JP2005283503A - Magnetic detector - Google Patents

Magnetic detector Download PDF

Info

Publication number
JP2005283503A
JP2005283503A JP2004101359A JP2004101359A JP2005283503A JP 2005283503 A JP2005283503 A JP 2005283503A JP 2004101359 A JP2004101359 A JP 2004101359A JP 2004101359 A JP2004101359 A JP 2004101359A JP 2005283503 A JP2005283503 A JP 2005283503A
Authority
JP
Japan
Prior art keywords
switching
terminal
current
voltage
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004101359A
Other languages
Japanese (ja)
Other versions
JP4514104B2 (en
Inventor
Seiichi Kato
静一 加藤
Masahito Inaba
雅人 稲葉
Shiyouki Yoshida
将規 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Microsystems Co Ltd
Asahi Kasei Electronics Co Ltd
Asahi Kasei Microdevices Corp
Original Assignee
Asahi Kasei Microsystems Co Ltd
Asahi Kasei Electronics Co Ltd
Asahi Kasei Microdevices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Microsystems Co Ltd, Asahi Kasei Electronics Co Ltd, Asahi Kasei Microdevices Corp filed Critical Asahi Kasei Microsystems Co Ltd
Priority to JP2004101359A priority Critical patent/JP4514104B2/en
Publication of JP2005283503A publication Critical patent/JP2005283503A/en
Application granted granted Critical
Publication of JP4514104B2 publication Critical patent/JP4514104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To remove offset voltage of a Hall element and offset voltage specific to an amplifier amplifying output of the Hall element. <P>SOLUTION: A switch 2 is controlled by a switching control part 5 to switch the direction of current to two opposed terminals among four terminals so that the polarity of the Hall offset voltage specific to the four-terminal Hall element 1 is alternated four times per cycle, and the voltage from two terminals opposed in a direction orthogonal to the direction of this current is amplified by a differential amplifier 3. In switching the direction of current by the switch 2, when the switching is performed to a reverse direction to the just-before direction of current, a switch 4 is controlled by a switching control part 5 synchronously therewith to reverse the polarity of the voltage from the differential amplifier 3, and the switch 4 is controlled by the switching control part 5 synchronously with switching of the direction of current just after it to reverse the polarity of the voltage from the differential amplifier 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ホール素子を有する磁気検出装置に関する。   The present invention relates to a magnetic detection device having a Hall element.

ホール素子を採用した磁気検出装置においては、ホール素子がオフセット電圧を有することから、このオフセット電圧を除去することが行われており、その一例としては、非特許文献1に記載のspinning current principleが知られている。   In a magnetic detection device employing a Hall element, since the Hall element has an offset voltage, the offset voltage is removed. As an example, the spinning current principle described in Non-Patent Document 1 is used. Are known.

このspinning current principleを、4端子ホールプレートについて、図6を参照して説明する。4端子ホールプレートの4端子のうちの対向する2端子の間に、電流を、その向きを反時計方向に90°づつ回転させて流し、かつ4端子のうちの残りの対向する2端子を、図6(a)〜(d)に示すように、差動増幅器の反転端子および非反転端子に接続し、かつ差動増幅器の出力の極性を、スイッチにより、図6(a)〜(d)に示すように切り換えるものとする。このとき、図6(a)に示す状態(以下、この状態を「0°状態」といいい、(0°)で表す。)での差動増幅器出力電圧をV1(0°)=Vh+Oh+Oeと定義すると、スイッチの出力は、V2(0°)=Vh+Oh+Oeとなる。図6(b)に示す状態(以下、この状態を「90°状態」といいい、(90°)で表す。)では、スイッチの出力は、V2(90°)=Vh−Oh+Oeで表せ、図6(c)に示す状態(以下、この状態を「180°状態」といいい、(180°)で表す。)では、スイッチの出力V2は、V2(180°)=Vh+Oh−Oeと表せ、図6(d)に示す状態(以下、この状態を「270°状態」といいい、(270°)で表す。)では、スイッチの出力は、V2(270°)=Vh−Oh−Oeと表わせられる。ただし、磁界の方向は紙面から紙背に向かう方向で図6(a)から図6(d)まで変化がないものとし、Vhはホール電圧、Ohはこの4端子ホールプレートのオフセット電圧、Oeは差動増幅器固有のオフセット電圧である。   This spinning current principle will be described with reference to FIG. 6 for a four-terminal hole plate. Between the two terminals of the four terminals of the four-terminal hall plate, a current is caused to flow by rotating the direction by 90 ° counterclockwise, and the remaining two terminals of the four terminals are As shown in FIGS. 6A to 6D, the polarity of the output of the differential amplifier connected to the inverting terminal and the non-inverting terminal of the differential amplifier is changed by a switch, as shown in FIGS. Switching shall be made as shown in FIG. At this time, the differential amplifier output voltage in the state shown in FIG. 6A (hereinafter, this state is referred to as “0 ° state” and represented by (0 °)) is defined as V1 (0 °) = Vh + Oh + Oe. Then, the output of the switch is V2 (0 °) = Vh + Oh + Oe. In the state shown in FIG. 6B (hereinafter, this state is referred to as “90 ° state” and is represented by (90 °)), the output of the switch can be expressed as V2 (90 °) = Vh−Oh + Oe. In the state shown in FIG. 6C (hereinafter, this state is referred to as “180 ° state” and is represented by (180 °)), the output V2 of the switch can be expressed as V2 (180 °) = Vh + Oh−Oe. In the state shown in FIG. 6D (hereinafter, this state is referred to as “270 ° state” and represented by (270 °)), the output of the switch can be expressed as V2 (270 °) = Vh−Oh−Oe. . However, the direction of the magnetic field is the direction from the paper surface to the paper back and there is no change from FIG. 6 (a) to FIG. 6 (d), Vh is the Hall voltage, Oh is the offset voltage of this 4-terminal Hall plate, and Oe is the difference. This is an offset voltage specific to the dynamic amplifier.

そして、上記各状態におけるスイッチの出力電圧を加算すると、
V2(0°)+V2(90°)+V2(180°)+V2(270°)
= (Vh+Oh+Oe)+(Vh−Oh+Oe)
+(Vh+Oh−Oe)+(Vh−Oh−Oe)
= 4×Vh
となって、Vhのみに関係し、4端子ホールプレートのオフセット電圧(Oh)と、差動増幅器固有のオフセット電圧(Oe)とに無関係な式が得られる。図7は、上記各状態における、差動増幅器の出力V1と、スイッチの出力V2との関係を示す。ここで、Oh>>Vhであり、Oh>>Oeであるから、V1≒Ohである。また、ホール素子のオフセット電圧が、地磁気などの非常に小さい磁力を測定した場合のホール電圧よりもはるかに大きい場合、ホール素子の出力を積分することが有効である。
And when adding the output voltage of the switch in each of the above states,
V2 (0 °) + V2 (90 °) + V2 (180 °) + V2 (270 °)
= (Vh + Oh + Oe) + (Vh-Oh + Oe)
+ (Vh + Oh-Oe) + (Vh-Oh-Oe)
= 4 x Vh
Thus, an expression irrelevant to the offset voltage (Oh) of the four-terminal Hall plate and the offset voltage (Oe) unique to the differential amplifier is obtained, which is related only to Vh. FIG. 7 shows the relationship between the output V1 of the differential amplifier and the output V2 of the switch in each of the above states. Here, since Oh >> Vh and Oh >> Oe, V1≈Oh. Also, if the offset voltage of the Hall element is much larger than the Hall voltage when a very small magnetic force such as geomagnetism is measured, it is effective to integrate the output of the Hall element.

このspinning current principleをインプリメントした磁気検出装置としては、図8に示すように、ホール素子81と、スイッチ82と、差動増幅器83と、スイッチ84と、スイッチ82、84を上記各状態において適正に切り換える切換制御部85と、スイッチ84の出力を積分する積分器86とにより構成したものが考えられる。   As shown in FIG. 8, a magnetic detection device that implements this spinning current principle includes a hall element 81, a switch 82, a differential amplifier 83, a switch 84, and switches 82 and 84 that are appropriately used in the above states. A switch control unit 85 for switching and an integrator 86 for integrating the output of the switch 84 can be considered.

特開2002−303661号公報JP 2002-303661 A 特開平9−329460号公報Japanese Patent Laid-Open No. 9-329460 A. Bakker, A. A. Bellekom, S. Middelhoek and J. H. Huijsing “Low-Offset Low-Noise 3.5mW CMOS Spinning-Current Hall Effect Sensor With Integrated Chopper Amplifier” The 13th European Conference on Solid-State Transducers September 12-15, 1999, The Hague, The Netherlands, pp.1045-1048A. Bakker, AA Bellekom, S. Middelhoek and JH Huijsing “Low-Offset Low-Noise 3.5mW CMOS Spinning-Current Hall Effect Sensor With Integrated Chopper Amplifier” The 13th European Conference on Solid-State Transducers September 12-15, 1999, The Hague, The Netherlands, pp.1045-1048

しかしながら、この磁気検出装置においては、スイッチ82の切り換えにより差動増幅器83の入力電圧の極性が異なったときの差動増幅器のセトリング時間が有限であって、入力電圧の立ち上がり時におけるセトリング時間(Tr)と、立ち下がり時におけるセトリング時間(Tf)が異なっており、これにより、差動増幅器83の出力電圧V1と、スイッチ84の出力電圧V2の電圧波形にその影響が現れることになる。これら電圧波形は例えば図9(a)(b)に示すようになる。このようにスイッチ84の出力電圧V2の電圧波形が異なるので、スイッチ84の出力電圧V2を積分器86により積分しても、ホール素子81のオフセット電圧と、差動増幅器83の固有のオフセット電圧とを除去することができず、この磁気検出装置によっても、地磁気などの非常に小さい磁力を測定することができなかった。   However, in this magnetic detection device, the settling time of the differential amplifier when the polarity of the input voltage of the differential amplifier 83 differs by switching the switch 82 is finite, and the settling time (Tr ) And the settling time (Tf) at the time of falling, and this affects the voltage waveforms of the output voltage V1 of the differential amplifier 83 and the output voltage V2 of the switch 84. These voltage waveforms are, for example, as shown in FIGS. Since the voltage waveform of the output voltage V2 of the switch 84 is thus different, even if the output voltage V2 of the switch 84 is integrated by the integrator 86, the offset voltage of the Hall element 81 and the inherent offset voltage of the differential amplifier 83 are different. The magnetic detection device could not measure a very small magnetic force such as geomagnetism.

そこで、本発明は、このような問題点を解決し、ホール素子のオフセット電圧と、ホール素子の出力を増幅する増幅器に固有のオフセット電圧を除去することができる磁気検出装置を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve such problems and to provide a magnetic detection device capable of removing the offset voltage of the Hall element and the offset voltage inherent to the amplifier that amplifies the output of the Hall element. And

請求項1の発明は、十字形状をしたホールプレートと、該ホールプレートの各端部に配置した4つの端子とを有する4端子ホール素子と、電流供給手段と、前記4端子ホール素子に固有のホールオフセット電圧の極性が各サイクルごとに4回交番するように、該各サイクルに4回、前記4端子ホール素子の4つの端子のうちの対向する2つの端子に対して前記電流供給手段からの電流の向きを切り換え、この電流の向きに直交する方向にあって対向する2つの端子から電圧を取り出す切換手段と、該切換手段による切り換えにより取り出された電圧を増幅する増幅手段と、前記切換手段による前記各サイクルにおける4回の電流の向きの切り換えのうち、直前の電流の向きに対して逆の向きになる切り換えがあったとき、これに同期して、前記増幅手段からの電圧の極性を反転させ、かつこの直後の電流の向きの切り換えに同期して、前記増幅手段からの電圧の極性を反転させる反転手段とを備えたことを特徴とする。   The invention of claim 1 is unique to the 4-terminal Hall element having a cross-shaped Hall plate and four terminals arranged at each end of the Hall plate, current supply means, and the 4-terminal Hall element. Four times in each cycle, the polarity of the Hall offset voltage alternates four times in each cycle, from the current supply means to two opposing terminals of the four terminals of the four-terminal Hall element. Switching means for switching the direction of the current and taking out the voltage from two opposing terminals in a direction orthogonal to the direction of the current, amplifying means for amplifying the voltage taken out by switching by the switching means, and the switching means Among the four current direction switchings in each cycle according to the above, when there is a switching that is opposite to the previous current direction, By inverting the polarity of the voltage from the amplifying means, and in synchronization with the switching of the direction of the immediately following current, characterized in that a reversing means for reversing the polarity of the voltage from the amplifying means.

請求項1の発明において、前記切換手段は、前記ホール素子の4つの端子のうちの第1の端子から該第1の端子に対向する第2の端子に向かって、前記電流供給手段からの電流が流れるように、該電流供給手段と、前記第1および第2の端子とを接続し、かつ第3の端子および該第3の端子に対向する第4の端子を、前記増幅器の第1の端子および第2の端子にそれぞれ接続する第1の切り換えと、前記第3の端子から前記第4の端子に向かって、前記電流供給手段からの電流が流れるように、該電流供給手段と、前記第3および第4の端子とを接続し、かつ前記第1の端子および前記第2の端子をそれぞれ前記増幅器の前記第2の端子および前記第1の端子に接続する第2の切り換えと、前記第2の端子から前記第1の端子に向かって、前記電流供給手段からの電流が流れるように、該電流供給手段と、前記第1および第2の端子とを接続し、かつ前記第3の端子および前記第4の端子を、前記増幅器の前記第1の端子および前記第2の端子にそれぞれ接続する第3の切り換えと、前記第4の端子から前記第3の端子に向かって、前記電流供給手段からの電流が流れるように、該電流供給手段と、前記第3および第4の端子とを接続し、かつ前記第1の端子および前記第2の端子を、前記増幅器の前記第2の端子および前記第1の端子に接続する第4の切り換えとを、前記各サイクルにおいて、前記第1の切り換え、前記第2の切り換え、前記第4の切り換え、前記第3の切り換えの順に行うことができ、前記反転手段は、前記第4の切り換えと前記第3の切り換えとに同期して、前記増幅手段からの電圧の極性を反転させることができる。   In the first aspect of the present invention, the switching means includes a current from the current supply means from a first terminal of the four terminals of the Hall element toward a second terminal opposite to the first terminal. So that the current supply means is connected to the first and second terminals, and the third terminal and the fourth terminal facing the third terminal are connected to the first terminal of the amplifier. A first switching unit connected to each of the terminal and the second terminal, and the current supply unit so that current from the current supply unit flows from the third terminal toward the fourth terminal; A second switch connecting a third and a fourth terminal, and connecting the first terminal and the second terminal to the second terminal and the first terminal of the amplifier, respectively; From the second terminal toward the first terminal, the front The current supply means is connected to the first and second terminals so that a current from the current supply means flows, and the third terminal and the fourth terminal are connected to the first of the amplifier. A third switch connected to each of the second terminal and the second terminal, and the current supply means so that a current from the current supply means flows from the fourth terminal toward the third terminal. A fourth switch connecting the third and fourth terminals and connecting the first terminal and the second terminal to the second terminal and the first terminal of the amplifier; In each cycle, the first switching, the second switching, the fourth switching, and the third switching can be performed in this order, and the inverting means can perform the fourth switching and the second switching. Synchronously with the switching of 3 It is possible to reverse the polarity of the voltage from the amplifying means.

請求項1の発明において、前記切換手段は、前記各サイクルごとに、請求項2に記載の、前記第1の切り換え、前記第3の切り換え、前記第4の切り換え、前記第2の切り換えの順に切り換えを行うことができ、前記反転手段は、前記第3の切り換えと前記第4の切り換えとに同期して、前記増幅手段からの電圧の極性を反転させることができる。   In the invention of claim 1, the switching means is arranged in the order of the first switching, the third switching, the fourth switching, and the second switching according to claim 2 for each cycle. Switching can be performed, and the inverting means can invert the polarity of the voltage from the amplifying means in synchronization with the third switching and the fourth switching.

請求項1の発明において、前記切換手段は、各2サイクルごとに、請求項2に記載の、前記第1の切り換え、前記第2の切り換え、前記第4の切り換え、前記第3の切り換えの順に行う第1サイクルと、請求項2に記載の、前記第1の切り換え、前記第3の切り換え、前記第4の切り換え、前記第2の切り換えの順に行う第2サイクルとを含む2つのサイクルを繰り返す切り換えを行うことができ、前記反転手段は、前記増幅手段からの電圧の極性を、前記第1サイクルの前記第4の切り換えと前記第3の切り換えとに同期して反転させ、前記第2サイクルの前記第3の切り換えと前記第4の切り換えとに同期して反転させることができる。   In the invention of claim 1, the switching means is arranged in the order of the first switching, the second switching, the fourth switching, and the third switching, according to claim 2, every two cycles. 3. Two cycles including a first cycle to be performed and a second cycle to be performed in the order of the first switching, the third switching, the fourth switching, and the second switching according to claim 2 are repeated. The inversion means inverts the polarity of the voltage from the amplification means in synchronization with the fourth switching and the third switching in the first cycle, and the second cycle Can be reversed in synchronism with the third switching and the fourth switching.

本発明によれば、上記のように構成したので、ホール素子のオフセット電圧と、このホール素子の出力を増幅する増幅器に固有のオフセット電圧を除去することができる。   According to the present invention, since it is configured as described above, it is possible to remove the offset voltage of the Hall element and the offset voltage specific to the amplifier that amplifies the output of the Hall element.

以下、本発明の実施の形態を図面を参照して詳細に説明する。
<第1の実施の形態>
図1は本発明の第1の実施の形態を示す。これは磁気検出装置の例である。図1において、1はホール素子であって、十字形状のホールプレートと、4つの端子とを有し、これら4つの端子は、電流を供給するためのものであり、このホールプレートに現れた電圧を取り出すためのものである。これら4つの端子のうち、図1において、上側の端子を「端子1」といい、この端子1と対向する下側の端子を「端子2」といい、左側の端子を「端子3」といい、この端子3に対向する端子を「端子4」というものとする。2はスイッチであり、ホール電圧が現れた端子対の各端子と、スイッチ2の後段に設けた差動増幅器3の反転端子および非反転端子との接続を切り換えるためのものである。差動増幅器3はスイッチ2の出力電圧を反転増幅するものである。4はスイッチであり、差動増幅器3の出力電圧の極性を切り換えるためのものである。5は切換制御部であり、スイッチ2、4の内部接続の切り換えを制御するものである。6は積分器であり、スイッチ4の出力を積分するものである。7はADC(analog-to-digital converter)であり、積分器6からのアナログ信号をデジタル信号に変換するものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<First Embodiment>
FIG. 1 shows a first embodiment of the present invention. This is an example of a magnetic detection device. In FIG. 1, reference numeral 1 denotes a Hall element, which has a cross-shaped Hall plate and four terminals, and these four terminals are for supplying current, and voltages appearing on the Hall plate. It is for taking out. Among these four terminals, in FIG. 1, the upper terminal is called “terminal 1”, the lower terminal facing this terminal 1 is called “terminal 2”, and the left terminal is called “terminal 3”. The terminal facing the terminal 3 is referred to as “terminal 4”. Reference numeral 2 denotes a switch for switching the connection between each terminal of the terminal pair in which the Hall voltage appears and the inverting terminal and the non-inverting terminal of the differential amplifier 3 provided in the subsequent stage of the switch 2. The differential amplifier 3 inverts and amplifies the output voltage of the switch 2. Reference numeral 4 denotes a switch for switching the polarity of the output voltage of the differential amplifier 3. Reference numeral 5 denotes a switching control unit that controls switching of internal connections of the switches 2 and 4. Reference numeral 6 denotes an integrator that integrates the output of the switch 4. An analog-to-digital converter (ADC) 7 converts an analog signal from the integrator 6 into a digital signal.

図2(a)〜(d)に図示する状態は、それぞれ、既に図6に関連して説明した、0°状態、90°状態、180°状態、270°状態に対応する状態であり、ここでも、同様に、それぞれ、0°状態、90°状態、180°状態、270°状態といい、それぞれ、(0°)、(90°)、(180°)、(270°)と表すものとする。   The states illustrated in FIGS. 2A to 2D are states corresponding to the 0 ° state, the 90 ° state, the 180 ° state, and the 270 ° state, respectively, which have already been described with reference to FIG. However, similarly, they are referred to as 0 ° state, 90 ° state, 180 ° state, and 270 ° state, respectively, and are represented as (0 °), (90 °), (180 °), and (270 °), respectively. To do.

ここで、スイッチ2およびスイッチ4の内部接続を図1に示す接続に切り換えた状態が、0°状態であるが、図1においては、図を簡単にするため、この状態のみを示し、その他の、90°状態、180°状態、270°状態は図示していない。   Here, the state in which the internal connection of the switch 2 and the switch 4 is switched to the connection shown in FIG. 1 is the 0 ° state. However, in FIG. The 90 ° state, 180 ° state, and 270 ° state are not shown.

0°状態とは、切換制御部5がスイッチ2を制御して、ホール素子1の4端子のうち、端子1を電源Vddに、端子2をグランドに接続するとともに、端子3を差動増幅器3の反転端子に、端子4を差動増幅器3の非反転端子に接続し、また、スイッチ4を制御して、差動増幅器3の出力の極性が反転しないように切り換えた状態をいう。この0°状態においては、差動増幅器3の出力電圧は、V1=Vh+Oh+Oeとなり、スイッチ4の出力電圧は、V2=Vh+Oh+Oeとなる。   In the 0 ° state, the switching control unit 5 controls the switch 2 to connect the terminal 1 to the power supply Vdd, the terminal 2 to the ground, and the terminal 3 to the differential amplifier 3 among the four terminals of the Hall element 1. The terminal 4 is connected to the non-inverting terminal of the differential amplifier 3, and the switch 4 is controlled so that the polarity of the output of the differential amplifier 3 is not inverted. In this 0 ° state, the output voltage of the differential amplifier 3 is V1 = Vh + Oh + Oe, and the output voltage of the switch 4 is V2 = Vh + Oh + Oe.

90°状態とは、切換制御部5がスイッチ2を制御して、ホール素子1の4端子のうち、端子3を電源Vddに、端子4をグランドに接続するとともに、端子2を差動増幅器3の反転端子に、端子1を差動増幅器3の非反転端子に接続し、また、スイッチ4を制御して、差動増幅器3の出力の極性が反転しないように切り換えた状態をいう。この90°状態においては、差動増幅器3の出力電圧は、V1=Vh−Oh+Oeとなり、スイッチ4の出力電圧は、V2=Vh−Oh+Oeとなる。   In the 90 ° state, the switching control unit 5 controls the switch 2 to connect the terminal 3 to the power source Vdd and the terminal 4 to the ground among the four terminals of the Hall element 1 and connect the terminal 2 to the differential amplifier 3. The terminal 1 is connected to the non-inverting terminal of the differential amplifier 3 and the switch 4 is controlled so that the polarity of the output of the differential amplifier 3 is not inverted. In this 90 ° state, the output voltage of the differential amplifier 3 is V1 = Vh−Oh + Oe, and the output voltage of the switch 4 is V2 = Vh−Oh + Oe.

180°状態とは、切換制御部5がスイッチ2を制御して、ホール素子1の4端子のうち、端子2を電源Vddに、端子1をグランドに接続するとともに、端子3を差動増幅器3の反転端子に、端子4を差動増幅器3の非反転端子に接続し、また、スイッチ4を制御して、差動増幅器3の出力の極性が反転するように切り換えた状態をいう。この180°状態においては、差動増幅器3の出力電圧は、V1=−Vh−Oh+Oeとなり、スイッチ4の出力電圧は、V2=−(−Vh−Oh+Oe)となる。   In the 180 ° state, the switching control unit 5 controls the switch 2 to connect the terminal 2 to the power source Vdd and the terminal 1 to the ground among the four terminals of the Hall element 1 and connect the terminal 3 to the differential amplifier 3. The terminal 4 is connected to the non-inverting terminal of the differential amplifier 3, and the switch 4 is controlled so that the polarity of the output of the differential amplifier 3 is reversed. In this 180 ° state, the output voltage of the differential amplifier 3 is V1 = −Vh−Oh + Oe, and the output voltage of the switch 4 is V2 = − (− Vh−Oh + Oe).

270°状態とは、切換制御部5がスイッチ2を制御して、ホール素子1の4端子のうち、端子4を電源Vddに、端子3をグランドに接続するとともに、端子2を差動増幅器3の反転端子に、端子1を差動増幅器3の非反転端子に接続し、また、スイッチ4を制御して、差動増幅器3の出力の極性が反転するように切り換えた状態をいう。この270°状態においては、差動増幅器3の出力電圧は、V1=−Vh+Oh+Oeとなり、スイッチ4の出力電圧は、V2=−(−Vh+Oh+Oe)となる。   In the 270 ° state, the switching control unit 5 controls the switch 2 to connect the terminal 4 to the power supply Vdd, the terminal 3 to the ground, and the terminal 2 to the differential amplifier 3. The terminal 1 is connected to the non-inverting terminal of the differential amplifier 3 and the switch 4 is controlled so that the polarity of the output of the differential amplifier 3 is reversed. In this 270 ° state, the output voltage of the differential amplifier 3 is V1 = −Vh + Oh + Oe, and the output voltage of the switch 4 is V2 = − (− Vh + Oh + Oe).

次に、図2を参照して図1の切換制御部5によるスイッチ2、4の切り換え制御について説明する。切換制御部5は、スイッチ2については、差動増幅器3の反転端子および非反転端子に供給される、ホール素子1のオフセット電圧の極性が、交互に変化するように切り換える。ここで、ホール素子1のオフセット電圧の極性が交互に変化する状態遷移としては、(0°)→(90°)→(270°)→(180°)と遷移する状態遷移(以下「第1状態遷移」という。)と、(0°)→(180°)→(270°)→(90°)と遷移する状態遷移(以下「第2状態遷移」という。)の2つがあり、切換制御部5は、第1状態遷移または第2状態遷移のいずれかを1サイクルとして、スイッチ2、4を制御することになる。   Next, switching control of the switches 2 and 4 by the switching control unit 5 of FIG. 1 will be described with reference to FIG. The switching control unit 5 switches the switch 2 so that the polarity of the offset voltage of the Hall element 1 supplied to the inverting terminal and the non-inverting terminal of the differential amplifier 3 changes alternately. Here, as the state transition in which the polarity of the offset voltage of the Hall element 1 changes alternately, the state transition (hereinafter referred to as “first”) that transitions from (0 °) → (90 °) → (270 °) → (180 °). "State transition") and (0 °) → (180 °) → (270 °) → (90 °) state transition (hereinafter referred to as “second state transition”). The unit 5 controls the switches 2 and 4 by setting either the first state transition or the second state transition as one cycle.

まず、切換制御部5が第1状態遷移を1サイクルとして、スイッチ2、4を制御する例を説明する。切換制御部5により、第1状態遷移を1サイクルとして、スイッチ2が制御されると、差動増幅器3の出力電圧の波形は、図3(a)に示すように、状態の遷移に応じて、この出力電圧の立ち上がり時と立ち下がり時において、差動増幅器3のセトリングの影響を受け、同時に、電流の向きが逆になる切り換えがあったとき(すなわち(270°))、これに同期して、差動増幅器3の出力電圧の極性を反転させ、かつこの直後の電流の向きの切り換え(すなわち(180°))に同期して、スイッチ4が、スイッチ4の出力電圧の極性が反転するように制御されると、スイッチ4の出力電圧の波形は図3(b)に示すようになる。   First, an example in which the switching control unit 5 controls the switches 2 and 4 with the first state transition as one cycle will be described. When the switch 2 is controlled by the switching control unit 5 with the first state transition as one cycle, the waveform of the output voltage of the differential amplifier 3 corresponds to the state transition as shown in FIG. When the output voltage rises and falls, it is affected by the settling of the differential amplifier 3 and at the same time there is a switching in which the direction of the current is reversed (ie (270 °)). Thus, the polarity of the output voltage of the differential amplifier 3 is inverted, and the polarity of the output voltage of the switch 4 is inverted in synchronization with the switching of the current direction (that is, (180 °)) immediately after this. When controlled in this way, the waveform of the output voltage of the switch 4 is as shown in FIG.

この図3(b)から分かるように、第1状態遷移の1サイクルの前の半サイクル(すなわち(0°)および(90°))に現れた電圧波形を電圧軸に対して反転させた電圧波形が、後の半サイクル((270°)および(180°))において現れている。   As can be seen from FIG. 3B, the voltage obtained by inverting the voltage waveform appearing in the half cycle (that is, (0 °) and (90 °)) before the first cycle of the first state transition with respect to the voltage axis. Waveforms appear in the latter half cycle ((270 °) and (180 °)).

次に、切換制御部5が第2状態遷移を1サイクルとして、スイッチ2、4を制御する例を説明する。切換制御部5により、第2状態遷移を1サイクルとして、スイッチ2が制御されると、差動増幅器3の出力電圧の波形は、図4(a)に示すように、この出力電圧の立ち上がり時と立ち下がり時において、状態の遷移に応じて、差動増幅器3のセトリングの影響を受け、同時に、電流の向きが逆になる切り換えがあったとき(すなわち(180°))、これに同期して、差動増幅器3の出力電圧の極性を反転させ、かつこの直後の電流の向きの切り換え(すなわち(270°))に同期して、スイッチ4が、スイッチ4の出力電圧の極性が反転するように制御されると、スイッチ4の出力電圧の波形は図4(b)に示すようになる。   Next, an example in which the switching control unit 5 controls the switches 2 and 4 with the second state transition as one cycle will be described. When the switch 2 is controlled by the switching control unit 5 with the second state transition as one cycle, the waveform of the output voltage of the differential amplifier 3 is as shown in FIG. At the time of falling, in response to the settling of the differential amplifier 3 according to the state transition, and at the same time, the switching of the current direction is reversed (ie, (180 °)), it is synchronized with this. Thus, the polarity of the output voltage of the differential amplifier 3 is inverted, and the polarity of the output voltage of the switch 4 is inverted in synchronization with the switching of the current direction (that is, (270 °)) immediately after this. When controlled in this way, the waveform of the output voltage of the switch 4 is as shown in FIG.

この図4(b)から分かるように、第2状態遷移の1サイクルの前の半サイクル(すなわち(0°)および(180°))に現れた電圧波形を電圧軸に対して反転させた電圧波形が、後の半サイクル((270°)および(90°))において現れている。   As can be seen from FIG. 4B, the voltage obtained by inverting the voltage waveform appearing in the half cycle (that is, (0 °) and (180 °)) before one cycle of the second state transition with respect to the voltage axis. Waveforms appear in the latter half cycle ((270 °) and (90 °)).

そして、スイッチ4の出力端子に現れた電圧が、積分器6により積分されると、これにより、ホール素子1のオフセット電圧と、差動増幅器3に固有のオフセット電圧とが除去され、ホール電圧のみがADC7に出力される。   When the voltage appearing at the output terminal of the switch 4 is integrated by the integrator 6, the offset voltage of the Hall element 1 and the offset voltage inherent to the differential amplifier 3 are thereby removed, and only the Hall voltage is obtained. Is output to the ADC 7.

以上、ホール素子として4端子のホール素子を用いた磁気検出装置の例を説明したが、本発明を、図5に示すような8端子のホール素子を有する磁気検出装置に適用することができる。図5においては、電流の流れる向きを矢印で表し、ホール電圧を取り出すための外部端子のみを図示してある。図5において、このような状態が、図5(a)→図5(c)→図5(e)→図5(g)のように変化するものと、図5(b)→図5(d)→図5(f)→図5(h)のように変化するものとを、それぞれ、4端子のホール素子とみなし、各々に対して本発明を独立に適用し、組み合わせることが有効である。   The example of the magnetic detection device using the four-terminal Hall element as the Hall element has been described above, but the present invention can be applied to a magnetic detection device having an eight-terminal Hall element as shown in FIG. In FIG. 5, the direction of current flow is indicated by arrows, and only the external terminals for taking out the Hall voltage are shown. 5, such a state changes as shown in FIG. 5 (a) → FIG. 5 (c) → FIG. 5 (e) → FIG. 5 (g), and FIG. 5 (b) → FIG. d) → FIG. 5 (f) → FIG. 5 (h) is regarded as a four-terminal Hall element, and it is effective to apply and combine the present invention independently for each. is there.

<第2の実施の形態>
本実施の形態は、第1の実施の形態との比較でいえば、切換制御部5がスイッチ2を制御して作り出す1サイクルの状態遷移が異なる。すなわち、第1の実施の形態では、(0°)→(90°)→(270°)→(180°)という第1状態遷移か、または(0°)→(180°)→(270°)→(90°)という第2状態遷移を作り出すようにしたが、これに対して、本実施の形態では、1サイクルの状態変換を、第1状態遷移→第2状態遷移、すなわち(0°)→(90°)→(270°)→(180°)→(0°)→(180°)→(270°)→(90°)か、または第2状態遷移→第1状態遷移、すなわち(0°)→(180°)→(270°)→(90°)→(0°)→(90°)→(270°)→(180°)を作り出すようにした。
<Second Embodiment>
This embodiment is different from the first embodiment in the state transition of one cycle that the switching control unit 5 generates by controlling the switch 2. That is, in the first embodiment, the first state transition of (0 °) → (90 °) → (270 °) → (180 °) or (0 °) → (180 °) → (270 ° ) → (90 °), the second state transition is created. On the other hand, in the present embodiment, one cycle of state conversion is performed by the first state transition → the second state transition, that is, (0 ° ) → (90 °) → (270 °) → (180 °) → (0 °) → (180 °) → (270 °) → (90 °) or second state transition → first state transition, (0 °) → (180 °) → (270 °) → (90 °) → (0 °) → (90 °) → (270 °) → (180 °).

本実施の形態においては、切換制御部5により、第1および第2状態遷移に基いてスイッチ2が制御されるとともに、(180°)および(270°)においてスイッチ4が制御され、スイッチ4の出力端子に現れた電圧が、積分器6により積分されるので、ホール素子1のオフセット電圧と、差動増幅器3に固有のオフセット電圧とが除去されることになる。   In the present embodiment, switch 2 is controlled by switching control unit 5 based on the first and second state transitions, and switch 4 is controlled at (180 °) and (270 °). Since the voltage appearing at the output terminal is integrated by the integrator 6, the offset voltage of the Hall element 1 and the offset voltage specific to the differential amplifier 3 are removed.

本発明の第1の実施の形態を示すブロック図である。It is a block diagram which shows the 1st Embodiment of this invention. 切換制御部5がスイッチ2を制御して作り出す状態を説明するための説明図である。It is explanatory drawing for demonstrating the state which the switching control part 5 produces by controlling the switch 2. FIG. 第1状態遷移が作り出されたときの差動増幅器3の出力電圧の波形と、スイッチ4の出力電圧の波形を示す波形図である。It is a wave form diagram which shows the waveform of the output voltage of the differential amplifier 3 when the 1st state transition is produced, and the waveform of the output voltage of the switch 4. FIG. 第2状態遷移が作り出されたときの差動増幅器3の出力電圧の波形と、スイッチ4の出力電圧の波形を示す波形図である。It is a wave form diagram which shows the waveform of the output voltage of the differential amplifier 3 when the 2nd state transition is produced, and the waveform of the output voltage of the switch 4. FIG. 8端子のホール素子に対して流す電流の向きとホール電圧の取り出し方を説明するための説明図である。It is explanatory drawing for demonstrating the direction of the electric current sent with respect to an 8-terminal Hall element, and how to take out Hall voltage. 従来例において作り出される状態を説明するための説明図である。It is explanatory drawing for demonstrating the state produced in a prior art example. 各状態における、差動増幅器の出力V1とスイッチの出力V2との関係を示す波形図である。It is a wave form diagram which shows the relationship between the output V1 of a differential amplifier, and the output V2 of a switch in each state. 従来の磁気検出装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the conventional magnetic detection apparatus. 図8の差動増幅器83の出力電圧の波形と、スイッチ84の出力電圧の波形とを示す波形図である。FIG. 9 is a waveform diagram showing a waveform of an output voltage of the differential amplifier 83 of FIG. 8 and a waveform of an output voltage of the switch 84;

符号の説明Explanation of symbols

1 ホール素子
2、4 スイッチ
3 差動増幅器
5 切換制御部
6 積分器
7 ADC
DESCRIPTION OF SYMBOLS 1 Hall element 2, 4 Switch 3 Differential amplifier 5 Switching control part 6 Integrator 7 ADC

Claims (4)

十字形状をしたホールプレートと、該ホールプレートの各端部に配置した4つの端子とを有する4端子ホール素子と、
電流供給手段と、
前記4端子ホール素子に固有のホールオフセット電圧の極性が各サイクルごとに4回交番するように、該各サイクルに4回、前記4端子ホール素子の4つの端子のうちの対向する2つの端子に対して前記電流供給手段からの電流の向きを切り換え、この電流の向きに直交する方向にあって対向する2つの端子から電圧を取り出す切換手段と、
該切換手段による切り換えにより取り出された電圧を増幅する増幅手段と、
前記切換手段による前記各サイクルにおける4回の電流の向きの切り換えのうち、直前の電流の向きに対して逆の向きになる切り換えがあったとき、これに同期して、前記増幅手段からの電圧の極性を反転させ、かつこの直後の電流の向きの切り換えに同期して、前記増幅手段からの電圧の極性を反転させる反転手段と
を備えたことを特徴とする磁気検出装置。
A four-terminal Hall element having a cross-shaped Hall plate and four terminals arranged at each end of the Hall plate;
Current supply means;
Four times in each cycle, the opposite two terminals of the four terminals of the four-terminal Hall element are connected so that the polarity of the Hall offset voltage inherent to the four-terminal Hall element alternates four times in each cycle. On the other hand, switching means for switching the direction of the current from the current supply means, and taking out the voltage from two terminals facing each other in a direction orthogonal to the direction of the current;
Amplifying means for amplifying the voltage extracted by switching by the switching means;
Of the four current direction switchings in each cycle by the switching means, when there is a switching that is opposite to the previous current direction, the voltage from the amplifying means is synchronized with this switching. And a reversing means for reversing the polarity of the voltage from the amplifying means in synchronization with the switching of the current direction immediately thereafter.
請求項1において、前記切換手段は、
前記ホール素子の4つの端子のうちの第1の端子から該第1の端子に対向する第2の端子に向かって、前記電流供給手段からの電流が流れるように、該電流供給手段と、前記第1および第2の端子とを接続し、かつ第3の端子および該第3の端子に対向する第4の端子を、前記増幅器の第1の端子および第2の端子にそれぞれ接続する第1の切り換えと、
前記第3の端子から前記第4の端子に向かって、前記電流供給手段からの電流が流れるように、該電流供給手段と、前記第3および第4の端子とを接続し、かつ前記第1の端子および前記第2の端子をそれぞれ前記増幅器の前記第2の端子および前記第1の端子に接続する第2の切り換えと、
前記第2の端子から前記第1の端子に向かって、前記電流供給手段からの電流が流れるように、該電流供給手段と、前記第1および第2の端子とを接続し、かつ前記第3の端子および前記第4の端子を、前記増幅器の前記第1の端子および前記第2の端子にそれぞれ接続する第3の切り換えと、
前記第4の端子から前記第3の端子に向かって、前記電流供給手段からの電流が流れるように、該電流供給手段と、前記第3および第4の端子とを接続し、かつ前記第1の端子および前記第2の端子を、前記増幅器の前記第2の端子および前記第1の端子に接続する第4の切り換えと
を、前記各サイクルにおいて、前記第1の切り換え、前記第2の切り換え、前記第4の切り換え、前記第3の切り換えの順に行い、
前記反転手段は、前記第4の切り換えと前記第3の切り換えとに同期して、前記増幅手段からの電圧の極性を反転させる
ことを特徴とする磁気検出装置。
In Claim 1, the switching means comprises:
The current supply means, so that the current from the current supply means flows from a first terminal of the four terminals of the Hall element toward a second terminal facing the first terminal; A first terminal that connects the first terminal and the second terminal, and that connects the third terminal and the fourth terminal opposite to the third terminal to the first terminal and the second terminal of the amplifier, respectively. Switching between
The current supply means and the third and fourth terminals are connected such that the current from the current supply means flows from the third terminal toward the fourth terminal, and the first terminal A second switch connecting the first terminal and the second terminal to the second terminal and the first terminal of the amplifier, respectively;
The current supply means is connected to the first and second terminals so that a current from the current supply means flows from the second terminal toward the first terminal, and the third terminal A third switch connecting the first terminal and the fourth terminal to the first terminal and the second terminal of the amplifier, respectively,
The current supply means and the third and fourth terminals are connected so that the current from the current supply means flows from the fourth terminal toward the third terminal, and the first terminal And a fourth switching for connecting the second terminal and the second terminal to the second terminal and the first terminal of the amplifier, in each cycle, the first switching and the second switching , Performing the fourth switching and the third switching in this order,
The inversion means inverts the polarity of the voltage from the amplifying means in synchronization with the fourth switching and the third switching.
請求項1において、前記切換手段は、前記各サイクルごとに、請求項2に記載の、前記第1の切り換え、前記第3の切り換え、前記第4の切り換え、前記第2の切り換えの順に切り換えを行い、
前記反転手段は、前記第3の切り換えと前記第4の切り換えとに同期して、前記増幅手段からの電圧の極性を反転させる
ことを特徴とする磁気検出装置。
The switching means according to claim 1, for each cycle, performs switching in the order of the first switching, the third switching, the fourth switching, and the second switching according to claim 2. Done
The inversion means inverts the polarity of the voltage from the amplifying means in synchronization with the third switching and the fourth switching.
請求項1において、前記切換手段は、各2サイクルごとに、請求項2に記載の、前記第1の切り換え、前記第2の切り換え、前記第4の切り換え、前記第3の切り換えの順に行う第1サイクルと、請求項2に記載の、前記第1の切り換え、前記第3の切り換え、前記第4の切り換え、前記第2の切り換えの順に行う第2サイクルとを含む2つのサイクルを繰り返す切り換えを行い、
前記反転手段は、前記増幅手段からの電圧の極性を、前記第1サイクルの前記第4の切り換えと前記第3の切り換えとに同期して反転させ、前記第2サイクルの前記第3の切り換えと前記第4の切り換えとに同期して反転させる
ことを特徴とする磁気検出装置。
The switching means according to claim 1, wherein the switching means performs the first switching, the second switching, the fourth switching, and the third switching in order of every two cycles. The switching of repeating two cycles including one cycle and the second cycle performed in the order of the first switching, the third switching, the fourth switching, and the second switching according to claim 2. Done
The inverting means inverts the polarity of the voltage from the amplifying means in synchronization with the fourth switching and the third switching in the first cycle, and the third switching in the second cycle. A magnetic detection device that reverses in synchronization with the fourth switching.
JP2004101359A 2004-03-30 2004-03-30 Magnetic detector Expired - Lifetime JP4514104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101359A JP4514104B2 (en) 2004-03-30 2004-03-30 Magnetic detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101359A JP4514104B2 (en) 2004-03-30 2004-03-30 Magnetic detector

Publications (2)

Publication Number Publication Date
JP2005283503A true JP2005283503A (en) 2005-10-13
JP4514104B2 JP4514104B2 (en) 2010-07-28

Family

ID=35182030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101359A Expired - Lifetime JP4514104B2 (en) 2004-03-30 2004-03-30 Magnetic detector

Country Status (1)

