JP2005283088A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2005283088A
JP2005283088A JP2004271676A JP2004271676A JP2005283088A JP 2005283088 A JP2005283088 A JP 2005283088A JP 2004271676 A JP2004271676 A JP 2004271676A JP 2004271676 A JP2004271676 A JP 2004271676A JP 2005283088 A JP2005283088 A JP 2005283088A
Authority
JP
Japan
Prior art keywords
heat exchanger
pressure
refrigerant gas
main compressor
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004271676A
Other languages
Japanese (ja)
Inventor
Seiji Yoshimura
省二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004271676A priority Critical patent/JP2005283088A/en
Publication of JP2005283088A publication Critical patent/JP2005283088A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of precluding a treated object from contaminated with an oil mixed into a refrigerant gas, so as to maintain an excellent refrigeration capacity. <P>SOLUTION: This refrigerator 1 is provided with the first circulation circuit I including a main compressor 11, a cooler 12, the first heat exchanger 13, an expander 14 and the second heat exchanger 15, and arranged for the refrigerant gas returned to the main compressor 11 passed again through the first heat exchanger 13, after passing the main compressor 11, the cooler 12, the first heat exchanger 13, the expander 14 and the second heat exchanger 15, and the second circulation circuit II including the second heat exchanger 15 and a refrigeration processing chamber 16, and arranged for air of a cooling medium returned to the second heat exchanger 15 after passed through the second heat exchanger 15 and the refrigeration processing chamber 16. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被処理物を冷凍処理するための冷凍機に関するものである。   The present invention relates to a refrigerator for freezing a workpiece.

従来、低温空気を被処理物に直接触れさせて、この被処理物を冷凍処理する冷凍機は公知である(例えば、特許文献1参照)。
特許第3111065号公報(段落[0010]、[0015]、図1)
2. Description of the Related Art Conventionally, a refrigerator in which low temperature air is directly brought into contact with an object to be processed to freeze the object to be processed is known (for example, see Patent Document 1).
Japanese Patent No. 3111065 (paragraphs [0010] and [0015], FIG. 1)

特許文献1には、閉じた流路に冷媒ガス、例えば空気を循環させるようにした冷凍機が開示されている。この冷凍機では、冷凍処理室(冷熱消費設備20)での被処理物の冷凍処理の際に生じる水分固化成分が回収冷媒ガス中に混在し、そのまま寒冷回収熱交換器内に流入すると、この水分固化成分による上記寒冷回収熱交換器の閉塞が生じ、冷凍機の正常な運転ができなくなる。このため、この水分固化成分を除去する除湿手段としてフィルタが冷凍処理室の二次側に設けられている。そして、上記寒冷回収熱交換器に向かう冷媒空気から上記水分固化成分を上記フィルタにより除去し、上記水分固化成分による上記寒冷回収熱交換器の閉塞が防止されるようになっている。また、このフィルタにより、回収された冷媒空気中の粉塵も捕集され、清浄な冷媒空気が上記寒冷回収熱交換器を経て、圧縮機に導かれるようになっている。   Patent Document 1 discloses a refrigerator in which refrigerant gas, for example, air is circulated through a closed flow path. In this refrigerator, when the moisture solidification component generated in the freezing treatment of the object to be processed in the freezing treatment chamber (cold heat consumption equipment 20) is mixed in the recovered refrigerant gas and directly flows into the cold recovery heat exchanger, The cold recovery heat exchanger is blocked by the moisture-solidifying component, and the refrigerator cannot be operated normally. For this reason, a filter is provided on the secondary side of the freezing treatment chamber as a dehumidifying means for removing the moisture-solidifying component. And the said moisture solidification component is removed with the said filter from the refrigerant | coolant air which goes to the said cold recovery heat exchanger, The obstruction | occlusion of the said cold recovery heat exchanger by the said moisture solidification component is prevented. The filter also collects dust in the recovered refrigerant air, and clean refrigerant air is guided to the compressor via the cold recovery heat exchanger.

上述した空気冷凍機では、冷凍処理室で冷媒ガスが被処理物に接触するようになっているため、もしも圧縮機の軸受等から油が漏洩して冷媒ガスに混入した場合、被処理物が冷凍処理室でこの油により汚染されてしまうという問題がある。   In the above-described air refrigerator, since the refrigerant gas comes into contact with the object to be processed in the refrigeration chamber, if oil leaks from the compressor bearing or the like and enters the refrigerant gas, the object to be processed There is a problem that this oil is contaminated in the refrigeration chamber.

また、大気と接触するため、略大気圧の状態にある冷凍処理室内の圧力と圧縮機の吸込み圧とは同等であり、この吸込み圧は略大気圧に等しい。一方、空気冷凍機の冷凍処理室での冷凍能力を向上させるためには、循環する冷媒ガスの流量を増大させる必要があることから、上記フィルタの他、圧縮機、膨張機等も増大した流量に対応して大型化する必要がある。この結果、空気冷凍機が嵩高となり、その占有スペースが大きくなる他、圧縮機、膨張機等の軸受等の大型化に伴い、可動部でのメカニカルロスも増大するという問題がある。   Further, since it is in contact with the atmosphere, the pressure in the refrigeration chamber, which is in a state of substantially atmospheric pressure, is equal to the suction pressure of the compressor, and this suction pressure is substantially equal to atmospheric pressure. On the other hand, in order to improve the refrigeration capacity in the refrigeration processing chamber of the air refrigerator, it is necessary to increase the flow rate of the circulating refrigerant gas. It is necessary to increase the size in response to. As a result, the air refrigerator becomes bulky, and the occupied space increases, and there is a problem that mechanical loss at the movable part increases with an increase in the size of a bearing such as a compressor or an expander.

本発明は、斯かる従来の問題をなくすことを課題としてなされたもので、冷媒ガスに混入した油による被処理物の汚染をなくし、占有スペースや可動部でのメカニカルロスの増大を招くことなく良好な冷凍能力の維持を可能とした冷凍機を提供しようとするものである。   The present invention has been made in order to eliminate such a conventional problem, eliminates contamination of the object to be processed by oil mixed in the refrigerant gas, and does not cause an increase in mechanical loss in the occupied space or the movable portion. An object of the present invention is to provide a refrigerator that can maintain a good refrigeration capacity.

上記課題を解決するために、第1発明は、少なくとも、主圧縮機、冷却器、第1熱交換器、膨張機、第2熱交換器を含み、主圧縮機、冷却器、第1熱交換器、膨張機、第2熱交換器を経た後、再度上記第1熱交換器を経て上記主圧縮機に戻る冷媒ガスの第1循環流路と、少なくとも上記第2熱交換器、冷凍処理室を含み、上記第2熱交換器、上記冷凍処理室を経て上記第2熱交換器に戻る冷却媒体の第2循環流路とを備えた構成とした。   In order to solve the above problems, the first invention includes at least a main compressor, a cooler, a first heat exchanger, an expander, and a second heat exchanger, and the main compressor, the cooler, and the first heat exchange. A first circulation flow path for refrigerant gas that passes through the first heat exchanger and then returns to the main compressor through the first heat exchanger, and at least the second heat exchanger and the refrigeration chamber. And a second circulation channel of a cooling medium that returns to the second heat exchanger through the second heat exchanger and the refrigeration chamber.

また、第2発明は、第1発明の構成に加えて、上記第1循環流路に圧力検出可能に設けられた圧力検出器と、上記第1循環流路への昇圧用冷媒ガスの供給が可能に形成され、上記圧力検出器にて検出された圧力値に基づいて、上記第2熱交換器の二次側で、上記第2熱交換器と上記主圧縮機との間の位置での上記第1循環流路の圧力が大気圧よりも高く定められた設定圧力よりも高くなるように、上記昇圧用冷媒ガスの供給の制御がなされる昇圧部とが設けられた構成とした。   In addition to the configuration of the first invention, the second invention includes a pressure detector provided in the first circulation channel so as to be capable of detecting pressure, and supply of the boosting refrigerant gas to the first circulation channel. On the secondary side of the second heat exchanger, at a position between the second heat exchanger and the main compressor, based on the pressure value that is formed and detected by the pressure detector. A pressure increasing unit that controls the supply of the pressure increasing refrigerant gas is provided so that the pressure of the first circulation channel is higher than a set pressure that is set higher than the atmospheric pressure.

