electric charge is performed in a vacuum. 5. 請求項1ないし4のいずれか1つに記載の帯電装置において、前記帯電電荷の生成終了後、前記裏面電位Vgを接地状態に設定することを特徴とする帯電装置。   5. The charging device according to claim 1, wherein the back surface potential Vg is set to a grounded state after the generation of the charged charge is completed. 6. 請求項1ないし5のいずれか1つに記載の帯電装置において、前記裏面電位Vgは、前記試料に対し、空間的に相異なる値に設定する手段を有することを特徴とする帯電装置。   6. The charging device according to claim 1, further comprising means for setting the back surface potential Vg to a spatially different value with respect to the sample. 請求項1ないし6のいずれか1つに記載の帯電装置と、露光光学系とを有し、該露光光学系により前記帯電された試料の面に光を照射して該試料の面に電荷分布による静電潜像を形成させることを特徴とする静電潜像形成装置。   A charging device according to claim 1, and an exposure optical system, wherein the surface of the sample charged by the exposure optical system is irradiated with light to distribute the charge on the surface of the sample. An electrostatic latent image forming apparatus, characterized in that an electrostatic latent image is formed. 請求項7に記載の静電潜像形成装置を用いたことを特徴とする画像形成装置。   An image forming apparatus comprising the electrostatic latent image forming apparatus according to claim 7. 請求項7に記載の静電潜像形成装置において、前記試料面を電子ビームで走査することによって該試料面の静電潜像を測定する測定手段を有することを特徴とする静電潜像測定装置。   8. The electrostatic latent image forming apparatus according to claim 7, further comprising measuring means for measuring the electrostatic latent image on the sample surface by scanning the sample surface with an electron beam. apparatus. 請求項9に記載の静電潜像測定装置において、前記測定手段は前記試料からの放出電子を検出することを特徴とする静電潜像測定装置。
10. The electrostatic latent image measuring apparatus according to claim 9, wherein the measuring unit detects electrons emitted from the sample.
JP2004094245A 2003-12-04 2004-03-29 Charging device, electrostatic latent image forming device, image forming device, electrostatic latent image measuring device, charging method, electrostatic latent image forming method, image forming method, and electrostatic latent image measuring method Expired - Fee Related JP4478491B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004094245A JP4478491B2 (en) 2004-03-29 2004-03-29 Charging device, electrostatic latent image forming device, image forming device, electrostatic latent image measuring device, charging method, electrostatic latent image forming method, image forming method, and electrostatic latent image measuring method
US11/001,048 US7239148B2 (en) 2003-12-04 2004-12-02 Method and device for measuring surface potential distribution
US11/751,671 US7400839B2 (en) 2003-12-04 2007-05-22 Method and device for measuring surface potential distribution, method and device for measuring insulation resistance, electrostatic latent image measurement device, and charging device
US12/143,318 US7783213B2 (en) 2003-12-04 2008-06-20 Method and device for measuring surface potential distribution, method and device for measuring insulation resistance, electrostatic latent image measurement device, and charging device
US12/788,989 US7869725B2 (en) 2003-12-04 2010-05-27 Method and device for measuring surface potential distribution, method and device for measuring insulation resistance, electrostatic latent image measurement device, and charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004094245A JP4478491B2 (en) 2004-03-29 2004-03-29 Charging device, electrostatic latent image forming device, image forming device, electrostatic latent image measuring device, charging method, electrostatic latent image forming method, image forming method, and electrostatic latent image measuring method

Publications (2)

Publication Number Publication Date
JP2005283712A true JP2005283712A (en) 2005-10-13
JP4478491B2 JP4478491B2 (en) 2010-06-09

Family

ID=35182188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004094245A Expired - Fee Related JP4478491B2 (en) 2003-12-04 2004-03-29 Charging device, electrostatic latent image forming device, image forming device, electrostatic latent image measuring device, charging method, electrostatic latent image forming method, image forming method, and electrostatic latent image measuring method

Country Status (1)