Country Link
JP (1) JP4514104B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212435A (en) * 2006-01-13 2007-08-23 Denso Corp Magnetic sensor and magnetic detection method
JP2007266798A (en) * 2006-03-28 2007-10-11 Yokogawa Electric Corp Comparison circuit
WO2008032741A1 (en) 2006-09-12 2008-03-20 Asahi Kasei Emd Corporation Physical quantity measuring apparatus and signal processing method thereof
JP2009544004A (en) * 2006-07-14 2009-12-10 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Method for processing a sensor signal subject to an offset and sensor device designed to perform the method
JP2010054301A (en) * 2008-08-27 2010-03-11 Toshiba Corp Magnetic sensor and magnetic measurement method
JP2010127857A (en) * 2008-11-28 2010-06-10 Asahi Kasei Electronics Co Ltd Magnetometric sensor
JP2011007658A (en) * 2009-06-26 2011-01-13 Nikon Corp Encoder and signal processing method
WO2013168353A1 (en) 2012-05-11 2013-11-14 旭化成エレクトロニクス株式会社 Magnetic detection device and magnetic detection method
JP2014016166A (en) * 2012-07-05 2014-01-30 Asahi Kasei Electronics Co Ltd Rotation angle detection device and failure detection method of the same
JP2014044194A (en) * 2012-07-30 2014-03-13 Toyota Central R&D Labs Inc Magnetism detection circuit using magnetism detection element
CN104795489A (en) * 2015-04-20 2015-07-22 北京航空航天大学 Novel four-port magnetic storage device
JP2016125969A (en) * 2015-01-08 2016-07-11 甲神電機株式会社 Hall element sensor and operation method thereof
CN105758429A (en) * 2012-02-03 2016-07-13 旭化成株式会社 Signal processing device
KR20160148741A (en) 2015-06-16 2016-12-27 매그나칩 반도체 유한회사 Method for controlling of hall device and magnetic detection apparatus using the same
JP2018036149A (en) * 2016-08-31 2018-03-08 旭化成エレクトロニクス株式会社 Magnetic sensor, current sensor, and method for driving the magnetic sensor
WO2020091138A1 (en) * 2018-11-01 2020-05-07 전북대학교산학협력단 Hall sensor using current signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232278A (en) * 1988-07-21 1990-02-02 Stanley Electric Co Ltd Method and device for driving hall element
JP2001521152A (en) * 1997-10-20 2001-11-06 アナログ デバイセス インコーポレーテッド Monolithic magnetic sensor with externally adjustable temperature compensation function
JP2002303661A (en) * 2000-03-23 2002-10-18 Matsushita Electric Ind Co Ltd Magnetic field detecting method
JP2003043123A (en) * 2001-07-26 2003-02-13 Matsushita Electric Ind Co Ltd Magnetic field sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232278A (en) * 1988-07-21 1990-02-02 Stanley Electric Co Ltd Method and device for driving hall element
JP2001521152A (en) * 1997-10-20 2001-11-06 アナログ デバイセス インコーポレーテッド Monolithic magnetic sensor with externally adjustable temperature compensation function
JP2002303661A (en) * 2000-03-23 2002-10-18 Matsushita Electric Ind Co Ltd Magnetic field detecting method
JP2003043123A (en) * 2001-07-26 2003-02-13 Matsushita Electric Ind Co Ltd Magnetic field sensor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212435A (en) * 2006-01-13 2007-08-23 Denso Corp Magnetic sensor and magnetic detection method
JP4674578B2 (en) * 2006-01-13 2011-04-20 株式会社デンソー Magnetic sensor and magnetic detection method
JP2007266798A (en) * 2006-03-28 2007-10-11 Yokogawa Electric Corp Comparison circuit
JP2009544004A (en) * 2006-07-14 2009-12-10 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Method for processing a sensor signal subject to an offset and sensor device designed to perform the method
WO2008032741A1 (en) 2006-09-12 2008-03-20 Asahi Kasei Emd Corporation Physical quantity measuring apparatus and signal processing method thereof
US8150657B2 (en) 2006-09-12 2012-04-03 Asahi Kasei Emd Corporation Physical quantity measuring instrument and signal processing method thereof
JP2010054301A (en) * 2008-08-27 2010-03-11 Toshiba Corp Magnetic sensor and magnetic measurement method
JP4675994B2 (en) * 2008-08-27 2011-04-27 株式会社東芝 Magnetic sensor and magnetic measurement method
US8278920B2 (en) 2008-08-27 2012-10-02 Kabushiki Kaisha Toshiba Magnetic sensor and magnetic measurement method
JP2010127857A (en) * 2008-11-28 2010-06-10 Asahi Kasei Electronics Co Ltd Magnetometric sensor
JP2011007658A (en) * 2009-06-26 2011-01-13 Nikon Corp Encoder and signal processing method
CN105758429A (en) * 2012-02-03 2016-07-13 旭化成株式会社 Signal processing device
EP2848957A4 (en) * 2012-05-11 2016-01-20 Asahi Kasei Microdevices Corp Magnetic detection device and magnetic detection method
WO2013168353A1 (en) 2012-05-11 2013-11-14 旭化成エレクトロニクス株式会社 Magnetic detection device and magnetic detection method
US20140210462A1 (en) * 2012-05-11 2014-07-31 Asahi Kasei Microdevices Corporation Magnetism detection device and magnetism detection method
EP2848957A1 (en) * 2012-05-11 2015-03-18 Asahi Kasei Microdevices Corporation Magnetic detection device and magnetic detection method
JP5695764B2 (en) * 2012-05-11 2015-04-08 旭化成エレクトロニクス株式会社 Magnetic detection device and magnetic detection method
US9395422B2 (en) 2012-05-11 2016-07-19 Asahi Kasei Microdevices Corporation Magnetism detection device and magnetism detection method
JP2014016166A (en) * 2012-07-05 2014-01-30 Asahi Kasei Electronics Co Ltd Rotation angle detection device and failure detection method of the same
JP2014044194A (en) * 2012-07-30 2014-03-13 Toyota Central R&D Labs Inc Magnetism detection circuit using magnetism detection element
JP2016125969A (en) * 2015-01-08 2016-07-11 甲神電機株式会社 Hall element sensor and operation method thereof
CN104795489A (en) * 2015-04-20 2015-07-22 北京航空航天大学 Novel four-port magnetic storage device
KR20160148741A (en) 2015-06-16 2016-12-27 매그나칩 반도체 유한회사 Method for controlling of hall device and magnetic detection apparatus using the same
US10234515B2 (en) 2015-06-16 2019-03-19 Haechitech Corporation Method for controlling of hall device and magnetic detection apparatus using the same
JP2018036149A (en) * 2016-08-31 2018-03-08 旭化成エレクトロニクス株式会社 Magnetic sensor, current sensor, and method for driving the magnetic sensor
WO2020091138A1 (en) * 2018-11-01 2020-05-07 전북대학교산학협력단 Hall sensor using current signal

Also Published As

Publication number Publication date
JP4514104B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4514104B2 (en) Magnetic detector
JP5695764B2 (en) Magnetic detection device and magnetic detection method
TWI583924B (en) Round-robin sensing device
JP6442045B2 (en) Hall effect sensor circuit with offset compensation
JP2008104197A (en) Switched capacitor amplifier without dependency on variations in capacitance elements, and method for operating same
JP2008534962A5 (en)
JP6628552B2 (en) Semiconductor device and method for measuring cell voltage
CN105823918A (en) Hall element driving circuit, sensor circuit, and current measuring apparatus
JP2016170136A5 (en)
JP5104936B2 (en) Acceleration and angular velocity detection device
JP2008157917A (en) Circuit for detecting capacity difference
JP2008219404A (en) Amplifier circuit
JP2018174476A (en) Differential amplifier
TW201535982A (en) Capacitance processing circuit and a MEMS device
JP6445360B2 (en) Current measuring device
JP2008199563A (en) Amplifier circuit
JP4242800B2 (en) Sensor circuit
JP6418965B2 (en) Hall element drive circuit and sensor circuit
WO2015037550A1 (en) Capacitance-voltage conversion device
JP4949008B2 (en) Current sensor and current sensor offset removal method
TWI433030B (en) Audio processing system and method
JP2016125969A (en) Hall element sensor and operation method thereof
JP3048745B2 (en) Analog input device
JP4064303B2 (en) Sense comparator circuit and offset compensation method thereof
KR20040106086A (en) Fluxgate type magnetometer capable of reducing power consumption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

R150 Certificate of patent or registration of utility model

Ref document number: 4514104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350