さらに、第3発明は、第2発明の構成に加えて、上記昇圧用冷媒ガスが乾燥状態にある構成とした。   Furthermore, the third aspect of the invention has a configuration in which the pressurizing refrigerant gas is in a dry state in addition to the configuration of the second aspect of the invention.

さらに、第4発明は、少なくとも、主圧縮機、冷却器、第1熱交換器、膨張機、第2熱交換器を含み、主圧縮機、冷却器、第1熱交換器、膨張機、第2熱交換器を経た後、再度上記第1熱交換器を経て上記主圧縮機に戻る冷媒ガスの第1循環流路と、少なくとも上記第2熱交換器、冷凍処理室を含み、上記第2熱交換器、上記冷凍処理室を経て上記第2熱交換器に戻る冷却媒体の第2循環流路と、上記第1循環流路への昇圧用冷媒ガスの供給が可能に形成された昇圧部と、上記第1循環流路から冷媒ガスの排出が可能に形成された降圧部と、上記冷凍処理室に室内温度検出可能に設けられた温度検出器とを備え、上記温度検出器により検出された検出温度が予め定めた許容上限温度よりも高い場合には、上記昇圧部から上記第1循環流路に冷媒ガスを供給させる一方、検出温度が予め定めた許容下限温度よりも低い場合には、上記降圧部に上記第1循環流路から冷媒ガスを排出させる構成とした。   Furthermore, the fourth invention includes at least a main compressor, a cooler, a first heat exchanger, an expander, and a second heat exchanger. The main compressor, the cooler, the first heat exchanger, the expander, Including a first circulation passage of refrigerant gas that passes through the second heat exchanger and then returns to the main compressor through the first heat exchanger, at least the second heat exchanger, and a refrigeration treatment chamber. A heat exchanger, a second circulation channel for the cooling medium that returns to the second heat exchanger through the refrigeration chamber, and a pressure-increasing unit that is configured to be capable of supplying the pressure-reducing refrigerant gas to the first circulation channel And a step-down portion formed so that the refrigerant gas can be discharged from the first circulation flow path, and a temperature detector provided in the refrigeration processing chamber so as to be capable of detecting an indoor temperature, and detected by the temperature detector. If the detected temperature is higher than a predetermined allowable upper limit temperature, the first circulating flow path is cooled from the boosting unit. While to supply the gas, when the detected temperature is lower than the predetermined allowable lower limit temperature was configured for discharging the refrigerant gas from the first circulation passage in the step-down unit.

第1発明によれば、冷凍処理室に供給する冷却媒体の第2循環流路は、第2熱交換器での熱交換を除いては、第1循環流路とは全く別個に独立して設けられ、流路を共有することはなく、万が一主圧縮機内の軸受部等から油が漏洩し、この油が乾燥空気に混入する事態が発生したとしても、冷凍処理室内の、例えば食品のような被冷却物が油により汚染されることは防止されるという効果を奏する。   According to the first invention, the second circulation channel of the cooling medium supplied to the refrigeration chamber is completely independent of the first circulation channel except for heat exchange in the second heat exchanger. Even if there is a situation where oil leaks from the bearing section in the main compressor and this oil is mixed into the dry air, it does not share the flow path. It is possible to prevent the object to be cooled from being contaminated with oil.

また、第2発明によれば、第1発明による効果に加えて、主圧縮機の吸込み側の圧力が大気圧よりも高い状態に維持され、この吸込み側からの水分を含む外気の流入は阻止され、これによる第1循環流路内、特に第1熱交換器における氷による流路の閉塞は回避できるとともに、吸込み側を大気圧よりも昇圧することにより冷凍機全体の占有スペースやその可動でのメカニカルロスを少なくとも増大させることなく、冷凍能力を向上させることが可能になるという効果を奏する。   Further, according to the second invention, in addition to the effect of the first invention, the pressure on the suction side of the main compressor is maintained in a state higher than the atmospheric pressure, and the inflow of outside air including moisture from the suction side is prevented. Thus, blockage of the flow path by the ice in the first circulation flow path, particularly in the first heat exchanger, can be avoided, and the suction side is boosted from the atmospheric pressure so that the occupied space of the entire refrigerator and the movable space can be moved. There is an effect that it is possible to improve the refrigerating capacity without increasing at least the mechanical loss.

さらに、第3発明によれば、第2発明による効果に加えて、第1循環流路内の冷媒ガスが徐々に外部に漏出していっても、昇圧部から第1循環流路に供給される昇圧用ガスが乾燥しているため、熱交換器、特に第1熱交換器での水分の凍結による閉塞という事態の発生が防止されるという効果を奏する。   Furthermore, according to the third invention, in addition to the effects of the second invention, even if the refrigerant gas in the first circulation channel gradually leaks to the outside, the refrigerant is supplied from the booster to the first circulation channel. Since the pressurizing gas is dry, it is possible to prevent the occurrence of a clogging due to freezing of water in the heat exchanger, particularly the first heat exchanger.

さらに、第4発明によれば、第1発明による効果に加えて、上記膨張機における膨張比を一定に保ち、冷凍機の効率を略一定に維持でき、冷凍能力を適宜変更して、部分負荷運転状態の場合でも、適正な冷凍能力でもって運転できるという効果を奏する。   Furthermore, according to the fourth invention, in addition to the effects of the first invention, the expansion ratio in the expander can be kept constant, the efficiency of the refrigerator can be maintained substantially constant, the refrigeration capacity can be changed as appropriate, and the partial load Even in the operating state, there is an effect that it can be operated with an appropriate refrigerating capacity.

次に、本発明の一実施形態を図面にしたがって説明する。
図1および2は、本発明に係る冷凍機1を示し、この冷凍機1は、主圧縮機11、冷却器12、第1熱交換器13、膨張機14、第2熱交換器15を経た後、再度第1熱交換器13を経て主圧縮機11に戻る冷媒ガスの第1循環流路Iと、第2熱交換器15、冷凍処理室16を経て第2熱交換器15に戻る冷却媒体である空気の第2循環流路IIとを備えている。また、第1循環流路Iにおける第1熱交換器13と主圧縮機11の間の部分には、後述する昇圧部17Aから延びる昇圧ガス流路IIIが合流し、昇圧ガス流路IIIにおけるガス流量は、第1循環流路Iにおける第2熱交換器15と第1熱交換器13との間の部分に設けられた圧力検出器18により調節されるようになっている。なお、図示する実施形態では、冷却器12は、限定するものではないが、水冷式のもので、主圧縮機11と膨張機14とは、駆動源としてモータ19を共有している。
Next, an embodiment of the present invention will be described with reference to the drawings.
1 and 2 show a refrigerator 1 according to the present invention, which has undergone a main compressor 11, a cooler 12, a first heat exchanger 13, an expander 14, and a second heat exchanger 15. Thereafter, the refrigerant gas returns to the main compressor 11 through the first heat exchanger 13 again, and the cooling returns to the second heat exchanger 15 through the first circulation flow path I of the refrigerant gas, the second heat exchanger 15 and the refrigeration chamber 16. And a second circulation channel II of air as a medium. Further, in the portion between the first heat exchanger 13 and the main compressor 11 in the first circulation flow path I, a pressure increase gas flow path III extending from a pressure increase section 17A described later joins, and the gas in the pressure increase gas flow path III The flow rate is adjusted by a pressure detector 18 provided in a portion between the second heat exchanger 15 and the first heat exchanger 13 in the first circulation channel I. In the illustrated embodiment, the cooler 12 is not limited, but is a water-cooled type, and the main compressor 11 and the expander 14 share a motor 19 as a drive source.

図2に示すように、昇圧部17Aは、駆動手段21、例えばモータにより駆動される補助圧縮機22と、この吸気フィルタ23を介して大気に連通する吸込流路24と、ドライヤ25、例えば膜式ドライヤが介設された吐出流路でもある上述した昇圧ガス流路IIIとにより形成され、図示する例では、昇圧ガス流路IIIから第1循環流路Iに乾燥空気を供給するものとなっている。   As shown in FIG. 2, the booster 17A includes a driving means 21, for example, an auxiliary compressor 22 driven by a motor, a suction passage 24 communicating with the atmosphere through the intake filter 23, and a dryer 25, for example, a membrane. In the example shown in the figure, dry air is supplied from the pressurization gas passage III to the first circulation passage I. ing.

そして、上記構成からなる冷凍機1において、まず昇圧部17Aの吸気フィルタ23、吸込流路24を経て補助圧縮機22に吸込まれた空気が圧縮された後、この補助圧縮機22から昇圧ガス流路IIIに吐出され、ドライヤ25を経て乾燥空気となって、第1循環流路Iに冷媒ガスとして供給される。第1循環流路Iでは、主圧縮機11によりこの冷媒ガスである乾燥空気が吸込まれて、圧縮され、圧力:約8kgf/cm2、温度:約160℃の状態で主圧縮機11から冷却器12に向けて吐出される。冷却器12で冷却されて、ここを出た乾燥空気は圧力:約8kgf/cm2、温度:約40℃の状態となって第1熱交換器13を通過し、後述する対向流をなす乾燥空気と熱交換して、圧力:約8kgf/cm2、温度:約−30℃の状態となり、膨張機14に送られる。膨張機14では、乾燥空気は、圧力:約2kgf/cm2、温度:約−100℃の状態に膨張させられ、ここから第2熱交換器15に至り、ここで後述する対向流をなす冷却媒体である空気と熱交換して圧力:約2kgf/cm2、温度:約−40℃の状態となり、第1熱交換器13に向けて送り出される。さらに、第1熱交換器13において、この圧力:約2kgf/cm2、温度:約−40℃の乾燥空気と、上述した冷却器12を経て、圧力:約8kgf/cm2、温度:約40℃の状態となって流入してきた対向流をなす乾燥空気との間で熱交換し、具体的には、この対向流をなす乾燥空気から熱を奪い、圧力:約2kgf/cm2、温度:約30℃の状態となって主圧縮機11に戻る。そして、この乾燥空気は再度主圧縮機11に吸込まれ、圧縮後、吐出され、第1循環流路I内での循環を繰返す。 In the refrigerator 1 having the above-described configuration, after the air sucked into the auxiliary compressor 22 through the intake filter 23 and the suction flow path 24 of the booster 17A is compressed, the boosted gas flow from the auxiliary compressor 22 is compressed. It is discharged to the path III, becomes dry air through the dryer 25, and is supplied to the first circulation flow path I as the refrigerant gas. In the first circulation channel I, the main compressor 11 sucks dry air as the refrigerant gas and compresses it, and cools it from the main compressor 11 in a state of pressure: about 8 kgf / cm 2 and temperature: about 160 ° C. The liquid is discharged toward the container 12. The dry air that has been cooled by the cooler 12 and exits from the air passes through the first heat exchanger 13 under a pressure of about 8 kgf / cm 2 and a temperature of about 40 ° C., and forms a counterflow described later. Heat exchange with air results in a pressure of about 8 kgf / cm 2 and a temperature of about −30 ° C. and is sent to the expander 14. In the expander 14, the dry air is expanded to a pressure of about 2 kgf / cm 2 and a temperature of about −100 ° C., and then reaches the second heat exchanger 15, where cooling is performed in a counterflow described later. Heat exchange with air as a medium results in a pressure of about 2 kgf / cm 2 and a temperature of about −40 ° C., and is sent out toward the first heat exchanger 13. Further, in the first heat exchanger 13, the pressure: about 2 kgf / cm 2 , the temperature: about −40 ° C. and the cooler 12 described above, the pressure: about 8 kgf / cm 2 , the temperature: about 40 Heat is exchanged with the countercurrent dry air that has flowed in at a temperature of ° C. Specifically, heat is taken from the countercurrent dry air, pressure: about 2 kgf / cm 2 , temperature: It returns to the main compressor 11 at about 30 ° C. Then, this dry air is again sucked into the main compressor 11 and is discharged after being compressed, and the circulation in the first circulation flow path I is repeated.

一方、第2熱交換器15には、第1循環流路Iにおける乾燥空気とは対向流をなすように冷凍処理室16に供給され、循環させられる冷却媒体である空気が流れておりこの両者の間で熱交換が行われ、第1循環流路Iにおける乾燥空気により、冷却媒体である空気が冷却される。具体的には、この空気は圧力:約1.033kgf/cm2(大気圧)、温度:約−40℃の状態で第2熱交換器15に流入し、上記乾燥空気により冷却されて圧力:約1.033kgf/cm2(大気圧)、温度:約−80℃の極低温の状態となって第2熱交換器15を出て、冷凍処理室16に供給される。この冷凍処理室16は、例えば食品を冷凍処理する冷凍倉庫であり、この食品のような被処理物を上記冷却されて供給された極低温の空気により直接急速冷凍処理し、その後この空気は圧力:約1.033kgf/cm2(大気圧)、温度:約−40℃の状態となって、冷凍処理室16から第2熱交換器15に向けて第2循環流路IIに介設された図示しないファン等によって送り出され、第2循環流路II内での循環を繰り返す。 On the other hand, the second heat exchanger 15 is supplied with air as a cooling medium that is supplied to the refrigeration chamber 16 so as to be opposed to the dry air in the first circulation flow path I and circulated. Heat exchange is performed between the two and the air as the cooling medium is cooled by the dry air in the first circulation channel I. Specifically, the air flows into the second heat exchanger 15 in a state where the pressure is about 1.033 kgf / cm 2 (atmospheric pressure) and the temperature is about −40 ° C., and is cooled by the dry air and the pressure: About 1.033 kgf / cm 2 (atmospheric pressure), temperature: About −80 ° C., the temperature is extremely low, exits the second heat exchanger 15, and is supplied to the refrigeration chamber 16. The refrigeration chamber 16 is, for example, a refrigeration warehouse that freezes food. A freezing process is performed directly on the object to be processed such as food using the cryogenic air supplied after cooling, and the air is then pressurized. : About 1.033 kgf / cm 2 (atmospheric pressure), temperature: about −40 ° C., and inserted in the second circulation channel II from the refrigeration chamber 16 toward the second heat exchanger 15. It is sent out by a fan or the like (not shown) and repeats circulation in the second circulation channel II.

ところで、冷凍機1の稼働中は、その停止時に比して主圧縮機11の吐出圧が上昇するため、第1循環流路I内の空気量が一定の場合、主圧縮機11の吸込圧が低下し、主圧縮機11の軸封部等を介して機外から大気が流入してくる可能性がある。その場合、事前に第1循環流路I内を上述した露点が0℃以下の乾燥空気で置換していても、水蒸気を含む外気が流入することにより、第1熱交換器13の膨張機14へと続く出口部での露点が0℃よりも高くなることもあり、単に乾燥空気で置換するだけであれば、第1熱交換器13において氷により流路の閉塞が生じる可能性がある。   Incidentally, when the refrigerator 1 is in operation, the discharge pressure of the main compressor 11 rises compared to when it is stopped. Therefore, when the amount of air in the first circulation channel I is constant, the suction pressure of the main compressor 11 There is a possibility that air will flow in from the outside of the main compressor 11 through the shaft seal portion or the like. In that case, even if the inside of the first circulation flow path I is replaced with dry air having a dew point of 0 ° C. or less in advance, the expander 14 of the first heat exchanger 13 flows due to the flow of outside air containing water vapor. In some cases, the dew point at the outlet portion that continues to become higher than 0 ° C., and if the air is simply replaced with dry air, the first heat exchanger 13 may block the flow path due to ice.

しかしながら、この冷凍機1の場合、上述したように昇圧部17Aおよび圧力検出器18が設けられており、氷による上記流路の閉塞のおそれはない。即ち、冷凍機1では、第1循環流路Iには、より詳しくは、その第1循環流路Iにおける第2熱交換器15と第1熱交換器13との間の部分には圧力検出器18が設けられており、この部分での検出圧力が大気圧より高く定められた設定圧力と比較し、これ以下の場合には、圧力検出器18から駆動手段21への制御信号により補助圧縮機22が作動させられ、上記検出圧力が上記設定圧力よりも高くなるように昇圧部17Aの昇圧ガス流路IIIから第1循環流路Iに乾燥空気が供給される。したがって、主圧縮機11の軸封部等を介して機外からの大気の流入は阻止される。   However, in the case of this refrigerator 1, the pressure | voltage rise part 17A and the pressure detector 18 are provided as mentioned above, and there is no possibility that the said flow path will be obstruct | occluded with ice. That is, in the refrigerator 1, more specifically, the first circulation flow path I has a pressure detection in a portion between the second heat exchanger 15 and the first heat exchanger 13 in the first circulation flow path I. A detector 18 is provided, and the detected pressure at this portion is compared with a set pressure determined to be higher than the atmospheric pressure. When the detected pressure is lower than this, auxiliary compression is performed by a control signal from the pressure detector 18 to the driving means 21. The machine 22 is operated, and dry air is supplied to the first circulation flow path I from the pressure increase gas flow path III of the pressure increase section 17A so that the detected pressure becomes higher than the set pressure. Therefore, the inflow of air from outside the machine through the shaft seal portion of the main compressor 11 is prevented.

なお、補助圧縮機22の駆動手段21については、圧力検出器18からこれによる検出圧力を示す圧力信号を図示しない制御手段に入力し、ここで検出圧力が大気圧より高い設定圧力以下か否かを判断し、イエスの場合にはこの制御手段から駆動手段21に制御信号を出力し、圧力検出器18による検出圧力が上昇するように補助圧縮機22を作動させるようにしてもよい。   For the driving means 21 of the auxiliary compressor 22, a pressure signal indicating the detected pressure is input from the pressure detector 18 to a control means (not shown), and whether or not the detected pressure is lower than a set pressure higher than the atmospheric pressure. If yes, the control means may output a control signal to the drive means 21 to operate the auxiliary compressor 22 so that the pressure detected by the pressure detector 18 increases.

上述したように、冷凍機1では、冷凍処理室16に供給する冷却媒体の第2循環流路IIは、第2熱交換器15での熱交換を除いては、第1循環流路Iとは全く別個に独立して設けられ、流路を共有することはなく、万一、主圧縮機11内の軸受部等から油が漏洩し、この油が乾燥空気に混入する事態が発生したとしても、冷凍処理室16内の、例えば食品のような被冷却物が油により汚染されることは防止される。   As described above, in the refrigerator 1, the second circulation channel II of the cooling medium supplied to the refrigeration chamber 16 is the same as the first circulation channel I except for the heat exchange in the second heat exchanger 15. Are provided separately and independently, and do not share the flow path. As a matter of course, oil leaks from the bearing portion or the like in the main compressor 11 and this oil enters the dry air. However, the object to be cooled such as food in the freezing treatment chamber 16 is prevented from being contaminated by oil.

ところで、冷凍機1において、循環する冷媒である乾燥空気の重量流量を一定にすれば冷凍能力は一定に維持される。例えば主圧縮機11の吸込圧力が大気圧で、流量が約30m3/minである場合、吸込圧力が3倍の大気圧×3になれば、冷凍能力を一定に維持するには、流量を1/3の約10m3/minにすればよい。即ち、冷凍能力が同等であるという条件下で、吸込圧力を大気圧よりも高くした冷凍機1の主圧縮機11を、主圧縮機の吸込圧力が略大気圧である従来の空気冷凍機と比較すると、第1循環流路Iに介在する主圧縮機11、冷却器12、第1熱交換器13、膨張機14および第2熱交換器15の方が小型化できることになる。吸込圧力を大気圧よりも高くするために、例えば、乾燥ガス供給部17Aのような付帯設備が必要となる点を考慮しても、全体的には、占有スペースの縮小化、主圧縮機11や膨張機14の可動部でのメカニカルロスの低減等が可能になるというメリットが大きい。 By the way, in the refrigerator 1, if the weight flow rate of the dry air which is the circulating refrigerant is made constant, the refrigerating capacity is maintained constant. For example, when the suction pressure of the main compressor 11 is atmospheric pressure and the flow rate is about 30 m 3 / min, if the suction pressure becomes three times the atmospheric pressure × 3, the flow rate is maintained to maintain the refrigeration capacity constant. What is necessary is just to set to about 10 m < 3 > / min of 1/3. That is, the main compressor 11 of the refrigerator 1 in which the suction pressure is higher than the atmospheric pressure under the condition that the refrigerating capacity is equivalent to the conventional air refrigerator in which the suction pressure of the main compressor is approximately atmospheric pressure. In comparison, the main compressor 11, the cooler 12, the first heat exchanger 13, the expander 14, and the second heat exchanger 15 interposed in the first circulation flow path I can be downsized. Even in consideration of the necessity of ancillary equipment such as the dry gas supply unit 17A in order to make the suction pressure higher than the atmospheric pressure, overall, the occupied space can be reduced, and the main compressor 11 can be reduced. And the merit that reduction of the mechanical loss in the movable part of the expander 14, etc. becomes possible is large.

また、冷凍能力を上げるには、主圧縮機11や膨張機14をより大型化して第1循環流路Iでの上記流量を増大させる必要があるが、吸込圧力が略大気圧の主圧縮機を用いた従来の空気冷凍機に比して、吸込圧力が大気圧よりも高い主圧縮機11を用いた冷凍機1の場合、従来ほどの大型化は要しない。   In order to increase the refrigerating capacity, it is necessary to increase the flow rate in the first circulation flow path I by increasing the size of the main compressor 11 and the expander 14, but the main compressor has a suction pressure of approximately atmospheric pressure. In the case of the refrigerator 1 using the main compressor 11 in which the suction pressure is higher than the atmospheric pressure, the size of the conventional air refrigerator does not need to be increased as compared with the conventional air refrigerator.

さらに、第1循環流路I内を循環する乾燥空気は主圧縮機11や膨張機14の可動部等から少しずつ機外に漏出してゆくことがあり得るが、昇圧部17Aから第1循環流路Iに昇圧用の乾燥空気が供給されるため、第1循環流路Iにおける圧力は、上記漏出により低下することはなく、設定圧力よりも高く維持される。昇圧部17Aから第1循環流路Iに供給されるのは、乾燥空気であるため、これにより熱交換器、特に第1熱交換器13での水分の凍結による閉塞ということも防止される。   Further, the dry air circulating in the first circulation flow path I may gradually leak out of the main compressor 11 and the movable part of the expander 14, etc., but the first circulation from the booster 17A. Since the pressurizing dry air is supplied to the flow path I, the pressure in the first circulation flow path I is not lowered by the leakage and is maintained higher than the set pressure. Since it is the dry air that is supplied to the first circulation flow path I from the booster 17 </ b> A, it is possible to prevent the heat exchanger, particularly the first heat exchanger 13, from being blocked by freezing of water.

上述した実施形態では、昇圧部17Aは補助圧縮機22、ドライヤ25を用いて乾燥空気を供給するものであったが、本発明はこれに限定するものでない。
図3は、昇圧部17Aに代わる昇圧部17Bを示し、窒素ガス供給源31、例えば窒素ガスボンベと、この窒素ガス供給源31に一端が接続され、流量調節弁32が介設され、昇圧部17Aの場合と同様に第1循環流路Iに合流する昇圧ガス流路IIIとからなっている。なお、この昇圧部17Bを用いた冷凍機1の場合、冷媒ガスは上述した乾燥空気に代えて、乾燥窒素ガスとなる。そして、上記同様に圧力検出器18による検出圧力に基づき流量調節弁32が制御され、昇圧ガス流路IIIから第1循環流路Iに供給される乾燥した窒素ガスの流量が調節されて、第1循環流路I内の圧力が上記同様に維持される。
冷媒ガスを窒素ガスとすれば、窒素ガス供給源31として窒素ガスボンベを採用することができ、構造上、単純化することができる。
In the embodiment described above, the booster 17A supplies dry air using the auxiliary compressor 22 and the dryer 25, but the present invention is not limited to this.
FIG. 3 shows a booster 17B instead of the booster 17A. A nitrogen gas supply source 31, for example, a nitrogen gas cylinder, one end of which is connected to the nitrogen gas supply source 31, a flow control valve 32 is interposed, and the booster 17A In the same manner as in this case, it is composed of a pressurized gas flow path III that merges with the first circulation flow path I. In the case of the refrigerator 1 using the pressure increasing unit 17B, the refrigerant gas is dry nitrogen gas instead of the above-described dry air. Then, the flow rate adjustment valve 32 is controlled based on the pressure detected by the pressure detector 18 in the same manner as described above, and the flow rate of the dry nitrogen gas supplied from the pressurization gas channel III to the first circulation channel I is adjusted. The pressure in one circulation channel I is maintained as described above.
If the refrigerant gas is nitrogen gas, a nitrogen gas cylinder can be adopted as the nitrogen gas supply source 31, and the structure can be simplified.

図4は、昇圧部17A或いは昇圧部17Bに代わる昇圧部17Cを示し、図2に示す昇圧部17Aと互いに共通する部分については、同一番号を付して説明を省略する。
この昇圧部17Cを用いた冷凍機1の場合、冷媒ガスは乾燥窒素ガスで、この昇圧部17Cでは、一般にPSA式窒素ガス発生装置と呼ばれる圧力スイング吸着式窒素ガス発生装置41が補助圧縮機22からの吐出流路でもある昇圧ガス流路IIIが介設されている。
この圧力スイング吸着式窒素ガス発生装置41は、特殊吸着材を内蔵した吸着塔を用い、加圧下の吸着塔内で空気から酸素のみを特殊吸着材により選択、除去することによって高純度の窒素ガスを生成するようにした周知の装置である。また、吸着塔内において、加圧下で特殊吸着材により選択的に吸着、除去された酸素は、吸着塔内を減圧することによりパージされ、吸着塔は繰り返し使用される。そして、この圧力スイング吸着式窒素ガス発生装置41を介して補助圧縮機22から第1循環流路Iに乾燥した窒素ガスが供給され、上記同様、圧力検出器18による検出圧力に基づき、補助圧縮機22から吐出される圧縮空気の流量が制御され、第1循環流路I内の圧力が設定圧力よりも高く維持される。
FIG. 4 shows a booster 17C that replaces the booster 17A or the booster 17B, and parts that are common to the booster 17A shown in FIG.
In the case of the refrigerator 1 using the pressurizing unit 17C, the refrigerant gas is dry nitrogen gas. In the pressurizing unit 17C, a pressure swing adsorption type nitrogen gas generating device 41, generally called a PSA type nitrogen gas generating device, is used as the auxiliary compressor 22. A pressure-increasing gas passage III that is also a discharge passage from is interposed.
This pressure swing adsorption type nitrogen gas generator 41 uses an adsorption tower with a built-in special adsorbent, and selects and removes only oxygen from the air by using the special adsorbent in the adsorption tower under pressure. Is a well-known device for generating In the adsorption tower, oxygen selectively adsorbed and removed by the special adsorbent under pressure is purged by reducing the pressure in the adsorption tower, and the adsorption tower is used repeatedly. Then, dried nitrogen gas is supplied from the auxiliary compressor 22 to the first circulation flow path I via the pressure swing adsorption type nitrogen gas generator 41, and the auxiliary compression is performed based on the pressure detected by the pressure detector 18 as described above. The flow rate of the compressed air discharged from the machine 22 is controlled, and the pressure in the first circulation channel I is maintained higher than the set pressure.

なお、昇圧部17B或いは昇圧部17Cに関しても、圧力検出器18により開度調節弁32の開度、駆動手段21の制御をするようにしてもよく、上述したように図示しない制御手段を介して開度調節弁32の開度、駆動手段21の制御をするようにしてよい。
また、昇圧部17A、17B、17Cから第1循環流路Iに乾燥ガスを供給する位置は必ずしも上述した実施形態における位置に限定するものではない。圧力検出器18の取付け位置についても限定するものでなく、第2熱交換器15の二次側で、第2熱交換器15と主圧縮機11との間のいずれかの位置であればよい。
さらに、冷凍機1の各部における上述した圧力、温度の状態は、参考用として一例を示したもので、本発明はこれらの圧力、温度の値に何等限定されるものでないことは言うまでもない。
Note that the booster 17B or the booster 17C may be controlled by the pressure detector 18 to control the opening degree of the opening degree adjustment valve 32 and the driving means 21, as described above, via the control means (not shown). The opening degree of the opening degree adjusting valve 32 and the driving means 21 may be controlled.
Further, the position at which the drying gas is supplied from the boosting units 17A, 17B, and 17C to the first circulation channel I is not necessarily limited to the position in the above-described embodiment. The mounting position of the pressure detector 18 is not limited, and may be any position between the second heat exchanger 15 and the main compressor 11 on the secondary side of the second heat exchanger 15. .
Furthermore, the above-described pressure and temperature states in each part of the refrigerator 1 are merely examples for reference, and it goes without saying that the present invention is not limited to these pressure and temperature values.

また、上述した実施形態では、第2循環流路IIを循環する冷却媒体が空気であり、その冷却媒体が直接、食品等を冷凍処理するものであったが、本発明はこれに限定するものではない。この他、冷却媒体として空気以外のガス、例えば、冷媒ガスとして例示した乾燥窒素ガスを使用してもよい。この場合、冷凍処理室16の内部の空気が第2循環流路IIに流入したり、第2循環流路IIの冷却媒体が冷凍処理室16の内部に流出することがないように、第2循環流路IIの冷凍処理室16内における部分を、冷凍処理室16内に開放した状態とせず、例えば管路により構成し、第2循環流路IIをその内部の冷却媒体と冷凍処理室16内の空気が直接接触することのない閉じた流路とするのがよい。   In the above-described embodiment, the cooling medium circulating in the second circulation channel II is air, and the cooling medium directly freezes food or the like. However, the present invention is limited to this. is not. In addition, a gas other than air, for example, dry nitrogen gas exemplified as the refrigerant gas may be used as the cooling medium. In this case, the air in the refrigeration chamber 16 does not flow into the second circulation channel II and the cooling medium in the second circulation channel II does not flow out into the refrigeration chamber 16. A part of the circulation channel II in the refrigeration chamber 16 is not opened in the refrigeration chamber 16, and is constituted by, for example, a pipe, and the second circulation channel II is formed in the refrigeration chamber 16 and the cooling medium in the second circulation channel II. It is good to make it the closed flow path which the inside air does not contact directly.

さらに、上述した実施形態では、圧力検出器18は第1循環流路Iにおける第2熱交換器15と第1熱交換器13との間の位置に設けられているが、本発明はこの位置に限定するものでない。圧力検出器18が第1循環流路Iの他の位置に設けられていても、そこで検出された圧力値に基づき、第2熱交換器15の二次側で、かつ第2熱交換器15と主圧縮機11との間の位置での第1循環流路Iの圧力を一義的に導くことができるため、圧力検出器18は第1循環流路Iのどの位置に設けられてもよい。ただし、第1循環流路Iにおける昇圧のために使用する最終データが、第2熱交換器15の二次側で、かつ第2熱交換器15と主圧縮機11との間の位置での第1循環流路Iの圧力値であり、その位置で検出された圧力値が最も信頼性のあるものであって、圧力検出器18は上述した第2熱交換器15と第1熱交換器13との間の位置、或いは第1熱交換器13と主圧縮機11との間の位置に設けられるのが望ましい。   Further, in the above-described embodiment, the pressure detector 18 is provided at a position between the second heat exchanger 15 and the first heat exchanger 13 in the first circulation flow path I. It is not limited to. Even if the pressure detector 18 is provided at another position of the first circulation flow path I, the second heat exchanger 15 is provided on the secondary side of the second heat exchanger 15 based on the pressure value detected there. Since the pressure of the first circulation flow path I at a position between the main compressor 11 and the main compressor 11 can be uniquely guided, the pressure detector 18 may be provided at any position of the first circulation flow path I. . However, the final data used for boosting in the first circulation channel I is on the secondary side of the second heat exchanger 15 and at a position between the second heat exchanger 15 and the main compressor 11. The pressure value of the first circulation channel I and the pressure value detected at that position is the most reliable, and the pressure detector 18 includes the second heat exchanger 15 and the first heat exchanger described above. Preferably, it is provided at a position between the first heat exchanger 13 and the main compressor 11.

図5は、本発明に係る別の冷凍機2を示し、図5において図1に示す冷凍機1と共通する部分については、互いに同一番号を付して説明を省略する。
この冷凍機2では、モータ19の出力軸に取り付けた駆動側歯車51と、主圧縮機11、膨張機14のそれぞれのロータ軸に取り付けた従動側歯車52,53とを噛み合わせて主圧縮機11、膨張機14のそれぞれを作動させている。ただし、図1と同様にモータ19により、直接主圧縮機11、膨張機14のそれぞれを作動させるようにしてもよい。この冷凍機2では、第1循環流路Iから冷媒ガスの排出が可能に形成された降圧部54と、冷凍処理室16に室内温度検出可能に温度検出器55とが設けられている。そして、温度検出器55による検出温度が予め定めた許容上限温度よりも高い場合、即ち冷凍能力が過小である場合には、温度検出器55からの制御信号により昇圧部17Aから第1循環流路Iに冷媒ガスを供給させ、降圧部54を閉塞させる一方、検出温度が予め定めた許容下限温度よりも低い場合には、温度検出器55からの制御信号により降圧部54に第1循環流路Iから冷媒ガスを排出させ、昇圧部17Aを閉塞させるようにしてある。なお、降圧部54は、第1循環流路Iにおける主圧縮機11の吐出側で膨張機14の入口側の部分における冷媒ガスを排出するように設けるのが望ましい。図示する例では、第1熱交換器13と膨張機14との間における第1循環流路Iの部分から分岐して降圧部54に至る降圧ガス流路IVが設けてあり、この降圧ガス流路IVの分岐点では冷媒ガスが高圧であるため、冷媒ガスを容易に排出できる。また、この冷凍機2では、第2熱交換器15において第1循環流路Iの冷媒と第2循環流路IIの冷却媒体が対向流をなす構成となっているが、冷凍機1についても同様の構成にしてもよい。
FIG. 5 shows another refrigerator 2 according to the present invention. In FIG. 5, parts common to the refrigerator 1 shown in FIG.
In this refrigerator 2, a main compressor is configured by meshing a driving side gear 51 attached to the output shaft of the motor 19 with driven side gears 52 and 53 attached to the respective rotor shafts of the main compressor 11 and the expander 14. 11 and each of the expanders 14 are operated. However, each of the main compressor 11 and the expander 14 may be directly operated by the motor 19 as in FIG. In the refrigerator 2, a step-down unit 54 formed so that the refrigerant gas can be discharged from the first circulation flow path I, and a temperature detector 55 are provided in the refrigeration processing chamber 16 so that the room temperature can be detected. When the temperature detected by the temperature detector 55 is higher than a predetermined allowable upper limit temperature, that is, when the refrigerating capacity is too low, a control signal from the temperature detector 55 causes the first circulation channel from the booster 17A. When the refrigerant gas is supplied to I and the pressure drop unit 54 is closed, while the detected temperature is lower than a predetermined allowable lower limit temperature, the first circulation flow path is sent to the pressure drop unit 54 by a control signal from the temperature detector 55. The refrigerant gas is discharged from I, and the booster 17A is closed. It is desirable that the pressure-lowering unit 54 is provided so as to discharge the refrigerant gas at the inlet side of the expander 14 on the discharge side of the main compressor 11 in the first circulation flow path I. In the example shown in the figure, a step-down gas passage IV that branches from the portion of the first circulation passage I between the first heat exchanger 13 and the expander 14 and reaches the step-down unit 54 is provided. Since the refrigerant gas has a high pressure at the branch point of the path IV, the refrigerant gas can be easily discharged. In the refrigerator 2, the refrigerant in the first circulation flow path I and the cooling medium in the second circulation flow path II are opposed to each other in the second heat exchanger 15. A similar configuration may be used.

斯かる構成により、この冷凍機2の場合、モータ19の回転数を一定に保ったままで、昇圧部17Aと降圧部54とにより冷凍能力の調整が可能となっており、例えば冷凍能力を下げたい場合でも、モータ19の回転数を減少させて部分負荷運転に移行させる必要はない。したがって、冷凍機2におけるモータ19は回転数可変のものである必要はない。なお、温度検出器55には、冷凍処理室16の室内温度を検出するとともに、制御信号を発して、昇圧部17A、降圧部54を制御するものを示した。これに代え、温度検出器55から冷凍処理室16の室内温度を示す温度信号を図示しない制御手段に入力し、この制御手段により昇圧部17A、降圧部54を制御するようにしてもよい。   With such a configuration, in the case of this refrigerator 2, the refrigerating capacity can be adjusted by the booster 17A and the depressurizer 54 while keeping the rotation speed of the motor 19 constant. For example, the refrigerating capacity is desired to be lowered. Even in this case, it is not necessary to decrease the rotation speed of the motor 19 and shift to the partial load operation. Therefore, the motor 19 in the refrigerator 2 does not have to be variable in rotation speed. Note that the temperature detector 55 detects the room temperature of the refrigeration chamber 16 and issues a control signal to control the pressure-up unit 17A and the pressure-down unit 54. Alternatively, a temperature signal indicating the room temperature of the refrigeration chamber 16 may be input from the temperature detector 55 to a control unit (not shown), and the boosting unit 17A and the stepping-down unit 54 may be controlled by this control unit.

上記冷凍機1及び2の場合、冷凍処理室16で被処理物を冷却する能力である冷却能力は、冷凍処理室16を経て第2循環流路II内を循環する冷却媒体(例:空気)の温度と重量流量に依存する。この冷却媒体は第2熱交換器15にて第1循環流路I内の冷媒と熱交換する故、結局、上記冷却能力は第1循環流路I内を循環する冷媒の温度と重量流量に依存するといえる。そして、冷凍機1の場合、上記冷凍能力が過大であれば、この冷凍能力を下げて適正にするために部分負荷運転が必要となる。この場合、例えば、主圧縮機11及び膨張機14の回転数を低下させることにより冷媒の重量流量を減ずる部分負荷運転が行われる。ところで、主圧縮機11が、例えばスクリュ圧縮機の場合、作動ガスの流量は回転数に略比例するのに対して、膨張機14が、例えば膨張タービンの場合、作動ガスの流量は上記スクリュ圧縮機の場合ほど比例しない。このため、上述した部分負荷運転の場合、膨張機14の入口圧力が低下し、膨張比が小さくなる。一方、一般的に、膨張タービンは回転数が最大値のときに効率が最高になるように設計されている。したがって、冷凍機1において膨張タービンを採用した場合、膨張比が小さくなる上述した部分負荷運転時には、膨張機14の効率は低下する。しかしながら、上述したように、冷凍機2では、モータ19の回転数を変えることなく冷凍能力の調整が可能となっているため、上述したように膨張機14の効率が低下するという事態は回避される。   In the case of the refrigerators 1 and 2, the cooling capacity that is the ability to cool the object to be processed in the refrigeration chamber 16 is a cooling medium (eg, air) that circulates in the second circulation channel II through the refrigeration chamber 16. Depends on temperature and weight flow rate. Since this cooling medium exchanges heat with the refrigerant in the first circulation flow path I in the second heat exchanger 15, the cooling capacity eventually becomes the temperature and weight flow rate of the refrigerant circulating in the first circulation flow path I. It can be said that it depends. In the case of the refrigerator 1, if the refrigeration capacity is excessive, a partial load operation is required to reduce the refrigeration capacity and make it appropriate. In this case, for example, a partial load operation is performed in which the weight flow rate of the refrigerant is reduced by reducing the rotational speeds of the main compressor 11 and the expander 14. By the way, when the main compressor 11 is, for example, a screw compressor, the flow rate of the working gas is substantially proportional to the rotational speed, whereas when the expander 14 is, for example, an expansion turbine, the flow rate of the working gas is the above-described screw compression. Not as proportional as the machine. For this reason, in the case of the partial load operation described above, the inlet pressure of the expander 14 is reduced and the expansion ratio is reduced. On the other hand, in general, an expansion turbine is designed to have the highest efficiency when the rotational speed is at a maximum value. Therefore, when the expansion turbine is employed in the refrigerator 1, the efficiency of the expander 14 is reduced during the above-described partial load operation where the expansion ratio is small. However, as described above, in the refrigerator 2, the refrigeration capacity can be adjusted without changing the rotation speed of the motor 19, so that a situation in which the efficiency of the expander 14 decreases as described above is avoided. The

さらに詳述すれば、例えば、主圧縮機11がスクリュ圧縮機である場合、その体積流量はロータの回転数により決まり、上述のように、モータ19は一定の回転数で回転される故、主圧縮機11の体積流量は一定である。また、例えば、膨張機14が膨張タービンである場合、その体積流量は膨張比が同じであれば、一定である。この膨張比が一定であれば、冷媒が循環する系内の温度レベルも同じである。一方、冷凍機2のように冷媒ガス(乾燥空気)の供給或いは排出を行えば、上記系内における圧力レベルは変化する。したがって、冷凍機2では、冷媒ガスの供給及び排出により、“膨張比一定”、“体積流量一定”、“上記系内の温度レベル一定”及び“上記系内の圧力レベル変化”の状態が実現されることになる。ところで、冷却熱量に依存する冷却能力は、冷媒の重量流量(体積流量)及び温度に比例するため、体積流量一定、系内の温度レベル一定の本発明に係る冷凍機2の場合、系内の圧力レベル変化により冷凍能力を変化させることができる。また、膨張機14の膨張比は一定である故、膨張機14の効率、ひいては冷凍機2の効率は一定に維持される。つまり、冷凍機2の場合、その効率を一定に維持しつつ、冷凍能力を適宜変更し、適正な冷凍能力でもって運転することが可能となっている。なお、上述したように、一般に、膨張タービンは最高回転数において最も高い効率になるように設計されており、その一定回転数を最高回転数になるようにしておけば、常に最高の効率を維持しつつ、冷凍能力を適正に変化させることが可能となる。   More specifically, for example, when the main compressor 11 is a screw compressor, the volume flow rate is determined by the rotational speed of the rotor, and the motor 19 is rotated at a constant rotational speed as described above. The volume flow rate of the compressor 11 is constant. For example, when the expander 14 is an expansion turbine, the volume flow rate is constant if the expansion ratio is the same. If this expansion ratio is constant, the temperature level in the system through which the refrigerant circulates is the same. On the other hand, if refrigerant gas (dry air) is supplied or discharged as in the refrigerator 2, the pressure level in the system changes. Therefore, in the refrigerator 2, the conditions of “constant expansion ratio”, “constant volume flow”, “constant temperature level in the system”, and “change in pressure level in the system” are realized by supplying and discharging the refrigerant gas. Will be. By the way, since the cooling capacity depending on the amount of cooling heat is proportional to the weight flow rate (volume flow rate) and temperature of the refrigerant, in the case of the refrigerator 2 according to the present invention having a constant volume flow rate and a constant temperature level in the system, The refrigeration capacity can be changed by changing the pressure level. Further, since the expansion ratio of the expander 14 is constant, the efficiency of the expander 14 and thus the efficiency of the refrigerator 2 is maintained constant. That is, in the case of the refrigerator 2, while maintaining the efficiency constant, it is possible to appropriately change the refrigeration capacity and to operate with an appropriate refrigeration capacity. As described above, in general, expansion turbines are designed to have the highest efficiency at the maximum number of revolutions. If the constant number of revolutions is set to the maximum number of revolutions, the highest efficiency is always maintained. However, the refrigeration capacity can be changed appropriately.

図6(横軸:冷凍能力(%)、縦軸:成績係数(COP))は、冷凍能力の最大値を100%とし、この状態から冷凍能力を低下させた場合における上記効率に対応する成績係数(COP)が変化する態様を、冷凍機2については実線Aで、降圧部54を備えず、モータの回転数を下げることにより部分負荷運転するようにした冷凍機については一点鎖線Bにより示したものである。図示するように、冷凍機2の場合は略一定の成績係数、即ち効率を維持するのに対して、もう一方の冷凍機の場合は冷凍能力を低下させる程、成績係数も大きく低下してゆくことが分かる。   FIG. 6 (horizontal axis: refrigeration capacity (%), vertical axis: coefficient of performance (COP)) shows a result corresponding to the above efficiency when the maximum value of the refrigeration capacity is 100% and the refrigeration capacity is lowered from this state. A mode in which the coefficient (COP) changes is indicated by a solid line A for the refrigerator 2 and indicated by a one-dot chain line B for a refrigerator that is not provided with the step-down unit 54 and that is operated at a partial load by lowering the rotational speed of the motor. It is a thing. As shown in the figure, in the case of the refrigerator 2, a substantially constant coefficient of performance, that is, efficiency is maintained, whereas in the case of the other refrigerator, the coefficient of performance greatly decreases as the refrigeration capacity decreases. I understand that.

本発明に係る冷凍機の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the refrigerator which concerns on this invention. 図1に示す冷凍機における昇圧部の詳細を示すブロック図である。It is a block diagram which shows the detail of the pressure | voltage rise part in the refrigerator shown in FIG. 図2に示す昇圧部に代えて図1に示す冷凍機に用いられる別の昇圧部を示すブロック図である。It is a block diagram which shows another pressure | voltage rise part used for the refrigerator shown in FIG. 1 instead of the pressure | voltage rise part shown in FIG. 図2に示す昇圧部に代えて図1に示す冷凍機に用いられるさらに別の昇圧部を示すブロック図である。It is a block diagram which shows another pressure | voltage rise part used for the refrigerator shown in FIG. 1 instead of the pressure | voltage rise part shown in FIG. 本発明に係る他の冷凍機の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the other refrigerator based on this invention. 冷凍能力と成績係数との関係を本発明に係る冷凍機と他の降圧部を備えていない冷凍機について示した図である。It is the figure which showed the relationship between refrigeration capacity | capacitance and a coefficient of performance about the refrigerator which is not equipped with the refrigerator based on this invention, and another pressure | voltage reduction part.

符号の説明Explanation of symbols

1,2 冷凍機
11 主圧縮機
12 冷却器
13 第1熱交換器
14 膨張機
15 第2熱交換器
16 冷凍処理室
17A,17B,17C 昇圧部
18 圧力検出器
19 モータ
21 駆動手段
22 補助圧縮機
23 吸気フィルタ
24 吸込流路
25 ドライヤ
31 窒素ガス供給源
32 流量調節弁
41 圧力スイング吸着式窒素ガス発生装置
51 駆動側歯車
52,53 従動側歯車
54 降圧部
55 温度検出器
I 第1循環流路
II 第2循環流路
III 昇圧ガス流路
IV 降圧ガス流路
DESCRIPTION OF SYMBOLS 1, 2 Refrigerator 11 Main compressor 12 Cooler 13 1st heat exchanger 14 Expander 15 2nd heat exchanger 16 Refrigeration processing chamber 17A, 17B, 17C Booster 18 Pressure detector 19 Motor 21 Drive means 22 Auxiliary compression Machine 23 Intake filter 24 Suction passage 25 Dryer 31 Nitrogen gas supply source 32 Flow rate adjustment valve 41 Pressure swing adsorption type nitrogen gas generator 51 Drive side gears 52, 53 Drive side gear 54 Step-down gear 55 Temperature detector
I 1st circulation flow path
II Second circulation channel
III Pressurized gas flow path
IV Step-down gas flow path

Claims (4)

少なくとも、主圧縮機、冷却器、第1熱交換器、膨張機、第2熱交換器を含み、主圧縮機、冷却器、第1熱交換器、膨張機、第2熱交換器を経た後、再度上記第1熱交換器を経て上記主圧縮機に戻る冷媒ガスの第1循環流路と、
少なくとも上記第2熱交換器、冷凍処理室を含み、上記第2熱交換器、上記冷凍処理室を経て上記第2熱交換器に戻る冷却媒体の第2循環流路とを備えたことを特徴とする冷凍機。
After including at least the main compressor, cooler, first heat exchanger, expander, and second heat exchanger, after passing through the main compressor, cooler, first heat exchanger, expander, and second heat exchanger A first circulation flow path of the refrigerant gas returning to the main compressor through the first heat exchanger again,
A cooling medium second circulation flow path including at least the second heat exchanger and the refrigeration chamber and returning to the second heat exchanger via the second heat exchanger and the refrigeration chamber. Refrigerator.
上記第1循環流路に圧力検出可能に設けられた圧力検出器と、上記第1循環流路への昇圧用冷媒ガスの供給が可能に形成され、上記圧力検出器にて検出された圧力値に基づいて、上記第2熱交換器の二次側で、上記第2熱交換器と上記主圧縮機との間の位置での上記第1循環流路の圧力が大気圧よりも高く定められた設定圧力よりも高くなるように、上記昇圧用冷媒ガスの供給の制御がなされる昇圧部とが設けられたことを特徴とする請求項1に記載の冷凍機。   A pressure detector provided in the first circulation channel so as to be capable of detecting pressure, and a pressure value detected by the pressure detector formed so as to be capable of supplying the pressure-reducing refrigerant gas to the first circulation channel. On the secondary side of the second heat exchanger, the pressure of the first circulation channel at a position between the second heat exchanger and the main compressor is determined to be higher than the atmospheric pressure. The refrigerator according to claim 1, further comprising: a boosting unit that controls supply of the boosting refrigerant gas so as to be higher than the set pressure. 上記昇圧用冷媒ガスが乾燥状態にあることを特徴とする請求項2に記載の冷凍機。   The refrigerator according to claim 2, wherein the pressurizing refrigerant gas is in a dry state. 少なくとも、主圧縮機、冷却器、第1熱交換器、膨張機、第2熱交換器を含み、主圧縮機、冷却器、第1熱交換器、膨張機、第2熱交換器を経た後、再度上記第1熱交換器を経て上記主圧縮機に戻る冷媒ガスの第1循環流路と、
少なくとも上記第2熱交換器、冷凍処理室を含み、上記第2熱交換器、上記冷凍処理室を経て上記第2熱交換器に戻る冷却媒体の第2循環流路と、
上記第1循環流路への昇圧用冷媒ガスの供給が可能に形成された昇圧部と、
上記第1循環流路から冷媒ガスの排出が可能に形成された降圧部と、
上記冷凍処理室に室内温度検出可能に設けられた温度検出器とを備え、
上記温度検出器により検出された検出温度が予め定めた許容上限温度よりも高い場合には、上記昇圧部から上記第1循環流路に冷媒ガスを供給させる一方、検出温度が予め定めた許容下限温度よりも低い場合には、上記降圧部に上記第1循環流路から冷媒ガスを排出させることを特徴とする冷凍器。
After including at least the main compressor, cooler, first heat exchanger, expander, and second heat exchanger, after passing through the main compressor, cooler, first heat exchanger, expander, and second heat exchanger A first circulation flow path of the refrigerant gas returning to the main compressor through the first heat exchanger again,
A second circulation channel of a cooling medium including at least the second heat exchanger and the refrigeration processing chamber, returning to the second heat exchanger through the second heat exchanger and the refrigeration processing chamber;
A pressurizing unit formed to be capable of supplying the refrigerant gas for pressurization to the first circulation channel;
A step-down portion formed such that the refrigerant gas can be discharged from the first circulation channel;
A temperature detector provided in the refrigeration chamber so as to be capable of detecting the indoor temperature;
When the detected temperature detected by the temperature detector is higher than a predetermined allowable upper limit temperature, the refrigerant gas is supplied from the booster to the first circulation flow path, while the detected temperature is a predetermined allowable lower limit. When the temperature is lower than the temperature, the step-down portion causes the refrigerant gas to be discharged from the first circulation flow path.
JP2004271676A 2004-03-04 2004-09-17 Refrigerator Pending JP2005283088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004271676A JP2005283088A (en) 2004-03-04 2004-09-17 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004060657 2004-03-04
JP2004271676A JP2005283088A (en) 2004-03-04 2004-09-17 Refrigerator

Publications (1)

Publication Number Publication Date
JP2005283088A true JP2005283088A (en) 2005-10-13

Family

ID=35181673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004271676A Pending JP2005283088A (en) 2004-03-04 2004-09-17 Refrigerator

Country Status (1)

Country Link
JP (1) JP2005283088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249254A (en) * 2007-03-30 2008-10-16 Mitsubishi Heavy Ind Ltd Refrigerating machine, and operating method and manufacturing method of refrigerating machine
JP2012137291A (en) * 2012-04-18 2012-07-19 Mitsubishi Heavy Ind Ltd Method for operating refrigerator, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249254A (en) * 2007-03-30 2008-10-16 Mitsubishi Heavy Ind Ltd Refrigerating machine, and operating method and manufacturing method of refrigerating machine
JP2012137291A (en) * 2012-04-18 2012-07-19 Mitsubishi Heavy Ind Ltd Method for operating refrigerator, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR20040086562A (en) Refrigerant cycle apparatus
WO2014068967A1 (en) Refrigeration device
JP5502459B2 (en) Refrigeration equipment
JP6264688B2 (en) Refrigeration equipment
JP5484890B2 (en) Refrigeration equipment
JP5412193B2 (en) Turbo refrigerator
JP2005337242A (en) A two-stage screw refrigerating device
JP2011133204A (en) Refrigerating apparatus
JP2010043589A (en) Water-lubricated oil-free compressor apparatus
JP5496645B2 (en) Refrigeration equipment
JP6388260B2 (en) Refrigeration equipment
JP5523817B2 (en) Refrigeration equipment
JP6097109B2 (en) Turbo refrigerator
KR20110074708A (en) Freezing device
JP2013064573A (en) Refrigerating apparatus for container
JP2011137557A (en) Refrigerating apparatus
JP3837298B2 (en) Screw refrigerator
JP2005283088A (en) Refrigerator
JP5141272B2 (en) Turbo refrigerator
JP4307878B2 (en) Refrigerant cycle equipment
JP6096551B2 (en) Turbo refrigerator
JP2011133208A (en) Refrigerating apparatus
JP4738219B2 (en) Refrigeration equipment
JP6467682B2 (en) Refrigeration equipment
JP2018132223A (en) Refrigerator