Country Link
JP (1) JP4478491B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206030A (en) * 2006-02-06 2007-08-16 Ricoh Co Ltd Photoreceptor performance measuring instrument, and image forming device
US7612570B2 (en) 2006-08-30 2009-11-03 Ricoh Company, Limited Surface-potential distribution measuring apparatus, image carrier, and image forming apparatus
JP2010276802A (en) * 2009-05-27 2010-12-09 Ricoh Co Ltd Latent image forming method, latent image forming apparatus, image forming apparatus and electrostatic latent image-measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206030A (en) * 2006-02-06 2007-08-16 Ricoh Co Ltd Photoreceptor performance measuring instrument, and image forming device
US7612570B2 (en) 2006-08-30 2009-11-03 Ricoh Company, Limited Surface-potential distribution measuring apparatus, image carrier, and image forming apparatus
JP2010276802A (en) * 2009-05-27 2010-12-09 Ricoh Co Ltd Latent image forming method, latent image forming apparatus, image forming apparatus and electrostatic latent image-measuring apparatus

Also Published As

Publication number Publication date
JP4478491B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP5262322B2 (en) Electrostatic latent image evaluation apparatus, electrostatic latent image evaluation method, electrophotographic photosensitive member, and image forming apparatus
US7400839B2 (en) Method and device for measuring surface potential distribution, method and device for measuring insulation resistance, electrostatic latent image measurement device, and charging device
JP5086671B2 (en) Electrostatic latent image evaluation method / electrostatic latent image evaluation apparatus
JP4702880B2 (en) Surface potential distribution measuring method and surface potential distribution measuring apparatus
US9069023B2 (en) Latent-image measuring device and latent-image carrier
JP4344909B2 (en) Electrostatic latent image measuring apparatus and electrostatic latent image measuring method
JP5176328B2 (en) Electrostatic characteristic measuring method and electrostatic characteristic measuring apparatus
JP2003295696A (en) Method and apparatus for forming electrostatic latent image and measurement method and measurement instrument for electrostatic latent image
JP2004251800A (en) Method and instrument for measuring surface charge distribution
JP2005166542A (en) Measuring method of surface potential distribution and surface potential distribution measuring device
JP2008076100A (en) Measuring method of surface charge distribution or surface potential distribution, measuring device, and image forming device
JP4478491B2 (en) Charging device, electrostatic latent image forming device, image forming device, electrostatic latent image measuring device, charging method, electrostatic latent image forming method, image forming method, and electrostatic latent image measuring method
JP4438439B2 (en) Surface charge distribution measuring method and apparatus, and photoreceptor electrostatic latent image distribution measuring method and apparatus
JP5091081B2 (en) Method and apparatus for measuring surface charge distribution
JP5374816B2 (en) Electrostatic latent image measuring device, latent image carrier, and image forming apparatus
JP2004233261A (en) Electrostatic latent image observation method and system
JP2005283625A (en) Charging apparatus, electrostatic latent image forming apparatus, image forming apparatus, and electrostatic latent image measuring device
US9008526B2 (en) Method of measuring total amount of latent image charge, apparatus measuring total amount of latent image charge, image forming method and image forming apparatus
JP5089865B2 (en) Surface potential distribution measuring method and surface potential distribution measuring apparatus
JP5369369B2 (en) Surface potential distribution measuring method, surface potential measuring device, photoconductor electrostatic latent image measuring device, latent image carrier, and image forming apparatus
JP5072081B2 (en) Photoconductor electrostatic latent image measuring device, image forming apparatus, and photoconductor electrostatic latent image measuring method
JP2008026496A (en) Apparatus for measuring electrostatic latent image, method for measuring electrostatic latent image, program, and apparatus for measuring latent image diameter
JP2008058247A (en) Method and device for measuring surface potential distribution, and image forming device
JP2005085518A (en) Sample transfer method, sample transfer device, and electrostatic latent image measuring device
Suhara Measurement of Electrostatic Latent Image on Photoconductors by Use of Electron Beam Probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Ref document number: 4478491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees